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Abstract9

1. In this paper, we investigate whether deep learning models for species classi-10

fication in camera trap images are well calibrated, i.e. whether predicted confidence11

scores can be reliably interpreted as probabilities that the predictions are true. Ad-12

ditionally, as camera traps are often configured to take multiple photos of the same13

event, we also explore the calibration of predictions at the sequence level.14

2. Here, we (i) train deep learning models on a large and diverse European15

camera trap dataset, using five established architectures; (ii) compare their calibra-16

tion and classification performances on three independent test sets; (iii) measure the17

performances at sequence level using four approaches to aggregate individuals pre-18

dictions; (iv) study the effect and the practicality of a post-hoc calibration method,19

for both image and sequence levels.20
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3. Our results first suggest that calibration and accuracy are closely intertwined21

and vary greatly across model architectures. Secondly, we observe that averaging the22

logits over the sequence before applying softmax normalization emerges as the most23

effective method for achieving both good calibration and accuracy at the sequence24

level. Finally, temperature scaling can be a practical solution to further improve25

calibration, given the generalizability of the optimum temperature across datasets.26

4. We conclude that, with adequate methodology, deep learning models for27

species classification can be very well calibrated. This considerably improves the28

interpretability of the confidence scores and their usability in ecological downstream29

tasks.30

Keywords : calibration, camera trap, classification, confidence score, event, machine31

learning32

1 Introduction33

Camera traps have become a central tool in the monitoring and conservation of com-34

munities and populations. They generate a lot of data that can be used to infer, for35

instance, species richness, occupancy or activity patterns (Sollmann 2018). To exploit36

these data, it is first required to identify the species present in the photos or videos.37

This manual annotation task is generally long and tedious, but it has been shown in re-38

cent years that it can be replaced by an automatic classification made by deep learning39

models, often with an accuracy of over 90% (Norouzzadeh et al. 2018; Willi et al. 2019;40

Whytock, Świeżewski, et al. 2021).41

Accuracy may not be the only model performance metrics to care about though.42

Accuracy is calculated from, for each image, the prediction that has the highest confi-43

dence score (i.e. the top-1 prediction). In many ecological studies, downstream tasks44

may however directly rely on the confidence score of the predictions. This can be the45

case for instance when considering that values above a certain threshold indicate true46
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detections, or when propagating model uncertainty into subsequent statistical models.47

Importantly, confidence scores are frequently interpreted as probabilities of the pre-48

diction being true, but this is not always the case as many models may provide biased49

confidence scores (Gawlikowski et al. 2023). In the context of classification models, a50

model returning confidence scores that can be reliably interpreted as probabilities of51

the prediction being true is said to be well calibrated. For instance, if a model pre-52

dicts the label of 100 images with a confidence score of 0.8, we would expect to observe53

an actual accuracy of 80% on these images. However, deep learning models trained54

with the categorical crossentropy loss, a common practice, are often over-confident and55

poorly calibrated (Gawlikowski et al. 2023). Attention should therefore also be given56

to the properties of confidence scores, as seen in other disciplines. For instance, good57

calibration of deep learning models has been shown to be important for safety-critical58

applications such as autonomous driving (Bojarski et al. 2016) or medical diagnosis59

(Nair et al. 2018). In the field of ecology, a good calibration ease the interpretation of60

the scores, but could also be critical if the scores are used in downstream tasks such as61

occupancy estimation (Gimenez et al. 2022), inference of species interaction (Parsons et62

al. 2022), real-time alert to guide law-enforcement (Whytock, Suijten, et al. 2023), and63

confidence-score-based prediction checking on citizen science platforms (e.g. Zooniverse64

(Simpson et al. 2014)).65

Here we explore the calibration of confidence scores in the context of species classi-66

fication models for camera trap data. In that context, the recurring leading approach,67

as assessed in recent iWildcam competitions (Beery, Agarwal, et al. 2021), consists in68

two steps: (step 1) detecting animals, humans and vehicles and filtering out empty im-69

ages using a robust detection model such as MegaDetector (Beery, Morris, et al. 2019;70

Mitterwallner et al. 2023) and (step 2) using a CNN classification model to identify the71

species in the bounding box returned by the detection model, when an animal has been72

detected. We therefore focus on these species classification models (step 2), which are de-73
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veloped for a large range of species all over the world. We explore the interplay between74

accuracy and calibration for different state-of-the-art model architectures, using camera75

trap data from different sources. Also, we consider the calibration of confidence scores76

at the level of sequences of images. Indeed, camera traps are often configured to take77

multiple photos at each trigger, and predictions aggregated at the level of the sequence78

of images (sometimes called ’the observation’ or ’event’). The issue of the calibration79

of confidence scores at the level of sequences of images has not, to out knowledge, been80

addressed in the literature. Furthermore, we study the relevance of a popular post-hoc81

calibration method called temperature scaling (Platt 2000), for both image and sequence82

levels. Finally, we provide a set of good practices for researchers and practitioners in the83

field.84

2 Material and Methods85

2.1 The DeepFaune Dataset86

We use the dataset of the DeepFaune initiative (Rigoudy et al. 2023), which is a collab-87

orative effort involving over 50 partners who, together, have gathered over two millions88

images and twenty thousand videos that they had manually annotated. These partners89

are affiliated to a wide range of institutions, such as organizations managing protected ar-90

eas, hunting federations, and academic research groups. Images and videos were mainly91

collected in France, but also in a few European countries. Most of the annotation were92

at the species level, but some were at a higher taxonomic level (e.g. mustelid). Videos93

were converted into images by extracting frames of the first four seconds, with a time94

step of one second. The dataset provides a great diversity of habitats, elevations and95

weather conditions, as well as a wide variety of camera trap models with different set-96

tings, resolutions, flash type and image processing.97
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2.2 Training and validation datasets98

For the species classification task, it is now known (Beery, Morris, et al. 2019; Norman99

et al. 2023) that two-step approaches (object detector followed by a classifier) are more100

efficient than classifiers that process the whole image. We use MegaDetector v5 (MdV5)101

(Beery, Morris, et al. 2019) to extract bounding boxes of animals, human and vehicles.102

Because MdV5 has already near-perfect accuracy on human and vehicles we only kept,103

for the training of our classifier, the bounding boxes that predicted the presence of an104

animal. For each bounding box, we created a cropped image of the original image,105

resulting in 429 347 cropped images of 22 different classes (the distribution of the classes106

is shown in Supporting Information Figure 1).107

To avoid overfitting and shortcut learning between the background of the images108

(i.e. camera trap site) and the observed species, we designed the training and validation109

sets to have disjoint pairs of background and species while having the same balance of110

species and diversity of habitats. The validation set represented about 20% of the images111

available while being disjoint from the training set at the species level: for each species,112

the validation set is made of images originating from partners different than the ones113

used in the training set, while being as close as possible to a 80/20 split. This requires114

solving a problem of combinatorial optimization known as subset sum problem, which115

is a special case of the knapsack problem and which can be achieved using dedicated116

libraries (e.g. mknapsack). Ultimately, we had 368 786 images in the training set and117

60 561 in the validation set.118

2.3 Out-of-sample test sets119

To demonstrate that the results of the classifier could generalize beyond the images120

collected in the DeepFaune initiative, 3 out-of-sample test datasets were used. These121

datasets originated from ecological programs conducted in three geographically distinct122

areas. We refer to these datasets by the name of the areas they originate from:123
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• Pyrenees : camera trap study in the national reserve of Orlu in the French124

Pyrenees, conducted by the French Biodiversity Agency (OFB), 100 266 images125

and 12 species after preprocessing.126

• Alps : camera trap study in the Ecrins national park in the French Alps, conducted127

by S. Chamaillé-Jammes, 8 106 images and 12 species after preprocessing.128

• Portugal : camera trap study in the Peneda-Gerês National Park in Portugal129

(Zuleger et al. 2023), publicly available. 99 750 cropped images and 16 species130

after processing.131

2.4 Sequences of images132

It is common to configure camera traps to take a series of images after each trigger. It is133

therefore relevant to have a single prediction for the whole series of images. We thereafter134

name such series ’sequences’. In our test sets, we considered that two consecutive images135

taken within 10s, at the same site (i.e. the same camera trap), belonged to the same136

sequence. We obtained sequences of 1 to 213 images.137

2.5 Confidence score at sequence level138

A sequence with S images has S individual predictions that can be aggregated in many139

different ways to produce a single prediction for the whole sequence. Formally, for a140

sequence of S images xi, the model predicts the logits zi = (zi1, ..., ziK) for each image,141

with K the number of classes. Confidence scores are derived using the softmax function142

: pi = (pi1, ..., piK) = softmax(zi1, ..., ziK). We aimed at predicting the confidence scores143

of the sequence pseq = (pseq1, ..., pseqK) as a function of the predictions at the image144

level. We explored four different aggregation functions:145

• Average Score : We averaged, over the sequence, the scores for individual pic-146
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tures of the sequence:147

pseq = (
1

S

S∑
i=1

pi1, ...,
1

S

S∑
i=1

piK) (1)

• Average Logit : We averaged, over the sequence, the logits for individual pictures148

of the sequence, and then applied the softmax function:149

pseq = softmax(
1

S

S∑
i=1

zi1, ...,
1

S

S∑
i=1

ziK) (2)

• Max Score : We kept the scores of the image that had the highest score amongst150

all scores of all images of the sequence:151

pseq = pi∗ , with i∗ = arg max
i∈[1,S]

{ max
k∈[1,K]

{pik}} (3)

• Max Logit : We kept the scores of the image that had the highest logit amongst152

all logits of all images of the sequence:153

pseq = pi∗ , with i∗ = arg max
i∈[1,S]

{ max
k∈[1,K]

{zik}} (4)

2.6 Calibration metrics154

For a set of N images, we define the true class of the i-th image yi and pi = (pi1, ..., piK)155

the confidences scores of the K classes. The predicted class ŷi is the top-1 classification156

prediction, that is the class with the greatest confidence score, denoted si:157

ŷi = arg max
k∈[1,K]

pi and si = max
k∈[1,K]

pi (5)

For M evenly spaced bins, we can define bm the set of indices i such as si ∈]m−1
M , m

M ]158
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Figure 1: Illustration of the four aggregation methods. The greatest overall logit and
score are in red. The top-1 score is hatched to emphasize that only this score is used to
calculate the calibration.

and compute the average bin accuracy and the average bin confidence score :159

acc (bm) =
1

|bm|
∑
i∈bm

1 (ŷi = yi) (6)

160

conf (bm) =
1

|bm|
∑
i∈bm

si (7)

The bin-wise accuracy can be plotted to construct the reliability histogram (Guo et161

al. 2017) (e.g. Supporting Information Figure 3). It allows to visualize the calibration of162

a model: the closest the tops of the histogram bars are from the identity line, the better163

calibrated the model is. In addition, if the tops of the histogram bars are mostly above164

(resp. below) the line, the model is said to be under-confident (resp. over-confident).165

The most common metric to measure the model’s calibration quantitatively is the166
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Expected Calibration Error (ECE) (Guo et al. 2017). ECE is defined as the bin-wise167

calibration error weighted by the size of the bin :168

ECE =

M∑
m=1

|bm|
N

|acc (bm) − conf (bm)| (8)

Due to the large amount of images in our test sets, we decided to use a greater number169

of bins, specifically 20 instead of the standard 15, to obtain a more precise measurement170

of calibration with the ECE. In addition to this metric, we evaluated the classification171

performance of our classifier with the accuracy metric. These two metrics can also be172

used to evaluate the classification and the calibration at the sequence level, using the173

score pseq and the associated predicted label ŷseq = arg max
k∈[1,K]

pseq.174

2.7 Temperature Scaling175

Temperature scaling (Platt 2000) is a post-processing method to improve the calibration176

of the model after the training. The scores predicted by the model are rescaled by a177

temperature parameter T > 0 using a generalization of the softmax function :178

pij =
expzij/T∑K
k=1 expzik/T

(9)

For T = 1 the scores obtained are the same as with the standard softmax function.179

T > 1 leads to lower scores and helps when the model is over-confident. Conversely,180

T < 1 increases the scores and helps under-confident models. For a given dataset, it is181

possible to determine the optimal temperature T ∗, that minimize the ECE. However,182

this optimum temperature may differ from one dataset to another, and determining the183

optimum requires access to the labels. It is therefore unrealistic to use this individ-184

ual temperature T ∗ to compare methods, as it cannot be calculated for a new dataset185

without manually annotating a fraction of the data. Instead, we propose to look at186

performance using a single temperature T̄ shared across the three datasets. We define187
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T̄ as the temperature that minimizes the average ECE across the 3 test datasets. Tem-188

perature scaling can be combined with the four aggregation method (Section 2.5) to189

calibrate sequence level predictions by simply replacing the standard softmax function190

with Equation 9.191

2.8 Deep learning models192

We used 5 established machine learning architectures: EfficientNetV2, ConvNext, ViT,193

Swin Transformer V2, and MobileNetV3. (Tan and Le 2021; Zhuang Liu et al. 2022;194

Dosovitskiy et al. 2021; Ze Liu et al. 2022; Howard et al. 2019). We have selected these195

architectures to represent CNNs (EfficientNetV2, ConvNext), Transformers (Swin, ViT),196

as well as lightweight architectures that could be deployed in camera traps that do the197

classification at the edge (MobileNetV3). Models were trained using the TIMM library198

(Wightman 2019) with transfer-learning from ImageNet-22k (Ridnik et al. 2021), the199

largest publicly available database. Data augmentation was applied using the imgaug200

library (A. B. Jung et al. 2020) using only standard transformations such as flips, crops,201

conversion to grayscale and affine transformation. The optimization was done using202

SGD, with a batch size of 32 and a different learning rate adapted for each architecture.203

To avoid overfitting, early stopping was used while monitoring the validation accuracy204

and with a patience of 10 epochs.205

3 Results206

3.1 Calibration at the image level207

Generally, we observed that calibration (as measured by ECE) was negatively correlated208

with accuracy across models, for the 3 test datasets (Figure 2). ConvNext was the model209

providing the best overall performance. In particular, this model was slightly better in210

accuracy but much more efficient in terms of calibration (ECE of 2.37%, more than211
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2 times less than the second-best model, Swin Transformer V2, which has an ECE of212

5.04%) on the Portugal dataset. In the meantime, the lightweight model, MobileNet,213

had bad to very bad (ECE of 34.27% on the Portugal dataset) accuracy and calibration214

performances.215

Figure 2: Scatterplot of ECE vs. accuracy values for five models (colored points) and
three test data sets (panels), computed at the image level. Here, the ECE is not post-
calibrated with temperature scaling (i.e. the temperature is 1 for all models).

As expected, temperature scaling allowed improving ECE values, for all models and216

datasets. We almost always observed a V-shape relationship between ECE and tem-217

perature, with ECE increasing quickly and by several percents around the optimum218

temperature value (Figure 3). This optimum temperature was generally greater than219

1, suggesting that all models were initially overconfident to a greater or lesser extent.220

Interestingly, the V-shape curves of the different datasets overlapped well for the most221

accurate models (ConvNext and transformed-based models, ViT and Swin), and opti-222

mum temperature were similar across datasets. This suggested that a single optimum223

temperature would be sufficient to achieve efficient post-processing calibration. Indeed,224

using temperature scaling with temperature T̄ , the models exhibited on average a rela-225

tive reduction in ECE of 38% compared to without temperature scaling (T = 1) (dashed226

line in Figure 3).227
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Figure 3: Curves of ECE values along the gradient of temperature values, for five models
(panels) and three test data sets (colored curves). An optimum temperature below 1
indicates an underconfident model (light gray area), and above 1 indicates an overcon-
fident model (dark gray area). The vertical dashed line shows T̄ , the temperature that
minimized the average ECE across the 3 test datasets.

3.2 Calibration at the sequence level228

Classification accuracy was much greater at the sequence level than at the image level229

(Figure 4 top). This was true for all models and all datasets, with up to +10% of230

accuracy for MobileNetV3 on the Portugal dataset. The Average Score and Average231

Logit were the two best methods for maximizing accuracy, with a slight advantage for232

the former. The gain in accuracy was however lower for models that were already233

efficient at the image level (ConvNext, ViT and SwinTransformer), but those remained234

the best models at the sequence level. Importantly, of the two aggregation methods235

that improved accuracy most, Average Score and Average Logit, only Average Logit236

provided well calibrated scores (Figure 4 bottom). The Average score was actually the237

worst aggregation method for calibration. Therefore, considering both accuracy and238

calibration metrics, the Average Logit was the best aggregation method.239
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Figure 4: ∆Accuracy (top, the greater the better) and ECE (bottom, the lower the
better) for the four aggregation methods (colored curves) and five models (x-axis) on
three test data sets (3 panels). ∆Accuracy is the difference between the accuracy at the
sequence level and the accuracy at the image level.

Figure 5: Curves of ECE values along the gradient of temperature values,for the four
aggregation methods (columns), the five models (rows) and the three test datasets (col-
ored curves). Light/gray area and dashed line defined as in Figure 3.
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We finally studied the interplay between temperature scaling and aggregation meth-240

ods. We observed that the aforementioned V-shape was more flat for the Average Score241

method than for the other methods (first column in Figure 5 versus the others). This242

confirmed that this method was the worst method, even with temperature scaling. We243

also noted that the Average Logit method provided the lowest ECE values overall (1.17%244

on average), and thus remained the best method, with temperature scaling further im-245

proving calibration at sequence level.246

Looking at T̄ and the optimum temperature of each set (minima and dashed lines247

on Figure 5), it can be noted that using the Average Score methods led models towards248

underconfidence, whereas using the Max Score methods led them towards overconfidence.249

This observation is also visible in the reliability histogram, as shown in Supporting250

Information (Supplementary Figure 3). Meanwhile, models using the Average Logit251

method displayed optimum temperatures close to 1 and, as a consequence, a temperature252

T̄ close to 1 as well. We therefore concluded that the Average Logit method did not253

led to under- or over-confidence of models in our experiments. Also, and as observed at254

the image level, a single temperature (possibly close to 1) would be sufficient to achieve255

good post-processing calibration with the Average Logit method.256

4 Discussion257

This study assessed the calibration of confidence scores, at image and sequence level, for258

different deep learning models in the context of species classification in camera trap data.259

Using five state-of-the-art models and three out-of-sample test datasets, we showed that260

score calibration can vary greatly across model architectures, in a way that is consistent261

across test sets. Further, we showed that the different aggregation methods to obtain262

scores at the sequence level gave very different calibration values, and that the Average263

Logit method must be preferred over the others for optimizing both accuracy and cal-264
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ibration. Finally, we showed that temperature scaling can be used both at image level265

and sequence level, with a single temperature T̄ that do not have to vary across datasets,266

to further improve the calibration. These observations pave the way for practitioners267

that are invited to 1/ monitor calibration as well as accuracy, 2/ use the Average Logit268

method and 3/ estimate the optimal temperature on their own test dataset and use it269

for the model deployment.270

Differences in models’ performance can be partly explained by model size. Indeed we271

found that models with the highest number of parameters (ConvNext, ViT, SwinTrans-272

former) gave the best accuracy and ECE values. On the other hand, the only lightweight273

model, MobileNet, was consistently the worst model. Despite some literature showing274

that neural networks can be poorly calibrated, our result shows that this is not always the275

case (see also Minderer et al. (2021)), and that certain families of model architectures,276

such as ConvNext here, are intrinsically better calibrated than others, independently of277

the size of the model. The calibration of each model can be further improved on each278

dataset using temperature scaling as post-processing function. However, determining279

the optimal T requires annotating at least a fraction of the target set of images, which280

is something that practitioners would like to avoid if possible. Fortunately, we showed281

empirically with three very different datasets that the optimal temperatures are very282

close from one dataset to another, which suggests the generalizability of a single temper-283

ature that can be determined and fixed for future test sets. That said, we do not claim284

that the optimal temperatures defined in this paper can be used directly when using one285

of the studied architectures. Indeed, these temperatures are valid for a given training286

procedure (datasets, hyperparameters). In practice, it is mandatory to estimate the287

temperature using available test dataset(s) and subsequently maintain this temperature288

for deployment (since we showed it will be generalizable). This way, when the model will289

be used to classify new unseen data, the previously estimated temperature will ensure a290

better calibration of the predicted scores.291
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Proper model calibration at the image level is not always sufficient, as many soft-292

ware programs and scientific studies operate at the scale of the sequences that define293

the relevant ’observations’ or ’events’ from an ecological viewpoint. It is therefore ex-294

tremely important to be able to calibrate the predictions at sequence level. For the first295

time, we showed that the most intuitive approach, in which scores are averaged, did not296

provide the best accuracy and had the worst calibration, with largely under-confident297

predictions. Interestingly, our findings can be confirmed by the analogy with ensemble298

models. These approaches use N models to make a prediction on one image, whereas we299

use N images to make a prediction with one model at the sequence level. Wu and Gales300

(2021) showed that for ensemble models, individual model calibration is not sufficient to301

yield a calibrated ensemble prediction, and that their own method, which is equivalent to302

Average Score approach also leads to under-confidence. Moreover, Rahaman and Thiery303

(2021) show that, thanks to this natural shift in the optimal temperature when models304

are ensembled, if the individual models were slightly overconfident (T > 1, as is often the305

case in deep learning) then the ensemble model was naturally calibrated (T ∼ 1). Our306

results greatly support the use of the Average Logit method for aggregating individual307

scores at the sequence level. It shifts slightly the optimal temperature towards undercon-308

fidence, which counterbalanced the overconfident nature of deep learning networks, and309

resulted in sequence level prediction that are almost calibrated without post-processing.310

With Average Logit, it is still interesting to use temperature scaling to improve calibra-311

tion as much as possible, especially given that the ECE minima are again very close to312

each other and allow a single temperature to be set.313

In this work, we focused on temperature scaling and did not consider other methods314

that have been shown to sometimes improve calibration, such as label smoothing and315

mixup (Szegedy et al. 2015; Zhang et al. 2018). We did so because these two methods316

are actually debated, as several studies have showed that they can actually worsen cal-317

ibration when combined with temperature scaling (Wang et al. 2023; Minderer et al.318
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2021). As Minderer et al. (2021) state, ”label smoothing creates artificially underconfi-319

dent models and may therefore improve calibration for a specific amount of distribution320

shift”. Label smoothing also assumes that all incorrect classes are equally likely (Maher321

and Kull 2021), which is obviously problematic in ecology (e.g., a wrongly predicted322

roe deer is much more likely to be a red deer than a wolf). Mixup also deteriorates323

calibration properties of networks by creating non-realistic images in the training set324

and leading to substantial distributional shift (Rahaman and Thiery 2021; Gawlikowski325

et al. 2023).326

We believe that our results could be of use to researchers and practitioners in the327

field of computer vision of camera trap images. Firstly, we encourage everyone to select328

the architecture of their model using not only accuracy but also by calculating the ECE.329

Secondly, we recommend using the Average Logit method to aggregate information at330

sequence level, as it performs very well in terms of accuracy and calibration. Finally,331

to use temperature scaling and make calibration even better, the optimum temperature332

can be calculated on a test dataset and kept for future datasets.333
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Supplementary materials492

Figure 6: Number of images in the training and validation sets, for each species. Log
scale is used to improve the readability of the rarer classes.

Figure 7: Number of images in the three out-of-sample datasets, for each species. Log
scale is used to improve the readability of the rarer classes.
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Figure 8: Reliability histogram of the ConvNext model, using the 3 test sets pooled
together, and without temperature scaling.
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