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RNA is a complex macromolecule that plays central roles in
the cell. While it is well-known that its structure is directly re-
lated to its functions, understanding and predicting RNA struc-
tures is challenging. Assessing the real or predictive quality of
a structure is also at stake with the complex 3D possible con-
formations of RNAs. Metrics have been developed to measure
model quality while scoring functions aim at assigning qual-
ity to guide the discrimination of structures without a known
and solved reference. Throughout the years, many metrics and
scoring functions have been developed, and no unique assess-
ment is used nowadays. Each developed assessment method
has its specificity and might be complementary to understand-
ing structure quality. Therefore, to evaluate RNA 3D struc-
ture predictions, it would be important to calculate different
metrics and/or scoring functions. For this purpose, we devel-
oped RNAdvisor, a comprehensive automated software that in-
tegrates and enhances the accessibility of existing metrics and
scoring functions. In this paper, we present our RNAdvisor
tool, as well as state-of-the-art existing metrics, scoring func-
tions and a set of benchmarks we conducted for evaluating
them. Source code is freely available on the EvryRNA platform:
https://evryrna.ibisc.univ-evry.fr.
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Introduction
The various types of non-coding RNA molecules exert their
biological functions either by base-pairing mechanisms or
through their three-dimensional structure. As for proteins,
experiments for determining the spatial conformation of
RNA chains are costly, which has led to the development
of computational methods for predicting the biologically ac-
tive (“native”) fold from the sole ribonucleic acid sequence
(1–5). However, these methods dedicated to RNA have yet
to reach the same accuracy as their protein-specific counter-
parts, such as AlphaFold2 (6) or ESMFold (7). The fact that
the native structures available in the Protein Data Bank (PDB)
are far less numerous and diverse for RNA than for pro-
tein molecules mainly explains this slower rate of progress
in solving the RNA folding problem. Nevertheless, current
efforts are put forth to overcome this lack of training data.

The quality of a structural model is defined by its “na-
tivity” or native-like character, i.e. how close it is to the na-

tive fold of the same RNA sequence. Therefore, evaluating
the performance of a predictive method requires measuring
the similarity between the 3D models it generates and the
corresponding native RNA structure. For this model qual-
ity measure, multiple metrics have been proposed through-
out the years. Some were directly transposed from the study
of protein structures, such as the root-mean-square deviation
of atomic positions (RMSD) or the template modeling score
(TM-score) (8). Others, such as interaction network fidelity
(INF) (9) or mean of circular quantities (MCQ) (10), have
been created to take into account the specificities of RNA 3D
structures, in particular their greater flexibility.

For predicting RNA fold from the sequence, algorithms
explore the conformational space through different strategies
(11–15). This produces a certain number of predicted RNA
structures that must be ranked. In a real-case scenario where
the native structure is not known, such a ranking requires
computing relative quality predictions for all the generated
models. For this purpose, different scoring functions, also
called model quality assessment programs (MQAP), have
been released (16–19). Evaluation of these scoring func-
tions is usually done with near-native structures called de-
coys, which are disturbed native structures that play the roles
of predicted RNA structures for predictive models.

An ideal score for predicting model quality would cor-
relate with the Gibbs free energy change (∆G) of the RNA
folding process, as the native structure is the one with the
most negative ∆Gfolding. However, calorimetric data are not
available for the unfolded states, so the thermodynamic rele-
vance of the MQAP scores cannot be evaluated directly. The
predicted quality scores are diverse and computed through
different approaches, which raises the question of the equiva-
lence between these metrics for representing the ground truth,
i.e. the nativity of the model. In case where they actually rep-
resent different aspects of the nativity, a subsequent question
regards the dependence of the MQAP’s accuracy on these dif-
ferent model-to-native similarity measures. To facilitate the
calculation of different metrics and scoring functions for a
better evaluation of RNA 3D structure predictions, we de-
veloped a computational tool called RNAdvisor. RNAdvisor
is an open-source tool that integrates all available codes of
state-of-the-art metrics and scoring functions.

In this paper, we bring a comprehensive interpretation
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of quality measurement and model quality assessment of
RNA 3D structures. We describe our RNAdvisor tool, be-
fore presenting the benchmarks we conducted thanks to
RNAdvisor. Different benchmarks were carried out, con-
sidering three datasets available online. We evaluated
the scoring functions, and measured the relationship be-
tween the different metrics, and between the scoring func-
tions and metrics. We also measured the running time,
as well as the CO2 equivalent consumption. All these
benchmarks are reproducible, open-source, and accessible at
https://github.com/EvryRNA/rnadvisor_results.

State-of-the-art metrics
To assess whether a predicted RNA tertiary structure is close
to its native fold, multiple metrics have been developed.
Quality measurement can be general, telling how well the
prediction falls into the global conformation. Other metrics,
inspired by protein metrics, consider the alignment of struc-
tures to evaluate a predicted structure. Nevertheless, proteins
and RNAs have differences that limit the adaptation of pro-
tein metrics to RNAs. One of the significant differences lies
in folding stabilization, where RNA structure is maintained
by base pairing and base stacking, while hydrogen interac-
tions in the skeleton support protein structure. Therefore,
metrics have been developed to fit the RNA specificities, con-
sidering the different types of interactions.

A summary of the state-of-the-art metrics is provided in
Table 1.

A. General metrics
The general metrics give an overall idea of the quality of a
prediction. They are usually based on an overall distance
averaged throughout the structure. The most used metric is
the RMSD, which gives an overall predicted model evalu-
ation. An improvement of this metric was proposed with
εRMSD (19), which incorporates RNA features. On the other
hand, the CLASH score (20) assesses the overlaps of atoms
and doesn’t consider the atom deviations compared to the
previously mentioned metrics. The main advantage of gen-
eral metrics is the quick overview of the nativity of the struc-
ture. It gives a unique value, an averaged similarity score
over the reference. The RMSD is almost always used as a
criterion to assess the quality of a computational approach in
a database. Nonetheless, it is limited in explaining the limits
of a prediction. A high dissimilarity in a small region would
highly bias the RMSD value. The CLASH score is more used
as an assessment of possible conformation. An almost na-
tive structure would have a very low CLASH score, while a
low CLASH score structure doesn’t necessarily mean a na-
tive structure. Finally, the εRMSD tries to add relative base
arrangement to the atomic distance deviation to incorporate
RNA structural features.

B. Protein-inspired metrics
Although proteins and RNAs are different molecules, con-
formational folding shares few characteristics. A higher pro-
portion of solved protein structures makes developing ap-

proaches easier. Consequently, protein metrics have been
studied and widely used, especially in the CASP competition.
One of the known metrics is the TM-score (8), which adds
distance normalization to a classic RMSD. Given aligned
structures, the GDT-TS (21) computes superimpositions with
different distance cutoffs. Another approach, with CAD-
score (22), is using a contact-area function to assess differ-
ences. The lDDT (23) score was created to quantify the
model quality on the level of the residue’s environment,
where local atomic interactions are considered to obtain a
robust metric. The conception of those metrics is not re-
stricted to proteins and can be adapted to RNA sequences.
The proteins-based metrics adapted to RNA molecules can
give a general overview of predicted structures. While the
TM-score avoids the increase of deviation score if the se-
quence increases, it is still limited to a general assessment.
CAD-score and GDT-TS try to incorporate local superimpo-
sition, but it would still suffer from the lack of local informa-
tion.

C. RNA-oriented metrics

RNAs are unique molecules with a tertiary conformation
maintained by base pairing and base stacking. The torsion
angles that describe each nucleotide, such as the approxi-
mated pseudo-torsion, can be used to best assess the nativity
of a structure compared to a solved structure. RNA also
has well-defined pairing patterns, where a base interacts
with each other. These interactions are very specific, and
general metrics or scores inspired by proteins can not
integrate them. That is why multiple metrics like INF
(9) (for base pairing patterns) or MCQ (10) (for torsion
angles) have been developed to allow the integration of RNA
structural specificities. The INF score can be specific to
base-pairing interactions (INFbp), the base-stacking inter-
actions (INFstack), or consider both (INFall). To include
both RMSD and INF advantages, the deformation index
(DI) (9) has been developed as the quotient of RMSD by
INF. Another metric is the P-VALUE (24), which assesses
the validity of a prediction: it describes if a prediction
is better than a random prediction. Metrics specific to
RNA have the advantage of considering specificities that
are major parts of RNA 3D structure stabilization. The
metrics have a more concrete meaning and could help the
comprehension of a failing prediction. For instance, a
bad INFbp (value near 0) value would mean a failing in
base-pairing interactions, whereas a bad RMSD (high value)
does not provide this information (and could also be biased
by a local misprediction). RNA-oriented metrics remain
complementary: INF and MCQ scores describe different
structure characteristics. Those RNA-oriented metrics can
be added to general and protein-based evaluation metrics for
a near-complete assessment of predicted structures.

No unique metric can assess structure quality. Each met-
ric has a different particularity that can complement other
metrics. While the RMSD and INF are widely used in the
community, their efficiency remains limited with real-world
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E Deep learning scoring functions

Metric Granularity

General metrics
RMSD Atom deviation

CLASH (20) Steric clashes
εRMSD (19) Relative distance and orientation

Protein-inspired
TM-score (8) Normalised atom deviation
GDT-TS (21) Count of superimposed residues

CAD-score (22) Contact-area
lDDT (23) Interatomic distance differences

RNA-oriented
P-VALUE (24) Non-randomness assessment

INF, DI (9) Key interactions accuracy
MCQ (10) Angles dissimilarity

Table 1. Summary of the state-of-the-art metrics used for assessing the quality of
predicted RNA 3D structures compared to a reference.

RNAs.
A complete description of the different metrics is pro-

vided in Supplementary Materials. It also details the different
implementation languages, as well as the source codes.

State-of-the-art scoring functions
The nativity of RNA molecules can be computed by dissim-
ilarity metrics but requires having a known solved reference
structure. This requirement is challenging as the number of
solved structures is low. Furthermore, computational meth-
ods usually predict multiple conformations that need to be
ranked. The relative quality prediction can not rely on a
known solve structure. The adaptation of the free energy of
the structure has become a standard in the ranking, filtering
and confidence assessment of structures. These predictive
quality measurements are knowledge-based approaches that
rely on statistical potentials. With the recent success of Al-
phaFold2 (6), new approaches employ deep learning methods
for quality predictions of RNA structures.

A summary of the different state-of-the-art scoring func-
tions is provided in Table 2.

D. Knowledge-based scoring functions
Prediction-based methods like NAST (11), HiRE-RNA (4)
or SimRNA (12) use an adaptation of the free energy in their
discriminative phase. A common approach uses knowledge-
based statistical potentials considering structures to create a
quality measurement score. It has been proven to work well
for proteins, such as the one used in AlphaFold 2 (6). These
potentials are said to be derived from Boltzmann formula-
tions. They rely on a comparison with non-native base pair
interactions, known as a reference state. The reference state
should ideally come from a set of non-redundant decoy con-
formations where no interactions between atoms appear. Un-
fortunately, no ideal dataset exists (25), but approximations
of reference states have been proposed through the years (26–
31). Adaptation to RNA has been studied (32) and remains
limited by the lack of a large and representative RNA dataset.

Most knowledge-based approaches to assess RNA structure
nativity employ an all-atom distance potential and use aver-
aging reference states, like 3dRNAScore (33) or RASP (16).
The challenge is to find good structural features that consider
RNA conformational specificities to distinguish native and
non-native folding. Methods like εSCORE (19) or DFIRE-
RNA (18) consider relative orientation to incorporate RNA
flexibility. Short and long-range interactions are considered
differently with different reference states in the new poten-
tial rsRNASP (17). The main limitation of knowledge-based
scoring functions is the lack of a dataset of reference state
decoys.

E. Deep learning scoring functions
With the recent success of AlphaFold2 (6) and its deep
architecture, MQAP scores have been developed like
RNA3DCNN (34) or ARES (35). They input different
characteristics like chemical type or atom position. They
use available native conformations to learn a score without
explicitly using a reference state. The objective is an
RMSD-like metric, meaning that the network learns atom
deviation properties to assess structure predictive quality.
The architecture is based on a neural network with either
convolutional layers or graph neural networks. They rely on
decoy datasets generated by either FARFAR 2 (2) for ARES,
or relaxed structures by molecular dynamics from PDB for
RNA3DCNN. ARES and RNA3DCNN scoring functions
remain limited by the current deep learning drawbacks:
the lack of interpretability and the need for large datasets.
As the number of solved RNA 3D structures is low, deep
learning approaches could easily lack generalization to new
unseen structures. Datasets considered are biased by either
the chosen model creating decoys or the method to relax
structures.

No ideal scoring function exists, and the available scores
can also be complementary: one score can weigh more dihe-
dral angles, whereas the other could consider chemical types.
As no ideal metric exists, some scoring functions could be
more linked to a given metric, making the ranking more dif-
ficult.

A complete description of the different scoring functions
is available in Supplementary Materials, as well as the differ-
ent implementation languages and the source codes.

RNAdvisor tool
As the number of available RNA 3D structures increases, as-
sessing the nativity of predicted structures becomes crucial.
Numerous families still have unsolved structures in the PDB,
but they might be available in the following years. Assess-
ing and understanding the limits of predicted methods for the
available and nearly available RNA 3D structures is essen-
tial. As discussed previously, no perfect metrics can discrimi-
nate between native-like and wrong-predicted structures. The
same goes for the scoring functions. Each metric or scoring
function has its specificity and could complement the under-
standing of RNA conformation. Nonetheless, metrics and
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Score Granularity

Knowledge-based
RASP (16) Pairwise-distances
εSCORE (19) Relative positions

3dRNAScore (33) Distance and dihedral angles
DFIRE-RNA (18) Pairwise-distances

rsRNASP (17) Short and long pairwise distances

Deep learning
RNA3DCNN (34) Atom grid

ARES (35) Atom position and chemical type

Table 2. Summary of the scoring functions used for assessing the nativity confi-
dence of RNA 3D structures.

scoring functions have been developed for years by differ-
ent researchers in different programming languages, making
their use difficult. Some web servers, like RNA-tools (36),
can compute RMSD or INF scores. It was introduced af-
ter RNAPuzzles (37), a collective challenge to evaluate pre-
dicted 3D RNA structures. Web servers might be helpful for
discrete tests but can not be used to automate the evaluation
process. As the number of RNAs is growing, we can not rely
on web servers to check each of the predicted structures. Au-
tomating the computation of scoring functions is even more
crucial as they are widely used for sampling procedures.

We developed a tool called RNAdvisor, that enables the
computation of all the available state-of-the-art metrics and
scoring functions in one command line. It integrates eleven
metrics and four existing scoring functions from nine stan-
dalone codes, as shown in Figure 1. We omitted 3dRNAscore
because we could not get the source code. We failed to run
the ARES code, and RNA3DCNN had bad results compared
to the published ones, so we decided not to include it.

Our tool uses coding best practices like DevOps library,
named Docker (38) to emancipate the dependency of OS. All
the installation needed by each library is already done and
easily accessible.

Benchmark
To evaluate the performance of a scoring function, a common
practice (16, 17, 34, 35) is to compare the rank obtained by
the native structure in a set of decoys. In this section, we
first describe the three datasets of decoys used for the exper-
imentation, followed by a study of the link between exist-
ing metrics. Then, we examine the performance of scoring
functions, followed by a study of their correlation with met-
rics. We finally provide a benchmark of computation time
and CO2 emissions for scoring function and metrics.

F. Datasets
We used three datasets, named Test Set I, Test Set II and
Test Set III, to assess the relations between scoring functions
and metrics. The first two datasets have decoys generated by
two distinct strategies widely used to compare scoring func-
tions (16, 17, 34, 35). The last dataset is a real-case scenario
where 3D structures from different model predictions should

be ranked by nativity.

Test Set I1 is composed of 85 RNAs with decoys gener-
ated by MODELLER (39), a predictive model that is used to
create decoys with different set of parameters. It uses Gaus-
sian restraints for atom distances and dihedral angles, leading
to 500 decoy structures for each RNA. The decoys are close
to the native structures as only minor changes are made in the
decoy creation.

Test Set II2 corresponds to the prediction-models (PM)
subset from rsRNASP (17). It consists of 20 non-redundant
single-stranded RNAs with decoy structures generated by
four RNA 3D models (10 per model): FARFAR 2 (2), RNA-
Composer (40), SimRNA (12) and 3dRNAv2.0 (41). It leads
to 20 RNAs with 40 decoy structures for each native RNA.
The created decoys are less close to the native structure as
they use predicted models to create the decoys.

Test Set III3 is the RNA-Puzzles_standardized dataset.
It comes from the competition that reproduces the protein
CASP challenge for RNA: RNA-Puzzles (37). It contains
21 RNAs and dozens of decoy structures for each RNA. It
is commonly used as the most realistic test set to assess the
generalization properties of models. The decoys are not all
close to the native structure.

G. Evaluation metrics

Identifying native structures from non-native or near-native is
a property required by scoring functions. To assess the qual-
ity of a given scoring function, we used the Pearson correla-
tion coefficient (PCC) and the enrichment score (ES). The
PCC is computed between the ranked structures based on
scoring functions and structures ranked by metrics and is de-
fined as:

PCC =
∑Ndecoys

i=1 (En− Ē)(Rn− R̄)√∑Ndecoys

n=1 (En− Ē)2
√∑Ndecoys

n=1 (Rn− R̄)2

where En is the energy of the nth structure, and Rn the met-
ric of the nth structure. PCC ranges from 0 to 1, where a
PCC of 1 means the relationship between metric and energy
is completely linear. The enrichment score (ES) is defined as:

ES = 100×
|Etop10%∩Rtop10%|

Ndecoys

where |Etop10%∩Rtop10%| is the number of common struc-
tures from the top 10% of structures (measured by the metric)
and the top 10% of structures with the lowest scoring func-
tion. ES ranges between 0 and 10 (perfect scoring). An en-
richment score below 1 means a bad score and a value equal
to 1 means a random prediction.

1http://melolab.org/supmat/RNApot/Sup._Data.html.
2https://github.com/Tan-group/rsRNASP.
3https://github.com/RNA-Puzzles/standardized_

dataset/tree/master
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H Results

Figure 1. Schema of RNAdvisor tool: a wrapper code that gathers open-access libraries for assessment of RNA 3D structures in one interface. It is wrapped in a Docker
image to emancipate laborious installation processes. A user can input an RNA 3D structure with the reference structure, and it will compute each metric and scoring function
using the different integrated software.

H. Results
H.1. Metrics relationship. Each metric has its specificity and
gives a result based on different assumptions: base interac-
tions, angle conservation, atom distance deviation, etc. Met-
rics may be redundant with one other. We compared the
PCC and ES between each computed metric averaged over
the three datasets used. The results are shown in Figure 2.
Details for each dataset are also provided in Supplementary
file.

RMSD has a high correlation with DI, which is not rel-
evant as DI is composed of both RMSD and INF metrics.
RMSD correlates with εRMSD in terms of ES and PCC (6.43
and 0.75, respectively) while being related TM-score (ES of
6.35 and PCC of 0.78). As εRMSD tries to improve the
classic RMSD and TM-score adds a normalisation, the cor-
relation makes sense. INF metric highly correlates with ES
and PCC with CAD-score and εRMSD (ES of 6.16 and 6.32
and PCC of 0.85 and 0.9, respectively). DI is also linked
to εRMSD with an ES of 6.58 and PCC of 0.78. As the
εRMSD is an improved RMSD that includes RNA struc-
ture specificities, it makes sense that it is correlated to the
DI metric as it includes both RMSD and RNA-specific INF
metrics. MCQ is the only metric systematically less related
to the other metrics. The angle consideration is not mainly
included in other metrics computation, which could explain
this behaviour. Nonetheless, MCQ has a high correlation for
Test Set I with the other metrics (shown in the Supplemen-
tary file). It means that for near-native decoys, MCQ behaves

like most other metrics, whereas with real-world prediction
structures, it is uncorrelated to others. Near-native decoys
might keep structural conformations and thus angle conser-
vation, which is not true for the structures from Test Set I
and Test Set II. TM-score is connected with another protein-
based GDT-TS metric with an ES of 7.14 and PCC of 0.87.
Finally, lDDT metric is linked to TM-score (ES of 6.63 and
PCC of 0.74), CAD-score (ES of 6.44 and PCC of 0.75) and
INFall (ES of 6.14 and PCC of 0.76). As the lDDT metric in-
corporates interatomic distance information, this is retrieved
in the CAD-score and in the normalised atom deviation of the
TM-score.

Figure 2. ES and PCC scores for each metric averaged over the three test datasets.
The lower half of the matrix represents the PCC, while the upper half corresponds
to the ES score. The diagonal has a PCC of 1 and ES of 10.

We can conclude that the MCQ metric is highly uncorre-
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Scoring functions

Dataset RASP εSCORE DFIRE-RNA rsRNASP
Test Set I 83/85 85/85 83/85 77/85
Test Set II 2/20 9/20 10/20 16/20
Test Set III 2/21 5/21 10/21 18/21

Total 86/126 99/126 103/126 111/126

Table 3. Number of native structures found with the lowest score for each dataset.
It corresponds to the number of times the native structure has the lowest scoring
function value among the decoys.

lated to the others (for Test Set II and III), while the TM-score
and GDT-TS seem very dependent. INFall discriminate de-
coys with the same behavior as the CAD-score. εRMSD is
linked to INF and thus CAD-score (as they are correlated)
and DI. Their correlations are not perfect (no ES of 10 or
PCC of 1), meaning that every metric can help assess pre-
dicted model quality.

H.2. Scoring function ranking. The aptitude of a scoring
function to classify native and near-native structures is essen-
tial for developing models. Table 3 shows the number of na-
tive structures with the lowest scoring function value among
the decoys. RASP performs well for near-native structures
(Test Set I) by finding 83 out of 85, but fails for the other
datasets. εSCORE and DFIRE-RNA have almost identical
results, with 99 and 103 found structures out of 126 overall.
rsRNASP does not perform as well as the other scoring func-
tions for Test Set I but outperforms them for the two other
datasets. It leads the overall native structures found with 111
out of 126. Details of the average rank of the native structure
for each dataset are provided in Supplementary file.

rsRNASP seems the best scoring function for ranking and
finding the native structure, followed by DFIRE-RNA and
εSCORE. rsRNASP is less accurate for close decoys (rep-
resented by Test Set I), where RASP discriminates better in
this case. Incorporating statistical potentials that weigh dif-
ferently short, mid-range and long interactions like rsRNASP
may not be the best choice for very close decoys.

Results are induced on the four scoring functions that we
succeeded in implementing. We can not conclude on 3dR-
NAscore, RNA3DCNN and ARES performances for ranking
native-like structures.

H.3. Scoring functions and metrics relationship. We com-
puted the ES and PCC scores for each data set, each avail-
able scoring function and metric. We considered for the met-
rics the RMSD, INF (also named INFall, as we considered
the averaged value over base-pairing and base-stacking inter-
actions), DI, MCQ, TM-score, GDT-TS, CAD-score, lDDT
and εRMSD. We did not include P-VALUE or CLASH score,
as P-VALUE is like a condition-metric to assess the non-
randomness of the prediction. The CLASH score computa-
tion failed for most RNA molecules, leading to non-reliable
results for this metric.

The results for the different datasets are given in Sup-
plementary file. A summary of the most correlated met-
rics for each scoring function is provided in Table 4, where

each best-related metric is counted for all three datasets. It
shows that RASP has a high correlation with TM-score and
MCQ in terms of ES, and MCQ, RMSD, lDDT and TM-
score in terms of PCC. It means that RASP integrates atom
deviation well in its statistical potential (as it is related to
TM-score, RMSD, lDDT) and favours structures with good
angle conservation (linked to MCQ). εSCORE is linked to
CAD-score, lDDT and TM-score in terms of ES, and INFall,
MCQ and CAD-score. The high link with CAD-score in both
evaluation criteria means it tends to conserve the RNA in-
teractions (INF) and thus maintains a low contact-area dif-
ference (CAD-score). DFIRE-RNA is tied to CAD-score,
lDDT and TM-score in terms of ES and MCQ, DI and lDDT
for the PCC criteria. It seems to have some RNA interac-
tion properties (INF/DI) while maintaining angle conserva-
tion (MCQ) and interatomic distance conservation (lDDT).
Finally, rsRNASP is correlated to lDDT, TM-score in terms
of ES, and INFall, εRMSD, GDT-TS and CAD-score in terms
of PCC. As rsRNASP considers low and high-range interac-
tions, it tends to favour structures with good sequence align-
ment (lDDT, TM-score, εRMSD, GDT-TS, CAD-score) and
RNA structural features (INF).

An example of RNA 1ec6D from Test Set I and its decoys
is shown in Figure 3. We normalized all the scoring functions
and computed the logarithm to plot them on the same scale.
Growing scores were reversed to follow the same pattern as
the others. DFIRE-RNA has a low slope compared to rsR-
NASP, RASP and εSCORE. On the other hand, εSCORE has
a high slope and tends to increase the gap between near-native
decoys. The overall high slope of εSCORE for each metric
shows a good discrimination property to divide native from
non-native structures. It is supported by the number of native
structures founded with the lowest εSCORE for Test Set I: 85
out of 85.

H.4. Computation time and CO2 emissions. Computing a
structure’s energy is integrated into developing models for
predicting RNA 3D structures. Models for predicting 3D
structures are usually slow and even slower when the se-
quence length increases. The computation time of energies
shouldn’t be a bottleneck for selecting created models’ de-
coys.

We tracked the inference computation time for each en-
ergy for RNA of different lengths. We took as a benchmark
the chain A with 2878 nucleotides of RNA 3f1hA from Test
Set I. We randomly created five substructures for each step
of 100 nucleotides from 100 to 2800. We tracked and aver-
aged the time required to compute the scoring functions and
metrics. It leads to Figure 4. It highlights the low computa-
tion time of DFIRE and εSCORE that doesn’t exceed 20 sec-
onds for RNA with a sequence length of less than 2800 nu-
cleotides. The same goes for metrics like εRMSD, GDT-TS,
MCQ, DI, RMSD, and INF with a low computation time. On
the other hand, RASP takes around 6min48 to compute for
a sequence of 2800 nucleotides. rsRNASP has a complexity
that almost explodes with the sequence length (10min39 for
a sequence of 2800). This computation time is not scalable
for the development of high-resolution models. For instance,
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Test Set I Test Set II Test Set III

ES PCC ES PCC ES PCC

RASP TM-score RMSD/TM-score/lDDT TM-score MCQ MCQ MCQ
εSCORE TM-score MCQ CAD-score CAD-score lDDT INFall/CAD-score

DFIRE-RNA TM-score lDDT CAD-score DI lDDT MCQ
rsRNASP TM-score εRMSD lDDT INFall lDDT CAD-score

Table 4. Summary of the best-correlated metrics for ES and PCC scores for each scoring function for the three test sets.

Figure 3. Logarithm of the normalized four scoring functions (RASP, εSCORE, DFIRE-RNA and rsRNASP) of RNA 1ec6D and its 500 decoys from Test Set I depending on
eight metrics. The increasing scores (like εSCORE) were reversed to follow the same growth pattern as the other scoring functions.

Figure 4. Computation time depending on the number of nucleotides in RNA sequences for substructures from RNA 3f1hA (Test Set I). A) Time executions for scoring
functions. B) Time executions for metrics.

if a predicted model generates 1000 structures of 2800 nu-
cleotides and then tries to select the best ones with rsRNASP,
it will take more than seven days and 9 hours. The MCQ and
lDDT have a computation time higher than the other metrics
for a sequence of more than a thousand nucleotides. MCQ
has a computation time of less than 20 seconds compared
to less than 1min17 for RNAs of 2800 nucleotides. CAD-
score has a high computation time, with more than 2min20
for RNAs of 2800 nucleotides. Finally, the TM-score has a
high computation time of 5min30 for a sequence of 2800 nu-
cleotides.

As computation methods can have environmental im-
pacts, we also included carbon footprints of structural assess-
ment methods. We computed for each dataset the equivalent
CO2 measurements for an RNA (averaged over the different

decoys), using CodeCarbon tool (42). The results are shown
in Figure 5. We observe an overall higher consumption of
CO2 for Test Set I, which is explained by the long RNAs in
this dataset. rsRNASP and CAD-score have the highest CO2
consumption (with around 0.011 g/CO2 per RNA), followed
by RASP and TM-score. CAD-score has a higher CO2 con-
sumption compared to TM-score while calculating quicker.
This difference could be explained by better resource man-
agement by the TM-score compared to the CAD-score.

I. Discussion
In these experiments, we found that rsRNASP outperforms
the other scoring functions in finding the native structures
among the three datasets while being correlated to lDDT,
TM-score, INF, εRMSD, GDT-TS and CAD-score. It comes
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Figure 5. The CO2 equivalent measures for each metric and scoring function for
each dataset. CO2 emissions

with a price: its computation time highly increases with the
number of nucleotides of an RNA sequence. Metrics also
correlate between them: INF implies having good interac-
tion accuracy, reducing the contact-area differences and the
associated CAD metric. It is also correlated to εRMSD, an
improved RMSD considering the differences in the base in-
teraction network. The MCQ metric seems to be the only
metric that isn’t correlated to the others. Atomic deviation
metrics tend also to be correlated: lDDT, TM-score, RMSD
and εRMSD.

We advise using MCQ as an evaluation metric to assume
RNA nativity with DI (RMSD and INF) and lDDT (or TM-
score or GDT-TS, as they are correlated). It provides a com-
plementary set of metrics that assess RNA 3D structure eval-
uation compared to a reference structure. One should keep
in mind the computation time and CO2 consumption that is
associated with these metrics. Therefore, we do not recom-
mend the CAD-score or TM-score, which have a high com-
putation time and thus CO2 consumption.

As a scoring function, we suggest using rsRNASP. If the
evaluated structures have a long sequence, we suggest us-
ing DFIRE-RNA or εSCORE, which has good discriminating
properties even if it doesn’t outperform rsRNASP. The con-
sumption time and CO2 emissions of rsRNASP prevent using
RNA with long sequences.

Conclusion
In this work, we have presented a general overview of the as-
sessment of the nativity of an RNA 3D structure. One can
compare a predicted structure with comparative tools like
atom distances, interaction accuracy or angle dissimilarity,
given a reference structure. Such metrics can have general as-
sumptions (like RMSD), whereas others tend to target RNA
specificities. Protein metrics have also been adapted to be
relevant for RNA assumption. Nonetheless, having a known
solved structure is a strong condition and impossible when
creating a model to predict RNA 3D structure. Instead, sta-
tistical potential energies tend to reproduce molecule-free en-
ergy: the lowest, the more stable and thus the more native a

structure is. We have provided a review of the known RNA
scoring functions and an extensive benchmark that is repro-
ducible and open-source.

Each of these metrics and scoring functions results from
years of research by different groups of researchers. Each
code is written by different authors and is sometimes hard and
time-consuming to install locally. We developed a software,
named RNAdvisor, that gathers metrics and scoring functions
in a unique interface. It provides a documented and wrapped
code available in one command line. It helps centralize and
automate the computation of metrics and scoring functions to
assess RNA 3D structure nativity. RNAdvisor represents an
advancement in the automation of RNA 3D structure evalu-
ation. It facilitates the accessibility of existing metrics and
scoring functions and thus can help accelerate investigation
in RNA 3D structure predictions.

Future works could imply the development of new met-
rics that consider all the complementary specificities of RNA
molecules and current metrics. This development must in-
tegrate existing metrics to avoid redundant work. The as-
sessment of RNA nativity with energy score is still an area
of research that should be explored. One should integrate
the computation time to have a scoring function that could
be adapted to long RNAs. Those developments should be
guided with easy-to-use code to enable the reproducibility
and integration of predicted models.
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21. Adam Zemla, Česlovas Venclovas, John Moult, and Krzysztof Fidelis. Processing and anal-
ysis of CASP3 protein structure predictions. Proteins: Structure, Function, and Bioinfor-
matics, 37(S3):22–29, 1999. doi: https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<22::
AID-PROT5>3.0.CO;2-W.
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