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Abstract 
 
In the adult brain, structural and functional parameters, such as synaptic sizes and 
neuronal firing rates, follow right-skewed and heavy-tailed distributions. While this 
organization is thought of having significant implications, its development is still 
largely unknown. Here, we address this knowledge gap by investigating a large-scale 
dataset recorded from the prefrontal cortex (PFC) and the olfactory bulb of mice aged 
4-60 postnatal days. We show that firing rates and pairwise correlations have a largely 
stable distribution shape over age, and that neural activity displays a small-world 
architecture. Moreover, early brain activity displays an oligarchical organization, i.e., 
neurons with high firing rates are likely to have hub-like properties. Leveraging neural 
network modeling, we show that analogously extremely distributed synaptic 
parameters are necessary to recapitulate the experimental data. Thus, functional and 
structural parameters in the developing brain are already extremely distributed, 
suggesting that this organization is preconfigured and not experience-dependent. 
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Introduction 
 
In the adult brain, many structural and functional parameters follow right-skewed 
distributions with heavy right tails such as the log-normal1,2, gamma3, or power law4,5 
distribution. A non-exhaustive list of parameters that is characterized by such 
distributions includes: size and number of synapses6–9, size of post-synaptic currents10–

12, diameter of axons13, density of neurons14, in vivo single-unit firing rate15–17, spike 
transmission probability10,17, pairwise correlations among spike trains18, and power of 
the LFP19,20, EEG21–23, MEG22–24 and BOLD25 signals. 

If a parameter follows such distributions, it is implied that a large proportion of 
the data displays small values that fall well below the mean. Conversely, extremely 
large values are more commonly observed than if it would follow a narrower 
distribution such as the normal (or Gaussian), as it is often implicitly assumed1,2. Thus, 
these distributions are characterized by high levels of inequality. We define such 
distributions as being “extreme”26. It has been suggested that extreme distributions of 
neural parameters might have several useful properties1,2,10,27. For instance, the log-
normal distribution of synaptic sizes might promote the formation and propagation of 
neuronal sequences10,28, while at the same time optimizing storage capacity27. 
Moreover, the extreme distribution of firing rates might result in an environment with 
an optimal balance between a large amount of “specialist” neurons complemented by 
few “generalists”. The first ones would only fire upon receiving a highly specific 
constellation of presynaptic inputs, and thereby have a spiking activity with unique and 
distinctive “interpretation” for postsynaptic partners. Conversely, “generalist” neurons 
would require less specific presynaptic inputs to generate a spike. This could allow such 
neurons to generalize over similar sensory stimuli and might therefore represent the 
brain’s “best guess”1,2. Overall, this organization is thought of producing a system that 
allows for concomitant specialization and flexibility, while limiting the number of 
energy-demanding high firing rate neurons10. 

While it is widely accepted that the adult brain is an extreme environment, how 
this unfolds throughout development is still unclear. Two main competing hypotheses 
have been put forward. The so-called “blank slate model” posits that the developing 
brain is a “tabula rasa”, a blank slate that lacks a refined structure. A corollary of this 
view is that structural and functional parameters in the developing brain should follow 
a narrow, thin-tailed distribution. Only upon developmental learning would the brain 
structure gradually become skewed, heavy-tailed, and inequal, as reported for the adult 
brain. While this view is not often openly advocated for, it is often implied2,29,30. The 
competing theory is the “preconfigured brain hypothesis”, that proposes that the 
developing brain is pre-packaged with non-random structure and already displays 
extreme distributions of structural and functional parameters. Consequently, this 
hypothesis implies that developmental learning should not fundamentally transform the 
brain architecture. Rather, learning is viewed as a matching process that associates pre-
existing structure, that is initially devoid of meaning, with a behavioral output or a 
sensory sensation2,31–34.  

To tease apart these two hypotheses, we investigated the in vivo development 
of brain activity in a large-scale dataset from unanesthetized postnatal day (P) 4-60 
mice (n=302 mice). The youngest mice in the dataset belong to a very immature 
developmental phase in which, even though neurons in the sensory systems are active, 
they mostly do not represent sensory information. An exception to this developmental 
dynamic is the olfactory system. From birth on, rodents rely on olfaction for survival, 
as they actively employ olfactory cues to locate the dam's nipple35,36. Thus, in the 
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present study, to control for the potential effect of developmental learning, we 
investigated the early developing olfactory bulb (OB) and the prefrontal cortex (PFC), 
the cortical region with the most protracted development37. We show that, in both brain 
regions, the skewness, tailedness and inequality of the distributions of in vivo single 
unit activity (SUA) firing rates and pairwise interactions among them do not increase 
throughout development. Along the same lines, already midway through the first 
postnatal week, the PFC displays a non-random small-world topography. Moreover, in 
both brain regions, neurons in the right tail of the firing rate distribution are 
overwhelmingly more likely to also be in the right tail of the pairwise interaction 
distribution, and to exhibit hub-like properties. We refer to this organization as 
oligarchical, and we show that it gradually wanes throughout adulthood, concomitantly 
with a maturation of excitation-inhibition balance. 
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Results 
 
SUA firing rate exponentially increases over age, while spiking activity 
decorrelates 
 
To assess the in vivo developmental firing dynamics, we analyzed a large-scale dataset 
of SUA (n=278 mice, 14357 units and 654335 spike train pairs) recorded with 
Neuropixels as well as single- and multi-shank Neuronexus silicon probes from the 
PFC and the ventral OB of non-anesthetized P4-P12 mice (n=278 mice) (Figure 1A-C, 
Supp. Figure 1A-C). Part of the data has been used in previously published studies38,39. 
We calculated the firing rate (first-order SUA statistics) and the spike-time tiling 
coefficient (STTC, second-order SUA statistics, calculated at a 10 ms timescale), a 
measure of pairwise correlation among spike trains that is not biased by firing rate40. In 
line with previous reports, using multi-variate linear regression, we found that firing 
rate exponentially increased with age in both brain regions (age effect=0.11, CI [0.04; 
0.18], p=0.004, generalized linear mixed-effect model) (Figure 1D) and that the OB 
displayed a higher firing rate than the PFC (firing rate at P8=0.28 and 0.04 Hz, CI [0.21; 
0.37] and [0.03; 0.06] for OB and PFC, respectively, p<10-16) (Figure 1D).  
 

 
Figure 1. SUA firing statistics in the mouse PFC and OB across the first two 
postnatal weeks. (A) Schematic representation41 of extracellular recordings in the PFC 
and OB of P4-12 mice. (B) Digital reconstruction of the position of a DiI-labeled 
recording electrode in the PFC (left) and OB (right) of a Nissl-stained coronal section 
(green) of a P9 and P10 mouse, respectively. (C) Representative raster plot of 1 minute 
of SUA activity recorded in the PFC of a P6 (left), P9 (middle) and P12 (right) mouse. 
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(D) Line plot displaying the SUA firing rate of P4-12 mice (n=278 mice and 14357 
single units). Color codes for brain region. (E) Same as (D) for STTC (n=278 mice and 
654335 spike train pairs). In (D) and (E) data is presented as mean and 95% confidence 
interval. Asterisks in (D), and (E) indicate significant effect of age. **p<0.01, 
generalized linear mixed-effect models. 
 
 

Concomitantly to the increase of firing rate, and consistently with previously 
published data38,42,43, the STTC exponentially decreased with age (age effect=-0.008, 
CI [-0.014; -0.003], p=0.003, linear mixed-effect model), indicating a developmental 
decorrelation of spiking activity (Figure 1E). When evaluating this effect on individual 
brain regions, we found that the OB displayed lower STTC values than the PFC (STTC 
value at P8=0.0041 and 0.0056 Hz, CI [0.0040; 0.0042] and [0.0055; 0.0057] for OB 
and PFC, respectively, p<10-16) (Figure 1E). 

This data indicates that, in both brain regions, the firing rates exponentially 
increase across the first two postnatal weeks while, at the same time, spiking activity 
decorrelates. Consistent with the early maturation of the OB and its high density of 
INs36, the OB display higher firing rates and lower STTC values than the PFC. 
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Supplementary Figure 1. Descriptive statistics of the experimental dataset. (A) Bar 
plot displaying the number of recorded mice across age and brain region (n=278 mice). 
Color codes for brain region. (B) Same as A for recorded single units (n=14357 single 
units). (C) Scatter plot displaying the number of recorded units per individual mice over 
age and brain regions (n=278 mice). In (C) dots indicate individual mice. 
 
 
The skewness, tailedness and inequality of the SUA firing statistics do not increase 
over age 
 
A corollary of the “blank slate model” is that the distributions of functional parameters 
should become more extreme over development. To quantify the distribution shape for 
the first and second-order SUA statistics, we computed their skewness, kurtosis and 
Gini coefficient (Figure 2A-C). Skewness and kurtosis are the 3rd and 4th central 
moments of a variable, and measure its asymmetry and tailedness, respectively. 
Negative values of skewness indicate a left-skewed distribution, positive values a right-
skewed distribution, and null values a symmetrical distribution (Figure 2A). Kurtosis 
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only takes positive values. Normal distributions have a kurtosis value of 3, and are 
referred to as mesokurtic distributions. Distributions with a kurtosis below 3 are 
platykurtic (thin-tailed), whereas distribution with a kurtosis above 3 are leptokurtic 
(heavy-tailed) (Figure 2B). The Gini coefficient measures the inequality of a 
distribution44,45 and takes values ranging between 0 (representing total equality) and 1 
(representing total inequality). It is calculated as the area between the line of equality 
and the Lorenz curve divided by the total area under the line of equality (Figure 2C). 
To increase the estimation accuracy of these three parameters, for this analysis we only 
considered mice with at least 20 simultaneously recorded single units (n=195/278 
mice).  

Contrary to the prediction of the “blank slate model”, neither the skewness nor 
the kurtosis of firing rates in the PFC and OB (age coefficient=-0.06 and -0.02, CI [-
0.19; 0.07] and [-0.05; 0.02], p=0.39 and p=0.45, for skewness and kurtosis, 
respectively, linear model) and STTC (age coefficient=0.06 and 0.01, CI [-0.27; 0.39] 
and [-0.05; 0.07], p=0.73 and p=0.71, for skewness and kurtosis, respectively, linear 
model) exhibited an age-dependent trend (Figure 2D-E). Pooling together firing rate 
and STTC distributions, 100% of the distributions were right-skewed (390/390, 
skewness > 0), and 94% were leptokurtic or heavy-tailed (366/390, kurtosis > 3). Along 
the same lines, the Gini coefficient of firing rate did not significantly change over the 
first two postnatal weeks (age coefficient=-0.004, CI [-0.014; 0.007], p=0.50, linear 
model), whereas the Gini coefficient of STTC even slightly decreased over age (age 
coefficient=-0.02, CI [-0.03; -0.002], p=0.02, linear model) (Figure 2F). This dynamic 
was consistent across brain regions (Supp. Figure 2A-C) and robust to changes in the 
minimum number of single units used as cutoff for analysis (Supp. Figure 2D). Even 
analyzing the distributions of firing rate and STTC after pooling together units recorded 
in the same brain region and in mice of the same age did not lead to age-dependency 
for any of the evaluated parameters (Supp. Figure 3). 
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Figure 2. Skewness, kurtosis and Gini coefficient of firing rate and STTC over the 
first two postnatal weeks. (A) Schematic representation of 3 distributions with 
different skewness values. (B) Same as (A) for kurtosis. (C) Lorenz curves for 3 
distributions with different Gini coefficient values and schematic representation of how 
the Gini coefficient is calculated. (D) Violin plot displaying the skewness of firing rate 
(left) and STTC (right) of P4-12 mice (n=195 mice). Color codes for age with 1-day 
increments. (E-F) Same as (D) for kurtosis and Gini coefficient. In (E-F) white dots 
indicate individual mice. In (E-F) the shaded area represents the probability density of 
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the variable. Asterisks in (F) indicate a significant effect of age. **p<0.01, linear 
models. 
 

 
Supplementary Figure 2. Skewness, kurtosis and Gini coefficient of firing rate and 
STTC across brain regions in the first two postnatal weeks. (A) Scatter and line plot 
displaying the skewness of firing rate (left) and STTC (right) of P4-12 mice (n=238 
mice). Color codes for brain region. (B-C) Same as (A) for kurtosis and Gini 
coefficient. (D) Heatmap displaying the p-value for the main effect of age as a function 
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of the minimum number of units used as a cutoff to be included in the analysis. In (A-
C) colored dots indicate individual mice, and data is presented as mean and 95% 
confidence interval. P-values refer to the interaction between age and brain region. 

 
Supplementary Figure 3. Skewness, kurtosis and Gini coefficient of firing rate and 
STTC pooled across mice over the first two postnatal weeks. (A) Scatter plot 
displaying the skewness of firing rate (left) and STTC (right) of P4-12 mice. Color 
codes for brain region. (B-C) Same as (A) for kurtosis and Gini coefficient. In (A-C) 
dots indicate a single parameter estimation on data pooled across mice of the same age 
recorded from the same brain region.  
 

This data indicates that, irrespective of brain region, the skewness, tailedness 
and inequality of first- and second-order SUA statistics do not increase with age, as 
would be predicted by the “blank slate model”. On the contrary, the only parameter to 
exhibit a significant age-dependence is the Gini coefficient of STTC, that modestly 
decreases with age. Further, almost the totality of these distributions is right-skewed 
and heavy-tailed. The fact that these results are largely brain region-independent 
indicates that the different developmental speed of the early maturating OB and the late 
maturing PFC does not affect these dynamics. Considering the large size of the 
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investigated datasets, it is also unlikely that we were not able to detect the presence of 
developmental trends due to lack of statistical power. 

Lastly, solely skewness and kurtosis of both firing rate and STTC robustly 
correlated with each other (r2=0.9 and 0.88, respectively). Despite similar 
developmental trajectories, the other pairwise parameters combination were poorly 
predictive of each other (median r2=0.03) (Supp. Figure 4), indicating that they 
quantify distinct distributions that are largely independent of each other and thus, not 
redundant. 

 

 
Supplementary Figure 4. Distribution and pairwise correlations of skewness, 
kurtosis and Gini coefficient of firing rate and STTC. (A) Pair plot of the 7 
parameters used to describe the shape of the firing rate and STTC distributions. The 
plots on the main diagonal displays histograms of the distributions of each individual 
parameter across the entire dataset (n=238 mice). The off-diagonal plots display the 
pairwise correlations among the 7 parameters. The numbers in red indicate the Pearson 
r2 for that specific pairwise parameter combination. Black dots represent individual 
mice. 
 
 
Complex network properties of the PFC do not vary over development 
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Even if the skewness, tailedness and inequality of firing rate and STTC are largely 
constant over age, we hypothesized that developmental changes might be detectable at 
a network level. To test this hypothesis, we resorted to complex network analysis46, and 
investigated the network topology of the developing PFC in vivo (Figure 3A), similarly 
to what previously done in vitro47. To minimize a potential estimation bias due to low 
number of single units, an inherent drawback of recordings in neonatal mice, we limited 
this analysis to mice having at least 20 single units (n=108/131 PFC recordings).  We 
restricted the investigation to the PFC because the network analysis for OB was biased 
by the low number of units and the level of recurrent connectivity. 

The network analysis was carried out on symmetric STTC matrices computed 
on individual mice, where each node corresponds to a single unit (Figure 3B). These 
matrices were thresholded and binarized by a shuffling procedure that swapped the 
identity of the neurons while preserving the population firing rate (see Materials and 
Methods for details). To evaluate the topology of the graphs, we computed their density 
and three main network properties: characteristic path length (L), clustering coefficient 
(C) and small-worldness (S) (Figure 3A). These last three parameters were normalized 
by dividing them with a corresponding null value extracted from random networks with 
the same density.  
 

 
Figure 3. Complex network analysis in the PFC across the first two postnatal 
weeks. (A) Schematic representation of a lattice, small-world and random network and 
their respective values of characteristic path length (L), clustering coefficient (C) and 
small-worldness (S). (B) Weighted adjacency displaying a representative STTC matrix 
of a P10 mouse. Color codes for STTC value. Units are sorted by recording depth. (C) 
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Violin plot displaying the characteristic path length as a function of age (n=108 mice). 
Color codes for age with 1-day increments. (D-E) Same as (C) for clustering coefficient 
and small-worldness. In (C-E) white dots indicate individual mice and shaded area 
represents the probability density of the variable. Asterisks in (C-D) indicate a 
significant effect of age. ***p<0.001, linear models. 
 
 

Similar to the parameters based on SUA statistics, the density of graphs did not 
significantly vary over age (age coefficient=-0.003, CI [-0.009; 0.002], p=0.23, linear 
model) (Supp. Figure 5A). While L values were similar to those computed on random 
networks (58/108=54% networks with normalized C > 1) (Figure 3C), all but one 
network had larger C values than the corresponding random network (107/108=99% 
networks with normalized L > 1) (Figure 3D). The graphs’ transitivity, a parameter that 
is closely related to the clustering coefficient, was analogously higher than in random 
networks (107/108=99% networks with normalized transitivity > 1) (Supp. Figure 5B). 

Low L and high C values are typical of so-called small-world networks, a 
category that includes many real world networks, including the adult brain48–50 (but 
see51). Accordingly, the small-worldness of the developing PFC was robustly higher 
than its corresponding null value (107/108=108=99% networks with normalized S > 1) 
(Figure 3E). While the normalized L and C increased over age (age coefficient=0.02 
and 0.13, CI [0.01; 0.03] and [0.06; 0.21], p<10-4 and p<10-4, for normalized C and L, 
respectively, linear model) (Figure 3C-D), the normalized S did not vary with age (age 
coefficient=0.07, CI [-0.02; 0.16], p=0.15, linear model) (Figure 3E). 

Thus, complex network analysis revealed that already during the first two 
postnatal weeks, the PFC displays a non-random and small-world network architecture 
that is similar to that described in the adult brain48–50 and does not evolve with age.  
 

 
Supplementary Figure 5. Graph density and transitivity of the PFC across the first 
two postnatal weeks. (A) Violin plot displaying the graph density of P4-12 mice 
(n=108 mice). Color codes for age with 1-day increments. (B) Same as (A) for 
transitivity. In (A-B) white dots indicate individual mice. In (A-B) the shaded area 
represents the probability density of the variable.  
 
 
The developing brain is in an oligarchical state 
 
Next, we investigated whether the SUA statistics are not only extremely distributed, 
but also correlated to each other. For this, we used multivariate linear regression with 
age as a covariate, and evaluated the relationship between the log-transformed firing 
rate of a neuron and its log-transformed average STTC. We found that, irrespective of 
brain region, the two variables robustly correlated with each other (firing rate 
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coefficient=0.08, CI [0.07; 0.08], p<10-70, linear mixed-effect model) (Figure 4A-B). 
This correlation between firing rate and average STTC was lower in the OB than in the 
PFC (firing rate and brain area interaction coefficient=0.06, CI [0.05; 0.06], p<10-84, 
linear mixed-effect model) (Figure 4B). Since the STTC lacks a firing rate bias40, this 
is indicative of a genuine correlation between the two variables. Consequently, neurons 
with high firing rates disproportionately contribute to network dynamics during 
development, a property reminiscent of hub neurons, as recently shown in the 
developing barrel cortex52. We define this state, in which extreme distributions are 
tightly correlated with each other, as being “oligarchical”. 

 
Figure 4. Firing rate correlates with average STTC and hubness score. (A) Scatter 
plot displaying the log-transformed average STTC of prefrontal neurons as a function 
of their log-transformed firing rate in all recorded P6 (left), P8 (center) and P10 (right) 
mice. Color codes for age. (B) Line plot displaying the log-transformed average STTC 
as a function of log-transformed firing rate across brain regions (n=259 mice and 14043 
single units). Color codes for brain region. (C) Schematic representation of a network’s 
graph in which regional and global hubs are colored in red. (D) Weighted adjacency 
STTC matrix recorded from the PL of a P10 mouse. The gray arrow indicates a neuron 
with high hubness score. Color codes for STTC value. (E) Violin plot displaying the 
log-transformed firing rate of a neuron as a function of its hubness score. Color codes 
for hubness score. In (A) colored dots indicate individual neurons. In (E) data is 
presented as median, 25th, 75th percentile, and interquartile range, and the shaded area 
represents the probability density of the variable. Asterisks in (A-B) indicate a 
significant effect of age, in (E) of hubness score. ***p<0.001, linear mixed-effect 
models. 
 
 

To investigate whether the firing rate of a neuron also correlates to its network-
level features, we used the prefrontal STTC matrices described in the paragraph above 
and extracted 4 different regional and global “hubness” metrics for each individual 
node: degree (i.e. total number of connections), strength (i.e. sum of connection 
weights), betweenness centrality (the fraction of shortest paths containing a given node) 
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and closeness centrality (the reciprocal of the average shortest path for a given node) 
(Figure 4C-D). For each of these measures, we then assigned a score of 0 or 1 to each 
node, depending on whether it exceeded the 75th percentile of that specific metric47. 
Summing the individual scores, we obtained a composite hubness score, with values 
ranging from 0 to 4. The majority of neurons (6580/10512=63%) had a hubness score 
of 0, whereas a smaller proportion (1471/10512=14%) of neurons received a hubness 
score of 4. As previously reported in 2D neuronal cultures47, the hubness score robustly 
correlated with firing rate (hubness score effect, p<10-70, linear mixed-effect model), 
with the median firing rate differing by almost an order of magnitude between neurons 
with hubness score 0 and 4 (Figure 5E). 

These data indicate that the developing cortex is not only an environment 
characterized by stably extreme SUA statistics distributions, but also that it exhibits a 
peculiar oligarchical state, in which the firing rate of a neuron robustly correlates with 
the strength of its pairwise interactions and its network-level properties. 
 
Extreme synaptic distributions are necessary to recapitulate early PFC activity in 
a spiking neural network model 
 
To investigate the mechanisms underlying the extreme distributions of SUA statistics, 
we hypothesized that analogously extremely distributed structural synaptic parameters 
might be necessary. To explore this proposition, we simulated ~8000 spiking neural 
networks of interconnected conductance-based leaky integrate-and-fire (LIF) neurons. 
The simulated networks had no spatial structure, and consisted of 400 neurons, 80% of 
which were excitatory (PYRs) and 20% inhibitory (INs), in line with anatomical data 
for neocortical areas53,54. PYRs were simulated with outgoing excitatory AMPA 
synapses, while INs were equipped with outgoing inhibitory GABAergic synapses 
(Figure 5A). In these models, we investigated how the simulated firing statistics were 
impacted by three structural parameters: (i) whether the size of synapses followed a 
normal or a log-normal distribution, (ii) whether the number of synapses of individual 
neurons followed a normal or a log-normal distribution, and (iii) whether the number 
of dendritic and axonic (incoming and outgoing) synapses were correlated or 
uncorrelated with each other (Figure 5B). This resulted in a total of 23=8 possible 
synaptic parameters combinations. To avoid choosing an arbitrary network architecture 
to test the effect of these three variables, a set of other parameters (average size of 
AMPA and GABA synapses, average connectivity, and the strength of the noisy input 
driving PYRs and INs) were randomly drawn from a range of biologically constrained 
values (see Materials and Methods for details) (Figure 5C). Given that the general 
neural network architecture is inspired by the neocortical anatomical organization (e.g. 
average connectivity and proportion of PYRs and INs), the simulated data was 
compared to PFC recordings. 

To evaluate how accurately the different network architectures recapitulated the 
SUA statistics of the developing PFC, we employed the same parameters that we used 
to describe the experimental data. For each simulation we computed the simulated 
firing rates and STTC, and, for both variables, we extracted their skewness, kurtosis, 
Gini coefficient, plus the correlation between log-transformed firing rates and average 
STTC. We then derived the coordinates of the center of mass of the experimental data 
in this 7-dimensional parameter space, and calculated the its Euclidian distance from 
every simulation (see simplified scheme in Figure 5D).  
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Figure 5. Spiking neural network modeling of the of the distribution shape of SUA 
statistics in the developing PFC. (A) Schematic representation of the neural network 
model. (B-C) Same as A for the 3 synaptic parameters (B) and the simulation 
parameters that were treated as random variables (C). (D) Schematic representation of 
the parameters that were used to evaluate the distribution shape of the experimental and 
simulated spiking data (left) and the approach that was used to evaluate the distance 
between experimental and simulated data (right). Note that, even though only 3 
dimensions are shown in the scatter plot, the distance between simulated and 
experimental data was calculated in a 7-dimensional space. Color in the scatter plot 
codes for age. (E) Violin plot displaying the distance between simulated data and the 
center of mass of experimental data as a function of the number of synaptic parameters 
set in their “extreme” configuration. (F) Multivariate regression coefficients for the 3 
synaptic parameters over the distance from the center of mass of experimental data. In 
(E) data is presented as median, 25th, 75th percentile, and interquartile range, and the 
shaded area represents the probability density of the variable. In (F) regression 
coefficients are presented as mean and 95% confidence interval. 
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Using this approach and multivariate linear regression, we found that the 
distance from the experimental data’s center of mass decreased as a function of the 
number of structural parameters that was set in its “extreme” configuration (log-normal 
distribution of synapse size and number, and correlated number of incoming and 
outgoing synapses) (Figure 5E). Further, the distance from the experimental center of 
mass decreased supra-linearly as a function of the number of “extreme” parameters (0-
1 “extreme” parameters distance difference=0.07, 1-2 “extreme” parameters distance 
difference=0.09, 2-3 “extreme” parameters distance difference=0.12, linear model) 
(Figure 5E). This effect is also visually appreciable when the 7 dimensions in which we 
evaluated the model fit are reduced using tSNE (Supp. Figure 6A). When few synaptic 
parameters are set to their “extreme” configuration, there is little to no overlap between 
experimental and simulated data. Conversely, when all 3 synaptic parameters are set to 
their “extreme” configuration, the areas of maximum density of the two distributions 
are overlapping (Supp. Figure 6A).  

Taken individually, the structural parameter with the largest effect on the 
average distance from the experimental data’s center of mass was the distribution of 
synapse number (regression coefficient=-0.16, linear model), followed by the 
distribution of synaptic weight (regression coefficient=-0.06, linear model) and by the 
proportionality of incoming and outgoing synapses (regression coefficient=-0.06, linear 
model) (Figure 5F). Next, we considered the effect of the 3 synaptic parameters on 
individual properties of the simulated SUA statistics (Supp. Figure 6B-H). We found 
that the distribution of the synapse number had the largest effect on: (i-ii) skewness of 
firing rate and STTC, (iii) the kurtosis of STTC, (iv) the Gini coefficient of firing rate 
and (v) the log-log correlation between firing rate and average STTC. The 
proportionality of incoming and outgoing synapses had the largest effect on: (i) the 
kurtosis of firing rate and (ii) the Gini coefficient of STTC. The distribution of synaptic 
weights did not have the largest effect on any of the 7 parameters (Supp. Figure 6B-H).  
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Supplementary Figure 6. Spiking neural network modeling of the of the 
distribution shape of SUA statistics in the developing PFC. (A) tSNE-embedded 
space occupied by experimental (red) and simulated (black) data in the 7-dimensional 
parameter space used to evaluate model fit, as a function of the number of synaptic 
parameters set in their “extreme” configuration. Color intensity codes for probability. 
(B) Multivariate regression coefficients for the 3 synaptic parameters over the distance 
from the median firing rate skewness of experimental data. (C-H) Same as (B) for 
STTC skewness (C), firing rate kurtosis (D), STTC kurtosis (E), firing rate Gini 
coefficient (F), STTC Gini coefficient (G) and firing rate – STTC correlation (H). In 
(B-H) regression coefficients are presented as mean and 95% confidence interval. 
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Taken together, these data indicate that, in spiking neural networks simulations, 
extreme distributions of synaptic parameters are required to stably recapitulate the SUA 
statistics that we observed in the developing PFC. The distribution of synapse number 
on individual neurons is the synaptic parameter with the largest influence on the model 
fit. However, all three synaptic parameters play a significant role and influence different 
aspects of the simulated data. 
 
 
The shape of the SUA statistics distributions is stable throughout adulthood, while 
the oligarchy decreases with age 
 
So far, we have shown that already shortly after birth the brain has a right-skewed, 
heavy-tailed and unequal distribution of SUA statistics that largely does not vary during 
the first two postnatal weeks. Since similar properties have been previously reported 
for the adult brain, the question arises if and how the extremeness of these parameters 
varies throughout late development and into adulthood. To address this question, we 
chronically recorded from the PFC of head-fixed mice from P16 to P60 (n=24 mice, 95 
recordings, 2498 single units and 36899 spike train pairs).  

SUA firing rate and STTC did not vary with age (age coefficient=-0.003 and -
10-4, CI [-0.003; 0.001] and [-6*10-4; 4*10-4], p=0.28 and p=0.63, respectively, 
generalized linear mixed-effect model) (Supp. Figure 7A-B). 
 

 
Supplementary Figure 7. Prefrontal SUA firing statistics in P16-60 mice. (A) Line 
plot displaying the SUA firing rate of P16-60 mice (n=24 mice, 95 recordings and 2498 
single units) as a function of age. (B) Same as (A) for STTC (n=24 mice, 95 recordings 
and 36899 spike train pairs). In (A) and (B) data is presented as mean and 95% 
confidence interval.  
 
 

Analogously to the data for the neonatal brain, the skewness of the SUA 
statistics did not change also for the P16-60 developmental time window (age 
coefficient=-0.004 and -0.01, CI [-0.02; 0.007] and [-0.02; 0.003], p=0.49 and p=0.14, 
for firing rate and STTC, respectively, linear mixed-effect model) (Figure 6A). Along 
the same line, also the firing rate’s and STTC’s kurtosis (age coefficient=-0.001 and -
0.001, CI [-0.005; 0.002] and [-0.005; 0.002], p=0.42 and p=0.55, for firing rate and 
STTC, respectively, linear mixed-effect model) and Gini coefficient (age 
coefficient=10-5 and 7*10-4, CI [-0.001; 0.001] and [-0.002; 8*10-4], p=0.99 and p=0.34, 
for firing rate and STTC, respectively, linear mixed-effect model) remained constant 
for the investigated time window (Figure 6B-C).  
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Figure 6. Skewness, kurtosis, Gini coefficient and correlations of firing rate and 
STTC in P16-60 mice. (A) Scatter plot displaying the skewness of firing rate (left) and 
STTC (right) of P16-60 mice (n=24 mice and 95 recordings). Color codes for age with 
1-day increments. (B-C) Same as (A) for kurtosis and Gini coefficient. (D) Line plot 
displaying the log-transformed average STTC as a function of log-transformed firing 
rate across ages (n=24 mice and 2498 single units). Color codes for age. (E) Same as 
(A) for the Pearson correlation between log-transformed average STTC and log-
transformed firing rate within individual mice. In (A-C) and (E) colored dots indicate 
individual recordings. In (D) data is presented as mean and 95% confidence interval. 
Asterisks in (D-E) indicate a significant effect of age. ***p<0.001, **p<0.01, linear 
mixed-effect models. 
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Similar to the data for early development, in the adult PFC, the log-transformed 
firing rate of a neuron and its average STTC correlated with each other (average STTC 
coefficient=1.53, CI [1.34; 1.71], p<10-56, linear mixed-effect model) (Figure 6D). 
However, when we fitted a model that includes an interaction of STTC with age, the 
correlation strength between the two variables decreased with age (age and average 
STTC interaction coefficient=-0.03, CI [-0.05; -0.02], p<10-5, linear mixed-effect 
model) (Figure 6D). Accordingly, the Pearson correlation between firing rate and 
average STTC on an individual mouse basis strongly decreased with age, from roughly 
~0.6 to ~0.3 (age coefficient=-0.006, CI [-0.009; -0.002], p=0.001, linear mixed-effect 
model) (Figure 6E). 

Thus, in the mouse PFC, the extremeness of SUA statistics distributions does 
not significantly change between P16 and P60. However, the correlation between firing 
rate and STTC is roughly halved from P16 to P60, indicating that the oligarchical state 
in PFC is more pronounced during early development than at adulthood. 
 
Inhibitory synaptic plasticity parsimoniously explains the gradual disappearance 
of the oligarchy 
 
Throughout the same developmental phase during which we observed a decrease of the 
correlation between the firing rate of a neuron and its average STTC, the cortex 
transitions into a state of detailed E-I balance55, a phenomenon that has been linked to 
inhibitory synaptic plasticity56. Given the critical role that E-I ratio plays in controlling 
correlations among neurons38, we hypothesized that this transition might explain the 
progressive decline of the correlation between firing rate and STTC. 

To test this hypothesis, we resorted to spiking neural network modeling with an 
analogous architecture as the one used to model early cortical activity. After an initial 
period in which the networks were run with frozen synaptic sizes and all the synaptic 
parameters in their “extreme” configuration, we added symmetric spike-time dependent 
inhibitory plasticity (ISTDP) on the synapses connecting INs to PYRs56 (Eq. 1) and 
classic asymmetric Hebbian plasticity (STDP) on PYR-PYR excitatory synapses57 
(Figure 7A). The original formulation of the ISTDP rule implemented a single target 
firing rate (“α”, equation 1) for the entire population of PYRs. In this study, we instead 
decided to draw “α” from a lognormal distribution, to better recapitulate the diversity 
of the experimentally observed firing rates (see Materials and Methods for details): 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜂𝜂(𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑− 𝛼𝛼∗𝑝𝑝𝑝𝑝𝑝𝑝)
𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                          (Eq. 1)  
 
where W is an IN-PYR synaptic weight, pre and post are the pre- and postsynaptic 
activity, α is the target rate for the postsynaptic PYR, drawn from a log-normal 
distribution, 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the decay time constant of the plasticity rule, and 𝜂𝜂 is the learning 
rate. 

Analogously to the approach that we previously described, also for this set of 
simulations, we treated several other structural parameters as random variables, and we 
systematically varied them within the same biologically-constrained range of values 
that we employed for the former simulations. To evaluate the effect of synaptic 
plasticity, we compared the SUA statistics of the frozen synapses phase and those of 
the last fifth of the simulated data, a phase in which synaptic changes were stable 
(Figure 7B). 
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Figure 7. Spike-dependent inhibitory synaptic plasticity decreases the correlation 
between firing rate and STTC. (A) Schematic representation of the simulated 
inhibitory (top left) and excitatory (bottom left) synaptic plasticity rules. (B) Line plot 
of the IN-PYR (top) and PYR-PYR (bottom) synaptic weight changes over time. The 
shaded area indicates the period without synaptic plasticity. (C) Line plot of excitatory 
and inhibitory currents correlation (top) and absolute difference (bottom) over time. 
The shaded area indicates the period without synaptic plasticity. (D) Scatter and line 
plot of a representative example of the correlation between simulated firing rate and 
average STTC before (yellow) and after (blue) synaptic plasticity. (E) Histogram plot 
of the difference in simulated firing rate and average STTC correlation before and after 
synaptic plasticity. The black line indicates the mean of the experimental data, the two 
grey lines the 95% C.I. of the mean and the red line the mean of the simulated data. In 
(B-C) individual black lines represent individual simulations and the red line the mean 
across simulations. For visualization purposes, only 1/5 of the individual simulations 
are shown. In (D) individual dots represent individual simulated neurons, and data is 
presented as mean and 95% C.I. 
 
 

Analogously to previous results56, we found that adding ISTDP resulted in an 
increase of correlation between incoming excitatory and inhibitory currents across 
neurons (Figure 7C, top) and a decrease of the mismatch (i.e. the absolute value of the 
difference) between excitatory and inhibitory currents across time (computed in 5s 
bins) within individual neurons (Figure 7C, bottom). 
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In line with our hypothesis, we found that adding ISTDP and STDP to the 
network also induced a decrease in the correlation between firing rate and average 
STTC that was comparable to what we experimentally observed in P16-60 mice (mean 
decrease in firing rate – average STTC correlation in simulated data=0.16, in 
experimental data=0.26, CI [0.11; 0.41], Figure 7D-E). When we further evaluated the 
effects of synaptic plasticity, we found that it only minimally affected the skewness, 
kurtosis and Gini coefficient of firing rate and STTC, similar to the experimental data 
from the PFC of P16-60 mice (Supp. Figure 8). Of these 6 parameters, only the kurtosis 
and Gini coefficient of firing rate were narrowly outside the 95% confidence interval 
of the experimental values (Supp. Figure 8). 

 

 
Supplementary Figure 8. Synaptic and network effects of synaptic plasticity rules. 
(A) Histogram plot of the difference in simulated skewness of firing rate before and 
after synaptic plasticity. The black line indicates the mean of the experimental data, the 
two grey lines the 95% C.I. of the mean and the red line the mean of the simulated data. 
(B-F) Same as (A) for the skewness of STTC (B), kurtosis of firing rate (C) and STTC 
(D) and Gini coefficient of firing rate (E) and STTC (F). 
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Taken together, these data indicate that adding ISTDP and STDP to a spiking 

neural network parsimoniously recapitulates the developmental decrease in the 
correlation between firing rate and STTC while only minimally affecting the 
distributions of firing rate and STTC, consistent with what we observed in the PFC of 
P16-60 mice. 
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Discussion 
 

A fascinating property of the adult brain is that a large number of parameters, 
ranging from the size of synapses to the power of extracellular currents1,3,4, follow 
extreme distributions. This organization has been suggested to have many desirable 
properties10,27, but how and when it arises is still a matter of debate. Here, we report 
that in the PFC and OB, two brain regions exemplifying slow and fast maturational 
dynamics, already in the first days of extrauterine life, the distributions of first- and 
second-order SUA statistics are extreme: right-skewed, heavy-tailed and highly 
unequal. While the central tendency of these distributions varies across development, 
their shape remains largely unchanged until adulthood. We also show that early brain 
activity is in an oligarchical state, in which high firing rate neurons display hub-like 
properties and exert a disproportionate influence on their local network, a phenomenon 
that becomes less prominent as mice age. Leveraging spiking neural network modeling 
we demonstrate that, to recapitulate these network properties, analogously extremely 
distributed synaptic parameters are needed. We conclude by showing that the 
progressive disappearance of the oligarchical state can be parsimoniously explained by 
introducing an inhibitory synaptic plasticity rule that establishes a detailed excitation-
inhibition balance. This work suggests that the distribution shape of structural and 
functional neural parameters is not fundamentally altered by developmental processes, 
but rather preconfigured and experience-independent. 

In altricial animals such as rodents, the first postnatal week roughly corresponds 
to mid-late gestation in humans37. At this early stage, brain activity has several unique 
traits, such as discontinuity37, highly correlated spiking activity38,42,43, the presence of 
transient cell types and circuits58, extremely low firing rates38,59, low levels of 
inhibition38,60,61 and a loose temporal coordination of excitation and inhibition55,56. 
Importantly, sensory systems are still very underdeveloped. In rodents, the retina 
becomes light sensitive around P8-959,62, and eye opening only takes place around P14-
P15, a few days after hearing onset occurs63. The whisking-related sensory system also 
follows a similar timeline. In the first postnatal week, ~90% of whisker movements do 
not induce increased firing rate in the somatosensory cortex, and ~90% of firing in the 
somatosensory cortex is unrelated to whisker movements64. Even after splitting whisker 
movements by size and only considering the few large ones that occur, the 
somatosensory cortex is active concomitantly with a whisker movement less than 50% 
of the time65. Whisker-elicited sensory responses are initially mainly the result of 
passive stimulations by the dam and the littermates, while robust active whisking only 
emerges around P10-1266–68. Solely the olfactory system follows a distinct 
developmental dynamic and, even though it is also still developing69, it is already 
functional and behaviorally relevant in the first postnatal days35,36. Despite the paucity 
of sensory information that is therefore available in the first postnatal week, we find 
that the distribution of SUA statistics is already extreme and does not significantly vary 
from early development to adulthood. Corroborating the idea that experience does not 
play a significant role in this process, we find no differences between the OB, that is 
already “online”, and the PFC, which is supposed to be one of the slowest developing 
brain regions37. We further show that already from P4 onwards, the PFC also displays 
a complex network topology that is reminiscent of small-world networks, a property 
that is typical of many real world networks70, including the adult brain48–50 (but see51).  

These results are difficult to reconcile with the hypothesis that brain structure is 
initially “diffuse” and only later acquires the structural organization that is typical of 
the adult brain29,30,71. Rather, they support several recent studies that have highlighted 
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the importance of “nature over nurture”72,73 in establishing neural circuits and the 
distributions of their parameters. For instance, in neuronal cultures, the variance of 
glutamatergic synaptic sizes does not differ between networks that are silenced from 
plating onwards, and networks that are spontaneously active7. Similarly, cultures of 
dissociated neurons exhibit the ability to self-organize into a complex network topology 
with small-world properties that is characterized by extreme distributions of firing rates 
and connection weights47. Extreme distributions of firing rates and functional 
connectivity are also observed in human brain organoids74,75, that also do not have 
access to sensory inputs. Along the same lines, in vivo blocking of synaptic 
transmission in the hippocampus of anesthetized rats does not alter the distribution of 
spine sizes76. Even more surprisingly, completely abolishing all central nervous system 
activity for the first four days of life of the larval zebrafish only minimally impacts the 
tuning and functionality of neurons, and the ability of the fish to learn a complex 
visuomotor task72. Intriguingly, similar concepts are beginning to percolate also in the 
field of artificial intelligence77, which has been traditionally dominated by a bottom-up 
and learning-based approach. 

The relationship between the firing rate of a neuron and the strength of its 
pairwise interactions with other neurons is complex and still debated. A number of 
experimental and theoretical studies found a positive correlation between the two 
variables78–81. However, this relationship has also been reported to be absent or even 
negative82–85. Here we show that, in the PFC and OB of P4-12 mice, there is a strong 
positive correlation between firing rate and average pairwise interaction of a neuron, as 
measured by the STTC coefficient. Thus, neurons with extreme firing rates are also 
likely to have extreme average STTC values, an organization that we refer to as 
oligarchical. The correlation between firing rate and STTC weakens throughout 
development, but it is present also in adulthood. In the early PFC, firing rate also 
correlates with a neuron’s “hubness score”, a composite metric that encompasses 5 
different measures of local and global hubness. The topic of hub neurons, defined as a 
subclass of neurons that has an outsized influence on the network activity, has been the 
subject of extensive experimental and theoretical research in the developing brain52,86–

88. In agreement with our results, hub neurons in the developing entorhinal86,87 and 
barrel cortex52 are also characterized by high firing rates and high functional 
connectivity, a prediction that is shared by theoretical work89. Previous work has also 
shown that hub neurons are generally INs, something that we could not investigate in 
the current study, due to the difficulty of separating INs and PYRs based on their 
waveform properties in the early developing brain90. This work further shows that, in a 
neural network model, adding inhibitory synaptic plasticity results in E-I balance across 
neurons and time, and decreases the influence of high firing rate neurons on the network 
activity. Thus, we propose that the loose temporal E-I balance that is typical of the 
developing brain55,56 might be a permissive mechanism for the role exerted by hub 
neurons on their surroundings. Whether the developmental shift of E-I ratio towards 
inhibition38,60 also plays a role remains to be investigated. 

Lastly, we show that there is a mechanistic link between the distribution of 
structural (synaptic) and functional (SUA statistics) parameters. In particular, we report 
that, in a spiking neural network model, three synaptic parameters had a strong 
influence on the extremeness of the simulated spiking activity: (i) whether the size of 
synapses followed a log-normal distribution, (ii) whether the number of synapses of 
individual neurons followed a log-normal distribution, and (iii) whether the number of 
dendritic and axonic (incoming and outgoing) synapses were correlated with each other. 
The three parameters had a synergistic effect on the model goodness of fit to the 
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experimental data, and had a distinct impact on different properties (skewness, kurtosis 
and Gini coefficient) of the simulated firing rate and STTC distributions. While a large 
body of evidence supports the notion that the size and number of synapses follow an 
extreme distribution1, to the best of our knowledge, whether the number of dendritic 
and axonic synapses are correlated with each other has not been explicitly investigated 
in mammals. However, a recent study found that, in the mouse PFC, the length of a 
neuron’s dendrite and axon are positively correlated91. Further, in a full-brain 
Drosophila Melanogaster reconstruction, the number of incoming and outgoing 
synapses are tightly correlated with each other (Person coefficient = 0.8)92. The fact 
that extremely distributed synaptic parameters are required to faithfully reproduce the 
SUA statistics of the developing PFC suggests that the distribution of synaptic 
parameters is experience-independent.  

This study has several limitations. First, despite investigating mice from a very 
early developmental phase, and doing so also in the PFC, one of the slowest developing 
brain regions, we cannot exclude that some experience-dependent processes have not 
already taken place. Second, we do not directly experimentally probe whether the 
distribution shape of synaptic parameters is stable across the first postnatal weeks. 
However, our modeling results generate a number of predictions that could be 
experimentally addressed: (i) that synapse size and number on individual neurons 
follow extreme distributions already in the first postnatal week, (ii) that the shape of 
these distributions should be stable across development, and (iii) that the number of 
incoming and outgoing synapses should be tightly correlated. Third, while our results 
argue against a role of experience in shaping these processes, we do provide an 
alternative mechanistic answer to the question. This topic has however already been the 
subject of a number of theoretical studies7,9,76,89. Further, we generated a large and 
detailed experimental open-access database that could be instrumental in benchmarking 
future research on this topic. An approach that we believe might be of particular interest 
is that of generative models93,94. Illustrating the promise of this approach, generative 
models solely based on spatiotemporal gradients of neuronal development95 or 
homophily principles75 can recapitulate important features of the complex topology of 
adult brains. 

In summary, we report that the extremeness with which functional and structural 
parameters are distributed is stable across a large portion of the lifespan, which suggests 
that the brain is in a preconfigured state, and that experience-dependent processes do 
not fundamentally alter its organization. Further elucidating the principles underlying 
the establishment of neural circuits might prove insightful for advancing the field of 
biological and artificial intelligence alike. 
  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2023. ; https://doi.org/10.1101/2023.11.13.566810doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.13.566810
http://creativecommons.org/licenses/by-nc/4.0/


Oligarchy in the developing brain                                                                  Chini et al. 

Acknowledgments 
We thank Sebastian Bitzenhofer and Irina Pochinok for valuable discussions and 
feedback on the manuscript, P. Putthoff, A. Marquardt and A. Dahlmann for excellent 
technical assistance. This work was funded by grants from the European Research 
Council (ERC-2015-CoG 681577 to I.L.H.-O.), Marie Curie Training Network euSNN 
(MSCA-ITN-H2020-860563 to I.L.H.-O.), Horizon2020 DEEPER 101016787, the 
German Research Foundation (437610067, 178316478 and 302153259 to I.L.H.-O.) 
and Landesforschungsförderung Hamburg (LFF76, LFF73 to I.L.H.-O.). 
 
Author Contributions 
M.C. and I.L.H.-O. designed the experiments and wrote the manuscript. M.C., J.K.K., 
M.H. and Y.-N.C. carried out the experiments, M.C. analyzed the experimental data 
and carried out neural network modeling. All authors interpreted the data, discussed 
and commented on the manuscript. 
 
 
Declaration of interests 
The authors declare no competing interests. 
 
  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2023. ; https://doi.org/10.1101/2023.11.13.566810doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.13.566810
http://creativecommons.org/licenses/by-nc/4.0/


Oligarchy in the developing brain                                                                  Chini et al. 

Data and code availability 
 
SUA data that was newly generated for this study will be available at the following 
open-access repository: https://gin.g-node.org/mchini/Chini_et_al_Preconfigured 
Code, processed data and statistical analysis supporting the findings of this study will 
be available at the following open-access repository: 
https://github.com/mchini/Chini_et_al_Preconfigured 
 
Experimental models and subject details 
 
All experiments were performed in compliance with the German laws and following 
the European Community guidelines regarding the research animal’s use. All 
experiments were approved by the local ethical committee (G132/12, G17/015, 
N18/015, N19/121). Experiments were carried out on C57BL/6J mice of both sexes. 
Mice were housed in individual cages on a 12 h light/12 h dark cycle, and were given 
access to water and food ad libitum. P16-60 mice were housed with a minimum of two 
cage-mates after weaning. The day of birth was considered P0. Details on the data 
acquisition and experimental setup of open-access datasets that were used in this project 
have been previously published38,39. 
 
In vivo electrophysiology in P4-12 mice 
 
Surgery. In vivo extracellular recordings were performed from the PFC and the ventral 
portion of the OB of non-anesthetized P4-P12 mice. The surgery and animal 
preparation were analogous for the two brain regions. Before starting with the surgical 
procedure, a local anesthetic was applied on the neck muscles (0.5% bupivacain / 1% 
lidocaine). The surgery was performed under isoflurane anesthesia (induction: 5%; 
maintenance: 1-3%, lower for older pups, higher for younger pups). Neck muscles were 
severed to minimize muscle artifacts. A craniotomy over the PFC (0.5 mm anterior to 
bregma, 0.1-0.5 mm lateral to the midline) or the OB (0.5–0.8 mm anterior to 
frontonasal suture, 0.5 mm lateral to inter-nasal suture) was performed by carefully 
thinning the skull and then removing it with the use of a motorized drill. Mice were 
head-fixed into a stereotactic frame and kept on a heated (37°) surface surrounded by 
cotton wool throughout the entire recording. To record from the PFC, a Neuropixels 
probe 1.0 phase 3B (Imec, Belgium) was slowly vertically inserted (angle 0°) into the 
frontal lobe (insertion time 20-30 minutes), at a depth varying between 2.6 and 4 mm 
depending on the age of the animal. Due to the small size of the brain, in younger 
animals, not all 384 recording channels were inserted in the brain. The tip of the probe 
was used as reference. To record from the OB, a single-shank silicon probe 
(NeuroNexus, MI, USA) with 16 recording sites and 50 μm inter-site spacing was 
vertically inserted (angle 0°) at a depth varying between 1.0 and 2.0 mm. A silver wire 
inserted in the cerebellum was used as reference. Both probe types were inserted using 
a micromanipulator. Before signal acquisition, mice were allowed to recover for ~45 
minutes, to maximize the quality and stability of the recording as well as single units’ 
yield. 
 
Signal acquisition. For PFC recordings, signals from the bottom 384 channels were 
recorded at a 30 kHz using the Neuropixels head-stage 1.0 and Neuropixels 1.0 PXIe 
acquisition system (Imec, Belgium). The SUA signal was acquired through the 
OpenEphys interface and the Neuropixels plugin (AP gain = 500, AP Filter Cut = ON). 
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For OB recordings, signals were band pass-filtered (0.1–9 kHz) and digitized (32 kHz) 
by a multichannel amplifier (Digital Lynx SX; Neuralynx, Bozeman, MO, USA) and 
acquired through the Cheetah acquisition software (Neuralynx, Bozeman, MO, USA). 
 
Histology. Epifluorescence images of coronal brain sections were acquired post mortem 
to reconstruct the position of the DiI-stained recording electrode. Only mice in which 
the electrodes were placed in the correct position were kept for further analysis.  
 
In vivo electrophysiology in P16-60 mice 
 
Surgery. Acute In vivo extracellular recordings were performed from the PFC of awake, 
head-fixed mice of both sexes. Before starting with the surgical procedure to implant a 
metal head-plate (Neurotar, Helsinki, Finland) for head-fixation, buprenorphine 
(0.5 mg/kg bw) was injected subcutaneously. The surgery was performed under 
isoflurane anesthesia (induction: 5%; maintenance: 2.5%). Anesthesia depth was 
confirmed with the paw withdrawal reflex. Eyes were covered with an ointment 
(Vidisic, Bausch + Lomb, Berlin, Germany) to prevent them from drying out. After 
disinfection with Betasisodona, the scalp was removed from the top of the head and the 
edges treated for analgesia with application of a Lidocain/Bupivicain mixture (0.5% 
bupivacain / 1% lidocaine). A craniotomy was performed to make the mPFC (0.5–2.0 
mm anterior to bregma, 0.1–0.5 mm right to the midline) accessible for recordings. A 
synthetic window was fixed to the skull around the craniotomy to be able to protect the 
tissue with Kwik-Cast sealant (World Precision Instruments, Friedberg, Germany). A 
silver wire, serving as a ground and reference electrode, was inserted between the skull 
and cerebellum. The metal head-plate was attached to the skull with dental cement. For 
recovery from anesthesia, mice were placed in a cage on a heating mat and after being 
fully awake, they were put back into their home cage with their cage mates. For further 
analgesia Metacam (0.5 mg/ml, Boehringer-Ingelheim, Germany) was mixed into soft 
food and provided for 48 h after the surgery. 
 
Training and signal acquisition. After recovery from the surgery, mice were 
accustomed to the head-fixation system and trained to move the air-lifted carbon cage 
from the MobileHomeCage system (Neurotar, Helsinki, Finland). To perform 
electrophysiological recordings, the craniotomy was uncovered and an electrode 
(NeuroNexus, MI, USA) was stereotactically inserted into the mPFC (one-shank, 
A1x16-channel, 100 µm-spaced, 2.0 mm deep). The signal was acquired for 30-40 min. 
Extracellular signals were band-pass filtered (0.1–9000 Hz) and digitized (32 kHz) with 
a multichannel extracellular amplifier (Digital Lynx SX; Neuralynx, Bozeman, MO, 
USA). 
 
Histology. Epifluorescence images of coronal brain sections were acquired post mortem 
to reconstruct the position of the recording electrode. To this aim, after the last 
recording, a DiI-coated electrode was inserted. Only mice in which the electrodes were 
placed in the correct position were kept for further analysis.  
 
Spike sorting 
 
PFC recordings were spike-sorted with Kilosort 2.596 (fshigh = 500, minFR = 0.001, 
spkTh = -4, sig = 20, nblocks = 5). OB recordings were spike-sorted with Klusta97. 
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Automatically-obtained clusters were manually curated using phy 
(https://github.com/cortex-lab/phy). 
 
SUA firing statistics and shape distribution parameters 
 
Firing rate. Firing rate (in Hz) was computed as the number of spikes divided by the 
total recording length in seconds. 
 
Spike-Time Tiling Coefficient (STTC). The STTC (timescale of 10 ms) was computed 
as previously described38,40.  
Briefly:  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1

2
� 𝑆𝑆𝐴𝐴−𝑆𝑆𝐵𝐵
1−𝑆𝑆𝐴𝐴𝑆𝑆𝐵𝐵

+ 𝑆𝑆𝐵𝐵−𝑆𝑆𝐴𝐴
1−𝑆𝑆𝐵𝐵𝑆𝑆𝐴𝐴

�                                                                              (Eq. 2) 
where PA is the proportion of spikes of spike train A that occurs within ±Δt of a spike 
train B spike. TA is the proportion of time that occurs within (is “tiled” by) ±Δt from 
spikes of spike train A. The same applies for PB and TB. ±Δt is the lag parameter and 
was set at 10 ms. 
 
Skewness. Skewness was computed using the homonymous Matlab function skewness 
as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐸𝐸 ��(𝑋𝑋 − 𝜇𝜇)
𝜎𝜎

�
3
�                                                                                 (Eq. 3)  

Where X is the random variable of interest, μ is its mean, σ its standard deviation, and 
E is the expectation operator. 
 
Kurtosis. Kurtosis was computed using the homonymous Matlab function kurtosis as: 

𝑠𝑠𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘𝑠𝑠 =  𝐸𝐸 ��(𝑋𝑋 − 𝜇𝜇)
𝜎𝜎

�
4
�                                                                                   (Eq. 4) 

Where X is the random variable of interest, μ is its mean, σ its standard deviation, and 
E is the expectation operator. 
 
Gini coefficient. The Gini coefficient was computed using the Matlab function gini98. 
The Gini coefficient is calculated by taking the ratio of the area that lies between the 
line of equality and the Lorenz curve, over the total area under the line of equality. 
 
Complex network properties 
 
To calculate the network properties of the developing brain, we utilized symmetrical 
STTC matrices. The pre-processing consisted of thresholding and binarization. To 
threshold the data, we computed surrogate spiking data for each mouse individually. 
To account for the slow co-modulation of firing rates that is typical of the developing 
brain, we generated surrogate spiking data by leaving the timing of spikes unaffected 
and shuffling the identity of the neuron that emitted the spike. This pseudo-
randomization thus generated surrogate spike vectors while preserving the population 
rate. Using these spike vectors, we then computed at least 1000 STTC values on 
shuffled data, and used the 90th percentile value to threshold and binarize the real-data 
STTC matrices. The binary and undirected matrices were then analyzed with the 
MATLAB Brain Connectivity Toolbox46.  
The clustering coefficient and transitivity of the matrices were extracted with the 
clustering_coef_bu and transitivity_bu functions, respectively. To compute the 
characteristic path length, we first computed the distance matrix (distance_bin) and 
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then computed the characteristic path length (charpath) without including distances on 
the main diagonal and infinite distances. All these values were normalized by dividing 
them with a corresponding “null” value that was computed by generating 100 synthetic 
random networks (makerandCIJ_und), extracting the same parameters for each 
iteration, and computing the average. Small-worldness was computed by dividing the 
normalized clustering coefficient by the normalized characteristic path length. 
The four “hubness” parameters that we used to compute the composite “hubness score” 
were also extracted with the same MATLAB toolbox. For each node individually, we 
computed its total amount of edges (i.e. its degree, using degrees_und), its total amount 
of weights (strengths_und, this is the only parameter that was computed on weighted 
and not binary matrices), its betweenness centrality (betweenness_bin, after using 
weight_conversion and ‘lengths’) and its closeness centrality (the inverse of the node’s 
average distance computed with distance_bin). 
 
Neural network modeling 
 
All simulations were performed using Brain2 for Python3.799.  
 
General neural network architecture. The architecture of the network was set similarly 
to previously published work38,100, and is schematically illustrated in Figure 6A-C . The 
network was composed of 400 conductance-based leaky integrate-and-fire neurons, 
80% of which were excitatory (PYRs) (N=320) and 20% were inhibitory (INs) (N=80). 
PYRs were simulated with outgoing excitatory synapses and INs with outgoing 
inhibitory synapses. Excitatory (PYR→PYR, PYR→IN) and inhibitory (IN→IN and 
IN→PYR) synapses were simulated as AMPA and GABA conductances, respectively. 
Due to the near-instantaneous rise times of AMPA- and GABA-mediated currents (both 
typically <0.5 ms), we opted to neglect these in the simulations. Synaptic transmission 
was assumed to be instantaneous (i.e. with zero delay). 
The dynamics of each excitatory and inhibitory cell were governed by the following 
stochastic differential equation: 
𝑆𝑆𝑚𝑚

𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝑔𝑔𝐿𝐿(𝑉𝑉𝑚𝑚 − 𝑉𝑉𝐿𝐿) − 𝑔𝑔𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴(𝑉𝑉𝑚𝑚 − 𝐸𝐸𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴) − 𝑔𝑔𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴(𝑉𝑉𝑚𝑚 − 𝐸𝐸𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴) + 𝜎𝜎𝜎𝜎  (Eq. 5) 
 
with  
𝑑𝑑𝑔𝑔𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴

𝑑𝑑𝑑𝑑
=  −𝑔𝑔𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴

𝜏𝜏𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴
                                                                                                (Eq. 6)  

 
and 
𝑑𝑑𝑔𝑔𝐺𝐺𝐴𝐴𝐵𝐵𝐴𝐴

𝑑𝑑𝑑𝑑
=  −𝑔𝑔𝐺𝐺𝐴𝐴𝐵𝐵𝐴𝐴

𝜏𝜏𝐺𝐺𝐴𝐴𝐵𝐵𝐴𝐴
                                                                                                 (Eq. 7) 

 
where 𝑉𝑉𝑚𝑚 is the membrane potential, 𝑉𝑉𝐿𝐿 is the leak membrane potential and 𝐸𝐸𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 and 
𝐸𝐸𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴   denote the AMPA and GABA current reversal potentials, respectively. The 
synaptic conductance parameters and the corresponding decay time constants are 
denoted by 𝑔𝑔𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 , 𝑔𝑔𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴  and 𝜏𝜏𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 , 𝜏𝜏𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴 , respectively. 𝜎𝜎𝜎𝜎 is a noise term that is 
generated by an Ornstein-Uhlenbeck process with zero mean. The networks were 
simulated for a duration of 10 s (simulations without plasticity) or 50 s (simulations 
with plasticity). All simulations were performed with a time step (dt) of 0.1 ms and 
integrated with Euler’s method. All parameter values/ranges used in the simulations are 
listed in Table 1.  
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Random variables. To avoid choosing an arbitrary neural network architecture, a 
number of parameters were treated as “random variables” and systematically varied 
across a biologically-constrained range. There parameters included: 1) the noisy input 
(Ornstein-Uhlenbeck process) that was used to independently drive PYRs and INs; 2) 
the mean probability with which neurons were connected, which was the same for all 
possible population combinations: i) PYR-PYR, ii) PYR-IN, iii) IN-PYR, iv) IN-IN; 3) 
the mean size of excitatory and inhibitory synaptic weights. 
 
Synaptic parameters. In these networks, we studied the influence on the simulated SUA 
statistics exerted by three synaptic parameters: whether the size of synapses followed a 
normal or a log-normal distribution, whether the number of synapses of individual 
neurons followed a normal or a log-normal distribution, and whether the number of 
dendritic and axonic (incoming and outgoing) synapses were correlated or uncorrelated 
with each other. The 2 possible configurations for the 3 synaptic parameters resulted in 
23=8 different network types, of which we simulated 1000 each. These 3 synaptic 
parameters were simultaneously varied for the entire network and not in a neuronal 
population-specific manner.  
 
Number of synapses and correlation between dendritic and axonic synapses. We first 
generated a normal (mean = 1, std = 1/4) or log-normal (mean of the underlying normal 
= 0, std of the underlying normal = 0.5) relative distribution of the number of 
connections that was normalized to have a sum=1. To account for the different number 
of connections in different simulations (see previous paragraph Random variables), the 
relative distribution was then scaled by the total amount of connections between the 
pre- and post-synaptic population according to: 
 
𝑘𝑘𝑘𝑘𝑘𝑘. 𝑐𝑐𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 ∗ 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 𝑐𝑐𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑘𝑘𝑘𝑘𝑐𝑐𝑘𝑘𝑘𝑘𝑐𝑐                                     (Eq. 8) 
 
Where Npre is the number of presynaptic neurons (PYRs or INs), Npost is the number of 
postsynaptic neurons (PYRs or INs) and mean connectivity is a parameter that is 
randomly varied between simulations. Please note that, due to the normalization, the 
fact that the two original distributions have a different mean is irrelevant. This process 
was repeated until the simulated number of connections had no negative values and no 
values exceeded the maximum amount of possible synaptic partners (Npre or Npost). In 
the case of uncorrelated incoming and outgoing number of synapses, the same 
procedure was then repeated for the distribution of pre/post-synaptic partners. In 
simulations in which the number of incoming and outgoing synapses was correlated, 
the number of presynaptic connections was drawn using a random number generator 
(numpy function rng.choice), in which the maximum value (a, following the 
nomenclature of rng.choice) was set equal to the number of pre/post-synaptic neurons, 
the number of values to draw was equal to tot. connections (size, following the 
nomenclature of rng.choice) and the probabilities associated with each presynaptic 
neuron were equal to the number of outgoing connections of that neuron (p, following 
the nomenclature of rng.choice). This resulted in a Pearson correlation of the number 
of incoming and outgoing synapses ~0.85, in line with what has been described in 
Drosophila92. Finally, to generate a connectivity matrix in which each neuron had the 
desired amount of incoming and outgoing connections, we used the 
directed_havel_hakimi_graph function from the networkx python package. 
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Size of synapses. The distribution of synaptic sizes was simulated according to a normal 
(mean = √𝑠𝑠2 , std = 1/2) or log-normal (mean of the underlying normal = 0, std of the 
underlying normal = 1) distribution. Please note that it can be analytically shown that 
the two distributions have the same mean. These distributions were then scaled by 
different scalars (see table 1) according to the specifics of the connected populations. 
  
Synaptic plasticity. For simulations with synaptic plasticity, synaptic parameters were 
set to their extreme configuration (lognormal distribution of synaptic weights and 
number, and correlated amount of incoming and outgoing number of synapses). A set 
of other parameters controlling the network architecture was systematically varied 
across a biologically-constrained range, analogously to simulations without synaptic 
plasticity (see Random variables). In these networks, we first simulated 10s with frozen 
synaptic weights, and 40s with synaptic plasticity. 
 
PYR-PYR excitatory synapses were plastic according to a classic asymmetric Hebbian 
plasticity rule57 that can be summarized as follows: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜂𝜂(𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑)
𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                                     (Eq. 9)  
 
Where W is a PYR-PYR synaptic weight, pre and post are the pre- and postsynaptic 
activity, 𝜂𝜂 is the learning rate, and 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the decay time constant of the plasticity 
rule.  
In practice, synaptic weights from a pre-synaptic neuron i to a post-synaptic neuron j 
(𝑊𝑊𝑖𝑖𝑖𝑖) were updated at every pre- and post-synaptic event occurring at time 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑖𝑖 
such that: 
 
𝑊𝑊𝑖𝑖𝑖𝑖 →𝑊𝑊𝑖𝑖𝑖𝑖  +  𝜂𝜂𝑥𝑥𝑖𝑖             for presynaptic spikes at time 𝑘𝑘𝑖𝑖                            (Eq. 10) 
𝑊𝑊𝑖𝑖𝑖𝑖 →𝑊𝑊𝑖𝑖𝑖𝑖  +  𝜂𝜂𝑥𝑥𝑖𝑖            for postsynaptic spikes at time 𝑘𝑘𝑖𝑖                          (Eq. 11) 
 
Where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 are the pre- and post-synaptic trace.  
𝑥𝑥𝑖𝑖 was updated with each spike 𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 + 0.01 and decayed according to: 
 
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

=  − 𝑥𝑥𝑖𝑖
𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                                        (Eq. 12)  
 
𝑥𝑥𝑖𝑖 was updated with each spike 𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 − 0.01 and decayed according to: 
 
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑

=  − 𝑥𝑥𝑗𝑗
𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                                        (Eq. 13)  
 
Synaptic weights were clipped within the 0-10 range.  
 
IN-PYR inhibitory synapses were plastic according to a symmetric plasticity rule as 
previously described56. This rule can be summarized as follows: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜂𝜂(𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑− 𝛼𝛼∗𝑝𝑝𝑝𝑝𝑝𝑝)
𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                         (Eq. 14)  
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Where W is an IN-PYR synaptic weight, pre and post are the pre- and postsynaptic 
activity, α is the target rate for the postsynaptic PYR, drawn from a log-normal 
distribution, 𝜂𝜂 is the learning rate, and 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the decay time constant of the plasticity 
rule.  
Synaptic weights 𝑊𝑊𝑖𝑖𝑖𝑖 were updated at every pre- and post-synaptic event occurring at 
time 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑖𝑖 such that: 
 
𝑊𝑊𝑖𝑖𝑖𝑖 →𝑊𝑊𝑖𝑖𝑖𝑖  +  𝜂𝜂(𝑥𝑥𝑖𝑖 −  𝛼𝛼) for presynaptic spikes at time 𝑘𝑘𝑖𝑖                            (Eq. 15) 
𝑊𝑊𝑖𝑖𝑖𝑖 →𝑊𝑊𝑖𝑖𝑖𝑖  +  𝜂𝜂𝑥𝑥𝑖𝑖              for postsynaptic spikes at time 𝑘𝑘𝑖𝑖                          (Eq. 16) 
 
Where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 are the pre- and post-synaptic trace that increased with each spike x𝑥𝑥  
𝑥𝑥→ 𝑥𝑥 + 1 and decayed according to: 
 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=  − 𝑥𝑥
𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                                        (Eq. 17)  
 
Synaptic weights were clipped within the 0-100 range.  
 
Simulated SUA statistics and quality of model fit. For each network, we extracted the 
simulated spike times and computed the same 7 parameters as for the experimental data 
(described in SUA firing statistics and shape distribution parameters): skewness, 
kurtosis and Gini coefficient of firing rate and STTC, and the correlation between the 
log-transformed firing rate and STTC. To compute the quality of the model fit, we 
extracted the median of these 7 parameters from the P4-12 PFC dataset. For each 
simulation, we then computed the Euclidian distance (MATLAB function pdist) 
between the median of the experimental data and the 7D coordinates of that specific 
simulation. To ensure that each metric contributed equally to the distance from the 
experimental data, kurtosis and skewness of firing rate and STTC were divided by their 
maximum value. This normalized them to a range comprised between 0 and 1, as the 
Gini coefficient. 
 
 
Neuron model 

Parameter Description Excitatory cells Inhibitory cells 

𝑉𝑉𝐿𝐿 Leak membrane potential -70 mV -70 mV 

𝑉𝑉𝑆𝑆ℎ𝑝𝑝 Spike threshold potential -52 mV -52 mV 

𝑉𝑉𝑅𝑅𝑝𝑝𝑝𝑝 Reset potential -59 mV -59 mV 

𝜏𝜏𝑅𝑅𝑝𝑝𝑅𝑅 Refractory period 2 ms 1 ms 

𝑆𝑆𝑚𝑚 Membrane capacitance 500 pF 200 pF 

𝑔𝑔𝐿𝐿 Membrane leak conductance 25 nS 20 nS 

𝜏𝜏𝑚𝑚 Membrane time constant 20 ms 10 ms 

𝜎𝜎𝜎𝜎 Noisy input # normal(15, 1) normal(12.5, 1) 
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Synapse model 

Parameter Description Excitatory cells Inhibitory cells 

𝐸𝐸𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 Reversal potential (AMPA) 0 mV 0 mV 

𝐸𝐸𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴 Reversal potential (GABA) -80 mV -80 mV 

𝜏𝜏𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 Time constant of AMPA decay 2 ms 1 ms 

𝜏𝜏𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴 Time constant of GABA decay 8 ms 8 ms 
mean 

connectivity 
mean connectivity of the 

network  
normal(0.25, 

0.25/4) 
normal(0.25, 

0.25/4) 

𝑔𝑔𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 Conductance (AMPA) # 

[lognormal(0, 1)  
or 

normal(√𝑠𝑠, 0.5)] 
/ 25 * AMPAmod * 

nS 

[lognormal(0, 1) 
or 

normal(√𝑠𝑠, 0.5)] 
/ 25 * AMPAmod  

* nS 

𝑔𝑔𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴 Conductance (GABA) # 

[lognormal(0, 1)  
or 

normal(√𝑠𝑠, 0.5)] 
/ 6 * GABAmod  

* nS 

[lognormal(0, 1)  
or 

normal(√𝑠𝑠, 0.5)] 
/ 30 * GABAmod  

* nS 

AMPAmod Multiplier of AMPA 
conductance # normal(0.7, 0.7/4) normal(0.7, 0.7/4) 

GABAmod Multiplier of GABA 
conductance # normal(2, 0.5) normal(2, 0.5) 

Excitatory synaptic plasticity model 

𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Time constant of synaptic 
plasticity 20 ms Not applicable 

𝑔𝑔𝑚𝑚𝑖𝑖𝑚𝑚 Minimum synaptic weight 0 Not applicable 

𝑔𝑔𝑚𝑚𝑚𝑚𝑥𝑥 Maximum synaptic weight 10 Not applicable 

𝑋𝑋𝑋𝑋𝑋𝑋 Learning rate 0.01 Not applicable 

Inhibitory synaptic plasticity model 

𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Time constant of synaptic 
plasticity Not applicable 20 ms 

𝑔𝑔𝑚𝑚𝑖𝑖𝑚𝑚 Minimum synaptic weight Not applicable 0 

𝑔𝑔𝑚𝑚𝑚𝑚𝑥𝑥 Maximum synaptic weight Not applicable 100 

𝑚𝑚𝑚𝑚𝑚𝑚 Learning rate Not applicable 0.01 

α Target firing rate lognormal(-0.5, 1) Not applicable 

 
Table 1. Parameters of the leaky integrate-and-fire network. “Normal” and 
“lognormal” refer to values of variables that are randomly drawn from a normal or 
lognormal distribution, respectively. The two values in parenthesis refer to, 
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respectively, the mean and the standard deviation of the (underlying) normal 
distribution.  
#Note that the two distributions have the same mean (i.e. the mean of lognormal(0, 1) 
is √𝑠𝑠). 
 
 
Statistical modeling 
Statistical modeling was carried out in the R environment. All the scripts and the 
processed data on which the analysis is based will be available on the following github 
repository: https://github.com/mchini/Chini_et_al_Preconfigured.  
Nested data (figures 1, 5 and 7) were analyzed with (generalized) linear mixed-effects 
models (lmer and glmer functions of the lme4 R package101) with “mouse” as random 
effect. Non-nested data were analyzed with linear models (lm function). Regression on 
data that was better fit by an exponential curve (figure 1) was carried out with a 
generalized linear mixed-effect models with the following parameters: family=Gamma, 
link=log. For ease of interpretability and consistency with the other distribution shape 
parameters, kurtosis of firing rate and STTC, which followed an approximately log-
normal distribution, was instead log-transformed and analyzed with a linear model.  
Statistical significance for linear mixed-effects models was computed with the lmerTest 
R package102 and the summary (type III sums of squares) R function. Statistical 
significance for linear models was computed with the summary R function. 
When possible, model selection was performed according to experimental design. 
When this was not possible, models were compared using the compare_performance 
function of the performance R package103, and model choice was based on an holistic 
comparison of AIC, BIC, RMSE and R2.  
Model output was plotted with the plot_model (type=’pred’) function of the sjPlot R 
package104. 95% confidence intervals were computed using the confint R function.  
Post hoc analysis was carried out using the emmeans and emtrends functions of the 
emmeans R package105.  
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