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Abstract 

Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells 

with high tumor-initiating potential—often called Cancer Stem-Like Cells (CSLCs). These can 

display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help 

elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of 

these cells, thus revealing complementary dependencies that may be leveraged via combination 

therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer 

patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to 

invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, 

which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, 

depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of 

albendazole and paclitaxel—a commonly used chemotherapeutic —displayed significant synergy 

in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based 

approaches can help develop mechanism-based combinatorial therapies targeting 

complementary subpopulations. 
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Introduction 

Intratumor heterogeneity represents a major barrier in cancer treatment. Indeed, most tumors 

comprise co-existing, molecularly distinct subpopulations presenting non-overlapping drug 

sensitivities1. While some of the cells comprising them may represent genetically distinct 

subclones, a majority has emerged as representing the byproduct of pathophysiological 

epigenetic plasticity. In breast cancer (BRCA), for instance, there have been multiple reports of 

an isogenic Cancer Stem-like Cell (CSLC) subpopulation associated with differential expression 

of epigenetic regulators involved in controlling stemness programs, such as the BMI1, WNT, and 

NOTCH pathways2-4. CSLCs have been shown to display tumor-initiating capacity, expression of 

stem-cell markers, and resistance to common chemotherapeutics5,6, such as paclitaxel—a 

microtubule inhibitor and antimitotic widely used in the treatment of multiple malignancies, 

including breast cancer. Indeed, while frequently leading to initial tumor shrinkage, treatment with 

this drug is often followed by relapse and resistance. Indeed, it has been suggested that 

chemotherapy resistant breast CSLCs may regenerate the full heterogeneity of the tumor, as 

confirmed by limiting dilution assays7,8. Multiple non-mutually exclusive mechanisms of 

chemotherapy resistance have been proposed for CSLCs in breast and other tumors, including 

upregulation of multi-drug transporters, increased DNA damage repair, and better scavenging of 

ROS9-11. Taken together, these data suggest that breast CSLCs pose a fundamental challenge to 

achieving durable remissions in BRCA, especially in Triple Negative Breast Cancer (TNBC), 

where chemotherapy remains a cornerstone of treatment.  

To gain insight into the molecular heterogeneity of breast cancer and to predict the sensitivity of 

individual subpopulations to clinically relevant drugs, we generated single-cell RNA sequencing 

(scRNA-seq) profiles of malignant cells isolated from biopsies of seven metastatic breast cancer 

patients. To enrich for cells with a stem-like phenotype—or CSLCs for simplicity—which may 

include only a very small fraction of tumor cells, we used fluorescence-activated cell sorting 

(FACS), with antibodies selected to purify malignant cells with a phenotype analogous to that of 

stem/progenitor cells in the normal mammary epithelium12. See Fig. 1A for an illustrative graphical 

workflow of this process.  

In previous studies, we have shown that highly sparse single scRNA-seq profiles, where >80% of 

the genes may produce no reads, can be transformed to fully populated protein activity profiles 

by the metaVIPER algorithm13—the single-cell adaptation of the extensively validated VIPER 

algorithm14. This is accomplished by measuring the activity of each regulatory and signaling 
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protein based on the expression of its entire repertoire of transcriptional targets, akin to using a 

highly multiplexed, tissue-specific gene reporter assay. As a result, the most differentially active 

VIPER-inferred proteins are also enriched for Master Regulator (MR) proteins representing 

mechanistic determinants, via their target genes, of the associated transcriptional state. 

MetaVIPER analysis of single cells isolated from the seven metastatic breast cancer patients 

accrued to the study—including five hormone receptor-positive (HR+) and two triple-negative 

(TNBC) tumors—effectively separated cells with a more stem-like vs. more differentiated 

transcriptional state, using a stemness score (SS) based on both established breast cancer 

stemness markers and CytoTRACE analysis15. Consistent with expectations, cells with the 

highest score (i.e., most stem-like) emerged as the most resistant to in vivo treatment with 

paclitaxel, while those with the lowest score (i.e., most differentiated-like) were significantly 

depleted by the drug. This provided the molecular basis to identify and 

genetically/pharmacologically target candidate Master Regulators (MRs) of CSLC transcriptional 

state(s) identified by metaVIPER analysis.  

We thus performed patient-by-patient analysis, using the VIPER algorithm to identify candidate 

MR proteins controlling the transcriptomic state of cells with the highest vs. lowest Stemness 

Score. Candidate MRs identified by the analysis were highly conserved across virtually all 

patients, independent of hormone receptor (HR) status, thus supporting the notion of a common 

CLSC MR signature. Indeed, >80% of the most significant VIPER-inferred activated and 

inactivated MRs were able to statistically significantly reprogram cells to a more differentiated or 

CSLC state, respectively, following their CRISPR-mediated silencing in a pooled CROP-seq16 

assay in cell lines comprising both subtypes. We thus leveraged the OncoTreat algorithm17, which 

assesses the activity of MR proteins in drug vs. vehicle control-treated cells, to identify small 

molecule compounds capable of inverting the activity of the CLSC MR signature (MR-inverter 

drugs), thus potentially inducing differentiation or selective ablation. For this purpose, we 

leveraged gene expression profiles of BRCA cells—selected to faithfully recapitulate the CSLC 

MR signature—treated with a repertoire of 91 clinically relevant drugs, see Fig. 1B for an 

illustrative graphical workflow of these steps. Notably, OncoTreat-predicted drugs from either 

bulk17-19 or single-cell profiles20,21 have been extensively validated in vivo in prior studies.  

Albendazole, a well-tolerated anthelmintic drug, emerged as the most statistically significant MR-

inverter drug, yet at a concentration that was approximately ten-fold lower than its clinically 

tolerated dose; this was especially surprising since albendazole is not considered an anti-tumor 
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drug. Based on these results, this drug was selected for experimental validation in vivo. Mice from 

a TNBC PDX model were treated with either albendazole or vehicle control for 14 days and 

compared to paclitaxel-treated animals. In contrast to paclitaxel, which caused highly significant 

increase of the CSLC to differentiated cell ratio, albendazole treatment induced equally dramatic 

yet opposite effects, suggesting that alternating treatment with the two drugs may abrogate the 

tumor-initiating potential of paclitaxel-resistant cells, while also preventing uncontrolled tumor 

growth. The strong rationale for combination-based, sequential therapy was confirmed by a 

preclinical study, where treatment with multiple cycles of albendazole and paclitaxel displayed 

superior anti-tumor activity compared to the corresponding monotherapies, resulting in a 

statistically significant synergistic effect. 

Results 

Intratumor heterogeneity in human breast carcinomas: Since patient-derived breast cancer 

tissues vary widely in size, cellularity, necrotic fraction, stromal infiltration, and overall quality, we 

used FACS to purify malignant cells using appropriate antibody combinations. Single cells 

isolated from these tumors were then processed to generate plate-based scRNA-seq profiles 

using an approach that combines elements of Smart-seq222 and PLATE-seq23 (see STAR 

methods). This procedure, which allows sorting individual cancer cells into separate wells filled 

with lysis buffer for RNA-seq profiling, is especially effective in enriching for relatively rare 

subpopulations from fresh tumor tissue, since it effectively supports FACS-based cell isolation 

while removing debris and dead cells that may otherwise degrade the performance of other 

platforms. It was thus preferred at the time, despite its higher cost and complexity.  

Fresh samples were obtained from two metastatic TNBC and five metastatic HR+ patients. To 

minimize post-resection transcriptional changes/drift, fresh samples were rapidly dissociated into 

a single-cell suspension (see STAR methods) and stained with DAPI, as well as ⍺-EpCAM, ⍺-

CD49f, and Lin- antibodies. EPCAM effectively distinguishes epithelial breast cancer cells from 

stromal subpopulations, whereas CD49f is known to be expressed at the highest levels in a subset 

of mammary epithelial cells acting as mammary repopulating units (MRUs) in transplantation 

assays12 and has been previously used to enrich for breast cancer cells with stem-like 

properties24-26. Starting from primary malignant tissues, we sorted live (DAPI-) epithelial (EpCAM+) 

cells into two distinct batches, including: (1) a first batch of unselected cancer cells (EPCAM+), 

representative of the full heterogeneity of the epithelial compartment, contributing ~25% of the 

total cells in the analysis and (2) a second batch of epithelial cells with a phenotype characteristic 
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of MRUs in the mouse mammary gland (EPCAM+, CD49fhigh), expected to be CSLCs-enriched12,24-

26, contributing the remaining ~75% of analyzed cells (Fig. 1A, Suppl. Fig. S1). 

Copy Number Variation Analysis: After NGS library generation and sequencing (see STAR 

methods), we performed several data pre-processing steps to ensure that subsequent analyses 

would be restricted to high-quality cancer cells. This included inference of somatic copy number 

alteration (CNA) assessment, using the Trinity CTAT Project inferCNV algorithm 

(https://github.com/broadinstitute/inferCNV) to exclude confounding effects from normal cells in 

the tumor microenvironment. Compared to cells representative of normal breast epithelium, most 

of the cells isolated from the seven patients presented clearly aberrant CNA structure, consistent 

with the high cellularity of metastatic samples (Suppl. Fig. S2). Interestingly, no intratumor CNA 

heterogeneity was detected by the analysis, suggesting that, at least from a copy number 

alteration perspective, the cells in these samples were clonally identical. However, as expected, 

the analysis showed significant inter-tumor CNA heterogeneity across the seven patients, 

especially between TNBC and HR+ samples. 

Protein activity-based analysis identifies a stem-like subpopulation: In addition to biological 

variation between tumors from different patients, substantial batch and biology-related effects 

may also challenge the analysis of single cells isolated from different samples.  Batch effects can 

arise due to technical artifacts, such as changes in temperature or reagents between samples 

processed on different days, or liquid handling drift in multi-well plate assays. In addition, inter-

patient CNA differences may also contribute to significant gene expression heterogeneity, which 

may confound the analysis. Indeed, while only a handful of genes in CNAs play a functional role 

in tumorigenesis, most of the genes in these amplicons may still produce substantial inter-patient 

bias at the gene expression level, even though the activity of their encoded proteins is ultimately 

buffered by the post-transcriptional autoregulatory logic of the cell. When combined with the high 

gene dropout rate of scRNA-seq profiles—where >75% of the genes may fail to be detected by 

even a single read—this limits the ability to perform detailed, quantitative analyses using 

traditional gene expression-based methodologies. 

Various approaches to reduce noise and minimize gene dropout effects have been 

proposed27,28—such as metaCells29 and imputation-based30 methods—as well as normalization 

methods aimed at reducing batch effects31,32. These methodologies, however, may introduce 

artifacts that affect subsequent analyses. For instance, using metaCells may prevent identification 

of rare subpopulations, whose gene expression profile would be averaged with cells from 
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molecularly distinct subpopulations, while normalization may reduce biologically relevant 

differences between samples. Most critically, generating a comprehensive repertoire of candidate 

molecular determinants of tumor cell state, potentially associated with differential expression of 

only a handful of genes, is quite challenging if the expression of most genes is undetectable in 

individual cells. Transcriptional regulators, which are critical in maintaining cell state/identity, are 

especially affected by such gene dropout issues because they can be functionally active even 

when expressed at very low levels.  

To address these challenges, we leveraged the PISCES single-cell analysis pipeline33, which 

provides a systematic framework for protein activity-based analysis of single-cell data—from raw 

counts quality control to construction of gene regulatory networks, to the identification of MR 

proteins (see STAR methods). Specifically, PISCES leverages the metaVIPER13 algorithm to 

measure a protein’s differential activity based on the differential expression of its transcriptional 

targets, as inferred by the ARACNe34 algorithm. These algorithms have been extensively 

validated, showing low false positive rates (in the 20% – 30% range)14,35,36 and almost complete 

elimination of technical (i.e., non-biologically-relevant) batch effects. In particular, we have 

recently shown that metaVIPER protein activity measurements significantly outperform gene 

expression and even antibody-based measurements in single cells20,37,38, including based on 

large-scale CITE-seq assays33.  

We used metaVIPER to infer protein activity of single cells isolated from breast cancer biopsies 

from the two TNBC and five HR+ patients described in the previous section. The relative tumor 

purity of metastases, combined with EPCAM-based flow cytometry sorting produced single cells 

that were virtually all tumor related, as shown by the inferCNV analysis (Suppl. Fig. S2). As a 

result, we used metaVIPER to integrate results from both a bulk-level ARACNe network—

generated from the TCGA breast cancer cohort—as well as a network generated from the scRNA-

seq profiles captured in this study (see STAR methods). This approach allows optimal dissection 

of tumor cell-specific interactions (from single-cell profiles), while still providing adequate 

coverage (from bulk profiles) of the transcriptional targets of regulatory proteins that are 

undetectable in single-cell profiles. 

MetaVIPER computes the normalized enrichment score (NES) of a protein’s targets in genes 

differentially expressed between each individual cell and a reference state, typically the centroid 

of the entire single-cell population (see STAR methods). As a result, positive and negative NES 

scores indicate higher and lower protein activity compared to the average of the single-cell 
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population, respectively. While VIPER is most effective in assessing the activity of regulatory 

proteins, we have shown that it can quantitate the differential activity of signaling proteins14,39 and 

surface markers37 with similar accuracy. As a result, we included 339 cell surface markers and 

3,407 signaling proteins in the analysis (see STAR methods for selection criteria). 

Due to the large-scale CNA differences detected by the analysis, inter-patient heterogeneity was 

highly dominant at the gene expression level, with almost each patient contributing to an 

independent cluster in a Principal Component Analysis (PCA) representation, using the 5,000 

genes with the highest standard deviation (Fig. 2A). In contrast, since VIPER-inferred protein 

activity is robust to noise and resilient to technical artifacts that are inconsistent with the underlying 

regulatory network13 (Fig. 2B), protein activity-based PCA analysis virtually eliminated inter-

patient variability, except when biologically relevant (Fig. 2C). For instance, differences linked to 

HR status were captured by the second principal PCA component (y-axis), which accounts for 

15% of cross-cell variability. Yet, the most significant source of variance, accounting for 31% of 

cross-cell variability, was captured by the first PCA component (x-axis), which could be associated 

with high vs. low stemness (Fig. 2D). 

Cell stemness was assessed using two complementary metrics, including (a) the global activity 

of established breast CSLC markers and (b) CytoTRACE15, an experimentally validated algorithm 

designed to infer stemness based on gene count signature analysis (Fig. 2D, see STAR 

methods). CytoTRACE was previously validated within a hematopoietic lineage context and is 

based entirely on assessing expressed gene counts (a rough measure of cell entropy) rather than 

specific knowledge of stem cell biology. As a result, it has shown limitations, for instance, in 

differentiating quiescent stem cells from cycling progenitor cells15.  To address this issue we 

complemented and compared the CytoTRACE analysis with biologically-relevant insights derived 

from the VIPER-measured activity of 14 previously reported CSLC markers, including 

CD44+/CD24-40, ITGA6 (CD49f)26, BMI14, SALL441, NOTCH142, NOTCH242, KLF443, CTNNB144, 

ITGB3 (CD61)45,46, ITGB147, PROM1 (CD133)48, POU5F1 (OCT4)49, SOX250, and KIT51, resulting 

in a consensus Stemness Score, ranging from SS = 0 (most differentiated) to SS = 1 (most 

CSLC), shown as a color gradient in Fig. 2D  (see STAR methods). Supporting the use of such 

consensus metric, the CytoTRACE and CSLC marker-based scores were highly correlated 

despite being assessed by completely independent methodologies (Spearman’s ρ = 0.43, 

p ≤ 2.2×10-16) (Suppl. Fig. S3). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 9 

Despite the potential noisy nature of single-cell data, the PCA plot region comprising CD49fhigh 

cells was strongly associated with high activity of other established markers of stem-like function 

in mammary epithelial cells, such as BMI14 and NOTCH1/242, among several others, critically in 

both TNBC and HR+ derived cells (Fig. 2E, Suppl. Fig. S4). Consistent with the literature48,52-54, 

activity of additional stemness markers such as PROM1, POU5F1, SOX2, and KIT was also more 

prominent in CD49fhigh cells from TNBC patients (Suppl. Fig. S4). Differential activity of metabolic 

CSLC markers, such as ALDH155, was not detectable, likely because these enzymes are less 

related to transcriptional regulation. 

In sharp contrast to VIPER-based analyses—and fully consistent with prior studies, see20,37,38 for 

instance—the expression of genes encoding for these markers was mostly uninformative and 

failed to provide insight into CSLC characterization, because of the drastic gene dropout effect 

associated with scRNA-seq profiles (Suppl. Fig. S5). For instance, despite having a clear readout 

at the protein activity level, CD44, ITGB3, and SOX2 generated virtually no reads, thus preventing 

meaningful assessment of their differential expression, while expression of most other markers 

could not be associated to specific regions of the PCA plots.  

Differential activity of subtype-specific markers was also evident for cells isolated from HR+ vs. 

TNBC patients, especially within the differentiated cell compartment.  For instance, the activity of 

luminal markers, such as GATA356,57, FOXA158, the estrogen (ESR1) and progesterone (PGR) 

receptors, was markedly higher in differentiated HR+ derived cells (Fig. 2F, Suppl. Fig. S6A), 

while the activity of TNBC markers, such as FOXC159,60 and BCL11A61, as well as basal 

cytokeratin (KRT17), and vimentin (VIM)62,63, was higher in differentiated TNBC derived cells (Fig. 
2F, Suppl. Fig. S6B). To provide an objective baseline we leveraged KRT19, an established 

marker of luminal differentiation, whose NUMB-mediated interaction with WNT/NOTCH pathways 

is well documented64,65 and whose differential protein activity and differential gene expression 

could be effectively assessed in single cells. Indeed, differential expression of KRT19 was highly 

consistent with metaVIPER-measured KRT19 activity (Suppl. Fig. S7A-C), confirming VIPER-

based identification of luminal vs. basal cells. Compared to other cancers, such as colon cancer65, 

KRT19 holds special relevance in breast cancer, where its attenuated expression is strongly 

associated with poor prognosis and stemness64,65; consistent with these findings, KRT19 activity 

was also significantly lower in the PCA region associated with highest stemness (Fig. 2F).  

VIPER-inferred CSLCs are insensitive to paclitaxel: Rather than assessing self-renewal and 

multipotency as characteristics of bona fide CSLC state—still a rather controversial topic—we 
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focused on the more pragmatic and objective assessment of the differential sensitivity to paclitaxel 

by cells identified as CSLC by our analysis, which presents critical relevance to patient treatment. 

For this purpose, we analyzed single cells dissociated from PDX models established by 

transplantation of a human primary TNBC in the mammary fat pad of immunodeficient 

NOD/SCID/IL2Rg-/- (NSG) mice, which were treated with either vehicle control or paclitaxel for 14 

days after reaching a tumor volume of 100 mm3 (Fig. 3A; see STAR methods). 

First, we assessed the fidelity of PDX-derived, single-cell subpopulations to those dissociated 

from human samples. Single-cell analysis of a vehicle control-treated mouse confirmed prior 

findings from patient-derived samples. Specifically, based on protein activity analysis with 

metaVIPER, the 1st principal component (PC1) was again associated with cell differentiation and 

significantly correlated with both CytoTRACE score (Spearman’s ρ = 0.65, p ≤ 2.2×10-16, Suppl. 
Fig. S8A-B) and with overall activity of the 14 CSLC markers (ρ = 0.90, p ≤ 2.2×10-16, Suppl. Fig. 
S8C). More importantly, there was a highly significant overlap of proteins differentially active in 

cells with the highest vs. lowest Stemness Score in PDX vs. human samples, as evaluated by 

GSEA analysis (OncoMatch algorithm18) (NES = 7.97, p = 1.6×10-15). Finally, based on GSEA 

analysis of MSigDB hallmarks66, genes encoding for proteins associated with the 1st PC were 

highly enriched in hallmarks associated with cell developmental processes such as epithelial-

mesenchymal transition and myogenesis (p = 3.4×10-4 and p = 1.9×10-3, respectively) as well as 

PI3K-AKT-mTOR67 (p = 9.8×10-4), KRAS68 (p = 2.0×10-3), and P5369 (p = 2.0×10-3) pathways 

(Suppl. Table 1).  

Consistent with data from primary tumor tissues, differential expression of most CSLC markers in 

single cells isolated from PDX tissue was not informative or undetectable (Suppl. Fig. S9). 

However, at the protein activity level, the PCA regions with the highest activity of different CSLC 

markers—including CD49f, BMI1, CD44+/CD24, and NOTCH1/2—were largely overlapping in 

both human and mouse samples (Fig. 3B). Putative CSLCs from PDX samples (i.e., with highest 

Stemness Score) also presented high activity and expression of the established quiescent breast 

CSLC marker BIRC570 (Spearman's ρ = 0.53, p ≤ 2.2×10-16, Suppl. Fig. S10) and lower activity 

and expression of E2F family proteins (ρ = -0.69, p ≤  2.2×10-16, Suppl. Fig. S11), which 

transactivate genes for G1/S transition71. These differences were likely more evident in PDX 

samples because of faster growth kinetics, as compared to primary human tumors. These data 

suggest that CSLC are more quiescent than differentiated cells, thus providing additional rationale 
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for their paclitaxel resistance. Taken together, these data characterize the PDX as a high-fidelity 

model to study CSLC vs. differentiated cells18. 

Changes in CSLC vs. differentiated cell density following drug treatment were then assessed by 

computing the normalized ratio between the number of cells with the highest (SS ≥ 0.8, most 

CSLC) and lowest (SS ≤ 0.2, most differentiated) Stemness Score in paclitaxel vs. vehicle control-

treated samples, see STAR methods. Paclitaxel treatment induced striking depletion of 

differentiated cells vs. CSLCs (Fig. 3C) (p = 2.6×10-4, by Fisher’s exact test), thus confirming the 

expected paclitaxel resistance of CSLC compartment cells identified by VIPER analysis. 

Since the PDX was derived from a TNBC tumor, the 2nd PC could not be associated with HR 

status, as shown instead across the original 7 patient-derived samples. Rather, GSEA analysis 

revealed enrichment in two key categories, including cellular responses to DNA damage and 

oxidative stress, two hallmarks of paclitaxel mechanism of action (p = 1.9×10-11 and p =2.4×10-12, 

respectively, by GSEA) (Suppl. Table 1)72-74. Indeed, the cells that were least affected by the 

drug were those presenting both high stemness score and a low proliferative potential (upper right 

quadrant on the PCA plot). Yet, for any given value of the PC2 metagene, predicted CSLC were 

always less sensitive to treatment than their differentiated counterpart. Indeed, the density of cells 

with the highest stemness score was virtually unaffected by treatment.  

MR Analysis of human breast cancer cells. VIPER analysis has been effective in identifying 

candidate MR proteins representing mechanistic determinants of cell state75,76, as well as clinically 

validated biomarkers 77-81, see82 for a recent perspective. Critically, we have shown that VIPER-

inferred MRs are highly enriched in tumor-essential genes75,76,83, such that their pharmacologic 

targeting can abrogate tumor viability in vivo17-19. Equally important, we have shown that genetic 

or pharmacologic targeting of MRs that are differentially active in molecularly distinct 

transcriptional states can effectively reprogram cells between these states20,84,85. This suggests 

that elucidating candidate MRs of breast CSLC state may help identify drugs that either selectively 

ablate paclitaxel-resistant cells or reprogram them to a paclitaxel-sensitive state, thus providing a 

rationale for combination therapy. 

To discover the most conserved CSLC MRs across the available metastatic samples, we first 

leveraged metaVIPER to identify proteins whose transcriptional targets were most differentially 

expressed in the 20 cells with the highest vs. the 20 with the lowest Stemness Score in each 

individual patient, as well as in the PDX model, on an individual sample basis (see STAR 
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methods). As discussed, the most differentially active proteins are also those expected to be most 

likely to mechanistically regulate the cell state of interest, via their transcriptional targets. As 

previously shown18,19, the PDX model was included in the analysis to help prioritize MR-inverter 

drugs that are conserved in a model that may be leveraged for drug validation in vivo. 

As discussed, CytoTRACE was originally developed and validated only in a hematopoietic linage 

context15. As a result, for MR elucidation purposes, we decided to rely only on the differential 

activity of the 14 CSLC markers, including CD44+/CD24-, ITGA6, BMI1, SALL4, NOTCH1, 

NOTCH2, KLF4, CTNNB1, ITGB3, ITGB1, PROM1, POU5F1, SOX2, and KIT (see STAR 

methods). Indeed, while the enrichment of breast CSLC and stem-related markers in differentially 

active protein was still significant when CSLC were predicted by CytoTRACE analysis 

(NES = 2.57, p = 10-2), statistical significance increased substantially when relying only on the 

established CSLC markers (NES = 4.66, p = 3.2×10-6). Nevertheless, confirming that this choice 

has only minimal effects on MR analysis, statistically significantly MR proteins (p ≤  10-3, 

Bonferroni corrected) were highly overlapping when CytoTRACE was included or excluded from 

the analysis (p ≤ 1.2×10-44, by hypergeometric test). 

Surprisingly, independent analysis of each patient and of the PDX model produced highly 

consistent MR predictions, including across HR+ and TNBC samples (Fig. 4A, Fig. S12A-B), 

suggesting that CSLC MR proteins are conserved independent of tumor HR status. This provided 

the rationale for the generation of a consensus CSLC MR signature, obtained by ranking all 

proteins by integrating their metaVIPER NES across all samples, using the weighted Stouffer’s 

method (Fig. 4B, see STAR methods). Based on this analysis, in addition to the original 14 CSLC 

markers, other proteins broadly associated with stem cell processes—including ALDH family86,87, 

ABC family87, quiescent stem-cell markers (FGD588 and HOXB589), embryonic diapause90 and 

asymmetric cell division processes91 (Suppl. Table 2)—also emerged as significantly enriched 

among the most differentially active proteins (p = 2.0×10-12) (Suppl. Fig. S13). 

These results suggest that several of the most statistically significant differentially active proteins, 

not previously associated with breast CSLCs, may represent novel, bona fide MRs and potential 

biomarkers (Fig. 4C and Fig. S14-18, see also Suppl. Table 3), as later confirmed by 

CRISPR/Cas9-mediated KO (see next section). Among cell membrane-presented proteins, which 

may be leveraged for CSLC enrichment purposes, the analysis identified Integrin beta-8 (ITGB8) 

as the second most differentially active protein (after CD49f). ITGB8 was previously suggested 

as a marker of glioblastoma CSLCs92 and was identified as a prime receptor binding a latent 
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complex of transforming growth factor beta 1 and beta 3 (TGF-β1/β3) in the extracellular matrix, 

responsible for activating TGF-β-associated signaling. Despite its role in tumor suppression in the 

early stages of tumorigenesis, TGF-β has been shown to prompt stem-like properties in advanced 

cancers and to increase chemotherapy resistance by promoting DNA damage response pathway 

activation93-95. 

MR Modularity Analysis: A key question in network-based analyses is whether—similar to what 

has been shown in other contexts75,76,96—candidate MRs may comprise hyper-connected, 

autoregulated modules providing coordinated, homeostatic cell state regulation. For this purpose, 

we assessed whether metaVIPER-inferred CSLC MRs were statistically significantly enriched in 

protein-protein and transcriptional interactions—as reported in PrePPI97, STRING98, and 

ARACNe-based networks—compared to an equivalent number of same-class proteins selected 

at random. The analysis revealed that the top 20 CSLC MRs form a highly hyperconnected 

module, with 67 MR-MR interactions, compared to only 13.2 detected on average in an equal size 

set of randomly selected proteins (p = 6.6×10-7). This supports the potential role of this module 

as a homeostatic On/Off switch controlling CSLC state (Fig. 4D), further suggesting that its 

inactivation may induce transition toward a more differentiated, paclitaxel-sensitive state. 

CSLC MR validation by pooled, CRISPR-KO-mediated CROP-seq analysis: To validate the 

CSLC MRs inferred by these analyses, CRISPR droplet sequencing (CROP-seq) was used to 

assess whether KO of the 25 most significant MR of CSLC state (MRCSLC, i.e., most active proteins 

in CSLC vs. differentiated cells) and 25 most significant MRs of differentiated state (MRDIFF, i.e., 

most active proteins in differentiated cells vs. CSLCs) would induce reprogramming towards a 

more or less differentiated cell state, respectively. To optimally assess reprogramming, we 

selected two breast cancer cell lines that most effectively recapitulate the CSLC state, also 

assuming that all cell lines comprise differentiated cells. For this purpose, we assessed the 

enrichment of proteins in the consensus CSLC MR signature in proteins differentially active in 

each CCLE breast cancer cell line (based on bulk RNA-seq analysis), and ranked them from the 

one with the highest NES (HCC1143)—i.e., most likely to be enriched in CSLCs—to the one with 

the most negative NES (VP229)—i.e., most likely to be enriched in differentiated cells—(Suppl. 
Fig. S19). We then selected two of the most CSLC-enriched cell lines for CROP-seq assays, 

including HCC1143 (ranked No. 1) and HCC38 (ranked No. 3), which were also supported by 

literature evidence on CSLC content99,100.  Single-cell analyses confirmed that both cell lines had 

substantial CSLC representation, compared to two of the most differentiated cell lines (MCF7 and 
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HCC2557), with HCC1143 presenting a greater fraction of differentiated cells compared to 

HCC38, potentially due to spontaneous differentiation in culture conditions (Suppl. Fig. S20).    

The primary objective of CRISPR-Cas9-mediated gene knockout (CRISPR-KO) is to abrogate the 

function of the target protein. While it may reduce transcript copy number through mechanisms 

like nonsense-mediated decay, this effect is inconsistent and not generally detectable101. 

Therefore, we assessed KO efficiency based on VIPER-mediated analysis of the target protein in 

cells harboring the associated targeting guide RNAs (sgRNA) vs. non-targeting sgRNAs (see 

STAR methods).  For each MR, we used 3 distinct sgRNAs and disregarded the effect of sgRNAs 

detected in < 10 cells. This allowed computing the effect of CRISPR/Cas9-mediated MR-KO on 

cell state, using the scRNA-seq profile of 10 or more cells containing the same targeting sgRNA, 

compared to cells harboring intergenic control sgRNAs. We then plotted the resulting effect on 

cell state reprogramming in HCC38 and HCC1143 cells by integrating across all positive and 

negative MRs of CSLC state (Fig. 5A), as well as on an MR-by-MR basis (Fig. 5B). The 

expectation is that KO of positive and negative MRs will induce reprogramming towards a more 

or less differentiated state, respectively, as assessed by Stemness Score analysis. To avoid 

biasing the analysis, the MR directly targeted by a sgRNA in each cell was excluded from the 

Stemness Score assessment, such that only its downstream effectors were considered (see 

STAR methods). 

Based on Stemness Score analysis and fully consistent with predictions, MRCSLC KO induced 

significant shift of HCC38 cell state towards a differentiated state (p = 1.2×10-3, by Mann Whitney 

U Test). Given the small fraction of differentiated cells in this cell line (Suppl. Fig. S20), however, 

MRDIFF KO did not induce significant shift towards a CSLC state. In contrast, both MRDIFF KO and 

MRCSLC KO induced significant reprogramming towards a CSLC (p = 5.8×10-4) and differentiated 

state (p = 3.3×10-2), respectively, in HCC1143 cells, which comprise a more balanced ratio of 

CSLC and differentiated cells (Suppl. Fig. S20). When enrichment in genes associated with stem 

cell process-related genes (i.e., not breast cancer-specific) was considered (see Suppl. Table 3) 

the same statistically significant trends were observed (Suppl. Fig. S21).  

In summary, CROP-seq analysis produced highly consistent results in both cell lines, confirming 

the predicted role of most VIPER-inferred MRs. Note that the statistical significance of this 

analysis is quite underestimated, because both cell lines include a mixture of CSLC (low MRDIFF 

and high MRCSLC) and differentiated cells (high MRDIFF and low MRCSLC), while MR KO-mediated 
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effects can only be assessed in cells with high MR activity. As a result, the number of validated 

MRs is also likely to be underestimated. 

The library-normalized differential abundance of sgRNA guides targeting positive MRs was not 

statistically significant compared to control sgRNAs (Suppl. Fig. S22), confirming that these MRs 

have no effect on cell viability or proliferation. In contrast, differential abundance of sgRNAs 

targeting negative MRs was significantly lower (Suppl. Fig. S22), suggesting that the latter—

which includes cell proliferation and viability regulators—may include more essential proteins. 

The contribution of each individual MR to cell state reprogramming was then analyzed and is 

shown in Fig. 5B. For the 25 MRCSLC and 25 MRDIFF tested in this assay, we only considered 

sgRNAs inducing effective MR KO, based on the above-described criteria. As a result, only 16 of 

25 candidate MRSCLC (BMPR1A, MTDH, ZNF131, MAML3, GON4L, ZNF24, SMAD5, KLF3, 

UBP1, SMAD1, TMF1, XBP1, MIER1, VEZF1, ETV3, ZNF566, underlined are statistically 

significant at p ≤ 0.05, FDR corrected) and 9 of 25 candidate MRDIFF (PCBD1, RUVBL2, HDGF, 

RPS3, RORC, ENY2, PEX14, THAP8, PARK7) could be evaluated in HCC38. Similarly, in 

HCC1143 cells, only 15 of 25 MRSCLC (STAT3, BMPR1A, MTDH, ZNF131, GON4L, MYBL1, 

SMAD5, UBP1, NCOA1, SMAD1, TMF1, XBP1, VEZF1, ETV3, ZNF566) and 11 of 25 MRDIFF 

(PCBD1, RUVBL2, HDGF, PRDX2, YBX1, RORC, LAMTOR5, ENY2, THAP8, HLX, PARK7) 

could be evaluated.  

In summary, of 16 and 15 MRCSLC tested one or both cell lines, 15 (94%) and 10 (67%) were 

validated in at least one or both cell lines (p ≤ 0.05, FDR corrected), respectively. Similarly of 9 

and 11 MRDIFF tested one or both cell lines, 4 (44%) and 8 (73%) were validated in at least one or 

both cell lines (p ≤ 0.05, FDR corrected), respectively.  

CRISPR-mediated KO of the 5 most activated candidate MRSCLS proteins, by VIPER analysis, 

identified 2 (BMPR1A and ZNF141) capable of inducing highly significant (p ≤8.0×10-24 and p ≤

3.5×10-7, respectively for HCC38 and p ≤2.1×10-24 and p ≤4.2×10-6, respectively for HCC1143 

after FDR correction) Stemness Score decrease in both cell lines, confirming their mechanistic 

role in CSLC state regulation. Among these, ZNF131 was the only one previously associated with 

essentiality in these cell lines (gene dependence score = -1.76 for HCC38 and –2.16 for HCC1143 

by CERES 102, a copy-number correction method for computing gene essentiality). Indeed, 

ZNF131 KD-mediated centrosome fragmentation and cell viability decrease were previously 

reported in GBM103. This raises an important question related to the potential role of ZNF131 as 
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a CSLC-specific essential gene in breast cancer.  Similarly, CRISPR-mediated KO of the 5 most 

inactive candidate MRDIFF proteins, by VIPER analysis, identified PDBD1 capable of inducing 

statistically significant (p ≤ 0.022 for HCC38 and p ≤ 7.4×10-13 for HCC1143, FDR corrected) 

Stemness Score increase in both cell lines. Taken together, this confirms that VIPER-inferred 

MRs are highly enriched in mechanistic, causal determinants of CSLC state rather than pure 

gene/phenotype statistical associations. 

Identification of drugs able to invert stem-like MR programs. The high validation rate of 

VIPER-inferred MRs in the CROP-seq analysis suggests that MR-inverter drugs capable of 

inhibiting and activating the most positive and negative MRs, respectively, should induce CSLC 

differentiation, thus increasing their sensitivity to chemotherapy. Indeed, MR-mediated 

reprogramming of cell state has already been validated in multiple contexts, from de-

differentiation84, to reprogramming96,104 and trans-differentiation85,105. For this purpose, we 

leveraged the OncoTreat algorithm, which has proven highly effective in discovering MR-inverter 

drugs that were extensively validated in vivo, based on MR proteins inferred by VIPER analysis 

of both bulk17-19 and single-cell profiles20,21.  

OncoTreat relies on perturbational RNA-seq profiles representing the response of cells—selected 

based on their ability to phenocopy the MR activity signature of interest—to treatment with multiple 

drugs and vehicle control. Perturbational profile analysis, using VIPER, allows measuring the 

differential activity of each MR in drug vs. vehicle control-treated cells thus providing a quantitative 

assessment of the activity inversion across the entire MR-signature. For this purpose, we used 

previously generated perturbational profiles in the BT20 BRCA cell line, which strongly 

recapitulates the consensus CSLC MR signature (6th most significant among 62 BRCA cell lines 

in CCLE, (NES = 7.3 by enrichment analysis), Suppl. Fig. S22A-C). Specifically, BT20 cells were 

profiled at 24h following treatment with 90 clinically relevant drugs, including FDA-approved, late-

stage experimental oncology drugs (i.e., in Phase II and III clinical trials) and other selected 

drugs23 (Fig. 6A; Suppl. Tables 4,5). Transcriptional profiles were generated using PLATE-

seq23—a fully automated 96- and 384-well, microfluidic-based technology that is highly efficient 

and cost-effective—at an average depth of 2M reads. To optimize elucidation of drug mechanism 

of action (MoA), rather than activation of stress or death pathways, drugs were titrated at 1/10th 

of their EC50 concentration, based on 10-point dose response curves17. 

Analysis of proteins that were differentially active in drug vs. vehicle control-treated cells identified 

five protein clusters (M1 – M5) that were consistently activated or inactivated in response to 
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different drug subsets. These were significantly enriched in five main Gene Ontology (GO) 

pathways, including RNA splicing/Ribosome biogenesis (M1), Epigenetic modification/DNA 

methylation (M2), Cell cycle/Apoptosis (M3), Cellular response to steroid hormone stimulus and 

Stem cell population maintenance (M4), and Cell differentiation/Development (M5), respectively 

(Fig. 6A; Suppl. Table 4). Notably, drugs inducing activation or inversion (i.e., positive or negative 

NES) of breast CSLC MRs had opposite effects on the M4/M5 vs. M1/M2/M3 modules. 

Specifically, M5 proteins, which were associated with differentiation and developmental 

processes, were significantly activated by the drugs inducing strongest inversion of CSLC MR 

activity. In contrast, the drugs predicted to further activate the CSLC MR signature induced 

activation of M4 proteins, associated with stem cell population maintenance.  

Among the 17 statistically significant MR-inverter drugs predicted by OncoTreat (p ≤ 0.05, FDR 

corrected), the anthelmintic drug albendazole emerged as the most significant one (p = 4.0×10-4) 

(Fig. 6B; Suppl. Table 6). 

 
Albendazole validation in vivo: To experimentally validate albendazole’s ability to deplete the 

CSLC compartment in breast cancer, we extended the protocol used to study paclitaxel in PDX 

models to assess the effect of 14-day treatment in vivo with albendazole vs. vehicle control 

treatment, at the single-cell level. For these in vivo studies, albendazole was used at 1/3rd of its 

maximum tolerated dose in mice, consistent with assessment of MR-inversion potential at low 

concentration. Although albendazole is not an oncology drug, it has been shown to inhibit growth 

of some cancer cell lines and of a murine carcinoma, reportedly by inducing oxidative stress106-

108. Consistently, albendazole clustered separately from chemotherapeutic drugs (Fig. 6A), and 

its activity was associated with activation of cell differentiation pathways (Fig. 6A). 

Consistent with the paclitaxel analysis, depletion of CSLC vs. differentiated cell compartment was 

computed by measuring the ratio between the number of cells with the highest (SS ≥ 0.8) vs. 

lowest (SS ≤ 0.2) stemness score in albendazole vs. vehicle control-treated samples, normalized 

to the subpopulations size (see STAR methods). Whereby paclitaxel had induced dramatic 

increase in this ratio, indicating relative depletion of the differentiated tumor cell compartment 

(Fig. 3C), albendazole had the opposite effect (Fig. 7A), producing equally significant relative 

depletion of the breast CSLC compartment (p = 2.0×10-4, by Fisher’s exact test). When comparing 

albendazole to paclitaxel-treated tumors, relative changes in the density of the two compartments 
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were even more statistically significant (p = 3.0×10-12, by Fisher’s exact test) (Fig. 7B), suggesting 

a highly complementary effect. 

 
Albendazole synergizes with paclitaxel in a TNBC PDX model. Since albendazole and 

paclitaxel deplete complementary metastatic breast cancer cell compartments, it is reasonable to 

hypothesize that combining or alternating their administration may outperform either drug used 

as monotherapy. To test this hypothesis, we evaluated whether CSLC compartment depletion by 

repeated administration of albendazole would enhance the in vivo anti-tumor activity of paclitaxel. 

A PDX line, established from a human primary TNBC, was implanted in the mammary fat pad of 

NSG mice. When tumors reached a volume of 100 mm3, they were randomly enrolled to receive 

different treatments (paclitaxel monotherapy, albendazole monotherapy, albendazole + 

paclitaxel, and vehicle control) until six mice per arm were enrolled. Mice in the combination arms 

underwent two treatment cycles, separated by a 15-day drug holiday. Each cycle included 

albendazole-based sensitization for two weeks, starting at Day -13—defined as the day when a 

specific tumor reached a volume of 100 mm3—followed by three paclitaxel treatments (Day 1, 8 

and 15) (Fig. 7C). For monotherapy treatment, mice were treated for the same amount of time 

and on the same schedule with albendazole, paclitaxel, and vehicle control, independently.  

Paclitaxel monotherapy significantly reduced relative tumor volume (TV), compared to vehicle 

control (p = 0.0024), while albendazole was indistinguishable from vehicle control (p = 0.21) (Fig. 
7D; Suppl. Fig. S23). TV change was assessed from initiation of albendazole therapy (Day -13) 

through Day 49; during this period, the majority of vehicle control-treated animals (n = 5 of 6) 

required euthanasia, due to attaining the maximal allowed humane TV endpoint (median 

TV = 1543 mm3). Additionally, compared to vehicle control, albendazole monotherapy showed no 

significant improvement in disease control (p = 0.83) or overall survival (p = 0.63) (Suppl. Fig. 
S24). 

In sharp contrast, the albendazole + paclitaxel combination was associated with profound 

suppression of tumor growth, compared to both vehicle control (p = 1.7×10-4) and paclitaxel 

monotherapy (p = 0.015) (Fig. 7E). Drug synergy was further confirmed by Bliss independence 

analysis (p = 9.0×10-3) and translated into a statistically significant increase in overall survival 

(p = 0.02) (Suppl. Fig. S24). 
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Discussion 

Despite remarkable therapeutic advances, the prognosis for metastatic breast cancer patients 

remains dismal. Among the most critical obstacles to achieving a permanent eradication of the 

disease is the heterogeneity of tumor cell response to therapy. Indeed, while many 

chemotherapies and targeted therapies may be highly effective on subpopulations that contribute 

to the bulk of the malignant tissue, the presence of drug-resistant subpopulations within the same 

tumor mass inevitably leads to relapse and poor outcome. The cellular heterogeneity associated 

with pre-existing differential drug sensitivity can be of a genetic origin, for instance due to 

mutations in the active site of the target protein109 or to the presence of clonally distinct 

subpopulations with bypass or alternative mutations110. However, it is more often associated with 

the presence of epigenetically distinct transcriptional states with differential drug sensitivity—

either pre-existing1 or induced by cell adaptation111,112—some of which can plastically regenerate 

the full heterogeneity of the tumor113. This is especially relevant in the metastatic context, where 

tumors have already reached a high degree of heterogeneity, due to paracrine interaction 

differences at distinct distal sites. Consistently, progression to metastatic breast cancer 

dramatically reduces the probability of achieving complete and durable responses. Indeed, most 

metastatic breast cancer patients rapidly progress through multiple lines of anti-tumor treatment, 

and eventually end up receiving conventional chemotherapy, which typically provides only short-

term control of the disease.  

A growing body of evidence suggests that less differentiated breast cancer cells may be 

chemotherapy resistant, while retaining the ability to further differentiate and reconstitute the full 

heterogeneity of the tumor. These cells may thus play a key role in relapse to drug-resistant 

disease. Tumor cells with stem-like properties (CSLCs) and tumor initiating potential were first 

discovered in leukemia114,115 and later reported also in solid tumors, such as gliomas116,117, 

breast118, and colon cancer119. As a result, the identification of novel therapeutic approaches to 

specifically target the CSLC compartment represents a potentially impactful area of 

investigation120-122 and may help identify drugs that synergize with chemotherapy. Network-based, 

single-cell analysis of cells dissociated from metastatic breast cancer patients identified a well-

defined transcriptional state controlled by an exceedingly conserved repertoire of MR proteins—

including transcription factors and co-factors previously associated with mammary repopulation 

units and breast cancer stem cells—whose sensitivity to chemotherapy is dramatically reduced 

compared to differentiated breast cancer cells. Indeed—based on a consensus Stemness Score 

that combines both the CytoTRACE metric and the activity of 14 established BRCA stemness 
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marker proteins—there was highly significant association between cell stemness and 

chemotherapy resistance. This helped us identify a molecularly distinct subpopulation of 

chemotherapy resistant, poorly differentiated cells (CSLC for simplicity), based on the highly 

conserved repertoire of MR proteins that control their transcriptional state, across virtually all 

patients in the study. While this definition may encompass previously reported breast cancer stem 

cells, we use the term CSLC more broadly as it may also include an additional repertoire of 

undifferentiated, chemotherapy resistant progenitors. Thus, we make no claims that the CSLCs 

identified by our analysis represent bona fide tumor stem cells; rather, we show that they are 

chemotherapy resistant and would thus benefit from complementary therapeutic options. To 

enrich for CSLCs, we leveraged CD49f-based flow cytometry-based sorting of single cells 

dissociated from patient-derived samples. While CD49f is considered a marker of basal cells and 

is most highly expressed in a subset of cells from TNBC samples, previous results24-26 and our 

analysis confirmed that CD49f is also differentially expressed in CSLCs from HR+ patients. 

Indeed, its expression gradient was significantly correlated with the activity of 14 previously 

reported BRCA CLSC markers across all patients in the study, independent of HR status, thus 

justifying its use in our study. Confirming the value and accuracy of the proposed protein activity 

assessment methodology, CD49f was identified as significantly differentially active by metaVIPER 

in cells dissociated from human samples (Fig. 2E), even though its encoding gene, ITGA6, could 

not be identified as differentially expressed (Suppl. Fig. S5). This is fully consistent with the fact 

that these cells were FACS sorted with and without the associated antibody and highlights the 

limitations introduced by gene dropout effects in scRNA-seq profiles.  

Targeting the CSLC compartment may be accomplished by developing drugs that either 

preferentially kill these cells or reprogram them toward treatment-sensitive states. The latter 

strategy is supported by recent results in fields ranging from hematopoiesis, cancer, and 

diabetes84,85,105,123 where genetic or pharmacologic targeting of MR proteins—as identified by 

network-based VIPER/metaVIPER analyses—effectively reprogrammed the cell’s transcriptional 

state towards a different target state, thus also confirming their nature as mechanistic 

determinants of cellular state transitions.  An additional advantage of these approaches is that 

metaVIPER analysis effectively removes technical artifacts (batch effects) and non-functional 

gene expression differences, for instance due to inter-tumor CNA heterogeneity13,38, thus resulting 

in highly reproducible identification of MR proteins across samples from different patients.  

To confirm mechanistic control of the CSLC state by metaVIPER-inferred MRs we performed 

pooled CRISPR/Cas9-mediated KO of candidate MRs in two cell lines, followed by scRNA-seq 
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profiling, using the CROP-seq methodology. As shown, following CRISPR/Cas9-mediated KO, 

the vast majority of positive and negative CSLC MRs identified by metaVIPER analysis induced 

statistically significant reprogramming towards either a more differentiated or a more CSLC state, 

respectively, thus confirming the algorithm’s predictions. This includes four of the top five 

candidate MRs that had been previously nominated as potential players in CSLC biology but had 

not been experimentally validated, including STAT3124,125, MTDH126, ARID1A127, BMPR1A128, and 

ZNF131103, the first two of which had been proposed as key (co-)regulators of breast CSLCs, 

through the JAK/STAT3 and NF-kB pathways, respectively124-126. These two pathways are not 

only crucial in immune and inflammatory response but also pivotal for crosstalk between tumor 

and immune cells, especially in tumor microenvironment129. Moreover, the downstream effectors 

of these signaling pathways are often linked to cell survival and self-renewal as well as tumor 

proliferation, invasion, and metastasis130. Of these five metaVIPER-nominated MRs, only MTDH 

failed to induce statistically significant reprogramming in HCC38 and HCC1143 cells.   

With the possible exception of ZNF131, CRISPR/Cas9-mediated KO of positive CSLC MRs had 

virtually no effect on cell viability, confirming that cells were reprogrammed to a chemotherapy 

sensitive state and not selectively ablated. This supports the identification of the MR-inverter 

drugs via the OncoTreat algorithm, leading to the selection and in vivo experimental validation of 

the anthelmintic albendazole as a highly efficient mediator of CSLC reprogramming. Consistent 

with these findings, combination therapy with albendazole and paclitaxel resulted in more 

profound and durable responses, as compared to either monotherapy, leading to a statistically 

significant increase in overall survival of preclinical models. 

Remarkably, since metaVIPER identified a CSLC transcriptional state (and associated MR 

signature) that was virtually identical across all the tissues and models in this study, irrespective 

of hormone receptor status, we anticipate that the synergy between albendazole and paclitaxel in 

a PDX model from a metastatic TNBC patient may also be conserved in HR+ tumors, potentially 

in combination with hormonal blockade therapy, and may thus be relevant to a large fraction of 

metastatic breast cancer patients, especially since albendazole is well tolerated.  

In parasites, albendazole’s mechanism of action is mediated by high-affinity binding to beta 

tubulin. While the binding is quite selective for parasite tubulin, the drug retains some tubulin-

disrupting activity in cancer cells, even though no cytotoxicity is observed at clinically relevant 

concentrations. Consistently, there are a few tubulin-binding antineoplastic drugs in clinical 

trials—such as PTC596—that do not present the anti-mitotic cytotoxic effects of drugs such as 
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paclitaxel, which induce harmful myelosuppression. Indeed, no cytotoxic effects of albendazole 

were detected in this study, either in vitro or in vivo. While It has been hypothesized that drugs 

like PTC596 may work by modulating trafficking of CSLC proteins, like BMI-1, and DNA repair 

proteins, which may provide a partial rationale for albendazole’s effect in CSLCs, and despite its 

highly reproducible effects in vitro and in vivo, the precise mechanism of action by which 

albendazole inverts the activity of CSLC MRs remains to be elucidated and will be the subject of 

future research. Notably, even though the study was limited to 90 drugs, it identified 17 as 

statistically significant candidates to reprogram CSLCs to a paclitaxel-sensitive state. As a result, 

we expect that extending this highly cost-effective approach to much larger drug/compound 

libraries may reveal even more potent agents. 

Taken together, the data presented in this manuscript show that drugs targeting heterogeneous, 

drug-resistant subpopulations can be effectively identified by single-cell, network-based analyses 

and that non-oncology drugs may be effectively repurposed to enhance the therapeutic activity of 

anti-tumor agents, including chemotherapy. 

 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 23 

References 

1. Zhao, W., Dovas, A., Spinazzi, E.F., Levitin, H.M., Banu, M.A., Upadhyayula, P., Sudhakar, 
T., Marie, T., Otten, M.L., Sisti, M.B., et al. (2021). Deconvolution of cell type-specific drug 
responses in human tumor tissue with single-cell RNA-seq. Genome Med 13, 82. 
10.1186/s13073-021-00894-y. 

2. de Sousa, E.M.F., and Vermeulen, L. (2016). Wnt Signaling in Cancer Stem Cell Biology. 
Cancers (Basel) 8. 10.3390/cancers8070060. 

3. Takahashi-Yanaga, F., and Kahn, M. (2010). Targeting Wnt signaling: can we safely 
eradicate cancer stem cells? Clin Cancer Res 16, 3153-3162. 10.1158/1078-0432.CCR-09-
2943. 

4. Shimono, Y., Zabala, M., Cho, R.W., Lobo, N., Dalerba, P., Qian, D., Diehn, M., Liu, H., 
Panula, S.P., Chiao, E., et al. (2009). Downregulation of miRNA-200c links breast cancer 
stem cells with normal stem cells. Cell 138, 592-603. 10.1016/j.cell.2009.07.011. 

5. Clarke, M.F. (2019). Clinical and Therapeutic Implications of Cancer Stem Cells. N Engl J 
Med 380, 2237-2245. 10.1056/NEJMra1804280. 

6. Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, 
W., et al. (2018). Breast cancer development and progression: Risk factors, cancer stem 
cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 5, 77-106. 
10.1016/j.gendis.2018.05.001. 

7. Raymond, E., Hanauske, A., Faivre, S., Izbicka, E., Clark, G., Rowinsky, E.K., and Von Hoff, 
D.D. (1997). Effects of prolonged versus short-term exposure paclitaxel (Taxol) on human 
tumor colony-forming units. Anticancer Drugs 8, 379-385. 10.1097/00001813-
199704000-00011. 

8. Fillmore, C.M., and Kuperwasser, C. (2008). Human breast cancer cell lines contain stem-
like cells that self-renew, give rise to phenotypically diverse progeny and survive 
chemotherapy. Breast Cancer Res 10, R25. 10.1186/bcr1982. 

9. Nawara, H.M., Afify, S.M., Hassan, G., Zahra, M.H., Seno, A., and Seno, M. (2021). 
Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination 
Therapy. Biomedicines 9. 10.3390/biomedicines9050500. 

10. Bai, X., Ni, J., Beretov, J., Graham, P., and Li, Y. (2018). Cancer stem cell in breast cancer 
therapeutic resistance. Cancer Treat Rev 69, 152-163. 10.1016/j.ctrv.2018.07.004. 

11. Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D., Lam, J.S., 
Ailles, L.E., Wong, M., et al. (2009). Association of reactive oxygen species levels and 
radioresistance in cancer stem cells. Nature 458, 780-783. 10.1038/nature07733. 

12. Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., Li, H.I., and Eaves, 
C.J. (2006). Purification and unique properties of mammary epithelial stem cells. Nature 
439, 993-997. 10.1038/nature04496. 

13. Ding, H., Douglass, E.F., Jr., Sonabend, A.M., Mela, A., Bose, S., Gonzalez, C., Canoll, P.D., 
Sims, P.A., Alvarez, M.J., and Califano, A. (2018). Quantitative assessment of protein 
activity in orphan tissues and single cells using the metaVIPER algorithm. Nat Commun 9, 
1471. 10.1038/s41467-018-03843-3. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 24 

14. Alvarez, M.J., Shen, Y., Giorgi, F.M., Lachmann, A., Ding, B.B., Ye, B.H., and Califano, A. 
(2016). Functional characterization of somatic mutations in cancer using network-based 
inference of protein activity. Nat Genet 48, 838-847. 10.1038/ng.3593. 

15. Gulati, G.S., Sikandar, S.S., Wesche, D.J., Manjunath, A., Bharadwaj, A., Berger, M.J., 
Ilagan, F., Kuo, A.H., Hsieh, R.W., Cai, S., et al. (2020). Single-cell transcriptional diversity 
is a hallmark of developmental potential. Science 367, 405-411. 
10.1126/science.aax0249. 

16. Datlinger, P., Rendeiro, A.F., Schmidl, C., Krausgruber, T., Traxler, P., Klughammer, J., 
Schuster, L.C., Kuchler, A., Alpar, D., and Bock, C. (2017). Pooled CRISPR screening with 
single-cell transcriptome readout. Nat Methods 14, 297-301. 10.1038/nmeth.4177. 

17. Alvarez, M.J., Subramaniam, P.S., Tang, L.H., Grunn, A., Aburi, M., Rieckhof, G., 
Komissarova, E.V., Hagan, E.A., Bodei, L., Clemons, P.A., et al. (2018). A precision oncology 
approach to the pharmacological targeting of mechanistic dependencies in 
neuroendocrine tumors. Nat Genet 50, 979-989. 10.1038/s41588-018-0138-4. 

18. Vasciaveo, A., Arriaga, J.M., de Almeida, F.N., Zou, M., Douglass, E.F., Picech, F., Shibata, 
M., Rodriguez-Calero, A., de Brot, S., Mitrofanova, A., et al. (2023). OncoLoop: A Network-
Based Precision Cancer Medicine Framework. Cancer Discov 13, 386-409. 10.1158/2159-
8290.CD-22-0342. 

19. Mundi, P.S., Dela Cruz, F.S., Grunn, A., Diolaiti, D., Mauguen, A., Rainey, A.R., Guillan, K., 
Siddiquee, A., You, D., Realubit, R., et al. (2023). A Transcriptome-Based Precision 
Oncology Platform for Patient-Therapy Alignment in a Diverse Set of Treatment-Resistant 
Malignancies. Cancer discovery 13, 1386-1407. 10.1158/2159-8290.CD-22-1020. 

20. Obradovic, A., Ager, C., Turunen, M., Nirschl, T., Khosravi-Maharlooei, M., Iuga, A., 
Jackson, C.M., Yegnasubramanian, S., Tomassoni, L., Fernandez, E.C., et al. (2023). 
Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T 
cell master regulators. Cancer Cell 41, 933-949 e911. 10.1016/j.ccell.2023.04.003. 

21. Obradovic, A., Tomassoni, L., Yu, D., Guillan, K., Souto, K., Fraser, E., Bates, S., Drake, C.G., 
Saenger, Y., Cruz, F.D., et al. (2022). Case Study of Single-cell Protein Activity Based Drug 
Prediction for Precision Treatment of Cholangiocarcinoma. bioRxiv 2022.02.28.482410. 

22. Picelli, S., Faridani, O.R., Bjorklund, A.K., Winberg, G., Sagasser, S., and Sandberg, R. 
(2014). Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9, 171-181. 
10.1038/nprot.2014.006. 

23. Bush, E.C., Ray, F., Alvarez, M.J., Realubit, R., Li, H., Karan, C., Califano, A., and Sims, P.A. 
(2017). PLATE-Seq for genome-wide regulatory network analysis of high-throughput 
screens. Nat Commun 8, 105. 10.1038/s41467-017-00136-z. 

24. Lawson, J.C., Blatch, G.L., and Edkins, A.L. (2009). Cancer stem cells in breast cancer and 
metastasis. Breast Cancer Res Treat 118, 241-254. 10.1007/s10549-009-0524-9. 

25. Lawson, D.A., Bhakta, N.R., Kessenbrock, K., Prummel, K.D., Yu, Y., Takai, K., Zhou, A., 
Eyob, H., Balakrishnan, S., Wang, C.Y., et al. (2015). Single-cell analysis reveals a stem-cell 
program in human metastatic breast cancer cells. Nature 526, 131-135. 
10.1038/nature15260. 

26. Vassilopoulos, A., Chisholm, C., Lahusen, T., Zheng, H., and Deng, C.X. (2014). A critical 
role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 25 

Brca1-associated mouse model of breast cancer. Oncogene 33, 5477-5482. 
10.1038/onc.2013.516. 

27. Tian, L., Dong, X., Freytag, S., Le Cao, K.A., Su, S., JalalAbadi, A., Amann-Zalcenstein, D., 
Weber, T.S., Seidi, A., Jabbari, J.S., et al. (2019). Benchmarking single cell RNA-sequencing 
analysis pipelines using mixture control experiments. Nat Methods 16, 479-487. 
10.1038/s41592-019-0425-8. 

28. Wang, T., Li, B., Nelson, C.E., and Nabavi, S. (2019). Comparative analysis of differential 
gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinformatics 
20, 40. 10.1186/s12859-019-2599-6. 

29. Baran, Y., Bercovich, A., Sebe-Pedros, A., Lubling, Y., Giladi, A., Chomsky, E., Meir, Z., 
Hoichman, M., Lifshitz, A., and Tanay, A. (2019). MetaCell: analysis of single-cell RNA-seq 
data using K-nn graph partitions. Genome Biol 20, 206. 10.1186/s13059-019-1812-2. 

30. Hou, W., Ji, Z., Ji, H., and Hicks, S.C. (2020). A systematic evaluation of single-cell RNA-
sequencing imputation methods. Genome Biol 21, 218. 10.1186/s13059-020-02132-x. 

31. Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-
cell RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296. 
10.1186/s13059-019-1874-1. 

32. Li, X., Wang, K., Lyu, Y., Pan, H., Zhang, J., Stambolian, D., Susztak, K., Reilly, M.P., Hu, G., 
and Li, M. (2020). Deep learning enables accurate clustering with batch effect removal in 
single-cell RNA-seq analysis. Nat Commun 11, 2338. 10.1038/s41467-020-15851-3. 

33. Obradovic, A., Vlahos, L., Laise, P., Worley, J., Tan, X., Wang, A., and Califano, A. (2021). 
PISCES: A pipeline for the Systematic, Protein Activity-based Analysis of Single Cell RNA 
Sequencing Data. bioRxiv. 

34. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., and 
Califano, A. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory 
networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1, S7. 
10.1186/1471-2105-7-S1-S7. 

35. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., and Califano, A. (2005). 
Reverse engineering of regulatory networks in human B cells. Nat Genet 37, 382-390. 
10.1038/ng1532. 

36. Basso, K., Saito, M., Sumazin, P., Margolin, A.A., Wang, K., Lim, W.K., Kitagawa, Y., 
Schneider, C., Alvarez, M.J., Califano, A., and Dalla-Favera, R. (2010). Integrated 
biochemical and computational approach identifies BCL6 direct target genes controlling 
multiple pathways in normal germinal center B cells. Blood 115, 975-984. 10.1182/blood-
2009-06-227017. 

37. Obradovic, A., Chowdhury, N., Haake, S.M., Ager, C., Wang, V., Vlahos, L., Guo, X.V., 
Aggen, D.H., Rathmell, W.K., Jonasch, E., et al. (2021). Single-cell protein activity analysis 
identifies recurrence-associated renal tumor macrophages. Cell 184, 2988-3005 e2916. 
10.1016/j.cell.2021.04.038. 

38. Elyada, E., Bolisetty, M., Laise, P., Flynn, W.F., Courtois, E.T., Burkhart, R.A., Teinor, J.A., 
Belleau, P., Biffi, G., Lucito, M.S., et al. (2019). Cross-Species Single-Cell Analysis of 
Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated 
Fibroblasts. Cancer discovery 9, 1102-1123. 10.1158/2159-8290.CD-19-0094. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 26 

39. Piovan, E., Yu, J., Tosello, V., Herranz, D., Ambesi-Impiombato, A., Da Silva, A.C., Sanchez-
Martin, M., Perez-Garcia, A., Rigo, I., Castillo, M., et al. (2013). Direct reversal of 
glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 
24, 766-776. 10.1016/j.ccr.2013.10.022. 

40. Sheridan, C., Kishimoto, H., Fuchs, R.K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C.H., 
Goulet, R., Jr., Badve, S., and Nakshatri, H. (2006). CD44+/CD24- breast cancer cells exhibit 
enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 
8, R59. 10.1186/bcr1610. 

41. Tatetsu, H., Kong, N.R., Chong, G., Amabile, G., Tenen, D.G., and Chai, L. (2016). SALL4, 
the missing link between stem cells, development and cancer. Gene 584, 111-119. 
10.1016/j.gene.2016.02.019. 

42. BeLow, M., and Osipo, C. (2020). Notch Signaling in Breast Cancer: A Role in Drug 
Resistance. Cells 9. 10.3390/cells9102204. 

43. Yu, F., Li, J., Chen, H., Fu, J., Ray, S., Huang, S., Zheng, H., and Ai, W. (2011). Kruppel-like 
factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell 
migration and invasion. Oncogene 30, 2161-2172. 10.1038/onc.2010.591. 

44. Xu, X., Zhang, M., Xu, F., and Jiang, S. (2020). Wnt signaling in breast cancer: biological 
mechanisms, challenges and opportunities. Mol Cancer 19, 165. 10.1186/s12943-020-
01276-5. 

45. Lo, P.K., Kanojia, D., Liu, X., Singh, U.P., Berger, F.G., Wang, Q., and Chen, H. (2012). CD49f 
and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially 
derived from luminal progenitors and maintained by the integrin-TGFbeta signaling. 
Oncogene 31, 2614-2626. 10.1038/onc.2011.439. 

46. Vaillant, F., Asselin-Labat, M.L., Shackleton, M., Forrest, N.C., Lindeman, G.J., and 
Visvader, J.E. (2008). The mammary progenitor marker CD61/beta3 integrin identifies 
cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68, 7711-
7717. 10.1158/0008-5472.CAN-08-1949. 

47. Barnawi, R., Al-Khaldi, S., Colak, D., Tulbah, A., Al-Tweigeri, T., Fallatah, M., Monies, D., 
Ghebeh, H., and Al-Alwan, M. (2019). beta1 Integrin is essential for fascin-mediated 
breast cancer stem cell function and disease progression. Int J Cancer 145, 830-841. 
10.1002/ijc.32183. 

48. Brugnoli, F., Grassilli, S., Al-Qassab, Y., Capitani, S., and Bertagnolo, V. (2019). CD133 in 
Breast Cancer Cells: More than a Stem Cell Marker. J Oncol 2019, 7512632. 
10.1155/2019/7512632. 

49. Wang, Y.J., and Herlyn, M. (2015). The emerging roles of Oct4 in tumor-initiating cells. Am 
J Physiol Cell Physiol 309, C709-718. 10.1152/ajpcell.00212.2015. 

50. Leis, O., Eguiara, A., Lopez-Arribillaga, E., Alberdi, M.J., Hernandez-Garcia, S., Elorriaga, K., 
Pandiella, A., Rezola, R., and Martin, A.G. (2012). Sox2 expression in breast tumours and 
activation in breast cancer stem cells. Oncogene 31, 1354-1365. 10.1038/onc.2011.338. 

51. Lennartsson, J., and Ronnstrand, L. (2012). Stem cell factor receptor/c-Kit: from basic 
science to clinical implications. Physiol Rev 92, 1619-1649. 10.1152/physrev.00046.2011. 

52. Fultang, N., Chakraborty, M., and Peethambaran, B. (2021). Regulation of cancer stem 
cells in triple negative breast cancer. Cancer Drug Resist 4, 321-342. 
10.20517/cdr.2020.106. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 27 

53. Abd El-Maqsoud, N.M., and Abd El-Rehim, D.M. (2014). Clinicopathologic implications of 
EpCAM and Sox2 expression in breast cancer. Clin Breast Cancer 14, e1-9. 
10.1016/j.clbc.2013.09.006. 

54. Zhu, Y., Wang, Y., Guan, B., Rao, Q., Wang, J., Ma, H., Zhang, Z., and Zhou, X. (2014). C-kit 
and PDGFRA gene mutations in triple negative breast cancer. Int J Clin Exp Pathol 7, 4280-
4285. 

55. Ginestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., 
Jacquemier, J., Viens, P., Kleer, C.G., Liu, S., et al. (2007). ALDH1 is a marker of normal and 
malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem 
Cell 1, 555-567. 10.1016/j.stem.2007.08.014. 

56. Voduc, D., Cheang, M., and Nielsen, T. (2008). GATA-3 expression in breast cancer has a 
strong association with estrogen receptor but lacks independent prognostic value. Cancer 
Epidemiol Biomarkers Prev 17, 365-373. 10.1158/1055-9965.EPI-06-1090. 

57. Asselin-Labat, M.L., Sutherland, K.D., Barker, H., Thomas, R., Shackleton, M., Forrest, N.C., 
Hartley, L., Robb, L., Grosveld, F.G., van der Wees, J., et al. (2007). Gata-3 is an essential 
regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 
9, 201-209. 10.1038/ncb1530. 

58. Metovic, J., Borella, F., D'Alonzo, M., Biglia, N., Mangherini, L., Tampieri, C., Bertero, L., 
Cassoni, P., and Castellano, I. (2022). FOXA1 in Breast Cancer: A Luminal Marker with 
Promising Prognostic and Predictive Impact. Cancers (Basel) 14. 
10.3390/cancers14194699. 

59. Pan, H., Peng, Z., Lin, J., Ren, X., Zhang, G., and Cui, Y. (2018). Forkhead box C1 boosts 
triple-negative breast cancer metastasis through activating the transcription of 
chemokine receptor-4. Cancer Sci 109, 3794-3804. 10.1111/cas.13823. 

60. Wang, J., Xu, Y., Li, L., Wang, L., Yao, R., Sun, Q., and Du, G. (2017). FOXC1 is associated 
with estrogen receptor alpha and affects sensitivity of tamoxifen treatment in breast 
cancer. Cancer Med 6, 275-287. 10.1002/cam4.990. 

61. Khaled, W.T., Choon Lee, S., Stingl, J., Chen, X., Raza Ali, H., Rueda, O.M., Hadi, F., Wang, 
J., Yu, Y., Chin, S.F., et al. (2015). BCL11A is a triple-negative breast cancer gene with 
critical functions in stem and progenitor cells. Nat Commun 6, 5987. 
10.1038/ncomms6987. 

62. Chen, M.H., Yip, G.W., Tse, G.M., Moriya, T., Lui, P.C., Zin, M.L., Bay, B.H., and Tan, P.H. 
(2008). Expression of basal keratins and vimentin in breast cancers of young women 
correlates with adverse pathologic parameters. Mod Pathol 21, 1183-1191. 
10.1038/modpathol.2008.90. 

63. Tan, D.S., Marchio, C., Jones, R.L., Savage, K., Smith, I.E., Dowsett, M., and Reis-Filho, J.S. 
(2008). Triple negative breast cancer: molecular profiling and prognostic impact in 
adjuvant anthracycline-treated patients. Breast Cancer Res Treat 111, 27-44. 
10.1007/s10549-007-9756-8. 

64. Saha, S.K., Kim, K., Yang, G.M., Choi, H.Y., and Cho, S.G. (2018). Cytokeratin 19 (KRT19) 
has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and 
More Drug-Sensitive Cells. Int J Mol Sci 19. 10.3390/ijms19051423. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 28 

65. Saha, S.K., Yin, Y., Chae, H.S., and Cho, S.G. (2019). Opposing Regulation of Cancer 
Properties via KRT19-Mediated Differential Modulation of Wnt/beta-Catenin/Notch 
Signaling in Breast and Colon Cancers. Cancers (Basel) 11. 10.3390/cancers11010099. 

66. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P. 
(2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell 
Syst 1, 417-425. 10.1016/j.cels.2015.12.004. 

67. Xia, P., and Xu, X.Y. (2015). PI3K/Akt/mTOR signaling pathway in cancer stem cells: from 
basic research to clinical application. Am J Cancer Res 5, 1602-1609. 

68. Tokumaru, Y., Oshi, M., Katsuta, E., Yan, L., Satyananda, V., Matsuhashi, N., Futamura, M., 
Akao, Y., Yoshida, K., and Takabe, K. (2020). KRAS signaling enriched triple negative breast 
cancer is associated with favorable tumor immune microenvironment and better survival. 
Am J Cancer Res 10, 897-907. 

69. Ghatak, D., Das Ghosh, D., and Roychoudhury, S. (2020). Cancer Stemness: p53 at the 
Wheel. Front Oncol 10, 604124. 10.3389/fonc.2020.604124. 

70. Siddharth, S., Das, S., Nayak, A., and Kundu, C.N. (2016). SURVIVIN as a marker for 
quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of 
breast cancer metastasis. Clin Exp Metastasis 33, 661-675. 10.1007/s10585-016-9809-7. 

71. Bertoli, C., Skotheim, J.M., and de Bruin, R.A. (2013). Control of cell cycle transcription 
during G1 and S phases. Nat Rev Mol Cell Biol 14, 518-528. 10.1038/nrm3629. 

72. Branham, M.T., Nadin, S.B., Vargas-Roig, L.M., and Ciocca, D.R. (2004). DNA damage 
induced by paclitaxel and DNA repair capability of peripheral blood lymphocytes as 
evaluated by the alkaline comet assay. Mutat Res 560, 11-17. 
10.1016/j.mrgentox.2004.01.013. 

73. McCormick, B., Lowes, D.A., Colvin, L., Torsney, C., and Galley, H.F. (2016). MitoVitE, a 
mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and 
mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat 
pain model. Br J Anaesth 117, 659-666. 10.1093/bja/aew309. 

74. Ramanathan, B., Jan, K.Y., Chen, C.H., Hour, T.C., Yu, H.J., and Pu, Y.S. (2005). Resistance 
to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res 65, 8455-
8460. 10.1158/0008-5472.CAN-05-1162. 

75. Paull, E.O., Aytes, A., Jones, S.J., Subramaniam, P.S., Giorgi, F.M., Douglass, E.F., Tagore, 
S., Chu, B., Vasciaveo, A., Zheng, S., et al. (2021). A modular master regulator landscape 
controls cancer transcriptional identity. Cell 184, 334-351 e320. 
10.1016/j.cell.2020.11.045. 

76. Rajbhandari, P., Lopez, G., Capdevila, C., Salvatori, B., Yu, J., Rodriguez-Barrueco, R., 
Martinez, D., Yarmarkovich, M., Weichert-Leahey, N., Abraham, B.J., et al. (2018). Cross-
Cohort Analysis Identifies a TEAD4-MYCN Positive Feedback Loop as the Core Regulatory 
Element of High-Risk Neuroblastoma. Cancer discovery 8, 582-599. 10.1158/2159-
8290.CD-16-0861. 

77. Lassman, A.B., Wen, P.Y., van den Bent, M.J., Plotkin, S.R., Walenkamp, A.M.E., Green, 
A.L., Li, K., Walker, C.J., Chang, H., Tamir, S., et al. (2022). A Phase II Study of the Efficacy 
and Safety of Oral Selinexor in Recurrent Glioblastoma. Clin Cancer Res 28, 452-460. 
10.1158/1078-0432.CCR-21-2225. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 29 

78. Coutinho, D.F., Mundi, P.S., Marks, L.J., Burke, C., Ortiz, M.V., Diolaiti, D., Bird, L., Vallance, 
K.L., Ibanez, G., You, D., et al. (2022). Validation of a non-oncogene encoded vulnerability 
to exportin 1 inhibition in pediatric renal tumors. Med (N Y) 3, 774-791 e777. 
10.1016/j.medj.2022.09.002. 

79. Sweet, K., Bhatnagar, B., Dohner, H., Donnellan, W., Frankfurt, O., Heuser, M., Kota, V., 
Liu, H., Raffoux, E., Roboz, G.J., et al. (2021). A 2:1 randomized, open-label, phase II study 
of selinexor vs. physician's choice in older patients with relapsed or refractory acute 
myeloid leukemia. Leuk Lymphoma, 1-12. 10.1080/10428194.2021.1950706. 

80. Chari, A., Vogl, D.T., Gavriatopoulou, M., Nooka, A.K., Yee, A.J., Huff, C.A., Moreau, P., 
Dingli, D., Cole, C., Lonial, S., et al. (2019). Oral Selinexor-Dexamethasone for Triple-Class 
Refractory Multiple Myeloma. N Engl J Med 381, 727-738. 10.1056/NEJMoa1903455. 

81. Landsburg, D.J., Barta, S.K., Ramchandren, R., Batlevi, C., Iyer, S., Kelly, K., Micallef, I.N., 
Smith, S.M., Stevens, D.A., Alvarez, M., et al. (2021). Fimepinostat (CUDC-907) in patients 
with relapsed/refractory diffuse large B cell and high-grade B-cell lymphoma: report of a 
phase 2 trial and exploratory biomarker analyses. Br J Haematol 195, 201-209. 
10.1111/bjh.17730. 

82. Califano, A., and Alvarez, M.J. (2017). The recurrent architecture of tumour initiation, 
progression and drug sensitivity. Nat Rev Cancer 17, 116-130. 10.1038/nrc.2016.124. 

83. Walsh, L.A., Alvarez, M.J., Sabio, E.Y., Reyngold, M., Makarov, V., Mukherjee, S., Lee, K.W., 
Desrichard, A., Turcan, S., Dalin, M.G., et al. (2017). An Integrated Systems Biology 
Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis. Cell Rep 
20, 1623-1640. 10.1016/j.celrep.2017.07.052. 

84. Arumugam, K., Shin, W., Schiavone, V., Vlahos, L., Tu, X., Carnevali, D., Kesner, J., Paull, 
E.O., Romo, N., Subramaniam, P., et al. (2020). The Master Regulator Protein BAZ2B Can 
Reprogram Human Hematopoietic Lineage-Committed Progenitors into a Multipotent 
State. Cell Rep 33, 108474. 10.1016/j.celrep.2020.108474. 

85. Talos, F., Mitrofanova, A., Bergren, S.K., Califano, A., and Shen, M.M. (2017). A 
computational systems approach identifies synergistic specification genes that facilitate 
lineage conversion to prostate tissue. Nature communications 8, 14662. 
10.1038/ncomms14662. 

86. Toledo-Guzman, M.E., Hernandez, M.I., Gomez-Gallegos, A.A., and Ortiz-Sanchez, E. 
(2019). ALDH as a Stem Cell Marker in Solid Tumors. Curr Stem Cell Res Ther 14, 375-388. 
10.2174/1574888X13666180810120012. 

87. Begicevic, R.R., and Falasca, M. (2017). ABC Transporters in Cancer Stem Cells: Beyond 
Chemoresistance. Int J Mol Sci 18. 10.3390/ijms18112362. 

88. Gazit, R., Mandal, P.K., Ebina, W., Ben-Zvi, A., Nombela-Arrieta, C., Silberstein, L.E., and 
Rossi, D.J. (2014). Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J 
Exp Med 211, 1315-1331. 10.1084/jem.20130428. 

89. Chen, J.Y., Miyanishi, M., Wang, S.K., Yamazaki, S., Sinha, R., Kao, K.S., Seita, J., Sahoo, D., 
Nakauchi, H., and Weissman, I.L. (2016). Hoxb5 marks long-term haematopoietic stem 
cells and reveals a homogenous perivascular niche. Nature 530, 223-227. 
10.1038/nature16943. 

90. Rehman, S.K., Haynes, J., Collignon, E., Brown, K.R., Wang, Y., Nixon, A.M.L., Bruce, J.P., 
Wintersinger, J.A., Singh Mer, A., Lo, E.B.L., et al. (2021). Colorectal Cancer Cells Enter a 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 30 

Diapause-like DTP State to Survive Chemotherapy. Cell 184, 226-242 e221. 
10.1016/j.cell.2020.11.018. 

91. Ting, S.B., Deneault, E., Hope, K., Cellot, S., Chagraoui, J., Mayotte, N., Dorn, J.F., 
Laverdure, J.P., Harvey, M., Hawkins, E.D., et al. (2012). Asymmetric segregation and self-
renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2. Blood 119, 
2510-2522. 10.1182/blood-2011-11-393272. 

92. Guerrero, P.A., Tchaicha, J.H., Chen, Z., Morales, J.E., McCarty, N., Wang, Q., Sulman, E.P., 
Fuller, G., Lang, F.F., Rao, G., and McCarty, J.H. (2017). Glioblastoma stem cells exploit the 
alphavbeta8 integrin-TGFbeta1 signaling axis to drive tumor initiation and progression. 
Oncogene 36, 6568-6580. 10.1038/onc.2017.248. 

93. Barcellos-Hoff, M.H., and Akhurst, R.J. (2009). Transforming growth factor-beta in breast 
cancer: too much, too late. Breast Cancer Res 11, 202. 10.1186/bcr2224. 

94. Bellomo, C., Caja, L., and Moustakas, A. (2016). Transforming growth factor beta as 
regulator of cancer stemness and metastasis. Br J Cancer 115, 761-769. 
10.1038/bjc.2016.255. 

95. Bhola, N.E., Balko, J.M., Dugger, T.C., Kuba, M.G., Sanchez, V., Sanders, M., Stanford, J., 
Cook, R.S., and Arteaga, C.L. (2013). TGF-beta inhibition enhances chemotherapy action 
against triple-negative breast cancer. J Clin Invest 123, 1348-1358. 10.1172/JCI65416. 

96. Laise, P., Turunen, M., Maurer, H.C., Curiel, A.G., Elyada, E., Schmierer, B., Tomassoni, L., 
Worley, J., Alvarez, M.J., Kesner, J., et al. (2021). Pancreatic Ductal Adenocarcinoma 
Comprises Coexisting Regulatory States with both Common and Distinct Dependencies. 
bioRxiv 2020.10.27.357269. 

97. Zhang, Q.C., Petrey, D., Deng, L., Qiang, L., Shi, Y., Thu, C.A., Bisikirska, B., Lefebvre, C., 
Accili, D., Hunter, T., et al. (2012). Structure-based prediction of protein-protein 
interactions on a genome-wide scale. Nature 490, 556-560. 10.1038/nature11503. 

98. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., 
Minguez, P., Bork, P., von Mering, C., and Jensen, L.J. (2013). STRING v9.1: protein-protein 
interaction networks, with increased coverage and integration. Nucleic Acids Res 41, 
D808-815. 10.1093/nar/gks1094. 

99. Prat, A., Karginova, O., Parker, J.S., Fan, C., He, X., Bixby, L., Harrell, J.C., Roman, E., Adamo, 
B., Troester, M., and Perou, C.M. (2013). Characterization of cell lines derived from breast 
cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. 
Breast Cancer Res Treat 142, 237-255. 10.1007/s10549-013-2743-3. 

100. Yamamoto, M., Taguchi, Y., Ito-Kureha, T., Semba, K., Yamaguchi, N., and Inoue, J. (2013). 
NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-
like breast cancer subtype. Nat Commun 4, 2299. 10.1038/ncomms3299. 

101. Ishibashi, A., Saga, K., Hisatomi, Y., Li, Y., Kaneda, Y., and Nimura, K. (2020). A simple 
method using CRISPR-Cas9 to knock-out genes in murine cancerous cell lines. Sci Rep 10, 
22345. 10.1038/s41598-020-79303-0. 

102. Meyers, R.M., Bryan, J.G., McFarland, J.M., Weir, B.A., Sizemore, A.E., Xu, H., Dharia, N.V., 
Montgomery, P.G., Cowley, G.S., Pantel, S., et al. (2017). Computational correction of 
copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer 
cells. Nat Genet 49, 1779-1784. 10.1038/ng.3984. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 31 

103. Ding, Y., Herman, J.A., Toledo, C.M., Lang, J.M., Corrin, P., Girard, E.J., Basom, R., Delrow, 
J.J., Olson, J.M., and Paddison, P.J. (2017). ZNF131 suppresses centrosome fragmentation 
in glioblastoma stem-like cells through regulation of HAUS5. Oncotarget 8, 48545-48562. 
10.18632/oncotarget.18153. 

104. Carro, M.S., Lim, W.K., Alvarez, M.J., Bollo, R.J., Zhao, X., Snyder, E.Y., Sulman, E.P., Anne, 
S.L., Doetsch, F., Colman, H., et al. (2010). The transcriptional network for mesenchymal 
transformation of brain tumours. Nature 463, 318-325. nature08712 [pii] 
10.1038/nature08712. 

105. Dutta, A., Le Magnen, C., Mitrofanova, A., Ouyang, X., Califano, A., and Abate-Shen, C. 
(2016). Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that 
controls prostate differentiation. Science 352, 1576-1580. 10.1126/science.aad9512. 

106. Hou, Z.J., Luo, X., Zhang, W., Peng, F., Cui, B., Wu, S.J., Zheng, F.M., Xu, J., Xu, L.Z., Long, 
Z.J., et al. (2015). Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-
like cells. Oncotarget 6, 6326-6340. 10.18632/oncotarget.3436. 

107. Kim, U., Shin, C., Kim, C.Y., Ryu, B., Kim, J., Bang, J., and Park, J.H. (2021). Albendazole 
exerts antiproliferative effects on prostate cancer cells by inducing reactive oxygen 
species generation. Oncol Lett 21, 395. 10.3892/ol.2021.12656. 

108. Castro, L.S., Kviecinski, M.R., Ourique, F., Parisotto, E.B., Grinevicius, V.M., Correia, J.F., 
Wilhelm Filho, D., and Pedrosa, R.C. (2016). Albendazole as a promising molecule for 
tumor control. Redox Biol 10, 90-99. 10.1016/j.redox.2016.09.013. 

109. Jia, Y., Yun, C.H., Park, E., Ercan, D., Manuia, M., Juarez, J., Xu, C., Rhee, K., Chen, T., Zhang, 
H., et al. (2016). Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-
selective allosteric inhibitors. Nature 534, 129-132. 10.1038/nature17960. 

110. Dagogo-Jack, I., and Shaw, A.T. (2018). Tumour heterogeneity and resistance to cancer 
therapies. Nature reviews. Clinical oncology 15, 81-94. 10.1038/nrclinonc.2017.166. 

111. Beltran, H., Rickman, D.S., Park, K., Chae, S.S., Sboner, A., MacDonald, T.Y., Wang, Y., 
Sheikh, K.L., Terry, S., Tagawa, S.T., et al. (2011). Molecular characterization of 
neuroendocrine prostate cancer and identification of new drug targets. Cancer discovery 
1, 487-495. 10.1158/2159-8290.CD-11-0130. 

112. Goyal, Y., Busch, G.T., Pillai, M., Li, J., Boe, R.H., Grody, E.I., Chelvanambi, M., Dardani, I.P., 
Emert, B., Bodkin, N., et al. (2023). Diverse clonal fates emerge upon drug treatment of 
homogeneous cancer cells. Nature. 10.1038/s41586-023-06342-8. 

113. Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman, A.R., 
Silverbush, D., Shaw, M.L., Hebert, C.M., et al. (2019). An Integrative Model of Cellular 
States, Plasticity, and Genetics for Glioblastoma. Cell 178, 835-849 e821. 
10.1016/j.cell.2019.06.024. 

114. Diener, J., and Sommer, L. (2021). Reemergence of neural crest stem cell-like states in 
melanoma during disease progression and treatment. Stem Cells Transl Med 10, 522-533. 
10.1002/sctm.20-0351. 

115. Pearce, D.J., Taussig, D., Simpson, C., Allen, K., Rohatiner, A.Z., Lister, T.A., and Bonnet, D. 
(2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord 
blood and acute myeloid leukemia samples. Stem Cells 23, 752-760. 
10.1634/stemcells.2004-0292. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 32 

116. Alcantara Llaguno, S.R., and Parada, L.F. (2016). Cell of origin of glioma: biological and 
clinical implications. Br J Cancer 115, 1445-1450. 10.1038/bjc.2016.354. 

117. Chen, J., Li, Y., Yu, T.S., McKay, R.M., Burns, D.K., Kernie, S.G., and Parada, L.F. (2012). A 
restricted cell population propagates glioblastoma growth after chemotherapy. Nature 
488, 522-526. 10.1038/nature11287. 

118. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). 
Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 
3983-3988. 10.1073/pnas.0530291100. 

119. Dylla, S.J., Beviglia, L., Park, I.K., Chartier, C., Raval, J., Ngan, L., Pickell, K., Aguilar, J., 
Lazetic, S., Smith-Berdan, S., et al. (2008). Colorectal cancer stem cells are enriched in 
xenogeneic tumors following chemotherapy. PLoS One 3, e2428. 
10.1371/journal.pone.0002428. 

120. Eyler, C.E., and Rich, J.N. (2008). Survival of the fittest: cancer stem cells in therapeutic 
resistance and angiogenesis. J Clin Oncol 26, 2839-2845. 10.1200/JCO.2007.15.1829. 

121. Gupta, P.B., Onder, T.T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R.A., and Lander, 
E.S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput 
screening. Cell 138, 645-659. 10.1016/j.cell.2009.06.034. 

122. Levina, V., Marrangoni, A.M., DeMarco, R., Gorelik, E., and Lokshin, A.E. (2008). Drug-
selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic 
properties. PLoS One 3, e3077. 10.1371/journal.pone.0003077. 

123. Son, J., Ding, H., Farb, T.B., Efanov, A.M., Sun, J., Gore, J.L., Syed, S.K., Lei, Z., Wang, Q., 
Accili, D., and Califano, A. (2021). BACH2 inhibition reverses beta cell failure in type 2 
diabetes models. J Clin Invest 131. 10.1172/JCI153876. 

124. Jin, W. (2020). Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition 
of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal 
Transition. Cells 9. 10.3390/cells9010217. 

125. Galoczova, M., Coates, P., and Vojtesek, B. (2018). STAT3, stem cells, cancer stem cells 
and p63. Cell Mol Biol Lett 23, 12. 10.1186/s11658-018-0078-0. 

126. Liang, Y., Hu, J., Li, J., Liu, Y., Yu, J., Zhuang, X., Mu, L., Kong, X., Hong, D., Yang, Q., and Hu, 
G. (2015). Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits 
in Breast Cancer. Cancer Res 75, 3672-3680. 10.1158/0008-5472.CAN-15-0930. 

127. Hiramatsu, Y., Fukuda, A., Ogawa, S., Goto, N., Ikuta, K., Tsuda, M., Matsumoto, Y., 
Kimura, Y., Yoshioka, T., Takada, Y., et al. (2019). Arid1a is essential for intestinal stem 
cells through Sox9 regulation. Proc Natl Acad Sci U S A 116, 1704-1713. 
10.1073/pnas.1804858116. 

128. Wegleiter, T., Buthey, K., Gonzalez-Bohorquez, D., Hruzova, M., Bin Imtiaz, M.K., Abegg, 
A., Mebert, I., Molteni, A., Kollegger, D., Pelczar, P., and Jessberger, S. (2019). 
Palmitoylation of BMPR1a regulates neural stem cell fate. Proc Natl Acad Sci U S A 116, 
25688-25696. 10.1073/pnas.1912671116. 

129. Fan, Y., Mao, R., and Yang, J. (2013). NF-kappaB and STAT3 signaling pathways 
collaboratively link inflammation to cancer. Protein Cell 4, 176-185. 10.1007/s13238-013-
2084-3. 

130. Rinkenbaugh, A.L., and Baldwin, A.S. (2016). The NF-kappaB Pathway and Cancer Stem 
Cells. Cells 5. 10.3390/cells5020016. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


 33 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


UMI
count
matrix

Cell 1 Cell 2 Cell n

Gene 1 1 . 4

Gene 2 . 1 .

Gene x 8 1 2

UMI-count 
matrix

PISCES
analysis

OncoTreat
drug prediction

TNBC PDX 
treatment

scRNA-seq+VIPER

Tumor volume
measurement

BRCA tumor
resection

dissociation to
single-cells

FACS
single-cell library prep

CD49fhigh

broad gating

Sequencing

A

B

Figure 1. Overview of the workflow. A. The experimental workflow for generating scRNA-seq data
from breast cancer cells from patient samples. FACS was used to enrich CSLCs. B. A systems
biology approach to identifying a candidate drug targeting the CSLCs and subsequent experimental
validations.
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Figure 2. Analysis of scRNA-seq data for 7 breast cancer patient samples. Cells were clustered
based on the first two principal components of the cell’s gene expression (A) and the protein activity
inferred by VIPER (B-F). In A and B, cells are colored according to the patient they came from. C.
The breast cancer subclasses (HR+, weakly HR+, and TN) are shown. D. The degree of each cell’s
stemness is indicated using a green-grey-purple color gradient, corresponding to the degree of
stemness from one (most stem-like) to zero (most differentiated). The stemness degree was estimated
based on the combination of the CytoTRACE score and the protein activities of well-known
stemness markers: CD44+/CD24-, ITGA6, BMI1, SALL4, NOTCH1, NOTCH2, KLF4, CTNNB1,
ITGB3, ITGB1, PROM1, POU5F1, SOX2, and KIT (see Methods). This stemness degree score was
re-scaled to the range between 0 and 1. E. The VIPER-inferred protein activity (centered) of
individual breast CLSC markers. From the highest to the lowest, activity is shown with a red-white-
blue color gradient (white = mean). F. The VIPER-inferred protein activity of HR+ markers (FOXA1
and GATA3), TNBC makers (FOXC1 and BCL11A), and a differentiated-cell marker (KRT19).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3. A. Workflow for scRNA-seq analysis of a TNBC PDX model. B. The VIPER-inferred activities of
established breast CSLC markers in the vehicle control. C. Effect of Paclitaxel on the TNBC PDX cells. The cells
were clustered based on the first two principal components of VIPER-inferred protein activity profiles under
vehicle- and drug-treated conditions (see Methods). Based on the degree of stemness, cells were colored in a green-
grey-purple color scheme (green: more stem-like cells, purple: more differentiated cells). The stemness degree was
estimated by the combination of the CytoTRACE score and the protein activities of stemness markers
(CD44+/CD24-, ITGA6, BMI1, SALL4, NOTCH1, NOTCH2, KLF4, CTNNB1, ITGB3, ITGB1, PROM1,
POU5F1, SOX2, and KIT) (see Methods). The estimated stemness degree score was rescaled to the range of 0-1.
The area in yellow indicates a boundary of the cell cluster which 95% of cells in the control fall into. Cell density
change (z-score) is shown with contour lines in the PDX sample treated with paclitaxel. The red and blue contour
lines denote an increase or decrease, respectively, in cell densities under drug treatment compared to the control.
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Figure 4. A. A heatmap showing the VIPER-inferred protein activity of the 25 most activated and the 25
most inactivated proteins in the breast CSLC signature and their activities in individual samples (7
patient samples and the PDX vehicle-treated sample). For each sample, differential protein activity from
non-CSLCs to CSLC was computed using metaVIPER. The overall CSLC signature was obtained by the
weighted average of the protein activities across samples. A larger positive (or negative) value in the
signature means that the protein was more (or less) activated in CSLCs than in non-CSLCs. If there is
little change in protein activity between non-CSLCs and CSLCs, the value approaches zero. Note that
CSLCs and non-CSLCs were identified based on the average activity of the following CSLC markers in
the sample: CD44+/CD24-, ITGA6, BMI1, SALL4, NOTCH1, NOTCH2, KLF4, CTNNB1, ITGB3,
ITGB1, PROM1, POU5F1, SOX2, and KIT. B. A waterfall plot displaying the sorted protein activities in
the breast CSLC signature, in which the signatures of individual samples were integrated using weighted
Stouffer’s method. In this plot, the NES of the 14 breast CSLC markers is shown. C. Top 10 activated
proteins in the identified signature and their protein activities in the patient data. D. Top 20
transcriptional regulators in the identified breast CSLC signature and their interactions identified by
ARACNe, PrePPI, and STRING tools.
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Figure 5. A. Cellular reprogramming after knocking out the top 25 most activated MRs (MRCSLC) and the 25
most inactivated MRs (MRDIFF) of breast CSLC signature, compared to the effects in the control sgRNA group
for the breast cancer cell lines HCC38 and HCC1143. For each sgRNA, the VIPER-inferred protein activity
profiles were generated from the pseudo-bulk expression of cells detected with the same sgRNA. The knockout
(KO) efficiency was determined based on the threshold of one standard deviation below the target gene’s mean
protein activity. The enrichment score of the 50-MR set (MRCSLC and MRDIFF) was investigated in the protein
activity profiles for each group of MRCSLC and MRDIFF (A) and for each sgRNA (B) to assess the effects of
cellular reprogramming for both HCC38 and HCC1143 cell lines. To assess the reprogramming effects of each
sgRNA, pseudo-bulk expressions were bootstrapped by resampling cells with the same sgRNA with
replacement. Lower NES signifies greater differentiation. Error bars indicate the 1st and 3rd quartiles of NES
for the reprogramming effects of multiple sgRNAs targeting the same MR in B. The effect of each MR on cell
proliferation in the CROP-seq experiment is indicated by the gene dependency score, using a green-white-
purple gradient where darker purple = greater dependence. White/green indicates no significant reduction in the
proliferation rate when that MR is knocked out.
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Figure 6 A. Bi-clustered drug perturbation profiles for the breast cancer cell line BT20. In the heatmap, the rows and
columns are drug samples (24h, 1/10th EC20) and master regulator proteins (FDRBCSC<1×10-5), respectively. The activated
and inactivated proteins are shown in red and blue, and the protein activities with no change are shown in white. B. The
enrichment plot of the top 10 drugs, predicted from the perturbation profiles with 24h treatment at 1/10th the drug’s EC20
in BT20 using OncoTreat analysis. The magenta and turquoise bars denote the top 25 most activated proteins and the top
25 most inactivated proteins in the breast CSLC signature, respectively, which were derived from the 7 patient samples. In
each plot, these 50 proteins (i.e. magenta and turquoise bars) were mapped to their corresponding activity in a drug sample.
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Figure 7. A. Analysis of scRNA-seq data showing the effect of albendazole on cells taken from a
TNBC PDX model. The red and blue contour lines denote an increase or decrease, respectively, in cell
densities under drug treatment compared to the vehicle control. The area in yellow indicates a
boundary of the cell cluster into which 95% of cells in the control fall. B. The cell-count ratios
between the stem-like (stemness score > 0.8) and differentiated (stemness score < 0.2) cells under the
treatments of paclitaxel and albendazole compared to vehicle control. Based on Fisher’s exact tests,
the differences between the treatments are statistically significant (p-value < 0.001) compared to the
ratio in the control. C. Schematic view of combination therapies used in the preclinical tests. D. Mean
relative tumor volumes over time under individual therapeutic strategies. Biological replicates were
averaged, and the error bar indicates one standard error of the mean. Mice were treated with
albendazole 3 times weekly for two weeks (Day -13 to Day 0) before the start date of the combined
drug therapy with paclitaxel to sensitize the tumor cells. Mice with albendazole monotherapy were
treated for the same amount of time as those in the combination therapy (Day 0 to Day 49). E. A
comparison of the tumor growth rates during the 1st cycle of drug treatments. Differences between
mean growth rates were tested for statistical significance using Tukey’s honest significance test
(*p<0.05, **p<0.01, ***p<0.001). Tumor growth rates were calculated assuming exponential kinetics
from 1 to 18 days. The error bar indicates one standard deviation from the mean growth rates.
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Figure S1. FACS of a human metastatic breast cancer tissue (patient S1). Malignant epithelial cells
were isolated based on EPCAM+ and CD49fhigh and subjected to scRNA-seq.
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Figure S2. Inferred copy number variations in breast cancer patient samples (S1-S7) by inferCNV.
Normal breast epithelial cells containing one basal (B) and two luminal (L1 and L2) subtypes from 4
individuals (GSE113196) were used as reference. In the patient samples, S1 and S2 were weakly
HR+, S2, S3, and S4 were strongly HR+, and S5 and S7 were TNBCs, according to
immunohistochemistry (IHC).
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Figure S3. A. The CytoTRACE prediction in the patient scRNA-seq data. Cells were colored with a
green-grey-purple gradient corresponding to the CytoTRACE score from one (least differentiated) to
zero (most differentiated). B. The correlation between the CytoTRACE score and the average activity
of breast CSC markers in the patient samples. The following proteins were considered as breast CSC
markers in the patient data: CD44+/CD24-, ITGA6, BMI1, SALL4, NOTCH1, NOTCH2, KLF4,
CTNNB1, ITGB3, ITGB1, PROM1, POU5F1, SOX2, and KIT. The correlation between CytoTRACE
and the maker’s activity was statistically significant (Spearman’s rho=0.43, p-value<0.001).
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Figure S4. The inferred activity of several breast CSC markers, namely ITGB3, ITGB1, PROM1,
POU5F1, SOX2, and KIT. Note that the VIPER-inferred activities were centered in this visualization.
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Figure S5. Gene expression (log2CPM) of known breast CSLC markers. The same PCA mapping
based on the protein activity was used for the comparison. Note that only the gene expression greater
than the upper quantile is shown for visualization purposes.
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Figure S6. The inferred activity of breast cancer subtype markers. A. Two HRs (ESR1 and PGR). B.
A basal-type marker (KRT17) and non-HR+ marker (VIM). While ESR1 and PGR activities are
greater in HR+ patient samples, KRT17 and VIM activities are greater in TNBC samples. Note that
the VIPER-inferred activities are centered in this visualization.
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Figure S7. Gene expression (log2CPM) of known breast cancer subtype markers in the patient
samples: HR+ markers (A), TNBC-specific markers (B), and a differentiated cell marker (C). The
same PCA-mapping based on the protein activity was used for the comparison. Note that only the
gene expression greater than the upper quantile is shown for visualization purposes.
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Figure S8. Protein activity-based cell clustering in the PDX control sample (i.e. vehicle treatment).
The color of cells indicates the stemness score (SS) as described in Methods. A. The first two
principal components (PCs) of the protein activity of cells. B. The correlation between the 1st PC and
the CytoTRACE. C. The correlation between the 1st PC and the averaged activity of the 14 CSC
markers.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.08.562798doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.562798
http://creativecommons.org/licenses/by-nd/4.0/


Figure S9. Gene expression (log2CPM) of known breast CSC markers (A) and differentiated markers
(B) in the PDX control sample. Protein activity-based PCA-mapping was used for the comparison.
Note that only the gene expression greater than the upper quantile was shown for a visualization
purpose.
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Figure S10. Protein activity (A) and gene expression (log2CPM) (B) of BIRC5, a marker of
quiescent-breast CSCs.
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Figure S11. Protein activity of E2F family, a proliferative cell marker in the patient (A) and PDX
control (B) data.
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Figure S12. A. A heatmap exhibiting the activity of the 25 most activated and 25 most deactivated
TFs/coTFs in the breast CSLC signature and their activities in individual samples (7 patient samples
and the PDX vehicle-treated sample). B. An enrichment analysis plot of the 25 most activated and 25
most inactivated proteins of the CSLC signature in each individual sample. The consistency of the
activity of these 50 proteins is observed in all samples, showing a significant enrichment (p-value<
1.0×10-16).
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Figure S13. An waterfall plot of sorted protein activities in the breast CSLC signature, identified
using both the patient and PDX control data. The NES of genes involved in general stem cell
processes (supplementary data) is shown on the CSC signature.
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Figure S14. The VIPER-inferred activity (centered) and the gene expression (log2CPM) of cell surface
proteins among the top 50 most activated proteins in the breast CSCs. For gene expression, only cells
with expression greater than the upper quantile are shown for visualization purposes.
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Figure S15-A. The VIPER-inferred activity (centered) and the gene expression (log2CPM) of
transcription (co-)factors among the top 50 most activated proteins in the breast CSCs. For gene
expression, only cells with expression greater than the upper quantile were shown for visualization
purposes.
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Figure S15-B (continued). The VIPER-inferred activity (centered) and the gene expression
(log2CPM) of transcription (co-)factors among the top 50 most activated proteins in the breast CSCs.
For gene expression, only cells with expression greater than the upper quantile were shown for
visualization purposes.
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Figure S16-A. The VIPER-inferred activity (centered) and the gene expression (log2CPM) of
signaling molecules among the top 50 most activated proteins in the breast CSCs. For gene
expression, only cells with expression greater than the upper quantile were shown for visualization
purposes.
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Figure S16-B (continued). The VIPER-inferred activity (centered) and the gene expression
(log2CPM) of signaling molecules among the top 50 most activated proteins in the breast CSCs. For
gene expression, only cells with expression greater than the upper quantile were shown for
visualization purposes.
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Figure S17-A. The VIPER-inferred activity (centered) and the gene expression (log2CPM) of other
proteins involved in transcriptional programs among the top 50 most activated proteins in the breast
CSCs. For gene expression, only cells with expression greater than the upper quantile were shown for
visualization purposes.
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Figure S17-B (continued). The VIPER-inferred activity (centered) and the gene expression
(log2CPM) of other proteins involved in transcriptional programs among the top 50 most activated
proteins in the breast CSCs. For gene expression, only cells with expression greater than the upper
quantile were shown for visualization purposes.
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Figure S18-A. The VIPER-inferred activity (centered) and the gene expression (log2CPM) of cell-
surface proteins among significantly activated proteins in the breast CSCs (Bonferroni adjusted p-
value < 0.001). For gene expression, only cells with expression greater than the upper quantile were
shown for visualization purposes.
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Figure S18-B (continued). The VIPER-inferred activity (centered) and the gene expression
(log2CPM) of cell-surface proteins among significantly activated proteins in the breast CSCs
(Bonferroni adjusted p-value < 0.001). For gene expression, only cells with expression greater than
the upper quantile were shown for visualization purposes.
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Figure S18-C (continued). The VIPER-inferred activity (centered) and the gene expression
(log2CPM) of cell-surface proteins among significantly activated proteins in the breast CSCs
(Bonferroni adjusted p-value < 0.001). For gene expression, only cells with expression greater than
the upper quantile were shown for visualization purposes.
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Figure S19. A. A heatmap illustrating the ranked list of breast cancer cell lines in CCLE, in a
decreasing order of their OncoMatch score, which indicates the similarity score of the protein
activity profiles between a cell line and the CSLC signature. Thus, the greater the OncoMatch score,
the more stem-like cell properties. B. Enrichment analysis plots of the 25 most activated and the 25
most inactivated proteins in the breast CSLC signature for top 10 breast cancer cell lines by
OncoMatch. The plot demonstrated a statistically significant enrichment (p-value< 1×10-16), between
BT20 and the CSLC signature. C. A heatmap of the activity of the 25 most activated and the 25 most
inactivated proteins in the breast CSLC signature and their activities in BT20.
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Figure S20. The UMAP projection of protein activity profiles of single cells for four breast
cancer cell lines. HCC38 and HCC1143 are chosen for representing CSLC-rich cell lines, while
HCC2157 and MCF7 are selected as well-differentiated cell lines (negative controls), based on
our OncoMatch prediction as well as literature. The color of cells indicates the stemness degree
calculated in the same manner as the previous (i.e. the weighted average of stemness marker
activities and the CytoTRACE score). Thus, the greater score, the higher stemness in cells.
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Figure S21. The log2 Fold Change (log2FC) of sgRNA abundance between CROP-seq and
CRISPR library. sgRNA counts were normalized by dividing them by total sgRNA counts in each
CROP-seq and CRISPR library. Unlike MRCSLC, log2FC after MRDIFF KOs is significantly
diminished, implying many of MRDIFF are responsible for cell fitness/proliferation.
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Figure S22. The enrichment of the gene set of stem cell process (supplementary table 2) between
two groups (MRCSLC and MRDIFF). Similar to Fig.5A, the enrichment score (NES) of stem cell
process genes were significantly diminished (p=5.5×10-3) after MRCSLC KO for HCC38, while
NES was not significantly increased after MRDIFF KO for the same cell line. On the contrary, for
HCC1143, the increase of NES was more striking (p=1.5×10-3) after MRDIFF KO, while the NES
change was not significant for the group of MRCSLC KO.
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Figure S23. A. Spider plot of tumor volume measurements over time for individual mice. During a
priming phase, mice were treated with albendazole 3 times weekly for two weeks before the start
date of the combined drug therapy with paclitaxel, in order to sensitize the tumor cells. Mice with
albendazole monotherapy were treated for the same amount of time as in the combination therapy. B.
Mean relative tumor volumes over time. Tumor volumes are normalized by their volumes at Day-13.
The error bar indicates one standard error of the mean. 5 out of 6 control mice (i.e. vehicle treatment)
were euthanized before reaching Day 50.
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Figure S24. Kaplan-Meier analysis of the preclinical measurements for Disease Control (A) and
survival (B) following treatment with albendazole and paclitaxel monotherapy vs. the combination.
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