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[abstract max 200 words]  

Age-related atrophy of the human hippocampus and the enthorinal cortex starts accelerating 

at around age 60. Due to the contributions of these regions to many cognitive functions 

seamlessly used in everyday life, this can heavily impact the lives of elderly people. The 

hippocampus is not a unitary structure and mechanisms of its age-related decline appear to 

differentially affect its subfields. Human and animal studies have suggested that altered sleep 

is associated with hippocampal atrophy. Yet, we know little about subfield specific effects of 

altered sleep in healthy aging and their effect on cognition. Here, in a sample of 118 older 

adults (Mage = 63.25 years), we examined the association between highly reliable 

hippocampal subfield volumetry, sleep measures derived from multi-night recordings of 

portable electroencephalography and episodic memory. Objective sleep efficiency – but not 

self-report measures of sleep – was associated with entorhinal cortex volume when 

controlling for age. Age-related differences in subfield volumes were associated with 

objective sleep efficiency, but not with self-report measures of sleep. Moreover, older adults 

characterized by a common multivariate pattern of subfield volumes that contributed to 

positive sleep– subfield volume associations, showed lower rates of forgetting. Our results 

showcase the benefit of objective sleep measures in identifying potential contributors of age-

related differences in brain-behavior couplings. 
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[main text max ~2000 words]  

Volume loss of the hippocampus and surrounding mediotemporal cortical areas during 

human aging is accelerated relative to most other cortical areas (Fjell et al., 2009; Raz et al., 

2010; Pomponio et al., 2020). In vivo animal and post-mortem human studies have suggested 

that these volumetric changes can reflect a combination of factors (for a comprehensive 

review, see Bettio et al., 2017) including decreased number, size and density of axons and 

dendrites due to synaptic pruning, to some extent decreased number of neurons (West, 1993; 

Lister and Barnes, 2009), as well as changes in astrocytic and glial cell size and density (Ojo 

et al., 2015). These alterations, in turn, are thought to be the consequences of genetically 

(Guo et al., 2019) and environmentally (Binnewies et al., 2023) driven changes in blood 

supply (Shing et al., 2011), in hormonal (McEwen, 1997), neurotrophic (Buhusi et al., 2017), 

and neuron-glia interaction regulation (Ojo et al., 2015), and in neurogenesis (Spalding et al., 

2013; Boldrini et al., 2018; cf. Sorrells et al., 2018). 

 

Understanding the mechanisms of these changes is crucial for mitigating or potentially 

reversing (McEwen, 1997; Kim et al., 2016; Bettio et al., 2017) their adverse effects on 

cognitive functions supported by the hippocampus. Because these functions – including 

memory (Wixted and Squire, 2011; Moscovitch et al., 2016), navigation (Eichenbaum, 2017; 

Whittington et al., 2020), and even language (Duff et al., 2020) – have major roles in 

everyday life, their impairment has a significant impact in healthy, and devastating effect in 

pathological aging. Critically, hippocampal volumetry is currently the only widely accessible, 

valid, and reliable method to assess hippocampal atrophy in humans in vivo. 

 

Importantly, age-related changes driving volumetric loss of the hippocampus appear to be 

expressed differentially across its subfields (Bartsch and Wulff, 2015) varying in 
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cytoarchitecture, macrostructure, connectivity (Amaral and Lavenex, 2007), and function 

(Mueller et al., 2011; Genon et al., 2021). This heterogeneity may explain the fact that 

although hippocampal volume loss has been consistently detected in aging, no consistent 

trajectories of hippocampal subfield volume loss have been identified (de Flores et al., 2015). 

Thus, for a mechanistic understanding of hippocampal atrophy in healthy aging it is crucial to 

tease apart subfield specific contributions of factors affecting hippocampal volume.  

 

One such relatively understudied factor is sleep. It is well documented that sleep patterns 

altered in apnea (Macey et al., 2002; Kim et al., 2016), insomnia (Noh et al., 2012), 

narcolepsy (Joo et al., 2012), as well as in pathological conditions such as depression 

(Campbell et al., 2004; Videbech and Ravnkilde, 2004) are associated with smaller total 

hippocampal volume. Recent studies have also provided evidence suggesting that sleep 

disturbances may partly underlie the effects of pathological (Elcombe et al., 2015; Burke et 

al., 2022) and healthy (Carvalho et al., 2017; Liu et al., 2018; Alperin et al., 2019; Fjell et al., 

2020) aging on hippocampal volume with subfield specific effects (Joo et al., 2014; Lam et 

al., 2021; Liu et al., 2021; De Looze et al., 2022). The absence of observed sleep-volume 

associations when only total hippocampal volumes are assessed underscores the need for 

subfield specific studies (Sabeti et al., 2018; De Looze et al., 2022). 

 

To date, only two studies have assessed hippocampal subfield volumes as a function of sleep 

in healthy aging. In a large sample (n = 417) De Looze and colleagues (2022) found that both 

too short and too long sleep duration were associated with smaller subiculum volume, with 

too long sleep additionally associated with smaller volumes of the cornu ammonis 1 (CA1) 

subfield. Somewhat consistently, Liu and colleagues (Liu et al., 2021) in a smaller sample 

study (n = 67) found that healthy participants with poor sleep had smaller volumes of 
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subiculum, CA1, and dentate gyrus. Importantly, both studies relied on self-report measures 

to assess sleep quality and duration, thus it remains to be clarified to what extent the observed 

associations with hippocampal subfield volumetry reflect alterations of objective sleep 

parameters. Furthermore, only the Liu et al. (2021) study used submillimeter resolution 

magnetic resonance imaging (MRI) to perform hippocampal segmentations, with various 

arguments supporting the limited validity of lower resolution-based segmentations (Wisse et 

al., 2014, 2021). Finally, no studies have yet investigated the potential effect of sleep-related 

age-differences in hippocampal subfields on memory. 

 

To address these gaps we examined the association between highly reliable semi-automatic 

hippocampal subfield volumetry and sleep measures derived from multi-night recordings of 

portable electroencephalography (EEG) and their association with standard measures of 

learning and memory in healthy aging.  

 

Participants were recruited as part of the Hungarian Longitudinal Study of Healthy Brain 

Aging (HuBA) at the Brain Imaging Centre of the Research Centre for Natural Sciences in 

Budapest, Hungary. They had no previous or current diagnosis of neurological or psychiatric 

disorders, untreated hypertension, diabetes and no history of alcohol or drug abuse or 

malignant tumor in the past 5 years. Data of one hundred and eighteen 50–80-year-old 

participants (Mage = 63.25, SDage = 7.23, 68 females, Meducation = 16.25, SDeducation = 2.55) who 

had hippocampal subfield data (n=112) or sleep recordings for at least 3 nights (n=61), was 

included in this study. Of these, 55 participants (Mage = 62.64, SDage = 6.85, 30 females) had 

both hippocampal subfield and sleep data. The study was approved by the National Institute 

of Pharmacy and Nutrition (OGYÉI/68903/2020), and all participants gave written informed 

consent.  
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Using methods described in detail previously (Keresztes et al., 2020, 2022), we acquired 

high-resolution (0.4 mm × 0.4 mm × 2.0 mm) MRI images of the hippocampus and 

surrounding mediotemporal areas perpendicular to the longitudinal axis of the right 

hippocampus on a 3 T Siemens Magnetom Prisma scanner. Then, in a semi-automatic 

procedure, we used the Automated Segmentation of Hippocampal Subfields (ASHS) 

(Yushkevich et al., 2015) software package to delineate four regions of interest bilaterally 

based on a custom lifespan atlas (Bender et al., 2018): three within the hippocampal body – 

subiculum (SUB), CA regions 1 and 2 (CA1-2), and dentate gyrus–CA3 (DG-CA3) – as well 

as the entorhinal cortex (EC) on six consecutive slices anterior to the hippocampal body (see 

Figure 1A). Hippocampal body ranges were manually defined by a rater (V.A.V.) with good 

inter- (all Cohen’s kappas > 7) and intra-rater reliability (all Cohen’s kappas > .77). 

Segmentations were visually inspected by both raters who then corrected obvious errors. 

Volumes for all regions were adjusted for intracranial volume, estimated by ASHS, based on 

the analysis of covariance approach (Jack et al., 1989; Raz et al., 2005), then summed across 

hemispheres for all analyses.  

 

Sleep recordings were acquired at participants’ homes using a wireless Dreem2 EEG 

headband (Dreem, Rythm, Paris, France; DH) with five electrode sensors yielding seven 

bipolar derivations at a 250 Hz sampling frequency. Participants wore the DH for at least 7 

consecutive nights starting an average of 29.9 days ([2–193, SD = 33.6] after the MRI 

session. Sleep recordings were qualified and scored by a deep learning algorithm which 

previously demonstrated equivalent performance to human raters (Arnal et al., 2020). Data 

above 74.5 % quality index for at least one bipolar derivation was retained. Recordings with 

unusual length or rapid eye movement (REM) sleep percentage above 40% were additionally 
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reviewed for inclusion by a sleep expert. This procedure yielded an average of 5.98 nights 

(SD = 1.47, Mdn = 7). 

 

We used the proportion of the time spent asleep and the time spent in bed (objective sleep 

efficiency) as an independent variable. To assess subjective estimates of sleep efficiency and 

quality, we used three measures derived from self-report questionnaires. First, we calculated 

subjective sleep efficiency similarly to the objective sleep efficiency using items 1,3, and 4 of 

the Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989; Hungarian adaptation: Takács 

et al., 2016). Second, we assessed subjective sleep quality for the past month using the 

Athens Insomnia Scale (AIS; Soldatos et al., 2000; Hungarian adaptation: Novák, 2004). The 

8-item AIS assesses the severity of sleep problems based on the insomnia criteria defined by 

the International Classification of Diseases (ICSD-10; ICSD: American Academy of Sleep 

Medicine, 2005) with a total score of 6 or above indicating the presence of insomnia 

symptoms. We used the 14-item Groningen Sleep Quality Scale (GSQS; Meijman et al., 

1988; Hungarian adaptation: Simor et al., 2009) to assess the subjective quality of sleep each 

morning, after awakening. Higher scores in the GSQS reflect higher subjective sleep 

fragmentation. We modified the original binary (yes/no) scoring of the GSQS to a 5-point 

Likert scale to weight each statement and used an average of GSQS scores across all nights. 

All reported p values are non-corrected for multiple comparisons. 

 

Bivariate zero-order Pearson’s correlations revealed significant negative age-volume 

associations (Figure 1B) for SUB (r(110)  = -.32, p < .001), CA1-2 (r(110)  = -.27, p = .004), and 

EC (r(110)  = -.34, p < .001), but not DG-CA3 (r(110)  = -.18, p = .055), as well as significant 

negative age-sleep associations for objective sleep efficiency (r(53)  = -.39, p = .002), but not 

for subjective measures of sleep quality or duration (all rs < .17, all ps > .139). 
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We assessed the association between objective sleep efficiency and hippocampal subfield 

volumes in regression models defined for each subfield volume controlling for age, sex and 

education. In addition, each model included covariates for physical activity (total metabolic 

equivalent minutes per week measured by the short version of the International Physical 

Activity Questionnaire (Craig et al., 2003)), total IQ (measured by the Wechsler Adult 

Intelligence Scale 4th Edition (WAIS-IV; Pearson PLC, London, UK)), depression (measured 

by the short version of the Geriatric Depression Scale (GDS;Sheikh and Yesavage, 1986), 

and blood pressure (systolic and diastolic blood pressure measured after each scanning 

session). Only the model predicting entorhinal cortex volume provided a significant fit to the 

data (F(9,37) = 4.54, p < .001, R2 = .41) with objective sleep efficiency (β = 7.18, p = .004) 

and age (β = -4.04, p = .008) significantly predicting entorhinal cortex volume (Figure 2). 

Models for all other hippocampal subfield volumes were non-significant (all Fs < 1.18, and 

all ps > .1).  

 

We used identical models to test associations between self-report measures of sleep and 

hippocampal subfields. For all three measures only the model predicting entorhinal cortex 

was significant and only for the GSQS: F(9,43) = 2.46, p = .023, R2 = .2 and the AIS: F(9,53) 

= 3.01, p = .006, R2 = .23 with only age significantly predicting volume (GSQS: β = -4.97, p 

= .001, AIS: β = -5.27, p < .001).  

 

Next, we assessed whether the combined pattern of age-related differences in hippocampal 

subfield and entorhinal cortex volumes were associated with any sleep measure. To this end, 

we used partial least squares correlations (PLSC) (Krishnan et al., 2011), a robust method 

that allows detecting multivariate associations between groups of variables (McIntosh and 
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Lobaugh, 2004). Following methods described in detail in Keresztes et al., (2017), we used 

singular value decomposition to calculate a single latent variable (LV) – significant as 

assessed by permutation tests with 10000 iterations, p < .001 that expresses the largest 

common variance between age and volumetric measures, with the significance of each 

volume’s contribution to the LV (weight) assessed by 10000 bootstrapped resampling of the 

data. This analysis revealed that all volumetric measures contributed significantly (all ps < 

.029) to the LV with entorhinal cortex and subiculum (for both z > 3.9, p < .001) driving the 

LV–age association most strongly (Figure 3A). By multiplying the weight vector of 

volumetric measures with each participant’s vector of observed volumes, we obtained a 

single score for each participant that reflects how well that participant’s data fits the common 

pattern of observed age-related differences in hippocampal subfield volumes. Pearson’s 

correlations revealed that this score was significantly negatively associated (r(53)= -.42, p = 

.001) with objective sleep efficiency (Figure 3B), but showed no associations with any of the 

subjective sleep measures (all rs < .16 , all ps > .25). 

 

Finally, we assessed whether the associations between sleep and hippocampal subfield 

volumes manifest in individual differences in memory. To this end, we used PLSC to (i) 

identify potential LVs that express common patterns of variance between age-residualized 

measures of hippocampal subfield volumes and sleep quality, and to (ii) test the association 

between individual differences in the expression of these LVs and in delayed recall on the 

Rey Auditory Verbal Learning Test (RAVLT; Lezak, 2004; Hungarian adaptation: Kónya et 

al., 1995). This analysis (see Figure 4) identified one significant LV (p = .0174), expressing a 

positive association between sleep and hippocampal subfield volume, with entorhinal cortex 

(p < .001) and subiculum (p = .042) contributing significantly (Figure 4A) to positive 

associations with objective sleep efficiency and AIS (Figure 4B). Again, we also calculated a 
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single score for each participant that reflects how well that participant’s data fit the common 

pattern of observed differences in hippocampal subfield volumes that contribute to a positive 

association with sleep measures (independently of age). Importantly, this score correlated 

positively at a trend level (r(51)= .27, p = .05) with age-residualized measures of delayed 

recall (percent of learnt items recalled at a 30-min delay) and significantly negatively with 

forgetting (number of forgotten items after a 30-min delay), r(51)= -.31, p = .023 (Figure 4C). 

 

In sum, multi-night sleep EEG and high-resolution structural MRI of the mediotemporal lobe 

revealed that objective sleep efficiency was associated with volumes of the entorhinal cortex 

in a sample of healthy older adults when controlling for age. Importantly, age-related 

differences in subfield volumes – mainly driven by entorhinal cortical and subiculum volume 

– were associated with objective sleep efficiency, but not with self-report measures of sleep. 

Moreover, at the individual level, older adults characterized by a common multivariate 

pattern of subfield volumes that contributed to positive hippocampal subfield volume – sleep 

associations, performed better on a standard delayed recall. 

 

Together, these results provide converging evidence for the notion that sleep is associated 

with age-related changes in brain–behavior couplings. It also showcases the importance of 

considering objective sleep parameters for studies of these associations. Critically, many of 

the reported sleep associations were detected via sleep EEG recorded over multiple nights but 

not with self-report measures. Thus, our results also highlight the sensitivity of an easy-to-use 

tool with high ecological validity that could provide objective measures of sleep quality.  

 

Some limitations of our study are worth noting. First, due to concerns of validity (Wisse et 

al., 2017), and in line with our prior work across the lifespan (Bender et al., 2018; Keresztes 
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et al., 2020), we only assessed hippocampal subfield volumes along the hippocampal body, 

and assessed entorhinal cortical volume on six slices anterior to it. Second, compared to gold 

standard polysomnography, DH recordings, albeit easy-to-use and require less resources, 

provide less reliable data, both in terms of accuracy and data loss due to technical difficulties. 

Third, the cross-sectional age-associations presented here cannot allow inferences about 

change and sleep–brain couplings over time (Raz and Lindenberger, 2011; cf., Keresztes et 

al., 2022).  

 

To conclude, the study presented showcases that objective sleep measures can reveal 

otherwise unnoticed associations that are potentially important contributors of age-related 

differences in brain-behavior couplings. Future studies are needed to reveal subfield specific 

mechanisms driving these associations. In addition, our results call for longitudinal studies to 

allow for inferences about actual change. 
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Figure 1 

 
(A) Example hippocampal subfield segmentation of the right hippocampus and entorhinal 
cortex into four subfields: subiculum (orange), dentate gyrus – Cornu Ammoni 3 (DG-CA3; 
green), CA1-2 (blue), and entorhinal cortex (red). (B) Negative age-associations of the four 
subfields, non significant only for DG-CA3.   
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Figure 2 
 

 
Entorhinal cortical volume positively associated with objective sleep efficiency. 
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Figure 3 

 

(A) Subfields specific weights of the latent variable (LV) expressing the largest common 
variance between age and volumes of the four subfields. Bootstrapped values can be 
interpreted as z-values, with values >2 or <-2 (represented by the dashed line) considered 
significant. EC: entorhinal cortex, Sub: subiculum. (B) A hippocampal subfield volume score 
for each participants reflects how much that individual’s data represent the LV, i.e., the 
multivariate subfield volume – age association. This score is negatively associated with 
objective sleep efficiency. 
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Figure 4 

 

(A) Subfields specific weights of the latent variable (LV) expressing the largest common 
variance between age-residualized volumetric and sleep measures. Bootstrapped values can 
be interpreted as z-values, with values >2 or <-2 (represented by the dashed line) considered 
significant. EC: entorhinal cortex, Sub: subiculum. (B) Correlations of sleep measures with 
the LV in the optimal solution of the PLSC. Red lines depict 95% confidence intervals (C) 
The Sleep-Hippocampal subfield volume score for each participants reflects how much that 
individual’s data represent the LV, i.e., the multivariate subfield – sleep association. This 
score is negatively associated with forgetting after a 30-min delay. 
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