
The Molecular Architecture of Variable
Lifespan in Diversity Outbred Mice

Abstract
To unravel the causes and effects of aging we can monitor the time-evolution of the aging
process and learn how it is structured by genetic and environmental variation before ultimately
testing theories about the causal drivers of aging. Diverse Outbred (DO) mice provide
widespread, yet controlled, genetic variation generating considerable variation in mouse lifespan
- here, we explore the relationship between DO mouse aging and lifespan. We profiled the
plasma multiome of 110 DO mice at three ages using liquid chromatography - mass
spectrometry (LC-MS)-based metabolomics and lipidomics and proteomics. Individual mice
varied more than two-fold in natural lifespan. The combination of known age and resulting
lifespan allows us to evaluate alternative models of how molecules were related to chronological
age and lifespan. The majority of the aging multiome shifts with chronological age highlighting
the accelerating chemical stress of aging. In contrast, proteomic pathways encompassing both
well-appreciated aspects of aging biology, such as dysregulation of proteostasis and
inflammation, as well as lesser appreciated changes such as through toll-like receptor signaling,
shift primarily with fraction of life lived (the ratio of chronological age to lifespan). This measure,
which approximates biological age, varies greatly across DO mice creating a global disconnect
between chronological and biological age. By sampling mice near their natural death we were
able to detect loss-of-homeostasis signatures involving focal dysregulation of proteolysis and
the secreted phosphoproteome which may be points-of-failure in DO aging. These events are
succeeded by massive changes in the multiome in mice’s final three weeks as widespread cell
death reshapes the plasma of near-death mice.

Introduction
At a population level, age is the greatest risk factor for all-cause-mortality. This can be directly
seen from the phenomenological Gompertz equation whereby hazard rises exponentially,
doubling the risk of human death every eight years 1–3. Many changes are associated with aging
and extreme changes in these hallmarks often manifest in severe disease 4. Yet, we still know
relatively little about how natural age-associated shifts in hallmarks, either individually or in
concert, contribute to the precipitous increase in hazard. In particular, it is not clear which
natural age-associated shifts in hallmarks drive aging - to better understand and treat aging we
must begin distinguishing the causal drivers of the aging process from its correlated symptoms.

Understanding the relationship between aging and lifespan requires us to measure lifespan,
monitor the aging process via direct or indirect (biomarker) readouts of aging processes, and to
relate age-associated changes to mortality.
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It is generally appreciated that aging is not an ordered regulatory process, but rather the
accumulation of physical and chemical defects that organisms combat with both adaptive and
maladaptive regulatory responses 4,5. Mass spectrometry-based multiomics is a strong platform
for probing such a system - proteomics captures realized regulation integrating transcriptional,
and post-transcriptional control, while metabolomics and/or lipidomics reveal an organism’s
physicochemical state 6–9.

Most studies characterizing molecular changes with age utilize model organisms and focus on
tissues, which requires culling animals, thereby precluding the measurements of natural lifespan
6,7,9. To mitigate this issue, inbred strains can be characterized for both aging and lifespan in
genetically identical individuals. In this way a subset of animals can be profiled for natural
lifespan, while another set is used for terminal assays at various ages. The results can then be
combined to summarize the aging and lifespan of their common strain. This is the prevailing
scenario when comparing long- and short-lived strains that allows us to discover molecular
changes associated with differential lifespan 10,11. Alternatively, a set of strains can be
characterized for both age and lifespan to identify consistent associations. This design was
used by Williams et al. 2022 to relate the hepatic transcriptomic and proteomic changes across
89 recombinant inbred mouse lines to aging, diet, and strain-specific lifespan 7. In this work the
authors observed age-associated increases in extracellular matrix transcripts and proteins, and
dysregulation of lysosomal proteostasis, particularly cathepsin D (Ctsd), but revealed few
associations between lifespan and molecular abundances across strains.

Rather than profiling aging as an endpoint in tissues, measurements of blood cells and/or
plasma can be collected with minimal invasiveness. This allows repeated measurements of
molecules on an individual basis in a way that can be coupled to natural lifespan 12. Rather than
exploring a single tissue, relevant biomarkers may be derived from multiple tissues, with
changes in circulating proteins generally agreeing with changes in tissues 9. Beyond this, the
primary way that physically separated tissues interact is through the circulation; thus we have
the potential to capture molecules which are mediating non-tissue autonomous aging 13–15. This
provides the potential for both biomarkers, and possible targets which can be readily profiled in
either mice or humans 16,17. Ongoing efforts which are part of the UK BioBank, and other
epidemiological consortia, are now profiling plasma at the scale of tens of thousands of
individuals to relate circulating proteins and metabolites changes to relevant intermediate
phenotypes and disease 18,19. While such efforts are of great value, human-derived hypotheses
derived from observational studies should ultimately be tested with controlled interventions to
disentangle causality. To wit, developing models which are representative of human aging
physiology but amenable to diverse experimental interventions and deep profiling is a key
enabler of translational medicine.

Diversity Outbred (DO) mice are outbred mice derived from eight commonly used strains of
inbred mice 20. These founder strains vary in median lifespan by almost two-fold with short-lived
strains dying from various cancers and long-lived strains exhibiting a pronounced anticorrelation
of circulating Igf1 levels and lifespan 21–23. Cohorts of DO mice are particularly valuable for
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understanding how genetic variation shapes intermediate phenotypes which may cascade into
functional outcomes such as lifespan. In DO mice environmental variation can be controlled,
and genetics can be used as a tool for identifying the molecular drivers of complex traits 20,24.
This potential for systems genetics has been realized by several recent studies looking at how
dietary intervention’s influence is contextualized by DO genetics to impact tissue ‘omics and
functions. This approach was first adopted by profiling 192 DO mice’s hepatic transcriptome and
proteome revealing that both local and distant molecular Quantitative Trait Loci (QTLs) could be
discovered, and that many protein QTLs’s effects on protein abundance are mediated through
their cognate transcript 25. Establishing a more direct association between molecular changes
and tissue function, in brown adipose tissue, measurements of 163 DO mice’s proteome
identified regulators modulating thermogenic potential 26. Similarly, measurements of the skeletal
muscle proteome of 215 DO mice were paired with metabolic measures to identify proteins
associated with variable insulin resistance 27. Studies such as this which explore how tissue
functions vary within DO mice are complemented by studies understanding how aging may
interact with this underlying functional heterogeneity to drive gross organismal decline. The
impact of aging on the DO mouse kidney transcriptome and proteome was explored in Takemon
et al. 2021 6 where they noted specific changes in podocyte cytoskeleton remodeling to maintain
glomerular filtration rate as well as a global disconnect between age-associated transcriptional
and protein changes reflecting altered proteostasis.

Here, we build upon these amassing atlas’ of DO physiology by profiling the plasma of 110 DO
mice (55 males and 55 females) longitudinally at three ages (8, 14, & 20 months), roughly
corresponding to adolescence, early adulthood and late adulthood, using liquid chromatography
- mass spectrometry (LC-MS) metabolomics and lipidomics and tandem mass tag (TMT)
proteomics (Figure 1). Following each mouse’s final blood-draw, their natural lifespan was
determined, with profiled mice living between an additional two and 821 days. Near death, mice
exhibited a widespread “death’s door” signature while the broader aging process is best
described by three interacting aging archetypes following distinct kinetics. Most changes in the
metabolome and lipidome track with chronological age with subtle shifts from 8 to 14 months
and more pronounced changes progressing to 20 months. In contrast, most changes in the
proteome, particularly changes in proteostasis and inflammation which are canonical features of
the aging proteome 4,28–30, shift with “fraction of life lived”. This measure, the ratio of
chronological age to lifespan, may be capturing the biological age of DO mice which is only
loosely correlated with chronological age. A third archetype, “age x lifespan” interactions, are
best described as a loss-of-homeostasis. These failures lead to punctuated accumulation of
proteosomal components and targets of the Golgi kinase Fam20c, which may be key
points-of-failure in the aging process leading to a broader death’s door signature and ensuing
death.
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Figure 1: Profiling the plasma multiome of aging Diversity outcross (DO) mice with
known lifespans. (A) DO mice were generated from multiple generations of random mating of
inbred lines derived from common mouse strains. Mice from five DO generations were enrolled
in the SHOCK cohort at 2 months, blood was drawn at 8, 14, and 20 months, and mice were
then housed for the remainder of their natural life. (B) DO mice vary greatly in their natural
lifespan. Mice selected for this study were restricted to those with three blood draws and further
enriched for short- and long-lived mice. The DO cohort’s eight founder strains’ median lifespan
are shown. Two strains, labelled with asterisks, are not an exact match to the founder strains.
(C) Plasma samples were separately processed for proteomics and metabolomics/lipidomics.
9-10 experimental proteomics samples and one bridge sample which was shared across
batches were labelled with distinct isobaric TMT tags and combined into a single physical
10/11-plex. Each plex was fractionated and injected into the mass spectrometer where
abundances of individual samples were detected by their distinct MS3 reporter ions. Metabolites
and lipids were extracted from a common plasma sample through a biphasic extraction.
Following drying and resuspension, metabolites and lipids were separately analyzed in positive-
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and negative-mode by mass spectrometry.

Results

Dataset generation
The SHOCK study conducted at The Jackson Laboratory aimed to identify the genetic and
physiological determinants of lifespan in an outbred population of mice. 600 mice, drawn from
generations 7 to 11 of the broader DO breeding project, were enrolled in the SHOCK study
(Figure 1A). These mice were raised in standardized housing and fed a chow diet from birth
until their natural death. The median lifespan of the eight inbred founder strains of the DO cohort
vary by about 70% with DO strains showing average lifespans typical of long-lived mouse
strains but with greater lifespan variability than inbred strains (Figure 1B) 21. Each mouse was
intermittently phenotyped including by drawing blood at 8, 14, and 20 months of age. Blood
samples were immediately profiled using a panel of assays including complete blood count
(CBC), which assesses the composition of cells in the blood. Plasma was then prepared from
each blood sample and frozen for subsequent multiomic profiling.

To explore molecular readouts of aging and lifespan, we selected 110 mice with three available
blood draws for deeper analysis using liquid-chromatography mass-spectrometry (LC-MS)
multiomics (Figure 1B). Selected mice were enriched for extreme lifespans to improve the power
of detecting lifespan-associated molecules. By profiling the same mouse at multiple ages using
a longitudinal analysis, we are able to explore trends that occur within individual mice. This
allows us to correct for mouse-specific variation when identifying molecules associated with
chronological age, or age x lifespan interactions. Such interactions may occur if the change in a
molecule between timepoints is more predictive of lifespan than the molecule’s baseline level.
This design also allows us to define alternative aging-relevant measures: lifespan remaining
(lifespan - age), and fraction of life lived (FLL; age / lifespan).

We profiled each samples’ biomolecules using LC-MS Tandem Mass Tag (TMT) proteomics,
metabolomics (positive- and negative-mode) and lipidomics (positive- and negative-mode)
(Figure 1C). Profiling small molecules in both ion-modes using separate LC-MS runs allows us
to recover compounds that more readily form either positively- or negatively-charged ions,
increasing the overall coverage of the dataset. We profiled samples across two tranches of 54
(set 1/2) and 56 mice (set 3). Despite using equivalent chromatography and mass spectrometry
methods across both tranches, the considerable time between batches brought challenges in
recovering a single coherent dataset. A detailed overview of the bioinformatics approach can be
found in the materials and methods and the project’s GitHub repository.

Briefly, we separately processed metabolomic and lipidomic positive-, and negative-mode
datasets using OpenCLAM. Metabolite and lipids were manually curated using MAVEN to
facilitate biological interpretation 31. Technical “injection” replicates of set1/2 metabolites were
profiled and since replicates were highly correlated they were skipped for the remainder of the
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dataset (Figure SF1). Metabolomics datasets could be aggregated across tranches by aligning
across unambiguous masses and shared fragmentation patterns. This facilitated subsequent
analysis of metabolomic unknowns (i.e., metabolites with a known mass and retention time but
unknown identity). The positive- and negative-mode lipidomics results could not be aligned
between set1/2 and set3 due to non-monotonic shifts in retention time. So, each dataset was
separately processed and manually identified lipids were merged across sets based on shared
labels. This created a single coherent dataset but limited analysis of unknowns. We did
manually retain 21 unknown lipids identified during preliminary untargeted analyses - these
features were carefully treated to avoid ascertainment bias (see methods). Metabolite and lipid
features were normalized by mean-centering by day (within a set) and were mean-centered
again between set1/2 and set3. This batch centering approach, compared to other normalization
approaches explored, greatly decreased variability between cross-day technical replicates while
preserving variability between experimental samples (Figure SF2).

TMT proteomics combines multiple samples whose proteins have been labeled with different
compatible TMT tags into a single physical sample called a “plex”. Once combined, each
sample in a plex’s peptides will possess the same exact mass, retention time, and MS2-based
fragmentation pattern but each TMT tag will fragment differently at the MS3 level to reveal
reporter ions whose intensity is proportional to samples’ peptide concentrations 25,32. Since
samples are pooled, technical variability covaries within a plex allowing for robust estimation of
relative abundances between pairs of tags at the peptide or protein level. By including a shared
“bridge” sample in each plex, we were able to aggregate relative abundances across multiple
plexes with the same bridge channel 26. This is conceptually similar to using a common
reference sample in a two-color microarray experiment 33. After aggregating peptides of the
same protein 34, relative abundances within each plex were centered within each set to correct
for systematic differences in each set’s bridge channel (Figure SF3).
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Figure 2: The multiome is shaped by age, sex, and looming death. (A) Heatmap of
metabolites, lipids, and proteins with samples split by sex and age and ordered by lifespan
remaining. 20 month observations with low lifespan remaining died soon after the blood draw
(<21 days) resulting in “Death’s Door Metabolite” (DDM) signature. Missing observations are
colored white. (B) PC plot showing the first two principal components relationship to sex,
chronological age, and DDM samples. (C) samples’ distances from the centroid of all principal
components weighted by their eigenvalues are used to calculate Mahalanobis distance. For
DDM samples (purple), the number of days a mouse had left to live is shown. (D) Scree plot
showing leading principal components contributions to the datasets variability. The slow drop-off
in principal components’ % variance explained indicates that a range of factors shape structured
variation in this dataset.
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Data Modality # of Identified Features # of Unknowns

Proteomics 972 0

Metabolomics 160 611

Lipidomics 403 21

Table 1: Measured features across data modalities

The multiome is shaped by age, sex, and looming death
Using measurements of ~2,200 distinct features across 330 samples (Table 1, Table ST1), we
first applied exploratory data analysis to identify the factors shaping the aggregated plasma
multiome. These sources of sample-level variation may be due to the differences in age, sex,
lifespan, or genetic variation which were intended aspects of our experimental design.
Alternatively, they may be due to unintended sources of error.

Applying principal components analysis, we identified and removed four data-modality or
mode-specific (e.g., just affecting positive-mode metabolomics) outlier samples whose inclusion
drove the leading principal components. Outlier samples at the data modality level could reflect
problems with sample preparation, while mode-specific outliers generally reflect issues with
chromatography (most of which were addressed with LC-MS re-runs). More problematic, we
identified two patterns which are clearly shaped by blood draw date and mouse generation
(Figure SF4 and Figure SF5). One batch effect, the “early G8 effect”, impacts all of the 8 month
blood draws from generation 8 and the first half of the 14 month blood draws (by draw date).
The other effect, the “late blood draw (LBD) effect”, impacts all samples drawn after Nov 9th
2013 which includes the 20 months draws from G9, 10, and 11 and the latter half of the 14
month blood draws for G11. Both effects could be clearly captured as categorical covariates
(Figures SF6, SF7) but due to their confounding with age, these batch effects were estimated
during feature-level regressions rather than regressing them out up-front. For the remaining
results, both the early G8 and LBD batch effects are regressed from the data but these two
batch effects’ impact on individual features can be visualized in our R Shiny application. All
results presented below have been spot-checked for consistency across generation, mass spec
tranche (set1/2 vs. set3), and known batch effects. To identify other technical batch effects we
explored the extent to which experimental batches structure the leading principal components in
individual datasets and we verified that such effects were minor (Figure SF8).

After correcting for major undesirable sources of variation, a group of samples from near-death
individuals with profoundly altered ‘omics stand out (Figure 2A, B). This near-death effect is
observed across data modalities but most profoundly affects the metabolome hence we termed
it the death's door metabolite (DDM) signature. While mortality does increase following a blood
draw, the number of animals in this group is similar to what we would expect from the overall
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increase in hazard independent of blood draw and thus we are likely monitoring the natural
death of these animals. To convey how molecularly unusual these samples are, their
Mahalanobis distance relative to the principal components’ ellipsoid, a multivariate
generalization of a Z-statistic, was found and this measure clearly distinguishes these unusual
samples (Figure 2C) 35. This analysis allowed us to define a cutoff for “DDM samples” as those
where the mouse died less than 21 days after the final blood draw. This summary helps to both
characterize the molecular makeup of the DDM and to exclude these samples when
characterizing aging (they are exclusively 20 month blood draws) and lifespan (they are the
shortest-lived mice) since they would drive ungeneralizable associations.

In addition to this DDM signature, age and sex are clear drivers of the multiome, with each
shaping the structure of principal components 1 and 2 (Figure 2A, B). Beyond these leading
principal components, there is a thick tail of trailing principal components whose covariance is
likely shaped by other biological effects such as genetics, or lifespan-associated health (Figure
2D). To identify these interesting patterns which may be manifesting as subtle features of the
dataset, the major effects highlighted by exploratory data analysis (age, sex, DDM, and the
generation batch effects) need to be carefully accounted for.

Hundreds of genetic loci shape the plasma multiome
The outbred nature of diverse outcross mice can be leveraged as a tool for causal inference if
natural variation impacts specific biomolecules with a mediating effect on lifespan or other traits
25,36. While the modest number of mice in this study (110) limits our ability to apply such
techniques, we did explore whether there are heritable signals and common genetic
determinants of molecular traits. Based on similarity of mice’s measurements across three ages
we can calculate the broad-sense heritability of each trait, a measure of the fraction of variability
derived from additive and non-additive genetic variation 37. Heritability varies greatly across
molecules but is generally low, reflecting that molecules’ abundances are primarily shaped by
strain-independent biological (e.g., age) and technical effects (e.g., measurement noise) (Figure
SF9A). There are some highly heritable molecules showing continuous variation in abundance
consistent with a polygenic genetic architecture, and others, notably the GM2 and GM3 lipids,
showing step-like jumps in abundance consistent with a simpler genetic architecture (Figure
SF9B). Changes in GM2/GM3 lipids (due to a loss-of-function mutation in B4galnt1, the enzyme
responsible for converting GM3 lipids into GM2 lipids), in NOD mice have been previously
reported in the DO mouse lipidome 38. Consistent with previous reports, we find that mice that
are NOD/NOD at the B4galnt1 (chr10:127Mb) locus accumulate the substrate of this reaction
and deplete its products (Figure SF10).

We applied QTL mapping to each trait and cross-trait FDR control and found 258 QTLs
associated with molecules’ abundances at a 10% FDR (Figure SF11, Table ST2). We similarly
explored whether there was a genetic basis for fold-changes (which could capture a SNP which
drives age-dependent accumulation of a molecule) but no associations could be retained at a
10% FDR. This suggests that genetics has a greater impact on shaping the baseline levels of
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molecules than how they shift with age. Consistent with previous reports, most protein QTLs are
local QTLs which map to the protein’s coding locus 26,27.

Figure 3: Identifying statistical associations between molecules’ abundances and age or
lifespan. (A) Cartoon models showing how a molecule’s concentration, [M], would change for a
short- and long-lived individual across chronological age if the molecule was an exemplar of
each aging archetype. (B) P-value histogram of major biological effects with the number of
significant associations listed for each term. (C) Examples of features which are strongly
associated with each of the major effects. (D) Beehive plots summarizing gene sets and lipid
categories which shift with sex, DDM status, and longevity modes. Individual features within a
category are shown as single points summarized by their regression effect size for the
coefficient of interest.
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Aging Archetype Definition Regression Models

Lifespan
Aging
independent

Date of death -
date of birth

log2abund ~ lifespan$ + chronological age [categorical] +
sex + batch

Chronological Age Data of sample collection
-
date of births

log2fold-change ~ chronological age [categorical]$ + batch
log2abund ~ chronological age [categorical] + sex + batch
log2abund ~ lifespan + chronological age [days] + sex +
batch

Fraction of Life
Lived (FLL)

Chronological age /
lifespan

log2abund ~ fraction of life lived$ + sex + batch

Age x Lifespan
Loss of
homeostasis

Interaction terms between
chronological age and
lifespan in regression
models

log2fold-change ~ chronological age [categorical] x
lifespan$ + batch
log2abund ~ chronological age [categorical] x lifespan +
sex + batch
log2abund ~ lifespan + chronological age [days] x lifespan
+ sex + batch

Lifespan
remaining

Lifespan -
chronological age

log2abund ~ lifespan remaining$ + sex + batch

Table 2: Descriptions of Aging Archetypes: Aging archetypes are tested using one or more
regression models. Regression terms labeled with a “$” are used as the primary readout of an
archetype while alternative models using abundances and/or treating chronological age as a
continuous variable are used for specific analyses.

Identifying the molecular correlates of aging and lifespan
To identify relationships between biomarkers and variables of interest, we can test whether
molecules’ concentrations are predicted in a statistically significant fashion based on the
variable, accounting for major covariates. This allows us to test each molecule independently,
applying standardized statistical tests across all features using a common regression
framework. Beyond confirming the specific molecules driving the structure of the leading
principal components by sex, chronological age and the DDM (Figure 2B), we can frame
regression models to evaluate alternative models of how chronological age and lifespan shape
the multiome, which we term “aging archetypes” (Figure 3A, Table 2).

Aging archetypes capture molecules set at birth (i.e., inborn errors detected as
aging-independent lifespan associations), those changing with age (chronological aging and
FLL) and those defining a failure of homeostasis (age x lifespan interactions and lifespan
remaining). We exclude the DDM signature from this list because while it is kinetically similar to
age x lifespan interactions, DDM hits could be clearly distinguished from all of the aging
archetypes and impacted independent sets of molecules (see below). In contrast, while aging
archetypes can be separately tested, they are not independent. Features which vary with any of
these archetypes would also be detected, albeit to a weaker extent by a subset of other
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archetypes (Figure SF12). For example, a molecule that changes with chronological age would
also vary somewhat with FLL and lifespan remaining.

When exploring aspects of chronological aging, fold-changes of a mouse with respect to its
earliest blood draw are used to identify early age (i.e., between 14 and 8 months) and late age
changes (i.e., between 20 and 8 months). Working with fold-changes removes mouse-specific
variation to increase power and decrease bias but this solution cannot be generally applied. For
example, when mouse-specific attributes are of primary interest (i.e., lifespan or sex)
fold-changes would remove the variation of interest. Instead most models are fit using
abundances ignoring the fact that mice have repeated measures. So that we can compare
multiple aging archetypes fit to identical data, chronological age and age x lifespan models are
also fit using abundances (in addition to the primary model using fold-changes). Similarly, we fit
models where chronological age was a numeric rather than a categorical variable so that we
could estimate the biological age of individual samples based on molecular pathways (see
below).

To ensure that we are able to detect biologically feasible effect sizes we can use a power
analysis for chronological age-, lifespan-, age x lifespan-dependent changes (Figure SF13).
While the level of noise varies feature-to-feature, a typical lipid, our noisiest data modality,
possesses a log2 standard deviation of ~0.75 (Figure SF2). At this noise level we have a 90%
power to detect chronological age fold-changes of > 0.5, an oldest-youngest lifespan difference
of > 0.5 (equivalent to 0.06 per 100 days) and an oldest-youngest late age x lifespan effect of >
0.58 (equivalent to > 0.073 per 100 days). This suggests that we are powered to detect
moderately sized changes (well under 2-fold between extremes) even for noisy features.

Having defined statistical models for detecting molecules following each aging archetype, along
with other effects such as sex, DDM, and age x sex models (see materials and methods) we fit
each model to each of our ~2,200 molecular features. To combat outlier-driven false positives,
we use bootstrapped linear regressions that are robust to departures from residual normality 39.
Such departures are common in mass spectrometry 40 and in cohorts due to non-additive
genetic and/or environmental variation 37.

As expected from our exploratory data analysis, a large number of features vary by sex and are
part of the DDM signature. 1,156 features are associated with at least one archetype (q < 0.1)
with FLL, followed by late age (chronological aging), and lifespan remaining topping the list of
archetypes that are statistically associated with the most features (Figure 3B, Figure SF14,
Tables ST3, ST4). Associations’ frequencies are relatively consistent across data modalities and
alternative regression models (Figure SF15, Figure SF16). Examples of molecules that are
strongly associated with sex, DDM, and each aging archetype are shown in Figure 3C.
Equivalent plots can be generated for any feature of interest in the study using our R Shiny
application.

Molecules changing with chronological age which also exhibit age x lifespan interactions such
as Pcsk9, Clec3b, Nid1, and Igfbp5 show a strong anticorrelation of aging and age x lifespan
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effects (Figure SF17). Molecules elevated with age are associated with a negative age x
lifespan interaction where an increase in abundance from early to late age predicts short
lifespan. Intuitively, this pattern can be interpreted as age x lifespan interactions reflecting aging
patterns which are specific to short-lived animals; or alternatively, markers which are faithfully
maintained in long-lived animals. This analysis can be extended to compare all pairs of aging
archetypes revealing the correlations among aging archetypes, but also a significant, albeit
modest, overlap between features exhibiting aging effects and those with batch effects (Figure
SF18). Overlapping signals are also apparent when comparing hits which are significant for just
one term or a pair of terms (Figure SF19)

To better understand the biological processes enriched in each process we can apply gene set
enrichment analysis to significantly changing proteins and lipid set enrichment analysis to lipids.
We chose to not look for metabolite pathway enrichments using a systematic geneset-like
approach since cellular pathways are a poor representation of the plasma due to low coverage
(i.e., most pathway intermediates are not released into circulation) and undefined regulatory
mechanisms.

Pathway enrichments of aging archetypes
To identify functional enrichments we determined whether each gene set or lipid category was
enriched for a regression term’s significant associations (q < 0.1) using Fisher Exact tests.
Following FDR control and de-duplication of terms with highly overlapping membership we
identified pathways that are significantly altered among each term’s associations (Figure 3D,
Table ST5). Functional categories were grouped into related categories (such as those related
to proteostasis, or the extracellular matrix). Despite more than ⅔ of features changing with sex,
only a single pathway was enriched among sex hits - with complement signaling being elevated
in male mice. In contrast, the DDM signature is linked to 35 non-degenerate gene sets,
including cell cycle machinery and antigen presentation, that can be best summarized as
intracellular components which should not be observed in the plasma unless there is
widespread apoptosis or necrosis. This supports the idea that the DDM is capturing the acute
and irreversible breakdown of organism-level homeostasis irrespective of the upstream driver of
this failure.

Functional associations with aging archetypes are widespread and highly overlapping. For
example, phosphatidylcholine (PC) lipids are enriched among associations for lifespan, FLL and
lifespan remaining. This is unsurprising because most archetypes are strongly (anti)correlated
by definition and thus their associated features overlap (Figures SF12, SF18, SF19). The lack of
independence complicates the interpretation of signatures like PC lipids changing. Are they set
at birth and independent of chronological age (i.e., associated with lifespan), a clock counting
down to a mouse’s death (i.e., lifespan remaining), or something closer to a mouse’s biological
age (i.e., FLL)? To determine which aging archetype best describes each aging feature and their
higher-level grouping into pathways, we compared archetypes head-to-head.
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Figure 4: Assigning molecules and pathways to aging archetypes. (A) The molecules
which are significantly associated with most pairs of aging archetypes strongly overlap.
Compared pairs are colored based on the significance of a Fisher Exact test. Cells contain
p(x|y) and p(y|x) where p(y|x) would be the fraction of significant molecules in the category on
the x-axis which are also significantly associated with the term of the y-axis. p(x|y) is the
converse. (B) Summarizing individual molecules (using Pcks9 as an example) and pathways
using (IGF signaling as an example) based on their relative support across multiple aging
archetypes based on AICc. (C) Since relative model supports sum to one over the aging
archetypes they form a simplex, and three components of the simplex (fraction of life lived,
chronological age, and age x lifespan interactions) can be visualized as a Ternary diagram
where each points proximity to the three vertices is proportional to its support for that archetype.
Both categories (labels) and individual molecules (points) are visualized on this simplex using a
color-scheme which maps molecules onto their associated pathway.

Molecular archetypes of aging
Strong associations with one aging archetype necessarily show up as weaker associations with
other archetypes resulting in overlapping hits (Figure 4A). To attribute aging changes either at
the individual feature level or pathway level to specific archetypes we adopted a model
comparison approach. Model comparison methods evaluate a set of plausible models fit to the
same data and determine the best supported model balancing how well each model fits the data
(its log-likelihood) with the number of degrees of freedom they fit. Here, we performed model
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comparison using Akaike Information Criteria (AIC) with a correction for finite sample size (AICc)
41. AIC can be thought of as an extension of the Likelihood Ratio Test to non-nested data

treating the relative likelihood of a set of models fit to the same data as exp((AICmin −

AICi)/2)42. This calculation can be extended across multiple features by summing the AICc of
individual features for a given archetype (Figure 4B). Using this approach we calculated the
relative support for each of the five aging archetypes for each pathway (and an “other” category
of proteins, lipids, and metabolites (split into knowns and unknowns)) in the union of all aging
archetypes’ functional enrichments (Figure SF20). Each of the five archetypes is associated
with at least one functional category. Lipids containing 17:0 are associated with lifespan, while
lipids regulating toll-like receptor signaling are associated with lifespan remaining. Both of these
associations are borderline improvements over other archetypes for categories with a small
number of molecular features so it is unlikely that these are legitimate. In contrast, chronological
aging, FLL, and age x lifespan interactions are each associated with a handful of functional
categories with proteomic categories primarily varying with FLL or age x lifespan interactions,
and metabolomic/lipidomic categories generally shifting with chronological age.

The large number of features that are confidently associated with one of the principal
archetypes and not others suggests that all three archetypes operate simultaneously to drive
variation in distinct subsets of biomolecules. To further explore this idea, we visualized the
relative likelihood of these three principle aging archetypes using a Ternary diagram (Figure 4B)
where as expected from SF20, functional categories’ archetypes tend to sit at the vertices of the
diagram with strong support for a single archetype. This belies the incoherence at the level of
individual features - most pathways especially age x lifespan interactions contain a large
number of features which are better described by an alternative aging archetype. An example of
this is the GO term for collagen assembly where collagens show clear shifts with chronological
age (Figure 3C) but the consensus model is an age x lifespan interaction. This is because the
age x lifespan interaction model is the only model which fits a subset of features showing
loss-of-homeostasis but this model will also fit a feature changing with chronological age well
(since chronological aging model is a simpler form of the the age x lifespan model, the main
difference in their AICc would be due to the difference in their number of fitted parameters). This
aging archetype heterogeneity suggests that aging effects could cascade through individual
pathways with some elements reflecting aging stress, and others, aging-associated failure. To
better understand the interplay of feature- and pathway-level changes across various
archetypes we further explored the relationships between pathways, and between individual
features independent of their associated pathways.
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Figure 5: Cross-sample and cross-feature correlations highlight the interconnectedness
of distinct functional enrichments. (A) Relative age estimates were defined by predicting
pathway delta age based on all pathway member’s relationships to FLL, adding this delta age
estimate to observed FLL and then standardizing each feature. Samples with a high relative age
for a given pathway have an outsized change in the associated pathway relative to peers with a
similar FLL. (B) Partial correlation network of associations between aging archetype-associated
molecular features. Partial correlations were estimated using graphical LASSO and each
feature’s strongest partial correlations were preserved to facilitate a layout. Features associated
with an aging functional enrichment were colored according to the general category of the
association, and strong hits within each of these categories are directly labelled. Features’
shapes were defined by the aging archetype that they best followed based on AICc. Additional
non-omics phenotypes were included in this analysis; these includes features such as body
weight and CBC measures.

The molecular architecture of variable lifespan
While many measured molecules are associated with aging archetypes (Table ST6), few will
causally impact the aging process to the extent that directly modulating a single metabolite,
lipid, or protein would be sufficient to extend lifespan. Rather the core drivers of aging may be
unmeasured and will often be in cells and tissues that are remote to the plasma (Figure SF21).
In such cases, longevity associations will be biomarkers of other aging-relevant processes.
Related biomarkers may be similarly affected by a risk resulting in covariation across samples.
Molecules may also covary due to common molecular biology upstream of or independent of
aging-relevant effects.

In line with the notion that abundances of individual aging-associated molecules may be driven
by a myriad of partially overlapping upstream sources of upstream variation, aside from several
classes of lipids which are highly correlated, clustering lifespan associations into cliques of
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correlated molecules is non-trivial. To disentangle pathways, we approach this problem from two
complementary perspectives - one approach explores correlations across samples, another
identifies correlations across molecules.

To leverage correlations across samples, we can explore whether pathways reflect common or
distinct aging patterns. To perform this analysis we took inspiration from Airoldi et al. 2009
where yeast growth rates were predicted based on gene expression results by finding a growth
rate which is consistent with a large number of growth-associated genes’ expression 43.
Analogously, we can estimate the age or delta age of individual samples based on all
pathway-associated features where age could be any of the aging archetypes. We approached
this by comparing each sample’s residuals (ε) for molecules fit by a linear model of an aging
archetype to molecules’ (k⊂ K) slope with respect to the aging archetype (βK):

𝑚𝑖𝑛
δ
 

𝑘

𝐾

∑ ϵ
𝑘

− δβ
𝑘( )2

The measure δ can be thought of as delta age because it infers whether a sample’s molecular
profile systematically under- or overshoots the direction of its true age (Figure SF22). Using this
approach we can estimate each sample’s relative age for a given pathway assuming that the
pathway follows FLL kinetics (Figure 5A) or based on each pathway’s best supported archetype
(Figure SF23). The hierarchical clustering of these pathways’ relative ages highlights the tight
correlations of some aging pathways and looser correlation of others suggesting that the
aspects of aging which are most pronounced in individual mice differ. While we removed highly
degenerate pathway enrichments, tight correlations may still be driven by overlapping pathway
membership; this issue will be addressed below.

To further understand how pathways covary during aging, while also allowing for the discovery
of functional associations which may fall outside of established pathways, we can represent
aging-associated molecules’ relationships as a partial correlation network. Partial correlations
imply that two molecules are correlated conditioning on all others, thus pairs of molecules will
tend to be connected if they privately share sources of variation. In such a network, some nodes
may emerge as structuring their neighbors if they are either an accurate biomarker of an
upstream health-relevant process or if they are actually mechanistically altering their neighbors
(Figure SF21). Because we have more features than samples we cannot directly calculate
partial correlations - rather we need to assume that partial correlations are sparse; an
appropriate assumption for molecular networks 44. To construct this sparse web of partial
correlations, we use graphical lasso to estimate a sparse representation of the precision matrix
(inverse covariance) which we can rescale to sparse partial correlations 45. We find that an
optimal model explains ~70% the off-diagonal covariance in the sample covariance matrix
(Figures SF24, SF25) in line with the ~80% of variance explained by the top 10 principal
components of the sample covariance matrix.

The resulting partial correlation network displays a complex architecture (Figures 5B, SF26).
Strong partial correlations capture molecules such as fibrinogens which are tightly coregulated
(Table ST7). More broadly, weak and strong associations form a single network with the clear
separation between lipids and protein associations, with metabolite associations scattered
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across the graph. The strongest aging associations within pathways (labeled features) are
spread across the graph and functional enrichments of the proteome cluster poorly. Indeed
when comparing similarity within individual functional categories versus between them based on
either correlation or distance on a network, many pairs of gene sets show similar coherence
when lumped together versus split apart (Figure SF27). This may be due to the tight interaction
between multiple different pathway or, functional categories may be defined with the wrong
resolution with categories such as collagen degradation encompassing multiple ways in which
age and genetics can shape a set of biomolecules (such as via the loss of collagen, or the
deposition of fibrotic plaques). Similarly, there are surely unappreciated interactions between
pathways where proteins which are part of the broad reaching signatures of inflammation and
proteostatic dysregulation impact other pathways in unappreciated ways.

\
Figure 6: Functional changes in the DO circulating multiome. (A): Cartoon model proposing
mechanistic links between aging stresses and innate immunity ultimately leading to the
incompletely-understood loss-of-homeostasis signatures. Individual proteins were manually
summarized (Table ST8) and summarized with a shape based their aging archetype (pooling all
aging archetypes besides age x lifespan) and colored according to whether they increase or
decrease with age and the statistical significance of this change. (B) Aging patterns and
correlations in the aging metabolome are visualized using a dynamics (p)corr plot. In this plot
upper diagonal entries are colored by metabolites’ Pearson correlation, the diagonal indicates
whether a metabolite increases or decreases with age, and lower diagonal entries include
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partial correlations between pairs of metabolites. (C) Dynamics (p)corr plot highlighting patterns
in lipid categories which shift with FLL.

Aging dynamics capture how physiology breaks down
The analyses we’ve presented thus far highlight three principles for understanding the molecular
nature of aging:

1. Aging manifests in different ways captured by aging archetypes. Some processes seem
to change with chronological age while others are better described by FLL. A small
number of age x lifespan interactions appear to capture systems which fail in aging mice,
while a death’s door signature captures the total systems-level breakdown of mice in
their final weeks of life.

2. Aging changes are widespread but functionally coherent. Many pathways with aging
signatures fit into the canon of aging biology such as changes in proteostasis and the
extracellular matrix. Others are previously unappreciated aspects of the aging process,
such as changes in the aging lipidome, and loss-of-homeostasis signatures.

3. While pathways are coherent, in many cases, correlations between pathways are similar
to within pathways, making it challenging to disentangle processes from one-another.

Here, we will reconcile these principles into a working model of DO mouse aging which further
describes failing subsystems and their potential interactions (Figure 6A). In doing so, we can
roughly order events from upstream aging lesions (many of which track with chronological age),
to physiological compensatory mechanisms (which often track with FLL), to tipping points where
homeostatic mechanisms are insufficient to hold-back aging changes.

As there are 1,224 features significantly associated with one or more aging archetypes (Table
ST6), we simplified the interpretation of aging mechanisms by focusing on known metabolites,
and lipids and proteins which map onto aging-enriched functional categories, as well as
including the top 20 other proteins with the strongest association for their aging archetype.
When exploring the metabolome and lipidome we try to distinguish features associated with
chronological age versus FLL. For the proteome, we generally interpret features which are best
described by chronological age, lifespan or lifespan remaining aging archetype as actually
tracking with FLL since we lack the power to reliably discriminate among these cases for
individual features (Table ST8).

Both the metabolome and lipidome are strongly shaped by chronological age. Among the
diverse changes in the aging metabolome, we observe a drop of nicotinamide with age, as well
as in many metabolites of the TCA cycle consistent with reported drops in NAD and
mitochondrial function with age (Figure 6B, Figure SF27) 4,46. Conversely, we observe
age-associated increases in many amino acids, and taurocholic acid, a bile salt where taurine is
conjugated to cholic acid, which is one of a small number of metabolites which appears to scale
with FLL rather than chronological age (Figure SF28). Elevation of taurine-conjugated bile acids
was previously observed in 15 month old rats, and the supplementation of taurine has recently
been reported to extend lifespan 47,48.
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Like the metabolome, the lipidome primarily covaries with chronological age, with notable
exceptions. Lipids with phosphatidylethanolamine headgroups increase with chronological age,
while free fatty acids, sphingomyelin lipids, and lipids with phosphatidylinositol headgroups
decrease with chronological age (Figure SF29). 17:0, p-16:0 and 22:6 tail groups were each
functionally enriched among chronological aging changes, but lipids with these tail groups tend
to be tightly correlated with other examples of their headgroup, so changes in the composition of
fatty acid changes in the aging lipidome are likely minor relative to shifts in the distribution of
lipid classes. While most lipids change with chronological age, two categories of lipids, those
with phosphatidylcholine (PC) headgroups or 24:1 fatty chains, followed the FLL aging
archetype (Figure 6C). Most PC lipids increase with FLL, while a subset containing oxidized
fatty acid chains (e.g., hydroxy-eicosatetraenoic acid (HETE)) decrease with age 49. Another
clique of lipids were defined by their 24:1 fatty acids. These lipids are further unified by the fact
that they all contain a second d18:1 or d18:2 chain and are either ceramides, hexosylceramides
(HexCer) or sphingomyelins (SM). While HexCer and SM lipids are derived from ceramides
lending a structural coherence to the overall group, it is unclear why these lipids shift with FLL in
such a coherent manner.

While few studies have profiled the circulating aging metabolome and lipidome, many proteomic
changes can be interpreted as canonical hallmarks of aging 4,28–30,50. Among them, chronic
increases in inflammation, i.e., inflammaging, and alterations of proteostasis are clear features
of our dataset 28. In addition, changes in extracellular-matrix associated proteins, i.e, the
matrisome, which result in a more highly crosslinked, irregular, and protease-resistant matrix are
appreciated as a key aspect of the aging process which may contribute to stem cell exhaustion,
and recruitment of immune cells 50–52.

Broad decreases in circulating levels of extracellular matrix (ECM) components include
fibril-associated collagens (type I, III, and XI), integrins, and additional ECM-associated
structural proteins, proteases, and proteins mediating cell-cell communication and migration
(Figure SF30) 52,53. This is consistent with an increasingly protease-resistant ECM where
turnover of components is low and hence fewer proteins are liberated into circulation. This
depletion of ECM-derived proteins in plasma contrasts with an elevation of proteins involved in
wound healing and tissue remodeling which are deposited on the ECM, but generated in remote
sites, particularly the liver 54. These proteins include the hyaluronic acid carrier proteins Itih1 and
Itih3, fibrinogens, and numerous proteins involved in coagulation. Beyond their direct role in
serving as the primary substrate for clotting, fibrinogens are sensed by Toll-like receptor (TLR)
signaling pathways to promote tissue remodeling 55.

As one of the two main arms of activation of the innate immune system, TLR signaling is highly
responsive to bacterial exposure, with the exposure to gram-negative bacteria being tracked
primarily through the detection of the lipopolysaccharide (LPS) by LPS binding proteins (Lbp)
and other secondary proteins 55. These signals of LPS exposure increase precipitously with age,
likely due to either age-associated increases in gut leakiness or systemic stress (Figure SF31)
56,57. The dual stimulation of TLR signaling through fibrinogen and Lbp may activate the pathway,
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stimulating release of cytokines and type I interferon in order to recruit monocytes and promote
their differentiation into tissue-resident macrophages 55. Lbp is often used as a biomarker of an
LPS-driven innate immune response 58 and consistent with monocyte recruitment and
macrophage activation through TLR signaling, Lbp is strongly correlated with both monocyte
percentage and CD11b+ percentage read-out through FACS (Figure SF32). Downstream of
TLR signaling, secreted cytokines will activate lysosomal cathepsins in macrophages and in
other cell types, and we note that these lysosomal proteases are markedly elevated with age 30.
Curiously, while innate immunity seems to increase with age through TLR signaling, the other
major pathway driving innate immune responses, the complement pathway, appears to
decrease its activity with age - pathway inhibitors (Cfi and Cfh) increase with age, while
components of the classical pathway (e.g., C1, Masps) are depleted 59.

Decreased levels of ECM-associated proteases in circulation and elevated levels of cathepsins
downstream of TLR signaling are specific instances of broad changes in proteostasis with age.
In line with the collapse of proteolysis with aging through impairment of both lysosomal and
proteosomal proteolysis 4,3029 we observe a clear directional shift in proteins which are part of the
“protease-mediated protein catabolism” geneset which includes both proteosomal and
lysosomal proteins (Figure SF33). However, rather than being a progressive change with FLL,
these proteins are stably maintained across age before spiking as a loss-of-homeostasis, age x
lifespan interaction, signature. The robust increase in intracellular proteostasis proteins in
plasma contrasts with extended patterns of directionally incoherent changes in both proteases
and protease inhibitors, many of which operate in circulation.

The pronounced elevation of intracellular proteolysis components in plasma before the broader
onset of the catastrophic DDM suggests that this signature may be a readout which is
mechanistically proximal to the onset of total systems failure. Like this change in proteolysis,
elevation of the “IGF signaling” pathway from Reactome yielded a clear age x lifespan
signature. In this dataset, the pathway’s name is a misnomer, since aside from circulating IGF
binding proteins (Igfbps), most members of this gene set are included because they are
substrates for the Golgi-associated kinase Fam20c which is responsible for secreting plasma
phosphoproteins 60. This raises the possibility that Fam20c activity may shift with age resulting
in functional consequences - while Fam20c levels do not change in the plasma with age, its
localization is modulated by Fam20a and hence its activity as a Golgi kinase may be poorly
represented by its circulating concentration 61. Fam20c ligands are involved in diverse
processes particularly proteostasis, Igf1 signaling and ion homeostasis and consequently
dysregulation of Fam20c activity could broadly alter homeostasis (Figure SF34). As a ligand of
Fam20c, Igfbp5 is a strong age x lifespan interaction, where it exhibits a pronounced drop in
pre-DDM low lifespan remaining mice. Igfbp5 is correlated with circulating Igf1 levels and other
Igfbps which change progressively with age. Another target of Fam20c which exhibits a
pronounced age x lifespan interaction is Pcsk9, a key regulator of cholesterol homeostasis,
which operates by binding to low-density lipid receptor family member proteins and promoting
their intracellular breakdown 62. Severe mutations of Pcsk9 lead to familial
hypercholesterolemia, while the protein is a drug targeted more generally due to its association
with coronary artery disease and cardiovascular disease 63. Despite the established connection
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between Pcsk9 and cholesterol we find that Pcsk9 is uncorrelated with the six cholesterol esters
in our dataset suggesting that functional variation in Pcsk9 levels likely does not cascade into
organismal decline.

These changes are but a subset of wide changes in homeostasis and mouse-level physiology
which are reflected in circulation. Other changes included alterations in lipid transport and
deposition, growth factors, and oxygenation (Figure SF34). Many changes with age can be
reconciled into a working model which describes the relationship between the aging ECM,
innate immunity and proteostasis and highlights proteolysis and Fam20c as possible points of
failure (Figure 6A). But this model remains incomplete, as there are numerous mechanistic
connections which still need to be made to better understand how the thousands of detected
changes in the aging metabolome, lipidome and proteome fit into a common framework of
reporters and drivers of aging failures.

Discussion
Here we release a high-quality multiomic dataset and an interactive R Shiny Browser which
allows any researcher to visualize thousands of molecules’ associations with age in plasma. In
carrying out this study we encountered a range of experimental and technical challenges which
complicated our analysis and subsequent work will be needed to fully articulate the molecular
causality of aging.

One challenge of creating a longitudinal cohort with multiple measurements per mouse is that
mice’s age were confounded with draw date. To the extent that non-biological effects were not
adequately controlled over time, e.g., switching reagents used in plasma preparation,
experimental changes would be confounded with aging changes. By enrolling five staggered
cohorts of mice we identified and corrected two such effects (the LBD and early G8 effects).
Both effects primarily alter the metabolome and lipidome and features affected by these batch
effects show some overlap with chronological aging associations. Still, with these effects
regressed out, we see consistent changes with chronological age throughout the metabolome
and lipidome. To make it easy to determine whether a batch effect may be contaminating a
biological finding, any biological features’ changes can be stratified by biological or technical
batch in our Shiny app.

A second challenge arose from generating mass spectrometry data in multiple tranches
separated by around two years. From an informatics point-of-view, it was difficult to align
metabolomics and lipidomics features across the full dataset. In the end, it was possible to align
the metabolomics data by developing new alignment algorithms, but due to the non-monotonic
nature of retention time shifts in lipidomics data, feature-level alignment could not be
accomplished. This precluded the systematic analysis of lipidomic unknowns, with a few
exceptions.

Beyond these limitations in accurately detecting a wide range of molecules’ abundances across
our aging cohort, elements of our experimental design hampered data interpretation. The late
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blood draws of short-lived mice tend to be similar to the early blood draws of long-lived mice for
features following a FLL trend, suggesting that the main differences between long- and
short-lived mice is the rate that they are transitioning along a common aging cascade, but the
absence of late blood draws for long-lived animals prevents us from concluding that this is the
case. We expect that signatures of FLL and aging would blend somewhat at very large ages
(when most mice have died) as chronological age approaches the limit of mouse lifespan and
old-age becomes synonymous with an FLL of near one. The late life chronological changes may
reflect either new changes, or an acceleration of aging-associated changes (as we have seen
with the greater magnitude of late age changes than early age). It is also unclear whether new
failure points (i.e., the loss-of-homeostasis age x lifespan interactions and subsequent DDM)
manifest in long-lived mice, or if these mice just take longer to reach breaking points which are
conserved across DO mice. It is possible that mechanisms of age-associated mortality between
short- and long-lived individuals differ, as is the case in the human population 64. Short lived
strains have high occurrences of cancer, while the occurrence is somewhat lower in long-lived
strains (but still far more common than in humans) 21–23. While a mouse’s cause of death was
not assessed in our study, most mice, particularly short-lived mice, die of cancer and hence the
FLL, loss-of-homeostasis and DDM signatures are all likely either preludes to or concomitant
features of cancer. FLL-associated chronic inflammation processes could drive oncogenesis 65,
while the collapse of immunosurveillance and decreased competition for growth of an
increasingly unhealthy pool of non-cancerous cells could allow for the rapid tumor growth 66,
though there is likely already a high tumor burden in mice within the DDM window. It is not clear
how proteasomal collapse, nor dysregulation of the circulating phosphoproteome could promote
oncogenesis but this connection warrants further investigation.

The identification of discrete subsets of molecules following three distinct aging archetypes
provides a useful framework for organizing molecules with distinct relationships to aging and
lifespan, but also highlights how easy it is to confuse aging archetypes with one another.
Indeed, within this study we lacked the power to discriminate among correlated aging
archetypes for individual features, while we could resolve archetypes by aggregating results to
the level of pathways.

Studies exploring shared patterns of aging across outbred cohorts have typically done so by
profiling individuals with a shared chronological age 6,7. In model organisms this is often
because terminal profiling of tissue physiology precludes the measurement of natural lifespan,
while in humans, aging is often explored through cross-sectional studies avoiding more
challenging longitudinal analyses requiring long-term follow-up 12. By studying cohorts of DO
mice, genetic variability creates underlying differences in rates of aging, possibly partly through
Igf1 signaling 21, while non-terminal phenotyping and measurement of lifespans allows us to
decouple aging from lifespan. Ignoring these underlying differences in rates of aging, as we
could have done by only focusing on chronological age, would lead to misinterpretation of aging
dynamics leading to an over-appreciation of molecules associated with chronological age at the
expense of molecules scaling with biological age. At the same time, associations with lifespan
are defined by canonical changes in the aging proteome, due to the confounding anticorrelation
of lifespan and FLL. Future studies using outbred individuals should take care in interpreting
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associations with chronological age or lifespan, as either measure may mis-represent
underlying associations with biological age.

Most hallmarks of aging were defined in inbred strains where due to low animal-to-animal
variability, biological age and chronological age were aligned 67,68. Still even in this context, there
is a keen appreciation for the interplay between chronological, biological age and lifespan.
Long-lived strains of models organisms, such as partial loss-of-function daf-2 strains of C.
elegans or yeast strains with a low rDNA burden, display an extended healthspan and hence be
thought of as having a lower biological age 69,70. This notion that we can capture summaries of
the aging process and then profile individuals based on these markers to define their “biological
age” and delta age (i.e., the difference between biological and chronological age) is central to
how the longevity field is exploring interventions which can slow the aging process 71.

Following this strategy we estimated sample-specific delta ages based on individual pathways
(Figure 5A) and while biological age estimates based on these delta ages are correlated across
samples, individuals who would be considered “old” differ particularly when comparing delta age
for pathways that follow a chronological aging versus a FLL aging archetype. This underscores
that using chronological age alone to estimate biological age and delta age may be undesirable.
If we were to select molecules that consistently predict chronological age then our “aging clock”
would focus on metabolites and lipids which accurately track the increased exposure of
physiology to the insults of damage, but do not reflect intertwined changes in inflammaging,
ECM dysregulation, and proteolysis which are central to our understanding of biological aging.
Some aging clocks such as PhenoAge and GrimAge focus on markers which change with age,
and are associated with functional outcomes - we believe that such clocks will produce
meaningful estimates of biological age, such that changes in age following interventions will be
borne-out in commensurate changes in health and mortality 72,73.

While FLL is a valid measure of biological age because it approximates the relative risk of
mortality of individuals in a population, it is flawed for the same reasons that limit the utility of
directly studying variable lifespan in experiments 12. Namely, death is a discrete stochastic event
and a healthy individual could die an “untimely” death which may be unrepresentative of the
all-cause mortality risk implied by their biological age. In our data this may manifest as mice with
non-fatal disorders which nevertheless require euthanasia such as dermatitis. Furthermore, any
measure which requires measuring lifespan is of little utility when exploring aging through
terminal experiments, or those where an intervention is applied. The estimates of sample-level
FLL based on pathway information which we described (Figure 5A) could provide an
instantaneous estimate of FLL avoiding these limitations.

Measures like this “FLL-pathway age” which define the state of individual aging components
could dovetail with other functional summaries of intermediate phenotypes to describe the
progression of individuals along distinct aging trajectories. We describe one such set of
mechanistic transitions involving interlocking changes in the proteome transitioning with FLL,
and ultimately culminating in two near death loss-of-homeostasis signatures. This signature is
complemented by previously unappreciated alterations of the aging metabolome and lipidome
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reflecting both chronological aging dependent physiological insults, and key molecular classes
which become entrained to variable rates of biological aging. One class of FLL-associated
molecules are PC lipids which are the most abundant lipids class and are overrepresented in
lipid droplets and many organelle’s membranes 74. While past reports have focused on a
depletion of PC lipids leading to membrane stress in disease, we observe an accumulation of
PC lipids with FLL 75. This could contribute to lipid stress, but it may also be a read-out of the
increase in organellar membrane expected from the increased surface area to volume of
fragmented organelles 76.

The most prominent proteomic features of our FLL signature are concerted changes in the
extracellular matrix, innate immunity, and proteostasis. ECM-associated proteins deposited from
nearby cells are depleted in circulation suggesting decreased remodeling of the ECM with age
52. In contrast, systemic factors deposited from remote sites to promote ECM remodeling and
wound healing are enriched. Curiously, unlike much of the proteome, many collagens seem to
decrease with chronological age rather than FLL in circulation suggesting that changes in the
ECM may be a stress, which snowball into the physiological strain of FLL. These observations
are consistent with changes in ECM cross-linking which in turn alter matrix stiffness contributing
to both stem cell exhaustion and chronic inflammation 52,77. Inflammation is further driven by
increased sensing of LPS where both wound-healing-promoting fibrinogens, and Lbp activate
TLR signaling resulting in increased monocyte recruitment and macrophage polarization 4. TLR
signaling also serves as an input into NF𝜅B signaling leading to secretion of pro-inflammatory
cytokines and an inflammaging response. Inflammation in-turn promotes tissue remodeling, a
strain of proteostasis which would be compounded by accumulation of mis-folded proteins 78.

The spike in proteosomal proteins in circulation suggests that there is an acute crisis in a subset
of cell types which precedes wider cellular death as part of the DDM. The death of cells with
high proteosomal factors could result from cells being overwhelmed by protein aggregates
which interfere with proteosomal function 79. Alternatively, continued activation of the
proteasome may induce apoptosis through neutralization of IAP (inhibitor of apoptosis) in a
stressed cell population 80. While this mechanism may guard against sporadic failures of
individual cells who can “pass the baton” to healthy cells, it could cascade into organism failure
when a population of cells makes a concerted commitment to apoptosis.

A similar crisis seems to be reached when cells acutely accumulate a diverse set of proteins
with the common feature that each is a target of the Golgi kinase Fam20c which is responsible
for phosphorylating secreted proteins particularly those involved in biomineralization 60.
Loss-of-function mutations in Fam20c lead to Raine syndrome, an autosomal recessive rare
disease characterized by osteosclerosis and brain calcifications leading to microcephaly 81.

Understanding the causal role of these loss-of-homeostasis signatures in the aging process
remains an open problem but one where future efforts can hope to disentangle the true drivers
of aging’s etiology. Four strategies stand-out as promising approaches to clearly resolve the
causal drivers of aging:
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1. With more profiled individuals, correlations across individuals may emerge as a set of
functional elements of the aging process and it is likely that these modules overlap with
but are poorly represented by the types of gene sets we explored to define the complex
biology at play. Modules can be further anchored using either directly measured or latent
intermediate phenotypes 12. At this scale, hazard modeling will be possible where
modules define separate signatures funneling into baseline and/or age-associated risk 2.

2. Causal assertions about how variation across individuals impacts health modules and
in-turn hazard could be tested either by lifespan-extending perturbations or using natural
variation. Lifespan-extending perturbations such as dietary restriction or molecule
supplementation read-out through molecules with aging x lifespan interactions may
decelerate aging’s impact downstream of the lifespan-extending intervention’s core
effects 71,82.

3. Taking advantage of the bounded genetic heterogeneity of the DO cohort could provide
further insights into whether mendelian perturbations affect individual molecular
components in a way that tracks with downstream causal consequences 25,36. Here, we
demonstrated that genetic associations can be identified and that molecules are
heritable but 110 mice limits our ability to identify molecules’ genetic determinants and to
in-turn use this information for causal inference.

4. One of the greatest limitations of studying plasma is also one of its greatest strengths -
molecules from plasma could come from anywhere in the body. Without a reference of
where individual molecules come from, nor where they go, it is difficult to anchor
interpretation in physiology. With the emergence of high quality genome-scale datasets
studying aging DO mice in many major tissues, this is beginning to change 6,25–27.
Connecting our understanding of tissues and their connection in plasma to gross
physiology is a problem suited for the nascent field of systems physiology 9,83.

Understanding how aging’s diverse changes lead to systems level failure in outbred mice
through the combination of genetic exposures, molecular mediators, physiologically-relevant
intermediate phenotypes, and measures or surrogates of longevity creates a blueprint for
implementing similar strategies in humans. To the extent that aging’s etiology is conserved
between mouse and humans we can learn more - directly mapping aging stresses (i.e., changes
with chronological age), strains (i.e., processes scaling with FLL), and failures (i.e., processes
associated with age x lifespan interactions) onto human physiology. The use of diverse mice
exposes a greater diversity of aging trajectories than would be present in any inbred strain. This
necessarily increases the variance of any aging pattern but also reduces the bias that we would
over-focus on an element of aging biology which is not broadly applicable within, yet alone
beyond, mice 20. Overlaps between human and murine aging mechanisms are likely common,
as many of the processes we discussed in depth such as changes in ECM, inflammation, and
proteostasis are appreciated as conserved aspects of the aging process conserved across
mammals, while some of the unappreciated aspects of aging physiology which we highlight
particularly those reflected in the metabolome and lipidome will need to be corroborated in
humans.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

https://paperpile.com/c/X42yLN/ezhf
https://paperpile.com/c/X42yLN/IgPN
https://paperpile.com/c/X42yLN/gEmg+XVDi
https://paperpile.com/c/X42yLN/GfkH+Hsc4
https://paperpile.com/c/X42yLN/VqiA+Hsc4+SJyP+Li9v
https://paperpile.com/c/X42yLN/xQos+tr9D
https://paperpile.com/c/X42yLN/VUrq
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


Bibliography
1. Gompertz, B. XXIV. On the nature of the function expressive of the law of human mortality,

and on a new mode of determining the value of life contingencies. In a letter to Francis

Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London 513–583

(1825).

2. Kirkwood, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of

the function expressive of the law of human mortality, and on a new mode of determining

the value of life contingencies’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140379

(2015).

3. Vaupel, J. W. Biodemography of human ageing. Nature 464, 536–542 (2010).

4. López-Otín, C., Blasco, M. A., Partridge, L. & Cell, M. S. The hallmarks of aging. Cell

(2013).

5. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive

memory. Elife 2, e00498 (2013).

6. Takemon, Y. et al. Proteomic and transcriptomic profiling reveal different aspects of aging in

the kidney. Elife 10, (2021).

7. Williams, E. G. et al. Multi-Omic Profiling of the Liver Across Diets and Age in a Diverse

Mouse Population. Cell Systems 13, (2022).

8. Chan, M. et al. Novel insights from a multiomics dissection of the Hayflick limit. Elife 11,

(2022).

9. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583,

596–602 (2020).

10. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/cWme
http://paperpile.com/b/X42yLN/cWme
http://paperpile.com/b/X42yLN/cWme
http://paperpile.com/b/X42yLN/cWme
http://paperpile.com/b/X42yLN/IgPN
http://paperpile.com/b/X42yLN/IgPN
http://paperpile.com/b/X42yLN/IgPN
http://paperpile.com/b/X42yLN/IgPN
http://paperpile.com/b/X42yLN/YckA
http://paperpile.com/b/X42yLN/OPrc
http://paperpile.com/b/X42yLN/OPrc
http://paperpile.com/b/X42yLN/xFKH
http://paperpile.com/b/X42yLN/xFKH
http://paperpile.com/b/X42yLN/SJyP
http://paperpile.com/b/X42yLN/SJyP
http://paperpile.com/b/X42yLN/LRwO
http://paperpile.com/b/X42yLN/LRwO
http://paperpile.com/b/X42yLN/WDAP
http://paperpile.com/b/X42yLN/WDAP
http://paperpile.com/b/X42yLN/tr9D
http://paperpile.com/b/X42yLN/tr9D
http://paperpile.com/b/X42yLN/O5rQ
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


lives twice as long as wild type. Nature 366, 461–464 (1993).

11. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span

extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128

(2000).

12. Ackert-Bicknell, C. L. et al. Aging Research Using Mouse Models. Curr. Protoc. Mouse Biol.

5, 95–133 (2015).

13. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new

immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590

(2018).

14. Lamberts, S. W., van den Beld, A. W. & van der Lely, A. J. The endocrinology of aging.

Science 278, 419–424 (1997).

15. Hui, S. et al. Quantitative Fluxomics of Circulating Metabolites. Cell Metab. (2020).

16. Deutsch, E. W. et al. Advances and Utility of the Human Plasma Proteome. J. Proteome

Res. 20, 5241–5263 (2021).

17. FitzGerald, G. et al. The future of humans as model organisms. Science 361, 552–553

(2018).

18. Sun, B. B. et al. Genetic regulation of the human plasma proteome in 54,306 UK Biobank

participants. bioRxiv 2022.06.17.496443 (2022) doi:10.1101/2022.06.17.496443.

19. Surendran, P. et al. Rare and common genetic determinants of metabolic individuality and

their effects on human health. Nat. Med. 28, 2321–2332 (2022).

20. Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The Diversity Outbred mouse

population. Mamm. Genome 23, 713–718 (2012).

21. Yuan, R. et al. Aging in inbred strains of mice: study design and interim report on median

lifespans and circulating IGF1 levels. Aging Cell 8, 277–287 (2009).

22. Reilly, K. M. The Effects of Genetic Background of Mouse Models of Cancer: Friend or

Foe? Cold Spring Harb. Protoc. 2016, db.top076273 (2016).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/O5rQ
http://paperpile.com/b/X42yLN/N5SI
http://paperpile.com/b/X42yLN/N5SI
http://paperpile.com/b/X42yLN/N5SI
http://paperpile.com/b/X42yLN/ezhf
http://paperpile.com/b/X42yLN/ezhf
http://paperpile.com/b/X42yLN/zZOj
http://paperpile.com/b/X42yLN/zZOj
http://paperpile.com/b/X42yLN/zZOj
http://paperpile.com/b/X42yLN/caG6
http://paperpile.com/b/X42yLN/caG6
http://paperpile.com/b/X42yLN/pP7c
http://paperpile.com/b/X42yLN/F7ss
http://paperpile.com/b/X42yLN/F7ss
http://paperpile.com/b/X42yLN/hI3o
http://paperpile.com/b/X42yLN/hI3o
http://paperpile.com/b/X42yLN/pI0K
http://paperpile.com/b/X42yLN/pI0K
http://dx.doi.org/10.1101/2022.06.17.496443
http://paperpile.com/b/X42yLN/pI0K
http://paperpile.com/b/X42yLN/oEG5
http://paperpile.com/b/X42yLN/oEG5
http://paperpile.com/b/X42yLN/VUrq
http://paperpile.com/b/X42yLN/VUrq
http://paperpile.com/b/X42yLN/HfSI
http://paperpile.com/b/X42yLN/HfSI
http://paperpile.com/b/X42yLN/eqNw
http://paperpile.com/b/X42yLN/eqNw
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


23. Lipman, R., Galecki, A., Burke, D. T. & Miller, R. A. Genetic loci that influence cause of

death in a heterogeneous mouse stock. J. Gerontol. A Biol. Sci. Med. Sci. 59, 977–983

(2004).

24. Svenson, K. L. et al. High-resolution genetic mapping using the Mouse Diversity outbred

population. Genetics 190, 437–447 (2012).

25. Chick, J. M. et al. Defining the consequences of genetic variation on a proteome-wide

scale. Nature 534, 500–505 (2016).

26. Xiao, H. et al. Architecture of the outbred brown fat proteome defines regulators of

metabolic physiology. Cell 185, 4654–4673.e28 (2022).

27. Masson, S. W. C. et al. Leveraging genetic diversity to identify small molecules that reverse

mouse skeletal muscle insulin resistance. Elife 12, (2023).

28. Santoro, A., Bientinesi, E. & Monti, D. Immunosenescence and inflammaging in the aging

process: age-related diseases or longevity? Ageing Res. Rev. 71, 101422 (2021).

29. Saez, I. & Vilchez, D. The Mechanistic Links Between Proteasome Activity, Aging and

Agerelated Diseases. Curr. Genomics 15, 38–51 (2014).

30. Stoka, V., Turk, V. & Turk, B. Lysosomal cathepsins and their regulation in aging and

neurodegeneration. Ageing Res. Rev. 32, 22–37 (2016).

31. Seitzer, P., Bennett, B. & Melamud, E. MAVEN2: An Updated Open-Source Mass

Spectrometry Exploration Platform. Metabolites 12, (2022).

32. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded

affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

33. Brauer, M. J. et al. Coordination of growth rate, cell cycle, stress response, and metabolic

activity in yeast. Mol. Biol. Cell 19, 352–367 (2008).

34. O’Brien, J. J. et al. Compositional Proteomics: Effects of Spatial Constraints on Protein

Quantification Utilizing Isobaric Tags. J. Proteome Res. 17, 590–599 (2018).

35. Brereton, R. G. The Mahalanobis distance and its relationship to principal component

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/cBzB
http://paperpile.com/b/X42yLN/cBzB
http://paperpile.com/b/X42yLN/cBzB
http://paperpile.com/b/X42yLN/Diyu
http://paperpile.com/b/X42yLN/Diyu
http://paperpile.com/b/X42yLN/Hsc4
http://paperpile.com/b/X42yLN/Hsc4
http://paperpile.com/b/X42yLN/VqiA
http://paperpile.com/b/X42yLN/VqiA
http://paperpile.com/b/X42yLN/Li9v
http://paperpile.com/b/X42yLN/Li9v
http://paperpile.com/b/X42yLN/iNP3
http://paperpile.com/b/X42yLN/iNP3
http://paperpile.com/b/X42yLN/oScr
http://paperpile.com/b/X42yLN/oScr
http://paperpile.com/b/X42yLN/HzZM
http://paperpile.com/b/X42yLN/HzZM
http://paperpile.com/b/X42yLN/1yvy
http://paperpile.com/b/X42yLN/1yvy
http://paperpile.com/b/X42yLN/3RHs
http://paperpile.com/b/X42yLN/3RHs
http://paperpile.com/b/X42yLN/4izm
http://paperpile.com/b/X42yLN/4izm
http://paperpile.com/b/X42yLN/4pEB
http://paperpile.com/b/X42yLN/4pEB
http://paperpile.com/b/X42yLN/tSPJ
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


scores. J. Chemom. 29, 143–145 (2015).

36. Richmond, R. C., Hemani, G., Tilling, K., Davey Smith, G. & Relton, C. L. Challenges and

novel approaches for investigating molecular mediation. Hum. Mol. Genet. 25, R149–R156

(2016).

37. Breunig, J. S., Hackett, S. R., Rabinowitz, J. D. & Kruglyak, L. Genetic basis of metabolome

variation in yeast. PLoS Genet. 10, e1004142 (2014).

38. Linke, V. et al. A large-scale genome-lipid association map guides lipid identification. Nat

Metab 2, 1149–1162 (2020).

39. Storey, J. D. Foundations of Applied Statistics. (2020).

40. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells

actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

41. Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite

corrections. Communications in Statistics - Theory and Methods 7, 13–26 (1978).

42. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical

Information-Theoretic Approach. (Springer Science & Business Media, 2007).

43. Airoldi, E. M. et al. Predicting cellular growth from gene expression signatures. PLoS

Comput. Biol. 5, e1000257 (2009).

44. Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

45. Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the

graphical lasso. Biostatistics 9, 432–441 (2008).

46. McReynolds, M. R., Chellappa, K. & Baur, J. A. Age-related NAD+ decline. Exp. Gerontol.

134, 110888 (2020).

47. Lee, G., Lee, H., Hong, J., Lee, S. H. & Jung, B. H. Quantitative profiling of bile acids in rat

bile using ultrahigh-performance liquid chromatography-orbitrap mass spectrometry:

Alteration of the bile acid composition with aging. J. Chromatogr. B Analyt. Technol.

Biomed. Life Sci. 1031, 37–49 (2016).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/tSPJ
http://paperpile.com/b/X42yLN/GfkH
http://paperpile.com/b/X42yLN/GfkH
http://paperpile.com/b/X42yLN/GfkH
http://paperpile.com/b/X42yLN/2Plt
http://paperpile.com/b/X42yLN/2Plt
http://paperpile.com/b/X42yLN/7vYe
http://paperpile.com/b/X42yLN/7vYe
http://paperpile.com/b/X42yLN/RQy0
http://paperpile.com/b/X42yLN/vcB4
http://paperpile.com/b/X42yLN/vcB4
http://paperpile.com/b/X42yLN/x6iH
http://paperpile.com/b/X42yLN/x6iH
http://paperpile.com/b/X42yLN/jkiv
http://paperpile.com/b/X42yLN/jkiv
http://paperpile.com/b/X42yLN/c1Rp
http://paperpile.com/b/X42yLN/c1Rp
http://paperpile.com/b/X42yLN/h5Wi
http://paperpile.com/b/X42yLN/msrj
http://paperpile.com/b/X42yLN/msrj
http://paperpile.com/b/X42yLN/WlHA
http://paperpile.com/b/X42yLN/WlHA
http://paperpile.com/b/X42yLN/tnhY
http://paperpile.com/b/X42yLN/tnhY
http://paperpile.com/b/X42yLN/tnhY
http://paperpile.com/b/X42yLN/tnhY
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


48. Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).

49. Hajeyah, A. A., Griffiths, W. J., Wang, Y., Finch, A. J. & O’Donnell, V. B. The Biosynthesis of

Enzymatically Oxidized Lipids. Front. Endocrinol. 11, 591819 (2020).

50. Freitas-Rodríguez, S., Folgueras, A. R. & López-Otín, C. The role of matrix

metalloproteinases in aging: Tissue remodeling and beyond. Biochimica et Biophysica Acta

(BBA) - Molecular Cell Research 1864, 2015–2025 (2017).

51. Adler, M. et al. Principles of Cell Circuits for Tissue Repair and Fibrosis. iScience 23,

100841 (2020).

52. Vafaie, F. et al. Collagenase-resistant collagen promotes mouse aging and vascular cell

senescence. Aging Cell vol. 13 121–130 Preprint at https://doi.org/10.1111/acel.12155

(2014).

53. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

54. Tennent, G. A. et al. Human plasma fibrinogen is synthesized in the liver. Blood 109,

1971–1974 (2007).

55. El-Zayat, S. R., Sibaii, H. & Mannaa, F. A. Toll-like receptors activation, signaling, and

targeting: an overview. Bulletin of the National Research Centre 43, 187 (2019).

56. Buford, T. W. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health,

and disease. Microbiome 5, 80 (2017).

57. Madison, A. & Kiecolt-Glaser, J. K. Stress, depression, diet, and the gut microbiota:

human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Current

Opinion in Behavioral Sciences 28, 105–110 (2019).

58. Lepper, P. M. et al. Association of lipopolysaccharide-binding protein and coronary artery

disease in men. J. Am. Coll. Cardiol. 50, 25–31 (2007).

59. Lu, J. & Kishore, U. C1 Complex: An Adaptable Proteolytic Module for Complement and

Non-Complement Functions. Front. Immunol. 8, 592 (2017).

60. Ishikawa, H. O., Xu, A., Ogura, E., Manning, G. & Irvine, K. D. The Raine syndrome protein

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/FHwB
http://paperpile.com/b/X42yLN/VpHt
http://paperpile.com/b/X42yLN/VpHt
http://paperpile.com/b/X42yLN/RPza
http://paperpile.com/b/X42yLN/RPza
http://paperpile.com/b/X42yLN/RPza
http://paperpile.com/b/X42yLN/AKBk
http://paperpile.com/b/X42yLN/AKBk
http://paperpile.com/b/X42yLN/laJB
http://paperpile.com/b/X42yLN/laJB
http://dx.doi.org/10.1111/acel.12155
http://paperpile.com/b/X42yLN/laJB
http://paperpile.com/b/X42yLN/laJB
http://paperpile.com/b/X42yLN/88qV
http://paperpile.com/b/X42yLN/uXiA
http://paperpile.com/b/X42yLN/uXiA
http://paperpile.com/b/X42yLN/kXRP
http://paperpile.com/b/X42yLN/kXRP
http://paperpile.com/b/X42yLN/KCZW
http://paperpile.com/b/X42yLN/KCZW
http://paperpile.com/b/X42yLN/emqU
http://paperpile.com/b/X42yLN/emqU
http://paperpile.com/b/X42yLN/emqU
http://paperpile.com/b/X42yLN/vCXu
http://paperpile.com/b/X42yLN/vCXu
http://paperpile.com/b/X42yLN/cqRR
http://paperpile.com/b/X42yLN/cqRR
http://paperpile.com/b/X42yLN/JJw9
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One 7,

e42988 (2012).

61. Ohyama, Y. et al. FAM20A binds to and regulates FAM20C localization. Sci. Rep. 6, 27784

(2016).

62. Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density

lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol.

Chem. 283, 2363–2372 (2008).

63. Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned,

rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

64. Friede, A., Reid, J. A. & Ory, H. W. CDC WONDER: a comprehensive on-line public health

information system of the Centers for Disease Control and Prevention. Am. J. Public Health

83, 1289–1294 (1993).

65. Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

66. Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression. Nat. Rev. Cancer 4,

197–205 (2004).

67. Jacobson, J. et al. Biomarkers of aging in Drosophila. Aging Cell 9, 466–477 (2010).

68. Flurkey, K., M. Currer, J. & Harrison, D. E. Chapter 20 - Mouse Models in Aging Research.

in The Mouse in Biomedical Research (Second Edition) (eds. Fox, J. G. et al.) 637–672

(Academic Press, 2007).

69. Hotz, M. et al. rDNA array length is a major determinant of replicative lifespan in budding

yeast. Proc. Natl. Acad. Sci. U. S. A. 119, e2119593119 (2022).

70. Podshivalova, K., Kerr, R. A. & Kenyon, C. How a Mutation that Slows Aging Can Also

Disproportionately Extend End-of-Life Decrepitude. Cell Rep. 19, 441–450 (2017).

71. Griffin, P. T. et al. TIME-Seq Enables Scalable and Inexpensive Epigenetic Age Predictions.

bioRxiv 2021.10.25.465725 (2022) doi:10.1101/2021.10.25.465725.

72. McCrory, C. et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/JJw9
http://paperpile.com/b/X42yLN/JJw9
http://paperpile.com/b/X42yLN/VIBt
http://paperpile.com/b/X42yLN/VIBt
http://paperpile.com/b/X42yLN/ejkW
http://paperpile.com/b/X42yLN/ejkW
http://paperpile.com/b/X42yLN/ejkW
http://paperpile.com/b/X42yLN/tYYr
http://paperpile.com/b/X42yLN/tYYr
http://paperpile.com/b/X42yLN/BUio
http://paperpile.com/b/X42yLN/BUio
http://paperpile.com/b/X42yLN/BUio
http://paperpile.com/b/X42yLN/YQas
http://paperpile.com/b/X42yLN/o2I4
http://paperpile.com/b/X42yLN/o2I4
http://paperpile.com/b/X42yLN/zRT8
http://paperpile.com/b/X42yLN/4DGE
http://paperpile.com/b/X42yLN/4DGE
http://paperpile.com/b/X42yLN/4DGE
http://paperpile.com/b/X42yLN/8dd1
http://paperpile.com/b/X42yLN/8dd1
http://paperpile.com/b/X42yLN/RSIx
http://paperpile.com/b/X42yLN/RSIx
http://paperpile.com/b/X42yLN/XVDi
http://paperpile.com/b/X42yLN/XVDi
http://dx.doi.org/10.1101/2021.10.25.465725
http://paperpile.com/b/X42yLN/XVDi
http://paperpile.com/b/X42yLN/mEmT
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


Age-Related Clinical Phenotypes and All-Cause Mortality. J. Gerontol. A Biol. Sci. Med. Sci.

76, 741–749 (2021).

73. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10,

573–591 (2018).

74. Yang, Y., Lee, M. & Fairn, G. D. Phospholipid subcellular localization and dynamics. J. Biol.

Chem. 293, 6230–6240 (2018).

75. Dai, Y., Tang, H. & Pang, S. The Crucial Roles of Phospholipids in Aging and Lifespan

Regulation. Front. Physiol. 12, 775648 (2021).

76. Sharma, A., Smith, H. J., Yao, P. & Mair, W. B. Causal roles of mitochondrial dynamics in

longevity and healthy aging. EMBO Rep. 20, e48395 (2019).

77. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10,

712–723 (2010).

78. Wodrich, A. P. K., Scott, A. W., Shukla, A. K., Harris, B. T. & Giniger, E. The Unfolded

Protein Responses in Health, Aging, and Neurodegeneration: Recent Advances and Future

Considerations. Front. Mol. Neurosci. 15, 831116 (2022).

79. Andersson, V., Hanzén, S., Liu, B., Molin, M. & Nyström, T. Enhancing protein

disaggregation restores proteasome activity in aged cells. Aging 5, 802–812 (2013).

80. Chen, S.-H. et al. Constitutive protein degradation induces acute cell death via proteolysis

products. bioRxiv 2023.02.06.527237 (2023) doi:10.1101/2023.02.06.527237.

81. Mameli, C. et al. Natural history of non-lethal Raine syndrome during childhood. Orphanet

J. Rare Dis. 15, 93 (2020).

82. Acosta-Rodríguez, V. et al. Circadian alignment of early onset caloric restriction promotes

longevity in male C57BL/6J mice. Science 376, 1192–1202 (2022).

83. Karin, O., Swisa, A., Glaser, B., Dor, Y. & Alon, U. Dynamical compensation in physiological

circuits. Mol. Syst. Biol. 12, 886 (2016).

84. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/mEmT
http://paperpile.com/b/X42yLN/mEmT
http://paperpile.com/b/X42yLN/9rBh
http://paperpile.com/b/X42yLN/9rBh
http://paperpile.com/b/X42yLN/61e6
http://paperpile.com/b/X42yLN/61e6
http://paperpile.com/b/X42yLN/3E5p
http://paperpile.com/b/X42yLN/3E5p
http://paperpile.com/b/X42yLN/xQIR
http://paperpile.com/b/X42yLN/xQIR
http://paperpile.com/b/X42yLN/YjsI
http://paperpile.com/b/X42yLN/YjsI
http://paperpile.com/b/X42yLN/e1fD
http://paperpile.com/b/X42yLN/e1fD
http://paperpile.com/b/X42yLN/e1fD
http://paperpile.com/b/X42yLN/qEn6
http://paperpile.com/b/X42yLN/qEn6
http://paperpile.com/b/X42yLN/awm5
http://paperpile.com/b/X42yLN/awm5
http://dx.doi.org/10.1101/2023.02.06.527237
http://paperpile.com/b/X42yLN/awm5
http://paperpile.com/b/X42yLN/TizE
http://paperpile.com/b/X42yLN/TizE
http://paperpile.com/b/X42yLN/gEmg
http://paperpile.com/b/X42yLN/gEmg
http://paperpile.com/b/X42yLN/xQos
http://paperpile.com/b/X42yLN/xQos
http://paperpile.com/b/X42yLN/2GDJY
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49,

1137–1146 (2008).

85. Edwards, A. & Haas, W. Multiplexed Quantitative Proteomics for High-Throughput

Comprehensive Proteome Comparisons of Human Cell Lines. Methods Mol. Biol. 1394,

1–13 (2016).

86. Ting, L., Rad, R., Gygi, S. P. & Haas, W. MS3 eliminates ratio distortion in isobaric

multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011).

87. McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed

detection of differential expression across cancer cell line proteomes. Anal. Chem. 86,

7150–7158 (2014).

88. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression.

Cell 143, 1174–1189 (2010).

89. Morgan, A. P. & Welsh, C. E. Informatics resources for the Collaborative Cross and related

mouse populations. Mamm. Genome 26, 521–539 (2015).

90. Broman, K. W. et al. R/qtl2: Software for Mapping Quantitative Trait Loci with

High-Dimensional Data and Multiparent Populations. Genetics 211, 495–502 (2019).

91. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl.

Acad. Sci. U. S. A. 100, 9440–9445 (2003).

92. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27,

1739–1740 (2011).

93. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and

Powerful Approach to Multiple Testing on JSTOR. J. R. Stat. Soc. Series B Stat. Methodol.

(1995).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

http://paperpile.com/b/X42yLN/2GDJY
http://paperpile.com/b/X42yLN/2GDJY
http://paperpile.com/b/X42yLN/VlJ5
http://paperpile.com/b/X42yLN/VlJ5
http://paperpile.com/b/X42yLN/VlJ5
http://paperpile.com/b/X42yLN/6QZ3
http://paperpile.com/b/X42yLN/6QZ3
http://paperpile.com/b/X42yLN/eejv
http://paperpile.com/b/X42yLN/eejv
http://paperpile.com/b/X42yLN/eejv
http://paperpile.com/b/X42yLN/FmcE
http://paperpile.com/b/X42yLN/FmcE
http://paperpile.com/b/X42yLN/Sl1q
http://paperpile.com/b/X42yLN/Sl1q
http://paperpile.com/b/X42yLN/I4c3
http://paperpile.com/b/X42yLN/I4c3
http://paperpile.com/b/X42yLN/fNEA
http://paperpile.com/b/X42yLN/fNEA
http://paperpile.com/b/X42yLN/FkPQ
http://paperpile.com/b/X42yLN/FkPQ
http://paperpile.com/b/X42yLN/2Std
http://paperpile.com/b/X42yLN/2Std
http://paperpile.com/b/X42yLN/2Std
https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


Supplemental Tables

Table ST1 - Abundances
.xlsx summary of molecule abundances summarized as features, samples, and measurements
tables.

Table ST2 - QTLs
Summaries of 258 molecular QTLs. Column descriptions: A - A - feature_name: a unique name
for the feature (see ST1). B - genename: gene symbol if “feature_name” is a protein. C -
gene_id: entrez gene ID if “feature_name” is a protein. D - chr: chromosome of QTL. E - pos:
locus maximizing the LOD score. F - lod: LOD score for association to locus. G/H - ci_lo/ci_hi:
confidence interval for QTL. I - start_location: location of “gene_id” in base pairs and signed to
represent strand. J - Chromosome - chromosome where “gene_id” is encoded. K - Pos_Mb -
absolute value of “start_location” * 1e6. L - strand - strand encoding ORF {-1,1}. M - qtl_type -
summary of whether QTL is a local QTL where the gene’s locus matches the QTL’s locus, a
trans QTL where it does not, or other types of pQTL or mQTLs where such an assessment was
not made.

Table ST3 - Differential Abundances
Differential abundance results for primary terms across all features. Column descriptions: A -
data_modality: proteomics, metabolomics, lipidomics. B - data_type: finer-grain summary of
“data_modality” differentiating the mode of metabolomics and lipidomics features. C -
feature_name: a unique name for the feature (see ST1). D - model_name: name of regression
model that was fit. E - term: regression term. F - estimate: effects size of “term”. G - statistic:
t-statistic for term’s prediction. H - pvalue_ols: ordinary least squares p-value based on
“statistic”. I - pvalue_bs: bootstrapped p-value for term’s regression. J - q.value: “pvalue_bs”
corrected for multiple testing.

Table ST4 - Differential Abundances (Extended)
Differential abundance results for alternative regression models across all features. Column
descriptions: A - data_modality: proteomics, metabolomics, lipidomics. B - data_type: finer-grain
summary of “data_modality” differentiating the mode of metabolomics and lipidomics features. C
- feature_name: a unique name for the feature (see ST1). D - model_name: name of regression
model that was fit. E - term: regression term. F - estimate: effects size of “term”. G - statistic:
t-statistic for term’s prediction. H - pvalue_ols: ordinary least squares p-value based on
“statistic”. I - pvalue_bs: bootstrapped p-value for term’s regression. J - q.value: “pvalue_bs”
corrected for multiple testing.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


Table ST5 - Functional Enrichments
.xlsx summary of pathways which are enriched among differential abundance associations
summarized as summaries of distinct pathways, enrichments of pathways for specific terms,
and members of molecules associated with each pathway/term.

Table ST6 - Aging Features
1,224 features which are statistically associated with one or more aging archetypes. Column
descriptions: A - data_modality: proteomics, metabolomics, lipidomics. B - feature_label: a
molecule’s name or protein symbol which may not be unique. C - feature_name: a unique name
for the feature (see ST1). D - category_label: a readable name for a functional enrichment (or
other {data_modality} for a molecule which changes with age but didn’t fall into a functionally
enriched pathway). These names and term associations are defined in ST5. For molecules that
are members of multiple enriched pathways; the pathway with the strongest statistical
association is selected. E - category_general_label: “category_label”s high-level category
defined in ST5. F - feature_aging_archetype: archetype minimizing the feature’s AICc; G -
change_w_age: does the feature increase or decrease with age based on the regression effect
size. The sign of effects are flipped for lifespan, age x lifespan, and lifespan remaining. H - term:
the regression term for the archetype in the best-fitting model. I - estimate: regression effect
size. J - pvalue_ols: ordinary least squares p-value from regression. K - pvalue_bs:
bootstrapped p-value from regression. L - q.value: fdr-controlled pvalue_bs; lipidomics
unknowns do not possess a q-value because they were selected due to strong nominal
significance. M - go_aging_archetype: aging archetype of “category_label” pathway. N -
gsea_term: specific regression model which minimized the patwhay’s AICc leading to selection
of “go_aging_archetype”. O - qvalue_aging_archetype: q-value of “go_aging_archetype” hits
enriched in “category_label” pathway. This value can be an NA if either a feature is part of a
other {data_modality} pathway or if a pathway is assigned to a gsea_term based on AICc even
though it was not significantly enriched based on the Fisher Exact test. P - qvalue_min_overal -
minimum q-value for “category_label” being associated with any aging term.

Table ST7 - Partial Correlations
5,040 partial correlations selected through graphical LASSO. This table includes three variables:
feature_1, feature_2, and partial_corr. Since partial correlations are symmetric only one
combination of a pair of features is included.

Table ST8 - Biological curation of the aging proteome
233 aging-associated proteins whose functions were manually curated to identify additional
aging patterns. Proteins from ST6 were selected if their value for “category_general_label” was
“Other Proteomics” or if they were one of the top-20 “Other Proteomics” associated based on
“pvalue_bs”. Column descriptions: A - feature_name: a unique name for the feature (see ST1).
B - feature_label: a molecule’s name or protein symbol which may not be unique. C -
category_general_label: see ST5. D - manual_category: manually curated category of protein. E
- manual_general_category: high-level grouping of “manual_category”. F-H -
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feature_aging_archetype/change_w_age/q.value: corresponding to values in ST6. I - Notes
from curating protein.

Supplemental Figures

Figure SF1 - Technical replicate consistency

SF1: Technical replicates where the same sample was injected into the mass spectrometer in
duplicate are shown for set1/2 metabolomics.
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Figure SF2 - Within set normalization in metabolites + lipids

SF2: Metabolomics and lipidomics normalization methods are compared across both tranches
of samples (set1/2 and set3) based on consistency of positive controls (same sample in different
batches) and samples. Feature-wise batch normalization methods explored to remove “day
effects” are (1) None: no adjustment, (2) Center batches: the mean value of all samples and
positive controls is subtracted from each batch; (3) Center each batch’s positive controls: the
mean value of all positive controls is subtracted from each batch; (4) LOESS fit through time: a
LOESS curve is fit through intensity ~ time upweighting positive controls and this fit is
subtracted from each sample. Column/sample normalization, adjusting each sample across all
features by a constant value, is evaluated for each batch normalization method.
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Figure SF3 - Aggregating multiple TMT plexes into a single dataset

Figure SF3: Aggregating multiple TMT plexes into a single dataset. (A) Correlating each plex’s
“bridge” channel shows strong clustering by set due to each set being a different biological
sample (a mixture of all of the experimental samples in the set). (B) Taking the ratio of
experimental samples to their bridge removes batch effects which are shared by samples in the
same plex. The mean of the sample relative abundances in each plex is correlated across
plexes revealing lingering within set correlation. (C) Each protein is mean centered on a
set-by-set basis and within the correlations between each plexes mean intensity is shown.
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Figure SF4 - Before correction, batch effects structure the leading principal
components

Figure SF4: The leading principal components are overlaid with chronological age separately
for each generation prior to removal of biological batch effects. These batch effects vary by
mouse generation and are confounded with age. Gray dots represent mice which are not part of
the highlighted generation. For instance, the G7 pane shows colored points for G7 mice and
gray points for mice from all other generations.
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Figure SF5 - Before correction, generation and blood draw are prominent
features of the multiomic heatmap

Figure SF5: All lipids, metabolites and proteins with samples split by mouse generation and
ordered by sample blood draw date prior to removal of the biological batch effects. This reveals
prominent changes in the multiome of early generation 8 mice, and for late blood draw samples
in generations 9, 10, and 11.
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Figure SF6 - Defining the Early Generation 8 Effect

Figure SF6: Metabolites with strong generation 8 effects are shown. The six metabolites
displayed are those with the greatest fold-change between 20 month and 8 months draws of
mice in generation 8 compared to the same fold-change in all other generations of mice.
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Figure SF7 - Defining the Late Blood Draw Effect

Figure SF7: Metabolites with strong late blood draw effect are shown focusing on the 14
month blood draw of generation 11 mice. The six metabolites displayed were selected as
those with the greatest difference between the average abundance at 20 months of generation 7
and 8 mice (which do not have the LBD effect) compared to the 20 month measurements of
generations 9-11 mice. There is a clear breakpoint where mice before the cutoff date (red) don’t
exhibit the LBD effect while those after this point reflect the same LBD effect seen in G9-11 20
month blood draws.
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Figure SF8 - Set and batch weakly impact leading PCs

Figure SF8: The leading components of each data type are separately calculated and overlaid
by the experimental batch order. Samples’ leading principal components are relatively
independent of set and batch. Principal components of different data types are not directly
comparable.
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Figure SF9 - Heritability of proteins, metabolites, and lipids

Figure SF9: Heritability (H2) of proteins, metabolites, and lipids. (A) Distribution of H2

across all molecules. (B) Top lipids (top row), metabolites (middle row) and proteins (bottom
row) by H2. Mice are ordered along the x-axis so that all ages for the same mouse have the
same x-value, and mice are ordered by mean relative abundance.

Figure SF10 - Reproducing an inborn error of lipid metabolism

Figure SF10: Reproducing an inborn error of lipid metabolism. The substrates of
B4galnt1 (GM3 lipids) are elevated and its products (GM2 lipids) are depleted in mice
which are nod/nod at the chr10:127Mb locus where the B4galnt1 enzyme is located.
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Figure SF11 - QTL Analysis identifies loci affecting molecules’ abundances

Figure SF11: 258 molecular QTLs. Protein QTLs were defined as local if they fell within 10 Mb
of the gene’s starting position and trans otherwise. Some proteins, which are primarily
immunoglobins were not assigned to specific genes though most of these proteins form clear
QTL hotspots on chromosome 6 (kappa light chains) and chromosome 12 (heavy chains).
Metabolite and lipid QTLs were jointly defined as mQTLs.

Figure SF12 - Relationships among aging archetypes

Figure SF12: Aging archetypes are (anti)correlated by construction. Results are shown for
all 320 non-DDM samples in the study. Age x lifespan interactions cannot be reduced to an
informative univariate summary and unlike other archetypes they are not (anti)correlated by
construction, hence they were excluded from this analysis. (A) Scatterplots contrasting aging
archetypes. (B) Pearson correlations of aging archetypes across samples.
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Figure SF13 - Power analysis of age and lifespan associations

Figure SF13: Power analysis for detecting differential abundances with age, lifespan, and
age x lifespan. The relationship between effect size, noise, and power is shown two ways for
age, lifespan, and age x lifespan effects. (A) The relationship between effect size (x-axis) and
target power (y-axis) with different noise levels (curves) is shown. (B) The power to detect an
effect size of interest (x-axis) given a noise level (y-axis) is shown.
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Figure SF14 - Volcano plots

Figure SF14: Volcano plot of molecules’ changing with sex, DDM, and aging archetypes.
(A) Features changing with age and sex; the x-axis shows log2 effect sizes comparing two
categories in a feature-level regression (i.e., male - female, ddm 20 month fold-changes vs.
non-ddm 20 month fold-changes). (B) Features changing with aging archetypes with per-day
units. Members of pathways which are significantly enriched for each term are colored
irrespective of significance and key associations are labelled. (C) Features changing with
non-per-day units. Early age contrasts 14 and 8 month draws from the same mouse; while late
age contrasts 20 and 8 months. As for (B), members of enriched pathways are colored and
representative molecules are labeled.
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Figure SF15 - P-value histograms by data modality

Figure SF15: P-value histograms of each major effect split up by data modality.
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Figure SF16 - Significant associations with alternative model formulations

Figure SF16: Counts of significant discoveries at q < 0.1 including alternative regression
models. For descriptions of all alternative models see supplemental methods. Some
supplemental models (e.g., cross-sectional models (xs)) were fit to enable model comparison of
alternative models fit to identical data. Age and age x lifespan models that include age as a
linear rather than a categorical variable were fit to enable the calculation of pathway delta age.
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Figure SF17 - Age x lifespan effects vs. aging

Figure SF17: Hexbin plot demonstrating the anticorrelation of aging and age x lifespan
interactions. Signed p-values comparing all ~2,200 feature’s late age and late age x lifespan
effect sizes are shown as a hexbin plot (i.e., a bivariate histogram) with a scatterplot of
individual molecules overlaid.
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Figure SF18 - Hexbin plots comparing pair of terms signed p-values

Figure SF18: Hexbin plots comparing signed -log10 p-values between pairs of regression
terms. Hexbin plots can be thought of as bivariate histograms where the number of
observations falling within each hexagon is summarized by the shade of the hexagon itself. (A)
Comparing effect estimates of all pairs of aging archetypes (and the DDM). Some aging
archetypes are (anti)correlated by construction such as lifespan and lifespan remaining, while
others such as late age effects compared to late age x lifespan effects show a non-trivial
empirical (anti)correlation. (B) Comparing terms estimating in (A) to the late blood draw and
early G8 batch effects. Batch effects overlap with strong chronological aging and FLL
associations.
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Figure SF19 - Overlap of all effects tested

Figure SF19: Identifying pairs of effects which tend to be shared by molecules. Pairs with
strong enrichment based on a Fisher Exact test are labelled along with p(x|y) and p(y|x). p(y|x)
reflects the fraction of molecules which are significantly associated with a row term given that
they are significant for a column term. p(x|y) is the converse. As expected from its construction,
aging hits and lifespan hits are both likely to influence lifespan remaining. There is also a
moderate overlap of lifespan and age x lifespan interactions where ~50% of the smaller set of
significant age x lifespan interactions also show up as lifespan associations. Age is partially
entwined with the early G8 and late blood draw batch effects, but such effects are noticeably
absent among hits for most other effects.
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Figure SF20 - Aging archetypes for all functional categories

Figure SF20: Model comparison of aging-associated pathways across aging archetypes.
Each archetype’s total support was calculated by summing AICc over all pathway members, and
model’s relative supports are shown as diamonds on the y-axis. To assess the uncertainty in
these archetype assignments we resampled each pathway’s members with replacement 1,000
times and performed the same calculation of relative pathway support across archetypes. The
lower 2.5% to 97.5% interval is shown as a range and the median value is a cross.
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Figure SF21 - The plasma multiome is structured by measurable and
stochastic mouse-to-mouse variability

Figure SF21: The plasma multiome is structured by mice’s genetic background and life
history. Much of this heterogeneity impacts the multiome independent of health-relevant
changes in physiology but some effects will be transmitted through unobserved health
phenotypes. Most plasma longevity associations are likely biomarker readouts of these
underlying differences in health but some may be responsible for causally mediating effects
responsible for differential hazard.
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Figure SF22 - Sample-level delta age estimates for select pathways

Figure SF22: Extreme pathways based on delta age reflect (anti)correlation of
pathway-associated aging metabolites. (A) Each panel compares a pathway to an aging
archetype for a single mouse to relate measurements of pathway member’s regression residual
(y-axis) to the corresponding molecule’s regression coefficient. An anticorrelation reflects that a
mouse has a more negative value of the archetype than their known age and lifespan would
suggest (for archetypes which are anticorrelated with FLL like age x lifespan this would be
interpreted as accelerated aging). A correlation suggests a higher value which for chronological
age and FLL can be directly interpreted as premature aging. (B) In panel (A), Afp, Pcsk9 and
Igfbp5 have an outsized impact in estimating pathway delta age relative to some other pathway
members which are near the scatterplot origin. These three molecules are shown compared to
fraction of life lived labeling the two mice shown as extreme examples of IGF signaling
dysregulation in (A). DDM samples are highlighted in purple.
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Figure SF23 - Pathway delta age estimates based on individual pathways

Figure SF23: Sample-level biological age estimates based on individual pathways aging
archetype. Pathway delta age was calculated for each pathway compared to its best supporting
archetype (excluding the two pathways associated with lifespan and lifespan remaining).
Pathway delta age was added to measured chronological age and FLL, while delta age was
directly visualized for age x lifespan interactions. Rows were standardized and hierarchically
clustered based on Pearson correlation.
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Figure SF24 - lifespan correlation heatmap

Figure SF24: Hierarchically clustered heatmap of lifespan-associated molecules
including non-molecular phenotypes.
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Figure SF25 - graphical LASSO hyperparameter fitting

Figure SF25: Estimating a sparse precision matrix using graphical LASSO. The model BIC
and RMSE of residual covariance are shown as a function of regularization strength. The
lambda which minimizes the BIC was selected as an optimal model and this value is observed
to capture much of the structure in the underlying sample covariance matrix.
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Figure SF26 - lifespan graph (busy)

Figure SF26: Figure 5B with all nodes labeled
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Figure SF27 - functional category equivalences

Figure SF27: Comparing the similarity of molecules within versus between pairs of
functional categories. To determine whether two categories are more coherent when
separated or combined together each pairs’ within category median absolute correlation and
median shortest paths (along weighted edges from the partial correlation network) was
compared to 1,000 permutations where assignment of the molecules shared by the categories
was shuffled to calculate p-values and pairs of categories with q-values less than 0.025 were
considered as distinct. Categories were excluded from analysis if they contained fewer than 10
members and were then divided into those which were internally consistent (median absolute
correlation > 0.2; bold) and those where pathway members were scarcely correlated (italics).
Edges are only shown when one or more pathways is coherent (bold) because it wouldn’t make
sense to look at loss of coherence between already incoherent categories (i.e., italics-italics
links).
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Figure SF27 - Extended metabolic changes with age

Figure SF27: Extended metabolic changes with age. Dynamics (p)corr plots are described in
Figure 6B. (A) Figure 6B including an additional “other” category including all aging-associated
metabolomic changes falling outside of the emphasized categories. (B) Core metabolite
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changes from Figure 6B combined with an additional category of metabolic enzymes measured
through proteomics.

Figure SF28 - Taurocholic acid

Figure SF28: Taurocholic acid levels rise with fraction of life lived. Taurocholic acid (1) and
(2) reflect separate peaks of the same compound.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564069doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564069
http://creativecommons.org/licenses/by/4.0/


Figure SF29 - Chronological changes in the lipidome

Figure SF29: Chronological changes in the lipidome. Lipids which are part of a functional
category enriched for chronological age are shown as a dynamics (p)corr plot as described in
Figure 6B.
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Figure SF30 - Matrisome proteins are depleted in circulation with age, while
components promoting remodeling are elevated

Figure SF30: Matrisome proteins are depleted in circulation with age, while components
promoting remodeling are elevated. The dynamics (p)corr plot is described in Figure 6B.
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Figure SF31 - TLR signaling increases with age

Figure SF31: Toll-like receptor signaling, activated through Lbp and fibrinogens
promotes monocyte recruitment and macrophage activation. The dynamics (p)corr plot is
described in Figure 6B.
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Figure SF32 - LBP vs. FACS

Figure SF32: Comparing monocyte percentages and CD11b+ percentages based on
FACS to LPS binding protein (Lbp) levels across samples
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Figure SF33 - Proteostasis

Figure SF33: Circulating proteases and their regulators are broadly dysregulated during
aging but with little directional coherence. The dynamics (p)corr plot is described in Figure
6B.
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Figure SF34 - Homeostasis

Figure SF34: Aging affects mouse physiology spanning diverse homeostatic processes.
The dynamics (p)corr plot is described in Figure 6B.

Materials and Methods

Sample generation
We enrolled 600 female DO mice in five waves, corresponding to birth cohorts of DO mice from
generations 7 to 11. The first cohort entered the study in June 2011 and the study was fully
populated in August 2012. This staggered enrollment allowed us to efficiently phenotype the
cohort while simultaneously minimizing the confounding of seasonal and other time-specific
batch effects with chronological age. The study included both male and female mice which were
separately housed to avoid mating. Mice were housed in pressurized individually ventilated
(PIV) polycarbonate cages supplied with high efficiency particulate air (HEPA) filtered air
maintained at temperatures ranging from 76 to 78oF. Mice were fed ad libitum with an
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autoclaved pelleted 6% fat diet. The mouse colony is maintained to avoid viral introduction and
minimize exogenous stress as previously described 21. Environmental enrichments were
provided including nestlets, biotubes, and gnawing blocks. Mice were maintained in these
environments until they were either found dead, or euthanized following Jackson Laboratory’s
standard practice for animal husbandry.

At 8, 14, and 20 months mice were weighted, urine was collected and 250 𝜇L whole blood was
collected by retro-orbital bleed into heparin-coated micro-hematocrit tubes. Whole blood was
immediately profiled. Plasma was extracted by centrifugation at 20,000 g for 10 min at 4oC and
banked for future applications 21.

Blood glucose was profiled using a standard laboratory assay and Igf1 levels were measured by
a radioimmunoassay 21. Blood urea nitrogen (BUN), magnesium, potassium, and sodium were
measured by standard laboratory assays. Urine albumin, creatinine, magnesium, and
phosphate were measured by standard laboratory assays. Whole blood was profiled using two
hematological analyzers, complete blood counting (CBC), and the ADVIA, Hematology System
to characterize the abundances and distributions of red, white blood cells, and platelets. A white
cell differential as part of the CBC provided additional information about the distribution of white
blood cells based on standard surface markers.

Gross phenotypes pertaining to the 110 mice in this study are included as part of this dataset,
while phenotyping of the remaining mice will be presented in subsequent works outlining
broader findings from the SHOCK study.

Selection for multiomics
Of the 600 mice enrolled in the SHOCK study, 455 lived past their third blood draw. We
considered the mice who reached this threshold as eligible for our longitudinal profiling, and
selected a subset of 110 of these mice enriching for both short- and long-lived mice for
multiomics.

A selection of 54 mice were profiled in 2017, and a second tranche of 56 mice in 2019, to
construct the full dataset of 110 mice profiled at three ages.

Tranche 1 was profiled as two sets of samples, set 1 and set 2. Because they were run near
each other, possessed an identical experimental design, and were easily bioinformatically
aggregated, leaving no evidence of systematic cross-set differences, we generally consider
these two sets as a single tranche set 1/2. In contrast, set 3 was run at a later time than set1/2
with different sample preparation, a different blocking strategy and controls, and it required
substantial effort to align its signals to those in set 1/2, as detailed below.

Within each set, samples were divided into a set of batches which were processed together,
along with experimental controls. One of these controls was a positive-control reference sample,
which was a common sample run in each batch to address batch-to-batch variability. This
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positive control served as an external control in metabolomics and lipidomics (i.e., it was run as
a separate sample), and as an internal-control bridge channel in proteomics

Proteomics and metabolomics/lipidomics were profiled from separate aliquots of the same blood
sample, with metabolites and lipids being separated from hydrophilic and hydrophobic fractions
of the same sample. Proteins were tryptic digested and tagged with isobaric tandem mass tags
(TMT) which allowed for pooling of 9-10 experimental samples with a standard bridge sample
which facilitated cross plex comparison.

For set1/2, samples were split into 18 batches of 9 samples, each prepared on a separate day.
Batches were created using a latin square, ensuring that no animal had more than 1 sample in a
batch, and batches were balanced for age and survival. In this tranche, the positive control was
young C57BL/6 blood, prepared fresh for each batch.

For set 3, samples were split into 7 batches of 24 samples, each prepared on a separate day.
Batches were created, ensuring that no animal had more than 1 sample in a batch, and that the
batches were balanced for age and survival. In this tranche, the positive control was a pooled
sample with equal contributions of all 168 biological samples, prepared fresh for each batch.

Metabolomics and lipidomics sample preparation and LC-MS analysis
For the combined set 1/2: Separation of lipids and polar metabolites was performed by manual
liquid-liquid extraction, a modification of the method published by Matyash et al. 2008 84. Briefly,
1 mL of 1:1 MeOH:water was added to a 10 𝜇L aliquot of plasma in a 2 mL glass vial, followed
by vortex mixing and incubation on ice for 10 minutes, addition of 1 mL of methyl,tert-butyl ether
(MTBE), and further vortex mixing for 1 minute. Samples were then centrifuged at 3000 g for 5
minutes at 4°C to separate layers. Using a glass syringe, 750 𝜇L of the upper, organic layer was
transferred to a destination vial, another 1 mL of MTBE was added, followed by vortex mixing
and centrifugation as above, followed by removal of 1.4 mL of the organic phase, which was
combined with the first organic phase layer. The lower, aqueous phase was transferred to a
separate destination vial, leaving the protein pellet behind. The combined organic phase was
evaporated to dryness overnight in a vacuum centrifuge maintained at 10°C, then resuspended
in 1:1:0.3 chloroform:methanol:deionized water containing a 20-fold dilution of Splash Lipidomix
(Avanti). The aqueous phase samples were evaporated to dryness overnight in a vacuum
centrifuge maintained at 20°C and were then resuspended in 100 𝜇L of deionized water
containing isotopically labeled internal standards (1 𝜇g/mL d4-lysine, 1 𝜇g/mL d5-phenylalanine
and 0.25 𝜇g/mL d4 succinic acid). Aliquots of this solution were diluted 1:4 into deionized water
or acetonitrile, for analysis by ion-pairing reverse-phase or HILIC LC-MS respectively.

For set 3: Separation of lipids and polar metabolites was performed by robotic liquid-liquid
extraction, a modification of the method published by Matyash et al. 2008 84, performed using a
PAL DHR robot. Briefly, 20 𝜇L plasma aliquots were added to glass vials, and a 50% methanol
solution containing containing 1 𝜇g/mL of deuterated tyrosine and deuterated alanine, 250
ng/mL of deuterated benzoate (Sigma Aldrich) and 20 𝜇L Splash Lipidomix mass spec standard
(Avanti Polar Lipids) as internal standards was added to to a volume of 800 𝜇L, and the samples
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were vortexed for 70 seconds at 2000 rpm, followed by addition of 750 𝜇L of MTBE to each
sample vial followed by vortex mixing for 30 seconds and centrifugation for 1 minute at 5000
rpm for complete phase separation. Next, 520 𝜇L of the upper (organic) phase was transferred
to a lipidomics collection sample vial. The aqueous phase was re-extracted with addition of 600
𝜇L of MTBE to the source vial. After mixing and centrifugation as described above, 860 𝜇L of the
top organic phase was transferred to the lipidomics collection vial. Then, 425 𝜇L of the lower
aqueous phase was transferred to the metabolomics collection sample vials. The remaining
solvent in the source sample vial, covering the protein pellet, had leftover volumes of around
100 𝜇L of the upper organic phase and 150 𝜇L of lower aqueous phase remaining that were not
collected. Both organic and aqueous fractions were stored in blocks cooled to 4°C in the vial
cabinet during the process. Both phases were dried under nitrogen gas, the aqueous phase was
resuspended in 100 𝜇L of water containing 1 𝜇g/mL of deuterated lysine, deuterated
phenylalanine and 250 ng/mL of deuterated succinate for the polar metabolites. Aliquots of this
solution were diluted 1:4 into deionized water or acetonitrile, for analysis by ion-pairing
reverse-phase or HILIC LC-MS respectively. The organic phase was resuspended in 2:1:1
butanol:methanol:deionized water for LC-MS analysis of lipids.

LC-MS analysis of polar metabolites
Metabolites were analyzed in positive ionization mode via HILIC chromatography using a
SeQuant® ZIC®-pHILIC column, 5 μm particle size, 200 Å, 150 × 2.1 mm. Mobile phase A was
20 mM ammonium carbonate in water (pH 9.2); mobile phase B was acetonitrile. The flow rate
was 150 μL/min and the gradient was t = −6, 80% B; t = 0, 80% B; t = 2.5, 73% B; t = 5, 65% B,
t = 7.5, 57% B; t = 10, 50% B; t = 15, 35% B; t = 20; 20% B; t = 22, 15% B; t = 22.5, 80% B; t = 24;
80% B. The mass spectrometer was operated in positive ion mode using data-dependent
acquisition (DDA) mode with the following parameters: resolution = 70,000, AGC
target = 3.00E + 06, maximum IT (ms) = 100, scan range = 70–1050. The MS2 parameters were
as follows: resolution = 17,500, AGC target = 1.00E + 05, maximum IT (ms) = 50, loop count = 6,
isolation window (m/z) = 1, (N)CE = 20, 40, 80; underfill ratio = 1.00%, Apex trigger(s) = 3–10,
dynamic exclusion(s) = 25.

Metabolites analyzed in negative ionization mode using a reverse phase ion-pairing
chromatographic method with an Agilent Extend C18 RRHD column, 1.8 μm particle size, 80 Å,
2.1 × 150 mm. Mobile phase A was 10 mM tributylamine, 15 mM acetic acid in 97:3
water:methanol pH 4.95; mobile phase B was methanol. The flow rate was 200 μL/min and the
gradient was t = −4, 0% B; t = 0, 0% B; t = 5; 20% B; t = 7.5, 20% B; t = 13, 55% B; t = 15, 95% B;
t = 18.5, 95% B; t = 19, 0% B; t = 22, 0% B. The mass spectrometer was operated in negative ion
mode using data-dependent acquisition (DDA) mode with the following parameters:
resolution = 70,000, AGC target = 1.00E + 06, maximum IT (ms) = 100, scan range = 70–1050.
The MS2 parameters were as follows: resolution = 17,500, AGC target = 1.00E + 05, maximum
IT (ms) = 50, loop count = 6, isolation window (m/z) = 1, (N)CE = 20, 50, 100; underfill ratio = 1.0
0%, Apex trigger(s) = 3–12, dynamic exclusion(s) = 20.
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LC-MS analysis of lipids
Two injections of each sample were performed, one for analysis is positive ion mode, and one in
negative ion mode. Separation of lipid compounds in both positive and negative ion mode was
achieved by reverse-phase liquid chromatography on an Accucore C30 column (250 x 2.1 mm,
2.6 µm particle size, Thermo Scientific) at 35°C column temperature with a 200 µL/min flow rate.
Mobile phase A was 20 mM ammonium formate in 60:40 meCN:H2O, with 0.25 µM medronic
acid and mobile phase B was 20 mM ammonium formate in 90:10 IPA:meCN, with 0.25 µM
medronic acid. The gradient was: t= -7, 30% B; t=7, 43% B; t=12, 65% B; t = 30, 70% B; t=31,
88% B; t=51, 95% B; t=53, 100% B; t=55, 100% B; t=55.1, 30% B; t=60, 30% B for a total run
time of 67 min per injection. The injection volume was 5 uL.

The mass spectrometer was a Q-Exactive Plus (Thermo) operated using data-dependent
acquisition. The MS1 settings were: 140,000 resolution; AGC target of 3e6; max. IT of 100 ms;
scan range of 200 to 2000 m/z. The MS2 settings were: 17,500 resolution; loop count 8; AGC
target of 3e6; max. IT of 150 ms; isolation window of 1 m/z; and underfill ratio at 1%. Dynamic
exclusion was set at 15 sec with an apex trigger from 5 to 30 sec. Stepped collision energies
were set to 20, 30 and 40% NCE.

Metabolomics and lipidomics informatics
Metabolomics and lipidomics datasets were analyzed using OpenClam
(https://github.com/calico/open_clam). The quahog R/python pipeline in OpenClam was used to
process each dataset using a standardized workflow encompassing peak detection, alignment,
and peak re-detection. Alignment was facilitated by detecting ~20 unambiguous masses in each
method where a single peak was found (see clamr::find_candidate_anchors()). The shift of such
“anchor point” peaks relative to the peak group’s average retention time provided a measure of
the retention time shift of each sample as a function of retention time. This measure was linearly
interpolated to adjust each peak’s retention time. After adjusting peaks’ retention time using
anchor points a second retention time aligner was used to further correct for cross sample
retention time drift. This aligner groups fragmentation patterns across samples and then tries to
minimize the cross-sample retention time disagreement of matched fragmentation patterns
using a generalized additive model (see clamr::ms2_driven_aligner). Metabolomics results
could be aligned across set12 and set3 using a combination of MS2 based alignment and
anchor points. This allowed us to explore associations with unknown metabolites and cohort
age and lifespan. Lipidomics results were alignable within set12 and set3 but non-monotonic
shifts in retention time required us to separately annotate the knowns in each dataset and then
merge results based on these labels. This prevented us from studying unknown lipids.

Each of 6 metabolomic/lipidomic datasets (positive and negative mode metabolites, and positive
and negative mode lipids processed separately for set1/2 and set3) was manually curated using
MAVEN 31. Metabolites were annotated based on the retention time of pure standards running
on a matching chromatographic method, and based on a fragmentation pattern match to a pure
standard fragmented at the collision energy of the experimental method. Lipids were matched to
the published CalicoLipids in silico fragmentation library encompassing common classes of
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lipids 31. Due to the size of these complete datasets, a subset of samples covering each set and
batch (nested within set) was curated and manual identities were then propagated to the
complete dataset by matching the mass and retention time of curate peakgroups to those were
automatically detected. Curated peakgroups which were missed by automated peak picking
were re-extracted as extracted ion chromatographs (EICs) in the complete dataset.

Automated peak picking and manual curation ensured that features could be consistently
identified across all experimental samples by virtue of either shared mass and retention time in
metabolomics, or shared identity in lipidomics. To interpret changes in abundance of each
feature further requires us to (1) filter non-biological analytes, and (2) to minimize the impact of
technical variability on variance and bias. These effects were addressed separately in each of 8
datasets (treating each of metabolites/lipids, positive-/negative-mode, set12/3 separately) to
ensure that within-dataset batch effects were addressed before comparing across sets, modes,
and data modalities. Each dataset was normalized and QC’d using a standard workflow
(wdl_processes/featurization_small_molecules.Rmd) scheduled using Cromwell. Results for all
datasets can be found at GitHub.

First, non-biological unknowns (i.e., non-manually curated) were detected and removed if the
median signal in biological samples was less than 4-fold greater than the median signal in
negative controls (processed like biological samples but with no plasma) or if a peak was
missing in more than 90% of biological samples. This identified a subset of features that
ostensibly came from plasma. Before correcting for addressable batch effects, unknowns with
egregious batch effects were discarded based on whether the standard deviation of batch
mean(log2(abundance)) was more than 1.5.

To correct for batch-to-batch variability, we explored several approaches to normalization which
performed a loading adjustment to samples 40 and/or features. The feature normalization
strategies we explored were enforcing a constant batch median for each feature, subtracting
each batch’s median positive control (the same biological sample run multiple times in each
batch), and fitting and then subtracting a weighted LOESS curve over time (which upweighted
positive controls). An ideal normalization approach would reduce the variability of positive
controls (which are biologically identically, and hence variability is entirely technical) while
maintaining much of the variability in biological samples (which vary due to both technical and
biological variability). Based on these criteria loading adjustment was uniformly beneficial and
the feature normalization strategies performed similarly (Figure SF2). Because the positive
controls of the set1/2 were aged BL6 mouse plasma which was systematically different from the
experimental samples, we opted to correct for feature-level batch effects using batch centering
and we applied this uniformly across all datasets for simplicity. Because the major biological
effects (age, sex, lifespan quartile) could be carefully balanced within each batch the batch
median should be relatively independent of the specific biological samples in each batch and
hence this should primarily remove technical variation. After normalization, we excluded
additional unknowns where we would be underpowered to detect biological trends - those where
either the standard deviation of positive controls was > 1.2 or the standard deviation of samples
was less than 10% greater than the standard deviation of positive controls. To merge across
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set1/2 and set3, only unknowns which were separately retained in both sets were used, and
features were median centered within each set; As for centering within batches this is broadly
enabled by the similar composition of samples within each set. One caveat is that there were no
DDM samples in set3 - this difference could affect mean centering but would have a minimal
effect when centering by median.

Proteomics sample preparation and LC-MS analysis
10 µL of plasma were diluted with 290 µL 50 mM HEPES buffer (pH = 8.5). The disulfide bonds
were reduced by adding dithiothreitol (DTT) to a final concentration of 5 mM and incubation at
56 °C for 30 min. Followed by adding iodoacetamide to adjust a final concentration of 15 mM
and an incubation in the dark at room temperature for 20 min. The reaction was stopped by
adding DTT to a final concentration of 5 mM and an incubation in the dark at room temperature
for 15 minutes. 37.5 µL of 8 M Urea and digested overnight at room temperature with 1 µg/µL
endoproteinase Lys-C (Wako) followed by digestion with sequencing-grade trypsin (Promega) at
a final concentration of 1 ng/μL 6 h at 37 °C. The digestion was quenched with 1% trifluoroacetic
acid (TFA), and peptides were desalted using Sep-Pak C18 solid-phase extraction (SPE)
cartridges (Waters). The peptide concentration of each sample was determined using a BCA
assay (Thermo Scientific).

For labeling with TMT-10plex reagents (Thermo Scientific), 50 µg of peptides were dried and
resuspended in 50 µL of 200 mM HEPES (pH 8.5), 30% acetonitrile (ACN). Labeling was
performed by adding 150 μg TMT reagent in anhydrous ACN and incubating at room
temperature for 1 h. The reaction was stopped by addition of 5% (w/v) hydroxylamine in 200
mM HEPES (pH 8.5) to a final concentration of 0.5% hydroxylamine and incubation at room
temperature for 15 min. Samples were acidified with 1% TFA, and samples were combined. The
pooled samples were desalted using Sep- Pak C18 SPE cartridges. The combined multiplexed
samples underwent a prefractionation by basic pH reversed chromatography (bRPLC) as
previously described, collecting 96 fractions that were combined into 24 samples of which 12
were analyzed by mass spectrometry 85. The samples were dried and resuspended in 5 %
ACN/5 % formic acid to be analyzed in 180-min runs via reversed-phase LC-M2/MS3 on an
Orbitrap Lumos mass spectrometer (Thermo Fisher Scientific) using the Simultaneous
Precursor Selection (SPS) supported MS3 method 86,87. The mass spectrometer was coupled to
an Easy-nLC 1000 (Thermo Fisher Scientific) with a chilled autosampler. Peptides were
separated on an in-house pulled, in-house packed microcapillary column (inner diameter, 100
μm). Columns were packed to a final length of 30 cm with GP-C18 (1.8 μm, 120 Å, Sepax
Technologies). Peptides were eluted with a linear gradient from 11 to 30 % ACN in 0.125 %
formic acid over 165 minutes at a flow rate of 300 nL/minute while the column was heated to 60
C. Electrospray ionization was achieved by applying 1800 V through a stainless steel T-junction
at the inlet of the microcapillary column.

The Orbitrap Lumos was operated in data-dependent mode, with a survey scan performed over
an m/z range of 500-1,200 in the Orbitrap with a resolution of 12x104, automatic gain control
(AGC) of 4 x 105, and a maximum injection time of 50 ms. The most abundant ions detected in
the survey scan were subjected to MS2 and MS3 experiments to be acquired in a 5 seconds
experimental cycle. For MS2 analysis, doubly charged ions were selected from an m/z range of
600-1200, and triply and quadruply charged ions from an m/z range of 500-1200. The ion
intensity threshold was set to 5x105 and the isolation window to 0.5 m/z. Peptides were isolated
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using the quadrupole and fragmented using CID at 30 % normalized collision energy at the
rapid scan rate using an AGC target of 2 x 104 and a maximum ion injection time of 35 ms. MS3
analysis was performed using synchronous precursor selection (SPS) 86,87. Up to 5 MS2
precursors were simultaneously isolated and fragmented for MS3 analysis with an isolation
window of 2 m/z and HCD fragmentation at 55 % normalized collision energy. MS3 spectra were
acquired at a resolution of 5x103 with an AGC target of 4.5 x 105 and a maximum ion injection
time of 150 ms.

Proteomics informatics
Mass spectrometry data were processed using an in-house software pipeline 88. Raw files were
converted to mzXML files and searched against either a mouse Uniprot database using the
Sequest algorithm. Database searching matched MS/MS spectra with fully tryptic peptides with
a precursor ion tolerance of 20 p.p.m. and a product ion tolerance of 0.6 Da.
Carbamidomethylation of cysteine residues (+57.02 Da) and TMT tags (+229.16 Da) on lysines
and peptide N-termini were set as static modifications. Oxidation of methionine (+15.99 Da) was
set as a variable modification. Linear discriminant analysis was used to filter peptide spectral
matches to a 1 % FDR (false discovery rate) at the peptide level as previously described 88.
Non-unique peptides that matched to multiple proteins were assigned to proteins that contained
the largest number of matched redundant peptide sequences using the principle of Occam’s
razor 88. Quantification of TMT reporter ion intensities was performed by extracting the most
intense ion within a 0.003 m/z window at the predicted m/z value for each reporter ion. TMT
spectra were used for quantification when the sum of the signal-to-noise for all the reporter ions
was greater than 200 86.

The fold-change of an experimental samples’ reporter ions to the bridge sample report ion was
used as a measure of relative abundance. These relative abundances were centered so all sets
possessed the same mean for every protein. Proteins which were present in more than 50% of
the 330 experimental samples were considered further for statistical analysis.

Genetics
We collected tail clippings and extracted DNA using DNeasy Blood and Tissue Kit (Qiagen) from
465 of the 600 animals enrolled in the SHOCK study. Samples were genotyped using the
77,808-probe MegaMUGA array from the Illumina Infinium platform 89. Genotype data is
available at https://dodb.jax.org/, under project title: Shock Center Longitudinal Study.

We evaluated genotype quality using the R package: qtl2 90. We processed all raw genotype
data with a corrected physical map of the MegaMUGA array probes
(https://kbroman.org/MUGAarrays/muga_annotations.html, last accessed September 12, 2023).
After filtering genetic markers for uniquely mapped probes, genotype quality and a 20%
genotype missingness threshold, our dataset contained 72,370 markers. Two pairs of mice were
found to have nearly identical genotypes, which suggested that one sample was mislabeled,
and were removed. One additional mouse with more than 20% missing genotype data was also
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removed leaving a total of 460 mice with high quality genotype information. Of the 110 mice
included in the multi-omic profiling, 86 had high quality genotype data.

Genetic mapping analyses were implemented in qtl2 90 and followed the procedure described in
Zhang et al. 2022 26. Briefly, we calculated the probability that a given founder contributed a
given marker allele by comparing each mouse’s genotype at each marker to that of the eight
founder strains. Using these eight-state genotype probabilities, we calculated the pairwise
relatedness (e.g. kinship matrix) between all mice and the narrow-sense heritability of all
multi-omic traits. Additionally, we used the eight-state genotype probabilities to test for an
association between the founder-of-origin probability and phenotype at all genotyped markers.
We explored three types of mouse-level traits, an average effect which was simply the mean of
a mouse’s blood draws, an early age effect (14 - 8 months), and a late age effect (20 - 8
months). In these QTL mapping analyses, the kinship matrix was treated as a random effect and
sex and generation were included as fixed effects. Statistical significance for each trait was
assessed via permutation analysis. Here, a trait’s p-value would be 1 minus the quantile of the
observed maximum LOD score compared to the distribution of maximum LOD scores of
individual null permutations.

To correct for multiple comparisons, we applied FDR-control to all traits p-value using the qvalue
methodology, separately exploring association with each type of trait (i.e., average mouse
abundances, and early- and late-age effects) 91. At FDR rates as high as 20% zero genetic
associations with aging effects were retained, while we were able to detect hundreds of
associations with average abundances at a 10% FDR. To interpret these associations for
protein QTLs, we compared the genomic coordinate maximizing the LOD score in each QTL to
the cognate protein’s start site, and defined all QTLs falling within 1 Mb of this start site as local
QTLs.

Statistical analysis
A set of 14 linear regression was fitted to each feature treating the features’ log2 fold-changes or
log2 abundances as the dependent variable (see below). When identifying associations with age
(early age, late age, age interactions, DDM), fold-changes of 14 month and 20 month timepoints
relative to the corresponding 8 month observation from the same mouse were used to correct
for cross-strain variability in baseline abundance. The 8 months observations were then
excluded from regression (as their fold-change would be zero by construction). When identifying
associations to mouse-level traits such as lifespan and sex, abundances were predicted since
working with fold-changes would subtract out the signal of interest which would be shared
across all of a mouses’ measurements.

For each model, major known biological and non-biological covariates were controlled for. Aside
from the “fold-change lm (DDM)” model which aimed to identify molecules associated with
imminent death, the ten 20 month observations from mice that would live less than 21 more
days following their final blood draw were excluded from all models. This was because the DDM
signature varied across the 10 DDM samples with some mice (notably a mouse who died two
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days after the blood draw) exhibiting profound changes in the multiome and other mice looking
relatively normal despite their impending death. Filtering these samples was the safe option
since failing to account for this variability could drive aging and lifespan associations which
would not generalize across the cohort.

The other major biological effects identified through exploratory data analysis, age and sex,
were included as covariates unless the covariates effect had already been addressed (i.e., sex’s
effect was removed when working with fold-changes), or when a covariates inclusion would
prevent the estimation of the effect of interest (i.e., we couldn’t correct for age when assessing
associations with lifespan remaining). Besides biological covariates, the two generation x blood
draw date batch effects, the early generation 8 effect and late blood draw effect were included
as categorical variables. The formulation of these effects was slightly different based on whether
a regression used fold-changes or abundances. For example, because the 8 and 14 month
measurements of early generation 8 mice were similarly affected by the EG8 batch effect this
effect was removed when taking their fold-change difference.

The 14 models accounting for these considerations are:

Model Name Assessed Terms Alternative Term Labels Regression Formula Excludes

Variable Description -> Single term which
best captures the
effect of interest, as
shown in Figures
3B, SF14, SF15.

An expanded set of models
which were fit to facilitate
model comparison,
estimation of pathway delta
age. Significance for these
terms in aggregate are
present in SF16. A n.s.
superscript refers to
models that were evaluated
but yielded zero hits at a
10% FDR.

Regression formula for model using
the standard R regression modeling
syntax. AgeT refers to treatment
contrasts where 14 and 20 month
observations are directly contrasted
with the 8 month blood draw. AgeH

refers to Helmert contrasts where the
20 month observation is contrasted to
the average of the 8 and 14 month
blood draw. AgeD refers to treating
chronological age as a numeric
variable; days since birth. “Batch” is a
stand-in for two categorical covariates
capturing samples affected by the LBD
and EG8 effects.

Samples
removed
before
fitting
model

Fold-change lm (Age),
No DDM

early age,
late age,
batch

early age (fc)
late age (fc)

log2(FC) ~ AgeT + Batch + 0 DDM
8 months

Fold-change lm (Age x
Sex), no DDM

early age x male,
late age x male

early age x male (fc)n.s.,
late age x male (fc)

log2(FC) ~ AgeT + AgeT:Sex + Batch +
0

DDM
8 months

Fold-change lm (Age x
Lifespan), no DDM

early age x lifespan,
late age x lifespan

early age x lifespan (fc)n.s.,
late age x lifespan (fc)

log2(FC) ~ AgeT + AgeT:Lifespan +
Batch + 0

DDM
8 months

Fold-change lm (DDM) DDM ddm log2(FC) ~ AgeT + is_ddm_sample +
Batch + 0

8 months

Cross-sectional lm
(Age), No DDM

early age (xs),
late age (xs)

log2(FC) ~ AgeH + Sex + Batch DDM

Cross-sectional lm
(Integer Age), no DDM

age log2(abundance) ~ AgeD + Sex + Batch DDM

Cross-sectional lm
(Age + Lifespan), No
DDM

lifespan, sex lifespan | age, sex log2(abundance) ~ AgeH + Sex +
Lifespan + Batch

DDM

Cross-sectional lm log2(abundance) ~ AgeD + Sex + DDM
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Each of the above models was separately fit to every molecule and significance was evaluated
by bootstrapping residuals using a non-parametric bootstrapping procedure 39. Briefly, an initial
regression was fit and its residuals were inflated to adjust for the fitted degrees of freedom (

). Then for each of 1e6 bootstraps, residuals were samples withε𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = ε 𝑁/(𝑁 − 𝑑. 𝑜. 𝑓( )

replacement and added to the values from the initial regression, and an identical regression𝑦
was fit to each bootstrap to estimate to generate a bootstrapped distribution of effect sizes.

Two-tailed p-values can then calculated as . We𝑝 =  1 − 2 * |0. 5 −  
𝑖 = 1

𝑁 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑠

∑
1 𝑖𝑓 β

𝑖
𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝>0

𝑁( )|

then added 1/ to each p-value and p-values greater than one were set to one. This𝑁𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑠

lower bounds each term’s nominal significance to 1/ with such values reflecting that𝑁𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑠

zero conformations of the bootstrapped residuals were able change the sign of ’s relation to .β 𝑦
Missing values, which are common in TMT proteomics, were addressed by excluding the
relevant sample from statistical analysis.

To correct for multiple comparisons, we estimated a single value of (an estimate of theπ
0

fraction of molecules which do not exhibit differential abundance) for each term irrespective of
data modality 91. We then applied the q-value FDR procedure to each data modality separately
to identify discoveries at a 10% FDR using a estimate that was shared across data modalities.π

0

This reflects that estimates are similar across data modalities but our power nonethelessπ
0

differs by data modality due to the higher accuracy of the proteomics data. FDR controlling all
data modalities together using a single would decrease the number of proteomics hits (addingπ

0

false negatives) while simultaneously selecting more metabolites and lipids (increasing false
positives).

(Integer Age +
Lifespan), No DDM

Lifespan + Batch

Cross-sectional lm
(Age x Lifespan), No
DDM

early age x lifespan (xs)n.s,.
late age x lifespan (xs)

log2(abundance) ~ AgeH * Lifespan +
Sex + Batch

DDM

Cross-sectional lm
(Integer Age x
Lifespan), No DDM

age x lifespan log2(abundance) ~ AgeD * Lifespan +
Sex + Batch

DDM

Cross-sectional lm
(FLL), no DDM

FLL FLL log2(abundance) ~ FLL + Sex + Batch DDM

Cross-sectional lm
(Lifespan), no DDM

lifespan log2(abundance) ~ Lifespan + Sex +
Batch

DDM

Cross-sectional lm
(Lifespan-Remaining),
No DDM

lifespan-remaining lifespan-remaining log2(abundance) ~ Lifespan
Remaining + Sex + Batch

DDM

Cross-sectional lm
(FLL x Sex), no DDM

FLL x male FLL x male log2(abundance) ~ FLL*Sex + Batch DDM
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As an alternative approach we explored the use of linear mixed-effects models for accounting
for repeated measures of the same mouse in cross-sectional data but ultimately decided against
treating mouse as a random effect. This was primarily because linear mixed-effects models
generated pathological results when applying nested model comparison to assess the
significance of variables which are a property of individuals (e.g., lifespan and sex). Taking
lifespan as an example, comparing a model with lifespan + (1|mouse) to a model with just
(1|mouse), the poorer prediction of lifespan is largely absorbed by an elevated mouse-effect
random effect standard deviation. This results in a pathological p-value distribution with an
excess of p-values near 1. This property would prevent us from uniformly treating all aging
archetypes, and beyond this, we don't believe a random effect is generally needed because
mouse-effects are small as can be seen from the low H2 of most molecular features.

To identify functional enrichments, we explored whether significant hits were enriched among
common biological processes for proteins and whether lipids possessed common headgroups
and/or acyl chains. For proteomics results we tested the biological processes and Reactome
gene ontologies drawn from MSigDB 92 and filtered each category to proteins measured in our
study. We focused on these ontologies over alternatives such as those focused on cellular
compartments or molecular functions because plasma is acellular and most molecular functions
are poorly represented in the plasma proteome. Lipid headgroups and tails were extracted
based on the lipid naming scheme using the claman R package
(https://github.com/calico/claman). To identify functional enrichments we applied a Fisher Exact
test to each pair of terms (from regression) and category to identify significant overlaps between
category membership and FDR-controlled discoveries (q < 0.1). P-values for each term were
FDR controlled using the Benjamini-Hochberg procedure 93 to identify functional enrichments at
a 10% FDR. Significant protein sets were further refined by removing genesets which are
defined by similar membership. This was done by retaining a set of genesets with pairwise
Jaccard similarity (intersection / overlap) of less than 0.7 favoring categories with higher Fisher
Exact significance over categories with weaker functional enrichment.

A small number of lipid unknowns were identified in a preliminary analysis of set1/2 and were
manually identified in the final set1/2 and set3 dataset. Since these unknowns were selected
based on their strong association with age and/or lifespan in set1/2 we excluded them from FDR
control to avoid contaminating the remaining features which were curated independently of their
aging trends. We report a small number of these unknown’s associations based on their strong
nominal significance (p < 0.0001) for exploratory purposes.

Power analysis
To determine the effect sizes that we are powered to detect for several of the aging patterns that
we expect a priori in our study, changes with chronological age, lifespan, and age x lifespan
interactions, we applied a simulation of our power to detect effects as a function of varying
levels of noise.

When exploring changes with age, the comparison of a 14 or 20 month measurement to its 8
month baseline increases noise (but decreases bias) because technical variance excessed the
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biological variance (i.e., the variability among biological samples ( ) is lessσ2 = σ
𝑏𝑖𝑜
2 + σ

𝑡𝑒𝑐ℎ
2

than twice that of positive control technical replicates ( ))σ2 = σ
𝑡𝑒𝑐ℎ
2

Data interpretation

Model comparison
To identify the relative support of individual features and pathways for each aging archetype we
used Akaike Information Criteria with a correction for finite sample sizes (AICc) to compare
alternative models fit to the same data. Each model was fit to the 320 non-DDM cross-sectional
samples, providing that it contains an aging archetype term among the “alternative term labels”.
The one exception was the “Cross-sectional lm (Lifespan), no DDM” which we dropped because
the “lifespan” effects were correlated with “lifespan | age”, but age was deemed to be an
important covariate in capturing lifespan in a non-pathological manner.

For a single feature, the relative support for alternative models is proportional to . This𝑒𝐴𝐼𝐶/2

quantity can be rescaled by the sum of relative supports which allows us to treat the supports as
a simplex bounded on [0, 1] and summing to a 1 over all models.

AIC is a combination of a Gaussian log-likelihood summed across samples,

, and a penalization for model complexity (2|K|). Just as𝑙
𝑖

=
𝑗

𝐽

∑ 𝑙𝑛𝑁 𝑦
𝑖𝑗

; µ = β
𝑖𝐾

𝑋
𝐾𝑗

,  σ = σ
𝑖( )

log-likelihoods can be summed across samples, they can be summed across features, and
similarly the total number of parameters used to fit all features is the sum of parameters for each
feature. Following this logic that we are combining features and samples by aggregating their
log-likelihoods and number of parameters we could aggregate AIC measures and then apply the
correction for finite sample size (i.e., adjusting AIC to calculate AICc). But, this correction would
dissipate as a larger number of observations are utilized in aggregate, and we felt that this
feature was inappropriate because feature level regressions are independent hence the
aggregate measure should be independent combinations of marginal probabilities. We retain
this feature by summing AICc over features.

While this approach could be applied to any set of features assessed by a common set of
regressions to determine which model is best supported overall, we chose to aggregate over
pathways with functional enrichments. For each pathway we took all members, irrespective of
their significance, and summed model AICc over all features.

Pathway delta age
To identify samples featuring premature or delayed changes in age-associated pathways, we
explored the degree to which we could estimate an individual's age based on biochemical
pathways. Here, we are making the assumption that for a sample j, the biological age for a
pathway is constant ( ) but this age may deviate from a sample’s known age ( ). For𝑎

𝑗
+ δ

𝑗
𝑎

𝑗
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intuition, if a pathway was characterized by a constant increase in a set of molecules
proportional to chronological age, then a sample with a higher level of these molecules than
their age could be considered as having an elevated delta age (i.e., > 0). could be theδ 𝑎

𝑗

chronological age of an individual at the time of sampling but could also be any other aging
archetype. In these cases, pathway delta age may indicate the degree to which a sample either
does or does not exhibit an aging pattern which is observed at a population level but may not be
observed in some mice.

To estimate for a sample across all members of a pathway , we can write an extendedδ 𝑖 ⊂ 𝐼
form of the true model that we posit for describing a molecule's dynamics.

𝑦
𝑖𝑗

= β
𝑖
(𝑎

𝑗
+ δ

𝑗
) +  Γ

𝑖𝐾
𝐶

𝐾𝑗
+ ε

𝑖𝑗
𝑡𝑟𝑢𝑒

This model includes a sample’s measured age ( ), a to-be inferred delta age ( ) both of which𝑎
𝑗

δ
𝑗

are scaled by a feature-specific aging slope ( ). Because age needs to be a continuousβ
𝑖

variable, we used aging regression models which treated age and age x lifespan as numeric
rather than categorical variables for this analysis. is the measured level of molecule i, while𝑦

𝑖𝑗

is all other covariates' regression coefficients which are scaled by covariates . is theΓ
𝑖𝐾

𝐶
𝐾𝑗

ε
𝑖𝑗
𝑡𝑟𝑢𝑒

irreducible error which we could achieve after correcting for d.

This formula can be rearranged to relate previously determined regression residuals to feature
slope ( ), delta age, and irreducible error.β

𝑖

𝑦
𝑖𝑗

𝑂𝐿𝑆
= β

𝑖
𝑎

𝑗
 +  Γ

𝑖𝐾
𝐶

𝐾𝑗

𝑦
𝑖𝑗

= β
𝑖
δ

𝑗
 +  𝑦

𝑖𝑗

𝑂𝐿𝑆
+ ε

𝑖𝑗
𝑡𝑟𝑢𝑒

ε
𝑖𝑗
𝑂𝐿𝑆 = 𝑦_𝑖𝑗 − 𝑦

𝑖𝑗

𝑂𝐿𝑆

ε
𝑖𝑗
𝑂𝐿𝑆 = β

𝑖
δ

𝑗
 + ε

𝑖𝑗
𝑡𝑟𝑢𝑒

 ε
𝑖𝑗
𝑡𝑟𝑢𝑒 = ε

𝑖𝑗
𝑂𝐿𝑆 − β

𝑖
δ

𝑗

For a single feature we could solve for directly but the result would be meaningless becauseδ

any feature could take on a different age which set to zero. To avoid this conundrumε
𝑖𝑗
𝑡𝑟𝑢𝑒

constrain delta age ( ) to remain fixed across a set of features ( ). Here, we considered theδ
𝑗

𝑖 ⊂ 𝐼

notion that each pathway could have a separate biological age and hence we estimated a delta
age ( ), and by extension biological age ( ), which was constant across a pathway.δ

𝑗
𝑎

𝑗
+ δ

𝑗
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This can be solved as a least-squares problem where we minimize the total sum of squares of
the irreducible error:

 𝑚𝑖𝑛
δ

𝑗

 
𝑖

𝐼

∑ ε
𝑖𝑗
𝑂𝐿𝑆 − β

𝑖
δ

𝑗( )2

This is just simple least squares regression and hence we can identify by regressing residualsδ
𝑗

( ) on aging slopes .ε
𝑖𝑗
𝑂𝐿𝑆 β

𝑖

Estimating partial correlations
To estimate sparse partial correlations we applied graphical LASSO (GLASSO) using the
EBICglasso function from the R qgraph package. GLASSO approaches estimating the sample
precision matrix (the inverse of the sample covariance matrix) by balancing predictive accuracy
(of observed Multivariate Normal observations based on the estimated precision matrix), while
shrinking individual coefficients towards zero with an L1 penalty (i.e., sum(abs(coef))) weighted
by a regularization parameter lambda. While GLASSO requires a positive semi-definite (PSD)
covariance matrix, due to missing measurements, the sample covariance matrix possessed
negative eigenvalues. To address this issue we imputed missing values using k-nearest
neighbor imputation (with K set as 10). Having done this, the sample covariance was PSD
enabling us to apply GLASSO. We explored a range of lambda values with large values of
lambda resulting in few non-zero coefficients and hence a nearly diagonal reconstructed
covariance matrix. In contrast, small values of lambda will generate a near-perfect
reconstruction of the sample covariance matrix. Neither extreme is biologically informative,
however, intermediate values of lambda will select individual coefficients which are necessary to
reconstruct sample correlations. We identified an appropriate intermediate value of lambda by
minimizing the Bayesian Information Criteria (BIC) over values of lambda (i.e, kln(n) - 2*logLik).
BIC penalizes model complexity less heavily than AIC but we found that it was appropriate for
this problem. The fitted precision matrix based on the value of lambda minimizing the BIC can
be inverted to generate a covariance matrix which describes much of the covariance across
molecules. The top 10 principle components of the sample covariance matrix capture 80% of
the matrix’s variance, while the reconstruction error of the covariance matrix based on GLASSO
equates to around 75% of variance explained as unexplained. While the precision matrix is
directly estimated using GGLASSO we found partial correlations were easier to intuit since they
are bounded on [-1,1] and capture the dependence between variables irrespective of the
variance of these features. The formula to convert from the precisions to partial correlations is

where i and j index features in the precision matrix.ρ
𝑖𝑗

=−
𝑝

𝑖𝑗

𝑝
𝑖𝑖

𝑝
𝑗𝑗
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