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ABSTRACT 
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate 
quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named 
PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical 
interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light 
source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from 
ultrasound to generate fluence maps to depth compensate PA images. The methodology was used 
to analyze PA images of phantoms with varying blood oxygenation and results were validated 
with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a 
calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the 
results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and 
auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply 
fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in 
various fields. 

1. Introduction 
 

Photoacoustic imaging (PAI) is a rapidly evolving imaging method in both the clinical 
and preclinical realm due to its ability to provide high contrast and resolution at deeper 
penetration depths than other optical imaging modalities[1, 2]. PAI is intrinsically sensitive to 
the functional and molecular information of biological tissues due to its optical absorption-based 
contrast mechanism[3, 4]. PAI exhibits versatile applications across diverse disease spaces, 
manifesting its clinical efficacy in distinct contexts[5, 6]. Endogenous contrast PAI offers the 
capability to visualize the structure, oxygenation, flow, destruction, and regeneration of blood 
vessels making it well adapted to the assessment of tumors, stroke, rheumatoid arthritis, placental 
dysfunction, and other conditions that exhibit irregularities in vascular morphology and 
function[7-10]. This also allows PAI to serve as a reliable indicator of successful vascular 
ablation through modalities like photodynamic therapy, photothermal therapy, and sonodynamic 
therapy [11-14]. 

PAI signal is generated when nanosecond pulsed light is absorbed by chromophores to 
cause thermoelastic expansion and contraction, resulting in the generation of transient broadband 
acoustic waves[15]. PAI can be transparently integrated with traditional ultrasound imaging 
systems as they utilize the same receiver electronics[16]. There are many benefits of ultrasound-
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guided photoacoustic imaging (US-PAI) over PAI alone, the most important of which is the 
additional anatomical context provided by US[17, 18].The amplitude of the photoacoustic signal 
generated is dependent on the optical absorption properties of the tissue, inherent thermal 
properties and the light fluence[2, 3, 18]. Specifically, fluence, or the amount of light energy per 
area delivered to a region of tissue, plays a critical role in the quantification of the PA signal 
from deeper tissues[19]. Tissue optical properties including absorption and scattering, give rise 
to heterogeneous fluence distribution in biological samples[20, 21].  As a consequence, PA 
image quality is hampered by the effects of depth and wavelength dependent attenuation of 
optical fluence, in which less light energy is delivered to deeper structures which 
therefore display weaker photoacoustic signals[22, 23].  The effect is known as spectral coloring 
and is a well-known confounding factor that compromises the accuracy of blood oxygen 
saturation (StO2) measurements[22, 24-26]. StO2 has been shown to be a valuable prognostic 
marker for several clinical and pre-clinical applications and ensuring the accuracy of this 
parameter will aid in promoting the clinical translation of PAI as an imaging modality[27-36].  

Several methodologies were developed to overcome the shortcoming of spectral coloring, 
with the primary method being fluence compensation approaches that attempt to normalize the 
distribution of fluence across the image area[19]. The optical transport model method[37, 38], 
acoustic spectrum-based method[39, 40], ultrasonic tagging of light[41, 42], fluence matching 
techniques[43], diffuse optical tomography (DOT) enhanced method[23, 44], signal to noise 
ratio local fluence correction[45],  eigenspectral multispectral model[46], learned spectral 
decoloring[47], and deep learning methods[48-50] have been proposed and implemented. 
However, the versatile and customizable nature of Monte Carlo (MC) simulations of light 
propagation makes it a gold-standard method for fluence compensation of photoacoustic images 
despite many other alternative methods being developed. Although MC algorithms are regarded 
as having superior accuracy compared to any analytical diffuse light transport model[51], it is 
still essential to verify them to ensure they contain no numerical errors or unintended biases. The 
diffusion approximation is the most common computational approach used to solve the radiative 
transfer equation (RTE)[52-54]. The MC toolkit used in this work, MCX, has been rigorously 
validated against the diffusion approximation[55] and has been used in fluence compensation 
and optical property calculation in various techniques[56-60].  

A growing amount of pre-clinical work being published in the field of PAI disregards the 
effect of light attenuation and presumes that derived parameters are accurate[61-77]. As the PAI 
modality is becoming more common in preclinical research it becomes critical for there to be a 
straightforward, easily replicable, accurate methodology for the non-biomedical optics 
community to apply fluence compensation to photoacoustic images. This methodology needs to 
be user-friendly and not require an extensive knowledge of the field of laser-tissue interactions. 
We propose the following method of effortlessly performing fluence compensation on PA 
images with the representative case of a commercial preclinical imaging system, VisualSonics 
(VS), using the open-source Monte Carlo toolbox, MCXLAB[55, 78]. 

Our methodology incorporates a newly developed PHotoacoustic ANnotation TOolkit for 
MATLAB (PHANTOM) that assists in user segmentation of US images into 3D labeled tissue 
structures with assignable optical properties. In addition, we have replicated the optical fiber 
illumination of the VS system as a light source in MCXLAB that accounts for optical fiber size, 
focus depth, and frame of focus within a 3D scan. The scripts and helping functions are deployed 
as an open-source toolkit which can be easily accessed by other biomedical researchers for 
fluence compensation of PA images acquired with VS system. Below we demonstrate the effect 
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in phantom studies involving a blood-filled tube with different levels of blood oxygenation
placed below ex vivo tissue with varying thickness. The efficacy of the process was further
evaluated using two distinct kinds of in vivo data, namely a subcutaneous tumor model and a
placental model of ectopic calcification. We hope to encourage researchers in the other fields
such as nanoparticle drug delivery systems, perfusion modeling, contrast agent generation, etc.
where PAI has become a valuable tool, to be able to easily generate accurate PA data with
PHANTOM.   

2. Materials and Methods 
 
2.1 Workflow 
 

Applying fluence compensation to large datasets of photoacoustic images can be a
tedious and time-consuming task. Herein we describe a workflow, shown in Fig. 1, for fluence
compensating photoacoustic images generated from a commercial imaging system, Vevo LAZR-
X (FujiFilm, VisualSonics) that can be adapted to other imaging systems under similar reflective
mode illumination schemes. Once a photoacoustic image is acquired using this system, it can be
exported from the VevoLab software to perform additional post-processing. For this workflow
the export data format is ‘.xml’ files, which will export from VevoLab in the ‘.raw.xml’ file
format. processRawData.m is one of two code files that the user will need to run from start to
finish of this workflow. This script will prompt the user for the saved file and read in the post-
beamformed ultrasound and photoacoustic data as matrices and co-register the two based on
complementary spatial axes also imported from the ‘.xml’ files. The script will then call the
custom-built graphical user interface (PHANTOM-GUI) to assist with image segmentation and
MC simulation set-up. Video S1 displays the aforementioned workflow.  

 

 
Figure 1. Illustration of the PHANTOM Workflow displaying the pipeline of how ultrasound 
data is used to create a labelled tissue volume with assigned optical properties. The beam 
geometry and MC simulation settings are set in relation to this volume and used to run MCX 
and generate a fluence map that is applied to the PA image for fluence compensation.  
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 2.1.1. Annotating Regions of Interest 

 The annotation panel of the PHANTOM-GUI offers extended functionality to users 
annotating 3D images. Scroll bar integration allows one to quickly view all frames within the 3D 
image stack and there are numerous annotation settings accessible to the user. For clarity, the 
term region of interest (ROI) will refer to the volumetric region of interest that is composed of 
2D annotations. When starting a ROI, the user can select either a ‘2D’ or ‘3D’ option. These 
options both produce volumetric ROIs, but the 2D ROI will repeat a single annotation across all 
image frames, while a 3D ROI will have the user annotate each image frame individually. The 
2D ROI is intended for temporal scans where the transducer remains stationary, while the 3D 
ROI is meant to be used for volumetric scans. 

The user is also given the option of annotation shape. Users can select a rectangular, 
elliptical, or polygonal drawing tool to add flexibility.  Most in vivo images will contain irregular 
shapes with smooth edges, so an interactive smoothing tool was also added. As volumetric scans 
are annotated frame by frame, an interpolation feature is included to speed up the annotation 
process. If the user has annotated a selection of frames of the imaging volume, a checkbox can 
be clicked to interpolate and generate annotations between user annotated frames. It is 
recommended for smooth interpolation that users annotate every 5-7 frames. 

In the application of Monte Carlo simulations, it is often that multiple regions of interest 
need to be annotated as different tissue types can vary broadly in their optical properties. Due to 
this, the user can add as many ROIs as necessary, and assign each a label corresponding to the 
tissue type. As the user generates multiple ROIs, each will be tabulated according to the order in 
which they were drawn. The table of ROIs will also display the label name and give the option to 
interpolate between frames in the case of 3D ROIs. Users can easily toggle between each ROI by 
clicking on the corresponding row in the summary table or by utilizing the vertical scroll bar. 
Users can easily view the annotations on each frame as well as toggle between the different 
labeled ROIs. Users can export all of these different annotations and labels into a data structure 
for additional processing.  
 For the application of small animal imaging, an automatic segmentation algorithm was 
developed that enables the segmentation of the tissue region from the background region for all 
frames. The algorithm also allows segmentation of skin, given the user input of skin thickness in 
pixels. With the image dimensions being displayed on the image axes, this requires minimal 
effort from the user. The automatic segmentation of the general tissue structure allows the user to 
focus on annotations relevant to their work, such as defining tumor or organ regions. We hope 
that these features help to speed up the timely task of annotating large datasets.  
 

 2.1.2. Monte Carlo Simulation Parameter Inputs 
 Once the user has completed all desired inputs, they can switch to the MC parameter tab 
to configure the simulation. To accommodate varying levels of experience in the field of 
biomedical optics, the PHANTOM-GUI offers the option of choosing the default optical 
properties or entering custom properties. The default optical properties of 14 generic tissue types 
were set as described by Jacques[20], which will be expanded upon in further sections. Several 
additional parameters requiring user input must also be set to configure the MCXLAB simulation 
including, number of photons to launch, wavelength of light, desired bin size, step size of the 3D 
scan, as well as the start time, end time, and time step for the simulation. The user may also 
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select the fiber type used (blue or green) and the desired output provided by MCXLAB (fluence, 
flux, or energy). Once all fields have been filled, the user can export the MC configuration as a 
structure saved in the .mat file format. To accommodate the need for multiwavelength 
compensation, the user need simply change the wavelength field value and re-export.  
 

 2.1.3. Running the MCXLAB Simulation 
 To run the simulations via MCXLAB, the user runs the script ‘runMC.m’, which will 
prompt for the aforementioned save file and automatically run simulations for each image frame. 
The function will return the normalized 3D fluence, flux, or energy map, based on the output 
type selected, along with the 3D fluence compensated PA image.  

 
 
2.2 Image Processing Algorithms 
 

2.2.1 Tissue Segmentation 
The algorithm used to segment the tissue region from background region takes a 2D or 

3D ultrasound image as input. The image is rescaled to range from 0-1 and a median filter is 
applied. Non-linear mapping of the image in the range 0.15-1 to the range 0-1 is applied using a 
gamma correction factor of 0.65. The image is then segmented into two regions using Simple 
Linear Iterative Clustering[79] and binarized. Each frame of the binary image is then blurred via 
2D convolution with a kernel of 15x15 pixels and smoothed using simple thresholding. Sobel 
edge detection[80] is then used to determine the tissue boundary, and all pixels on and below this 
boundary are labeled as 1 (foreground) or 0 (background). This output binary image represents 
the tissue region and background. This technique is the basis for the automatic tissue, skin, and 
background segmentation options available to the user of PHANTOM.  
 

2.2.2 ROI Interpolation Algorithm 
In the context of ROI interpolation, Rk and Rk+1 are two user annotated frames and F is 

the number of blank frames between them. Assume that Rk and Rk+1 are two successive slices of 
a region (R) contained in a digital binary volume (Vb). The goal is to interpolate F number of 
slices Rk1, Rk2, …, RkF, between the slices of Rk and Rk+1. Estimations of R are contained within 
these interpolated slices[81]. The Euclidean distance transform of the perimeter of Rk and Rk+1 is 
calculated and each pixel in this transform is set to -1 outside the annotation boundary and to 1 
inside the annotation boundary. Three-dimensional linear interpolation is then applied to R using 
the built in MATLAB function ‘interp3’ to create a denser region R' with F+2 frames where the 
first slice is Rk, the last slice is Rk+1, and the middle slices are slices Rk1, Rk2, …, RkF. The final 
3D binary image (B) is defined as: B(x,y,z) = 1 where R’(x,y,z) = -|R’(x,y,z)|.   
This last condition ensures that the returned matrix is binary with no negative values.  
 
 
2.3 Default Optical Properties 
 

2.3.1. Optical Absorption Coefficient  
The absorption coefficient of a generic tissue type can be described by the relative 

contributions of the dominant chromophores contained within the tissue as described by 
Jacques[20]. The tissue parameters of average blood volume fraction (B), blood oxygen 
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saturation (S), tissue water content (W), melanin volume fraction (M), and tissue fat content (F) 
can be used to specify the expected absorption coefficient of any generic tissue type when given 
the known absorption coefficients of hemoglobin (µa.oxy, µa.deoxy), water (µa.water), melanin 
(µa.melanosome), and fat (µa.fat), as shown in EQ 1.  
 �� � ����.��� � ��1 � �	��.����� � 
��.��	�
 � ���.��	 � ���.���������     (1) 
 
The values of B, S, W, F, and M used to calculate the absorption spectrum for the generic tissue 
types provided are tabulated in Table S1.  
 

2.3.2. Reduced Scattering Coefficient 
As described by Jacques[20], the relationship between wavelength and reduced scattering 

coefficient (µs’) can be described by EQ 2, where α’ represents the reduced scattering coefficient 
of the tissue at a 500 nm wavelength which is used to scale the wavelength dependent terms, λ is 
the wavelength (in nm), fRay is the Rayleigh scattering fraction and bMie represents the decreasing 
power for the Mie scattering component.  
 
 

�����	  � �� ����� � �
500 ���	��� � �1 � ����	 � �

500 ���	�������  
 

(2) 

 
The values of α’, fRay, and bMie used to calculate the reduced scattering coefficient (�����		 for 
the generic tissue types used in this work are tabulated in Table S2.  
 
2.4 Modeling Light Distribution and Beam Geometry 
 

The bifurcated light source was modeled using MCXLAB based on the physical 
dimensions of the optical fibers. Measurements of the fiber’s dimensions and position relative to 
the transducer were taken using digital calipers. The bifurcated fibers were modelled to be 10 
mm apart in the z-direction at an angle of 20° from normal with the fiber focus at a depth of  8-
12 mm from the transducer. The length of the fibers in the x-direction was modelled based on the 
various fiber types available for the Vevo LAZR-X system with blue, and green fibers being set 
at 24, and 14 mm respectively. A schematic visually displaying the blue optical fiber beam 
geometry is included in Fig. S1. The fiber width in the z-direction was measured using our own 
system with digital calipers and set to be 1.00 for the blue and 1.25 mm for green fibers.  

Fibers were modeled as two planar sources defined by a position and direction. For 
clarity, when referring to the imaging volume and its surroundings, the x-direction will be the 
column-wise direction representing the width axis, the y-direction will be the row-wise direction 
representing the depth axis, and the z-direction will be the frame-wise direction, representing the 
scan direction axis. The coordinate grid encapsulating the imaging volume has the origin set as 
the uppermost left forward position. As the fibers are positioned above the imaging volume, the 
y-position of the fiber source will be negative.  

The position of each planar source is defined relative to the imaging volume and is 
specified using corner points, while the direction is defined using unit vectors. As each US-PA 
image has an associated spatial width and depth relative to the transducer, the width and depth 
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axes of the images can be used to determine the light source position. It is also important to note 
that for volumetric scans, the transducer position will change relative to the volume for each 
frame of acquisition. The pair of unit vectors used to describe source directions were (0.869, 0, 
0.495) for the fiber shown on the left and (0.869, 0, -0.495) for the fiber shown on the right. A 
detailed schematic of the light illumination geometry and source coordinate positions in relation 
to the imaging volume can be found in Fig. S2. Prior to performing a simulation, the voxel size 
of all 3 dimensions needs to be equal for the accurate modeling of photons through each voxel. 
Three-dimensional interpolation was used to scale each dimension of the image so that each 
voxel has a length of the user-input bin size in each direction.  
 
2.5 Phantom Experiments 
 

2.5.1. Phantom Preparation 
To assess the accuracy of the optical fiber modelling used for MC simulations, a simple 

phantom experiment was conducted. This phantom consisted of blood in a tube with a section of  
chicken breast tissue placed on top. The chicken tissue had a gradient thickness ranging from 0 
to ~3 mm. A simple phantom mold was created using a 11 by 7.5 by 3 cm plastic box. Two 2 
mm holes were melted into the box utilizing a soldering tool. The holes were positioned at a 
height of 2 cm from the bottom of the box and width of 3.25 cm along the short side of the box 
on each side. A clear 2 mm diameter (ID: 1.4 mm, OD: 1.9 mm) polyethylene tube (PE200, 
Intramedic™) was run through each hole and held taut while any excess space was filled using 
hot glue.  

The phantom was prepared from porcine skin gelatin powder (G2500, Sigma–Aldrich) at 
a concentration of 8% (w/v). The gelatin powder was mixed with water at 50°C and stirred with 
heating until the gelatin completely dissolved. Once the temperature reached 60°C, the heat was 
removed and stirring continued until the gelatin reached a temperature of 40°C. The gelatin was 
poured into the phantom mold until covering half the surface area of the tube and air bubbles 
were removed using an aspirator. The mold was placed in 4°C fridge while the remaining gelatin 
solution cooled to 30°C with constant stirring. It is important to note that the temperature of 
30°C was the maximum temperature allowable to prevent cooking of the chicken breast within 
the gelatin. Once 15 minutes had passed, the chicken breast was placed parallel to the tube and 
the remaining gelatin was poured into the mold leaving a height of 1 mm above the topmost 
section of chicken breast. An aspirator was used to remove any visible air bubbles on the surface 
and underneath the chicken breast. The phantom was left to solidify in 4°C fridge for 3 hours 
prior to imaging. Blood was prepared using powdered bovine hemoglobin (H2500, Sigma-
Aldrich) dissolved in 1X phosphate buffered saline at a concentration of 2.5 mM. The blood 
solution was determined to be fully oxygenated after preparation using an oxygen monitor 
(OxyliteTM Pro, Oxford Optronix).  
 

2.5.2. Phantom Imaging 
All photoacoustic data was acquired using the Vevo LAZR-X small animal imaging 

system at the wavelengths of 750 and 850 nm using the MX250S transducer with a 6 dB 
bandwidth of 15-30 MHz and a center transmit frequency of 21 MHz The PA gain was set to 40 
dB and the US gain was set to 10 dB. The persistence setting was on high, meaning each frame is 
a composite of ten averages. The step size of each 3D scan was 0.152 mm. All scans were 
acquired in triplicate on the same date and the scan started where there was no tissue inclusion 
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above the blood tube and continued throughout the tissue inclusion, with the tissue thickness
increasing with each subsequent frame. A schematic of the phantom imaging set-up is shown in
Fig. 2. 
Briefly, the oxygenated blood scans were performed first to ensure that no sodium dithionite was
present in the tube. The tube was flushed with water between each scan. The deoxygenated blood
scans were performed next, and blood was taken from the stock solution and deoxygenated with
2.5 mg/mL sodium dithionite. For the semi-oxygenated scans, 1.7 mg/mL sodium dithionite was
added to blood taken from the stock solution. The blood was monitored with the oxygen monitor
until reaching ~60% StO2 when the first scan was begun. The three scans were taken as the blood
was continuously undergoing deoxygenation. The oxygen monitor was connected to a
microcontroller board (Arduino Uno, Arduino) to directly send analog output into MATLAB
(MathWorks) in real-time. Data acquisition for blood pO2 occurred simultaneously with all
photoacoustic scans. The raw pO2 values used to calculate the ground truth StO2 in the phantom
experiments are provided in Fig. S3. As the blood used in the phantom experiments for each
oxygenation state came from the same stock solution, this would result in the hemoglobin
concentration being constant throughout the tube regardless of position or oxygenation state. 
 
 

Figure 2. Schematic displaying the phantom imaging set-up. The oxygenation state of the blood-
filled tube was analyzed with an oxygen monitor connected to a microcontroller board to directly
send analog output into MATLAB in real-time. Data acquisition for blood pO2 occurred
simultaneously with all photoacoustic scans. 
 

2.5.3. Fluence Compensating Phantom Data 
Each US image from the phantom scans was segmented and labeled utilizing

PHANTOM. The chicken breast inclusion was assigned custom properties for µa and µs’. The
absorption coefficient for the chicken breast was calculated for both wavelengths using EQ 1,
given then blood, water, and melanin content of muscle from Jacques with blood oxygen
saturation set to 0%. The reduced scattering coefficient was calculated using EQ 2 for both
wavelengths with the value of alpha taken from Marquez[82] and the values of fRay and bMie for

ss 
 in 

as 
od 
ith 
as 

tor 
od 
 a 
B 

all 
m 
ch 
in 

 
-

tly 
ed 

ng 
he 
 1, 
en 
th 

for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.07.565885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.565885
http://creativecommons.org/licenses/by-nc-nd/4.0/


muscle from Jacques. The optical properties of the background (gelatin) were assigned to equal 
those of water. For the deoxygenated and oxygenated blood scans, the spectra of Hb and HbO2 as 
compiled by Prahl[83] were used for the absorption and scattering coefficients of blood at both 
wavelengths. The optical properties of blood used for the semi-oxygenated scans were varied at 
each scanning frame based on the StO2 value calculated from the real-time pO2 measurements of 
the blood in the phantom. The optical properties for each label are given in Table 1.  
 
 
Tissue µa (mm-1) µs (mm-1) Anisotropy Refractive Index 
 750 nm | 850 nm 750 nm | 850 nm   
Chicken Breast 
 

0.0095 | 0.0070 2.508 | 2.233 0.9 1.37 

HbO2 
 

0.2799 | 0.5706 
 
 

14.67 | 12.94 0.9 1.37 

Hb 0.7550 | 0.3743 
 

14.67 | 12.94 0.9 1.37 

Table 1. Optical properties used to fluence compensate phantom data.  
 
2.6 StO2 Calculations 
 

2.6.1. Spectral Unmixing of PA Images 
As the two wavelengths used to generate the photoacoustic images in this study are �� � 750 �� and �� � 850 ��, the molar concentrations of Hb and HbO2, can be linearly 

unmixed by solving a non-negative linear least-squares optimization of EQ 3 [25], where PA 
represents the photoacoustic image. This was calculated using the function ‘lsqnonneg’ from the 
MATLAB Optimization Toolbox.  

���� �  
 �������	

 �����	  
  �������	
�  

����, ��	������	 �  ����, ��	������	 

����, ��	���������	 �  ������	�  
   ����, ��	���������	 �  ������	�
 (3) 

 
2.6.2. Thresholding of StO2 from Normalized HbT Signal 

 All HbT data presented in this manuscript was normalized based on the maximum HbT 
signal throughout the imaging volume. This allowed meaningful comparisons between the HbT 
signal of non-compensated and fluence-compensated data. All StO2 values presented were 
thresholded to only include data from voxels where the normalized HbT was greater than or 
equal to 0.02. This condition ensures that StO2 values are being calculated from voxels where 
there is hemoglobin signal above the noise threshold.  
 

2.6.3. StO2 calculated from pO2 Data 
The pO2 values gathered with the oxygen monitor during the PA phantom imaging were 
converted to blood StO2 values using the oxyhemoglobin dissociation curve relationship 
described by Severinghaus[84, 85], shown in EQ 4.  

���� �  �23,400 "  �#��
�  �  150 "  #��	�� � 1	�� (4) 
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2.7 Validation in a murine subcutaneous tumor model 
 

2.7.1. Tumor Model  
The Institutional Animal Care and Use Committee (IACUC) at Tufts University 

authorized all animal experiments conducted in this study. Male homozygous Foxn1nu nude 
mice (The Jackson Laboratory), aged 6-8 weeks, were and subcutaneously injected with 5 
million AsPC-1 cells in 100 μL of Matrigel (50 μL of Matrigel + 50 μL of PBS) using a 1-ml 
tuberculin syringe with a 30-gauge hypodermic needle. Cells were obtained from American Type 
Culture Collection and maintained in RPMI (Roswell Park Memorial Institute) 1640 medium. 
AsPC-1 cells were passaged 1-2 times per week. Media were supplemented with 10% fetal 
bovine serum and 1% penicillin-streptomycin (100 U/ml). All cells were cultured in suspension 
and kept in an incubator in 5% CO2 at a temperature of 37C. 
 

2.7.2. Tumor Imaging 
US and PA images were acquired using the Vevo LAZR-X using the MX250S linear 

array transducer. Gain was set to 22 dB for US, and 45 dB for PAI. Persistence was set to Max 
(20 averages per frame) and images were acquired with the Oxy-Hemo setting (750 and 850 nm 
laser illumination wavelengths). Mice sedated with isoflurane (2-3% induction, 1.5% 
maintenance) were put on a heating pad with ECG leads to monitor body temperature, heart rate, 
and respiration during the imaging session. Bubble-free ultrasound transmission gel 
(Aquasonic100 Ultrasonic Transmission Gel, Parker Laboratories, Inc.) was placed to the tumor 
to enhance acoustic transmission between the transducer and tumor during imaging. The 3D 
image of tumor StO2 values was obtained between 20 to 30 minutes, with the initial imaging 
frame recorded at the anterior end of the tumor and each subsequent frame 0.15 mm farther in 
the posterior direction. 
 

2.7.3. Fluence Compensation 
The fluence compensation workflow was tested on PA images of a subcutaneous 

pancreatic tumor at 52 days post-implantation. This tumor had a volume of 379.5 mm3 with a 
depth of over 6 mm from the tissue surface at the deepest point. The tumor region was user 
annotated from the US image every 5 frames utilizing the interpolation feature of the 
PHANTOM-GUI. The background, skin, and tissue boundary were annotated using the 
automatic segmentation features with skin thickness set to 20 pixels, and manually edited by the 
user for specific frames with regions of skin with non-uniform thickness. The 4 labels used to 
assign optical properties to this volume were, water (background), skin, tumor, and standard 
tissue. The optical properties of water, skin, and standard tissue were assigned using the generic 
tissue types. The tumor optical properties were set using the default tissue properties for 
absorption, anisotropy, and refractive index, while the scattering coefficient was custom set 
based on  EQ 2. Values of  fRay, and bMie were obtained from work by Sandell and Zhu[86], while 
alpha was obtained from work by Wilson et al.[87] The optical properties of all 3 tissue types are 
summarized in Table 2.  
 
Tissue µa (mm-1) µs (mm-1) Anisotropy Refractive Index 
 750 nm | 850 nm 750 nm | 850 nm   
Skin 0.2504 | 0.2935 25.22 | 21.90 0.9 1.37 
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Tumor 
 

0.0051 | 0.0061 5.278 | 4.578 0.9 1.37 

Standard Tissue 0.0110 | 0.0199 10.97 | 9.418 0.9 1.37 
Table 2. Optical properties from Jacques[20] used to fluence compensate PA scan of 
subcutaneous tumor.  
 
2.8 Validation in a murine model of ectopic calcification 
 

2.8.1. Animal Model 
All animal studies were conducted under the appropriate protocols approved by the 

IACUC at Tufts University. Wildtype (Slc20a2+/+) C57Bl/6J mice (Jackson Labs) and 
C57BL/6NTac-Slc20a2tm1a(EUCOMM)Wtsi/Ieg (Slc20a2 +/−) mice (European Mouse Mutant 
Archive) were used to establish the colonies, mice, and placentas used throughout the 
experiments. 

 
2.8.2. Animal Imaging 
 A maternal model for (Slc20a2+/-) was analyzed. At least 12 hours prior to imaging the 

animals’ abdomen, fur was clipped down to make depilation easier and avoid chemical burns 
from depilation cream. The animals were imaged under anesthesia on gestational day 18.5 under 
1-1.5% isoflurane. Image collection was performed using the Vevo LAZR-X ultrasound and 
photoacoustic system. In vivo US-PA images were collected at 750 and 850 nm wavelengths and 
a 21 MHz transducer (MX250S). The PA and US gain were set at 45 and 22 dB, respectively. 
US was first utilized to approximate the number and location of visible embryos and placentas 
followed by a 3D US-PA scan of 1 superficial placenta. 
 

2.8.3. Fluence Compensation 
The fluence compensation workflow was also tested on a 3D PA of a gestational day 18.5 

placenta. This placenta had a volume of 114.4 mm3 and maximum depth of ~8 mm. The 
placenta and embryo region were user annotated using PHANTOM-GUI, while the skin, 
background, and tissue region were annotated using the automatic segmentation feature of the 
PHANTOM-GUI.  The 5 labels used to assign optical properties to this volume were, water 
(background), skin, placenta, embryo, and standard tissue. The optical properties of µs, 

anisotropy, and refractive index for all labels were defined using the generic optical properties 
provided in PHANTOM, where the placenta was approximated as liver, and the embryo was 
approximated as bone. The value of µa for water, skin, bone, and standard tissue were set using 
the default optical properties, while the value of µa for placenta was custom set using EQ 2 with 
values for blood volume fraction, water content, fat content, and melanin content taken from 
Badachhape[88], Lee[89], Pratt[90],  and Yi[91] respectively.  
 
Tissue µa (mm-1) µs (mm-1) Anisotropy Refractive Index 
 750 nm | 850 nm 750 nm | 850 nm   
Skin 
 

0.2504 | 0.2935 25.22 | 21.90 0.9 1.37 

Placenta (liver) 
 

0.2083 | 0.2729 8.486 | 6.911 0.9 1.37 
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Fetus (bone)  
 

0.0012 | 0.0020 13.18 | 12.63 0.9 1.37 

Standard Tissue 0.0110 | 0.0199 10.97 | 9.418 0.9 1.37 
Table 3. Optical properties used to fluence compensate PA scan of in vivo placenta  
 
2.9 Histology 
 

Post imaging, pimonidazole HCl (Hypoxyprobe Inc) was administered at a concentration 
of 60 mg/kg via tail vein injection and mice were sacrificed one hour later. Tumors were 
surgically excised without skin and then embedded in optimal cutting temperature (OCT) 
compound (Tissue-Tek) in the same alignment as the US-PAI cross-sectional images. The cryo-
sections of tumor tissue, with a thickness of 10 microns, were meticulously prepared utilizing a 
cryotome and subsequently affixed onto glass microscope slides. Hematoxylin and eosin (H&E) 
and immunofluorescence staining procedures were employed for histological examination as 
previously described[28].  

The cryo-sections were initially subjected to fixation by immersion in a pre-cooled 
mixture of acetone and methanol at a 1:1 ratio for a duration of 10 minutes while maintained at 
an ice-cold temperature. Subsequently, the sections were air-dried for 30 minutes and then 
subjected to three sequential 5-minute washes with 1x phosphate-buffered saline (PBS). 
Following this, a blocking solution with a 1x concentration (BSA, Thermo Scientific™) was 
applied to the sections, allowing incubation period of 1 hour at room temperature.  

For the immunostaining of microvasculature and hypoxic regions within the tumor 
sections, primary antibodies, namely Mouse CD31/PECAM-1 Affinity Purified Polyclonal Ab 
(R&D Systems Inc) and FITC-Mab (Hydroxyprobe Inc), were incubated with the tissue sections 
at an approximate concentration of 10 μg/mL. The incubation of these antibodies was carried out 
overnight at 4 °C. On the subsequent day Donkey Anti-Goat IgG NL493 Affinity Purified PAb 
(R&D Systems Inc) secondary antibody was introduced following washing with 1x PBS. This 
secondary antibody was allowed to incubate at room temperature for 2 hours. Slowfade gold 
antifade mountant containing 4',6-diamidino-2-phenylindole (DAPI, Invitrogen) was used to 
rinse and seal the coverslips. The acquired slides were imaged at 4x magnification utilizing an 
EVOS fluorescence imaging system.  
 
2.10 Statistical Analysis 

GraphPad Prism (La Jolla, CA) was used for all statistical analysis described in this 
manuscript. In all statistical tests used, a p-value less than or equal to 0.05 was deemed 
statistically significant.  
 

3. Results and Discussion 
 
3.1 Depth-dependent fluence compensation increases PA signal and accuracy of measured StO2    
 

HbT signal strength for non-fluence compensated data decreases as a function of the 
tissue thickness above the tube for all 3 blood oxygen states, as expected and demonstrated in 
Fig. 3A (left columns for each case). Even at the tube locations with no chicken breast inclusion 
in the frame of focus (Fig. 3A top row), light attenuation is still present within the tube itself as 
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seen by the higher amplitude signal at the upper portion of the tube than the lower part. 
Hemoglobin is a predominant absorber in the NIR range, resulting in the rapid attenuation of 
light and corresponding decrease in signal strength. As the thickness of the tissue increases, 
fluence reaching the tube is decreasing and therefore the signal from the upper portion of the 
tube diminishes, while the signal from the lower portion of the tube almost disappears entirely. 
Fluence compensation of this data decreases the attenuation seen as a function of tissue thickness 
as well as provides stronger signal at the lower portion of the tube (Fig. 3A, right column for 
each case). The decrease in HbT signal strength of the non-compensated data is quantitatively 
displayed (Fig. 3B). As the tube was filled with a homogeneous solution of ex vivo blood it can 
be assumed that the hemoglobin content was equal throughout the tube and the decrease in signal 
strength is the direct result of light attenuation. As light attenuation is known to be exponential 
according to the Beer-Lambert Law [92], the exponential fit (Fig. 3B, solid black line) was 
calculated for all 3 non-compensated curves and showed good agreement with the data (R2 = 
0.96, 0.91, 0.96 for oxygenated, semi-oxygenated, and deoxygenated blood). Fluence 
compensating the data (Fig. 3B, blue dots) flattened this curve, showing a consistent 
measurement of HbT as tissue thickness increased.   
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.07.565885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.565885
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. A) 2D rendering of the phantom showing US of the chicken breast inclusion and US-
PA of the blood tube where the PA image shows the HbT normalized from the maximum value
in the 3D volume. The HbT signal for deoxygenated (left), semi-oxygenated (middle), and
oxygenated blood (right) are shown at 5 different frames for the compensated and non-
compensated images, each corresponding to a location in the phantom with varying heights of
the chicken breast inclusion. The scale bar shown represents 1 mm. B-D) Plots of HbT signal
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against the thickness of the chicken breast inclusion from the phantom experiment for the 
deoxygenated (B) semi-oxygenated (C), and oxygenated (D) blood conditions. The exponential 
fit for the non-compensated (NC) and fluence compensated (FC) data are also plotted for 
deoxygenated, semi-oxygenated, and oxygenated blood. Error bars represent SEM. n = 3 for all 
data points 
 
In addition to HbT, StO2 is an invaluable prognostic marker gathered from multi-wavelength 
photoacoustic imaging for diagnosis and monitoring of diseases[27, 64, 70, 93].The StO2 data of 
the blood inside the phantom is visualized in 2D and 3D in Fig. 4A and Fig. 5 respectively. As 
seen in the 2D and 3D non-compensated images, there is a visible difference between the StO2 
values measured at the bottom versus top region of the tube. This phenomenon can be attributed 
to the difference in light attenuation due to the optical properties of hemoglobin between 750 and 
850 nm wavelengths. The StO2 data from the phantom experiment is quantitatively displayed 
(Fig. 4B) and shows that fluence compensating the phantom data improved the accuracy of the 
blood StO2 images when compared to the ground truth pO2 readings. Prior to fluence 
compensation, the StO2 values measured for deoxygenated blood had a mean value of  17.28% 
(σ=2.52, 95% CI = 16.51-18.04%) minimum of 13.84% and maximum of 21.83% with a range 
of  7.99%. These values are relatively higher than the StO2 values calculated from the fluence-
compensated data which had a mean value of 3.77% (σ=0.81, 95% CI = 3.52-4.01%) with a 
minimum of  2.80%, maximum of 5.11%, and range of 2.31%. An unpaired two-tailed t-test with 
Welch’s correction for unequal standard deviation was conducted comparing the experimental 
error of the two groups. The t-test showed that there was a significant difference between the 
error (p-value < 0.0001, t = 30.15) with the fluence-compensated data showing less error (Δx�= 
-19.33 ± 0.641) when compared to the ground truth. The experimental error for the deoxygenated 
blood condition is relatively very high due to the very small (close to zero) ground truth data.  
 The estimation of StO2 data for oxygenated blood was also improved with fluence 
compensation. A two-tailed t-test with Welch’s correction conducted to compare the 
experimental error of the non-compensated versus fluence compensated data found that there 
was a significant difference between the error of the two groups (p-value < 0.0001, t = 38.76) 
with the fluence-compensated data showing lower overall experimental error (Δx�= -0.125 ± 
0.003). The non-compensated StO2 values for oxygenated blood had a mean of 82.37% (σ=1.93, 
95% CI = 81.78-82.97%), a minimum of 77.65%, maximum of 84.04%, and range of 6.39%. 
The compensated StO2 values had a mean of 94.76% (σ=0.80, 95% CI = 94.51-95.00%), 
minimum of 93.29%, maximum of  96.18%, and range of 2.88%.  
 The scans for each blood oxygenation state were conducted in triplicate, however the 
StO2 data for the three scans performed on the semi-oxygenated blood phantom were statistically 
analyzed separately as the StO2 values were fluctuating during each scan due to the ongoing 
deoxygenation reaction between the blood solution and sodium dithionite. The data for one 
representative scan is shown in  Fig. 4B, while the plots for the remaining two scans can be 
found in Fig. S4. The addition of sodium dithionite at a concentration of 2.5 mg/mL was found to 
hold blood at 0% StO2 for almost one hour[94], allowing the deoxygenated blood scans to have a 
constant StO2. For semi-oxygenated blood however, the blood StO2 could not be held constant at 
one value, and scans were performed whilst the blood was still undergoing the deoxygenating 
reaction and actively decreasing in StO2 during each scan where the thickness of the chicken 
breast inclusion was increasing with each successive frame In fact, the StO2 of the blood in the 
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tube was seen to slightly increase with increasing tissue thickness for the non-compensated StO2 
values, which is the opposite trend to the ground truth StO2 decreasing throughout time (Fig. 4B-
D). Once fluence compensated, the StO2 data reflects the ongoing chemical reaction within the 
tube, where the blood is actively undergoing deoxygenation.  
 ANCOVA analysis reveals that the slopes of the true value data and the fluence 
compensated data are not significantly different for all 3 scans (p-value = 0.428, 0.542, 0.126). 
The y-intercept was also found to have no significant difference between the fluence 
compensated and ground truth data for 2 of 3 scans taken  (p-value = 0.752, 0.125, < 0.0001). 
The slopes of the non-compensated data and ground truth data and the non-compensated and 
fluence-compensated data were found to be statistically different from one another (p-value < 
0.0001). While the blood was actively undergoing deoxygenation, the relative changes in StO2 
were detectable using fluence compensated data, compared to non-compensated StO2 values. 
Analyzing the experimental error of the semi-oxygenated blood measurements for each scan with 
Welch’s t-test showed that there was a significant difference between the error of the two groups 
(p-value < 0.0001, t = 20.26), with the fluence compensated data showing lower average error 
(Δx� ± SEM = -1.23 ± 0.061)  
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Figure 4. A) 2D rendering of the phantom showing US of the chicken breast inclusion and US-
PA of the blood tube where the PA image shows the blood StO2. The StO2 values for
deoxygenated (left), semi-oxygenated (middle), and oxygenated blood (right) are shown at 5
different frames for the compensated and non-compensated images, each corresponding to a
location in the phantom with varying heights of the chicken breast inclusion. The scale bar
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shown represents 1 mm. B-D) Plots of StO2 against the thickness of the chicken breast inclusion 
from the phantom experiment for the deoxygenated (B), semi-oxygenated (C), and oxygenated 
(D)  blood conditions. The fluence compensated data (FC) is shown in black, the non-
compensated data (NC) is shown in blue, while the ground truth values (GT) are plotted in red. 
The linear fit for the NC, FC, and GT data are also plotted for the semi-oxygenated blood. R2 = 
0.860, 0.960, 0.950 for NC, FC, and GT respectively.  
 
 

There are two noticeable trends displayed by this data. Firstly, we will discuss the effect 
of tissue thickness on StO2 (irrespective of blood oxygenation state). The non-compensated data 
displayed the trend of an increase in blood StO2 with increasing tissue thickness, which is clearly 
displayed by the 3D rendered images (Fig. 5). Theoretically, this trend complements itself well 
to the spectra of oxy- and deoxy-hemoglobin. For the case of homogenous blood StO2, longer 
wavelengths will penetrate deeper into the phantom. Therefore, with no chicken breast present 
above the tube, one can assume that after accounting for laser energy differences, equal amounts 
of 750 nm and 850 nm light are illuminating the top portion of the tube. When there are more 
scattering events above the tube, due to increasing tissue thickness, less overall light is hitting the 
top of the tube. It can also be assumed that with greater light attenuation due to the presence of 
the tissue, more 850 nm light is going to reach the tube compared to 750 nm. As oxygenated 
hemoglobin has a larger molar extinction coefficient than deoxygenated hemoglobin at 850 nm 
this will manifest as an observed increase in StO2 (Fig. 4B). In addition, the differences in light 
penetration for these two wavelengths are not expected to be drastically different, corresponding 
with the minor increase in StO2 displayed by this trend. It is important to note that blood StO2 
values calculated from images of different wavelengths may not display this same trend. 

The effect of light attenuation throughout the tube depth (irrespective of tissue thickness) 
is also noticeable in the non-compensated 2D and 3D StO2 images and differs based on blood 
oxygen state. For deoxygenated blood, the lower portion of the tube displays a higher average 
StO2 than the upper portion. When light is travelling through the depth of the tube, less 
absorption events occur at 850 nm due to the lower absorption coefficient of deoxyhemoglobin at 
850 nm. Therefore, more 850 nm light will reach the lower area of the tube than 750 nm light, 
positively skewing the StO2 measurements in that area. When correcting for this unequal light 
attenuation with fluence compensation, the StO2 values are much more consistent throughout the 
entire depth of the tube as shown in Fig. 5. For the case of fully oxygenated blood, the result is 
opposite, and the lower portion of the tube displays StO2 values lower than the upper area. The 
oxyhemoglobin absorption curve is lower at 750 nm than it is at 850 nm, and the amount of 850 
nm light reaching the bottom of the tube will be reduced due to light attenuation. This results in 
the calculated StO2 values at the bottom of the tube to be lower than the true value. The fluence 
compensation used in this work was able to correct for this to create a more uniform distribution 
of calculated StO2 for all depths within the tube.  
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Figure 5. 3D rendering of the phantom showing US of the chicken breast inclusion and PA of 
the blood tube where the PA image shows the blood StO2. The StO2 values for deoxygenated 
(left), semi-oxygenated (middle), and oxygenated blood (right) are shown for the compensated 
and non-compensated images. X, Y, and Z-direction are shown with red, green, and blue 
arrows respectively, where the Z-direction is the transducer scanning direction. The scale bar 
shown represents 2 mm.  

 
   
3.2 Effects of Fluence Compensation on Subcutaneous Tumor Data 
   

The normalized HbT and StO2 maps of the representative tumor are shown in 2D (Fig.
6A) and 3D (Fig. 6C) for the non-compensated and fluence compensated photoacoustic data.
Qualitatively one can see that there is better signal strength at deeper areas of the tumor for the
fluence compensated data than the non-compensated data in the 2D images, indicated by the
white arrows. When viewing the 3D StO2 images (Fig. 6C, black arrows), one can visually see
that there are areas of stronger signal strength throughout the whole volume in the fluence
compensated image compared to the non-compensated image. The visual differences in the 3D
renderings are quantitatively displayed in the volumetric distributions of HbT and StO2 for the
compensated and non-compensated data (Fig. S5). While the shape of the HbT distribution
remains visually similar for the fluence compensated and non-compensated images, a two-sided
Wilcoxon rank sum test reveals that there is a statistically significant difference between the
medians of the two distributions (p < 0.0001, z = 45.19). An unpaired two-sided t-test comparing
the StO2 distributions of the compensated and non-compensated images indicates a statistically
significant difference between the mean of the two distributions (p < 0.0001, t = 208.3). The
shape of the StO2 distribution varies drastically between the un-compensated and fluence
compensated data. There is a high concentration of zeros in both StO2 distributions that can be
attributed to the non-negativity constraint applied to spectrally unmix the data, which will
inherently shrink values towards zero. The uncompensated StO2 distribution is relatively flat
with a small peak at around 85% StO2, while the compensated StO2 distribution has a more
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normal shape and displays a distinct peak at 47% StO2. The differences in these two distributions 
clearly indicate that a significant amount of data on the intertumoral heterogeneity is lost when 
StO2 measurements are calculated from non-compensated PA images.   

Comparing the 2D PA images with immunofluorescence (IF) image of the same tumor 
cross-section reveals that there is a highly vascularized hypoxic region at the bottom of the tumor 
(Fig. 6B - boxed in white). The corresponding region in the PA image has lower StO2 and higher 
HbT values in the compensated images compared to the non-compensated images. This is 
especially noticeable in the hypoxic areas with vascular signal as pointed out by the white arrows 
(Fig. 6A-B respectively). Fluence compensation gives results that show lower StO2 in regions of 
hypoxia. Of particular note, the compensated StO2 images show vascularized hypoxic areas with 
<10% StO2 that correspond well with the IF stain. This distinction is relevant as binding of the 
hypoxia marker, pimonidazole, increases drastically below 10 mmHg [95], which corresponds to 
an StO2 value of 9.7%.  

The importance of accurate PA-based HbT and StO2 data in pre-clinical cancer research 
cannot be overstated. Fluence compensation greatly increases the reliability of StO2 
measurements used to identify hypoxic regions, which has the potential to aid cancer diagnosis, 
treatment planning, and therapy monitoring. Pathological hypoxia exerts influence on individual 
cancer cells as well as the whole tumor microenvironment and regulates the key processes of 
vascularization, immune-resistance, cell death, and cell proliferation[96-98]. Hypoxia is a 
prominent characteristic seen in solid tumors and is widely acknowledged as a significant 
contributor to worse prognostic outcomes in individuals with cancer[99, 100]. By 
assessing tumor vasculature and the changes in oxygen levels, it is possible to infer if the tumor 
is undergoing hypoxia as a response to therapeutic intervention, or that it is enhancing its 
glycolytic metabolism and angiogenesis to facilitate proliferation and metastasis[101]. In order 
for physicians to select the most effective treatment and make educated choices throughout 
therapeutic intervention and follow-up it is essential to understand these aspects of tumoral 
activity. 

 Fluence compensation is particularly important in longitudinal studies that monitor 
changes in tumor hemodynamics over periods of weeks to months. In such studies, untreated or 
recurring tumors can become relatively large where the effects of light attenuation need to be 
accounted for. Areas of hypoxia or low vascular density could be incorrectly identified in large 
tumors due a diminished signal strength at depth if photoacoustic signals detected are not 
properly fluence compensated. In addition, this toolkit allows annotation of an unlimited number 
of regions. Fiducial markers can be annotated across images in specific tumor sub-regions, 
allowing for researchers to track regional changes in tumoral heterogeneity throughout treatment 
and monitoring. Distinct areas in or above the skin, such as sutures or ulcers/hemorrhages could 
also be annotated and to increase the intricacy of the label-based volume, given that the optical 
properties of these regions are known.  
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Figure 6. A) 2D renderings of tumor HbT (top) and StO2 (bottom) for non-compensated (left) 
and fluence compensated (right) data. B) Immunofluorescence stain for cell nuclei in blue, 
blood vessels in red, and hypoxia in green. stain of the tumor cross-section. C) 3D renderings 
of tumor HbT (top) and StO2 (bottom) for non-compensated (left) and fluence compensated 
(right) data. X, Y, and Z-direction are shown with red, green, and blue arrows respectively, 
where the Z-direction is the transducer scanning direction.  The scale bar shown for all images 
represents 2 mm.  
 
 
3.3 Effect of Fluence Compensation on Placental Model of Ectopic Calcification 
 

Compared to the subcutaneous pancreatic tumor, the in vivo placenta displays high levels
of vascularization as the placenta is an essential organ that facilitates the transfer of nutrients and
oxygen between the maternal and fetal compartments. The placenta imaged was located lateral to
the embryo just below the skin surface, as shown in Fig. 7A. Within the mouse placenta, there
are three distinct regions as depicted in Fig. 7B: decidua (maternal tissue), junctional zone (fetal
tissue), and labyrinth (fetal tissue) [102]. Visually, the maternal spiral arteries would be
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centralized into one or several channels that then branch through the junctional zone to create a
complex tangle of maternal blood vessels in the labyrinth. Fetal capillaries are also branched and
tangled within labyrinth to allow gas and nutrient exchange. This creates a mesh of blood
vessels.  Fig. 7C-D displays the 2D and 3D normalized HbT and StO2 maps of a representative
placenta for uncompensated and fluence-compensated photoacoustic data. Qualitatively, the
fluence-compensated data exhibits greater signal amplitude in deeper regions of the placenta than
the uncompensated data. The vascular system of the placenta is expected to have highly
oxygenated edges near the maternal spiral arteries (decidua) and the umbilical cord (labyrinth),
with a dip in the center (junctional zone)[103].  Fig. 7E-F depicts the variations between the
distributions of HbT and StO2 in compensated and uncompensated volumes. The curves of the
HbT distributions have differing shapes, with the non-compensated data having an exponential
distribution, while the compensated data displays a right-skewed curve. A two-sided Wilcoxon
rank sum test indicates that the medians of the two groups differ significantly (p < 0.0001, z = -
405.53). Comparing the StO2 distributions of compensated and uncompensated placenta data
using an unpaired two-tailed t-test reveals a statistically significant difference between the means
of the two distributions. (p < 0.0001, t = -176.06). While both the uncompensated and
compensated distributions have similar shapes, the non-compensated StO2 data has a left shifted
peak and a variance 1.1542 times higher than the fluence compensated data. Due to the depletion
of hemoglobin signal strength at depth, one can see that a significant amount of data is lost in the
lower regions of the non-compensated placental data. The fluence compensated data also shows
higher StO2 values in the labyrinth of the placenta, where the active transport of oxygen occurs
between mother and fetus.  
 

 Figure 7. A) 3D ultrasound rendering displaying the tissue region labels used to assign optical
properties to the volume. B) Murine placental anatomy displaying the relative locations of the
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structures in the placenta. C) 2D renderings of placental HbT (top) and StO2 (bottom) for non-
compensated (left) and fluence compensated (right) data. D) 3D renderings of placental HbT 
(top) and StO2 (bottom) for non-compensated (left) and fluence compensated (right) data. X, Y, 
and Z-direction are shown with red, green, and blue arrows respectively, where the Z-direction is 
the transducer scanning direction. All scale bars shown represent 2 mm. E-F) Bar graphs 
displaying the voxel-wise distribution of placenta HbT (E) and StO2 (F) for the placenta rendered 
in panel A. The non-compensated values are displayed in gray, while the fluence compensated 
values are displayed in red.  
 

The placenta is a highly vascularized organ and the development and changes in the 
vascularity, perfusion, and oxygenation provides great insight into the health of the pregnancy. 
Specifically, vascularity and oxygenation changes can be observed with optical imaging, 
however it is known that deep imaging of solid vascular systems such as the liver or placenta 
leads an incomplete image of the vascularity and function due to high light attenuation. Early 
placental development, placentation, is comprised of angiogenesis and hypoxic conditions[104]. 
Changes in hemoglobin concentration can detect anemic conditions which give insight on 
angiogenesis[105], while hypoxia is indicative of vascular remodeling, hypertension, and other 
stressors[106]. Placental positions in pre-clinical models can vary from superficial and parallel to 
the transducer to hidden by adipose tissue or the embryo and perpendicular to the transducer, 
which can create inconsistent StO2 and HbT scans and analysis. These inconsistencies do impede 
precise measurements and comparisons, which then impact understanding and grading the health 
of different placental disorders. The placenta shown in this work was relatively superficial and 
unobstructed, and yet fluence compensation still significantly changed the measured StO2 and 
HbT of the placental volume. These results agree with similar results in the field [60, 107].  
Fluence compensation can allow more accurate access to information across the entire placenta 
in utero and at earlier time points when the placentas may be more hidden under vital maternal 
organs. The PHANTOM toolkit will enable researchers to effortlessly segment the placenta, 
setup the optical properties and depth compensate the photoacoustic signal. 
 
 
4. Conclusions 
 
 In this work we have developed an easy-to-use workflow and toolkit named 
PHotoacoustic ANnotation TOolkit for MATLAB (PHANTOM) for compensating PA images 
for depth dependent changes in fluence utilizing structural information gathered from US.  This 
toolkit supports users in the segmentation of ultrasound images into 3D labeled tissue structures 
that may be assigned default or custom optical properties. In addition, we have produced a light 
source configuration in MCXLAB that replicates the optical fiber illumination used by the VS 
system. We have displayed the improved accuracy of StO2 measurements calculated from this 
fluence-compensated data in phantom experiments with varying states of blood oxygenation and 
tissue thickness. The workflow was also tested on two types of in vivo data, a subcutaneous 
tumor model and a placental model of ectopic calcification. For both cases, there were significant 
differences between in the StO2 and HbT volumetric distributions when comparing the non-
compensated and fluence compensated data, particularly at deeper depths and validated with 
immunohistochemistry. 
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As previously stated, the method of using MC simulations of light propagation can never 
be perfect, due to the inverse nature of the problem. This issue is exasperated by the limited 
availability of optical property values in literature, and differences in measurement techniques 
and wavelengths used for measuring these properties. Due to these reasons, this default optical 
properties presented in this paper rely heavily on the work of Jacques[20], which provides the 
most comprehensive method of defining unknown optical properties of tissues. This work 
however is a decade old and there is a need for an updated compilation of optical property values 
and the relative blood, water, fat, and melanin volume fractions of different tissue types. In our 
work, tissue regions are assigned one set of optical properties, whereas actual in vivo tissues have 
a heterogeneous distribution of chromophores that cannot be truly represented by singular 
values. 

Constraints on the reliability of this fluence compensation method must also be 
considered in relation to image quality. One such factor that must be considered is near-field 
interference caused by signals generated on the transducer surface when the transducer is 
situated too close to the tissue boundary. These artifacts can also cause secondary reflections 
deeper within the tissue. Understanding noise levels has also become increasingly important in 
PAI. As fluence correction rescales the data, it is probable that the image's fundamental signal-
to-noise ratio (SNR) will not improve, resulting in increased background noise in deep regions. 
When applying fluence compensation, it is important that one is weary of system and sample 
dependent noise as these factors will change on a case-by-case basis. As light attenuation 
decreases the SNR of the image with depth, it is important to understand the noise levels in 
different areas of an image and use discretion when applying fluence compensation to deeper 
depths.  Rich et al. found that for a 21 MHz transducer similar to the one used in this work had a 
depth limit of 15 mm to detect signal over noise [108]. The Rose criteria is a widely accepted 
standard in the field of object detection. According to this standard, a signal must have a 
magnitude that is at least five times higher than the standard deviation of the background in order 
to be distinguished from noise [109]. The depth at which fluence compensation will hold is 
dependent on the wavelength of light, tissue optical properties, number of averages taken, and 
system-based characteristics such as resolution and gain. Despite this, we clearly demonstrate the 
improved estimations of blood StO2 gathered with PAI by utilizing the MC method of fluence 
compensation. This was shown for phantom images using real-time pO2 measurements as well as 
subcutaneous tumor images using IF staining.  

In this research our methodology was specifically designed for the commercially 
available VevoLAZR-X system-based fiber delivery systems, the workflow is applicable to any 
combined ultrasound and photoacoustic imaging system and fiber configuration. Here we also 
use wavelengths of 750 and 850 nm to calculate StO2, however the default optical properties 
provided with PHANTOM range from 300 - 1000 nm, allowing the toolkit to assist a wider 
range of applications. The toolkit is adaptable to other endogenous and exogenous photoacoustic 
contrast agents where the optical properties can be defined within the GUI. All code used to 
generate the data and simulations discussed in this manuscript are available upon request. 
PHANTOM will prompt and guide the user through the otherwise complicated and time-
consuming task of annotating and fluence compensating large photoacoustic datasets and will be 
particularly useful for researchers unfamiliar with laser-tissue interactions and outside the field 
of photoacoustic imaging.  
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