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Abstract

The increasing throughput of single-cell technologies and the pace of data generation are en-
hancing the resolution at which we observe cell state transitions. The characterization and visu-
alization of these transitions rely on the construction of a low dimensional embedding, which is
usually done via non-parametric methods such as t-SNE or UMAP. However, existing approaches
become more and more inefficient as the size of the data gets larger and larger. Here, we test the
viability of using parametric methods for the fact that they can be trained with a small subset of
the data and be applied to future data when needed. We observed that the recently developed
parametric version of UMAP is generalizable and robust to dropout. Additionally, to certify the
robustness of the model, we use the theoretical upper and lower bounds of the mapped coordinates
in the UMAP space to regularize the training process.

1 Introduction
Methods that project high-dimensional data onto a lower dimensional space emerged as one of the
most important facet of the analysis of single-cell RNA sequencing data. Dimensionality reduction
algorithms allow the direct visualization of the high dimensional data to aid subsequent analysis
such as constructing pseudotime trajectories [1, 2, 3], tracing cell lineages [4], and identifying cell
types [5, 6, 7].

These algorithms can be broadly categorized into two groups, non-parametric methods that ex-
tract information from k-nearest neighbour (KNN) graphs, with t-SNE [8] and UMAP [9] being the
most popular, and parametric ones that “maps” data to a lower dimensional space with complex,
nonlinear functions parameterized by a neural network, constructed through the minimization of loss
functions [10, 11, 12, 13].

In most cases, non-parametric methods, requiring only a few hyper-parameters as inputs, are
favored partially because of the noisiness of single cell data, which hinders the generalizability of
parametric methods as they can contain thousands of parameters. Finding a robust set of parameters
for parametric methods is non-trivial, and the fact that they require a training step which does not
translate to additional knowledge of the system further diminishes their popularity.

However, as the size of data grows, we argue that parametric methods may have an edge over
non-parametric ones for two important reasons. First, the sheer size of the data can make it extremely
time consuming for methods such as t-SNE or UMAP to construct KNN graphs; and second, in the
situation when one wishes to compare his/hers own dataset, which is small, to an existing large dataset,
he/she cannot circumvent the need to re-do the cumbersome procedure including the construction of
a KNN graph, which can be particularly difficult when one’s local machine cannot even load the large
dataset. Through the proper use of parametric methods, we argue that one can train a model with a
fraction of the data ensemble, and map the remaining data onto the same space, saving computational
time, or map one’s own data with a pre-trained model to make easy comparisons.

Another benefit of using parametric methods lies in their tractability. While one cannot know
how a small perturbation to the input data will effect the final embedding when using non-parametric
methods, the impact of such small perturbation can be tested with their parametric counterparts
directly. Furthermore, one can even differentiate the model output with respect to the input to
compute how each input impacts the final outcome.

Here, we proposed that the parametric UMAP [13] (pUMAP) is good for analyzing single cell
datasets. We showed that pUMAP can perform just as well as its non-parametric counterparts.
Additionally, we show can one can incorporate in the training step of pUMAP a regularizer that
mathematically ensures robustness, further enhancing its ability to treat the noisy single cell data.
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2 Methods

2.1 PyTorch implementation of the parametric UMAP
Parametric UMAP is implemented with custom python code. First, KNN graph is constructed using
the NNDescent function from the pynndescent package in python with recommended parameters [14].
The output of NNDescent is then used to construct a fuzzy simplicial set using the fuzzy_simplicial_set
function from the umap package [9] from which we obtain a graph representation of the data. We built
the neural network used in all experiments in PyTorch [15] with three layers of fully connected neurons
with ReLU (rectified linear unit) activation. The fuzzy set cross entropy, as defined in (12), can be
expanded to be:

C(x, z) =
∑
i,j

pij log

(
pij
qij

)
+ (1− pij) log

(
1− pij
1− qij

)

=
∑
i,j

pij log(pij) + (1− pij) log(1− pij)−

 ∑
i,j∈Eknn

pij log(qij) + (1− pij) log(1− qij)

 .

(1)

Since pij are fixed and only qij would change with the parameters of the neural network, the loss
function is therefore:

LUMAP = −
∑
i,j

pij log(qij) + (1− pij) log(1− qij) (2)

In practise, we do not sum over all pairs of points. Instead, we first sample from the set of edges
to generate an edge list. Because the graph is sparse, we can assume that a randomly chosen pair
of nodes will not be connected. As a result, we generate a list of negative samples by permuting the
previously generated edge list. With this setup, the loss function becomes:

LUMAP = −
∑
i,j∈E

pij log(qij) + (1− pij) log(1− qij) + η

−
∑
i,j /∈E

pij log(qij) + (1− pij) log(1− qij)

 ,

(3)
where η is the negative sample strength. In our setup, we call pUMAP trained with this loss the
probability-based implementation as pij represents probabilities. This loss function can be simplified
further into a graph-based implementation by setting pij to one if it is greater than zero:

LUMAP = −
∑
i,j∈E

log(qij)− η
∑
i,j /∈E

log(1− qij). (4)

For each edge, we generated five negative samples by default. The network is trained with the ADAM
optimizer [16] with a learning rate of 0.001.

2.2 Single cell datasets
The pancreatic development dataset [17, 18] is downloaded from: https://figshare.com/articles/
dataset/Pancreas_development/13078955?backTo=/collections/CellRank_for_directed_single-cell_
fate_mapping_-_datasets/5172299.

The hippocampal development dataset [19, 20] is downloaded from: http://pklab.med.harvard.
edu/velocyto/DentateGyrus

2.3 Data preprocessing
Downloaded data were preprocessed using scanpy [21] in python. Top 300 highly variable genes were
first selected with scanpy.pp.highly_variable_genes with flavor seurat_v3 [22]. Data were then
normalized to have the same library size with scanpy.pp.normalize_total to a target sum of 10000
and scaled with scanpy.pp.scale. Z-scores of highly variable genes were then used as input to the
neural network.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.14.567092doi: bioRxiv preprint 

https://figshare.com/articles/dataset/Pancreas_development/13078955?backTo=/collections/CellRank_for_directed_single-cell_fate_mapping_-_datasets/5172299
https://figshare.com/articles/dataset/Pancreas_development/13078955?backTo=/collections/CellRank_for_directed_single-cell_fate_mapping_-_datasets/5172299
https://figshare.com/articles/dataset/Pancreas_development/13078955?backTo=/collections/CellRank_for_directed_single-cell_fate_mapping_-_datasets/5172299
http://pklab.med.harvard.edu/velocyto/DentateGyrus
http://pklab.med.harvard.edu/velocyto/DentateGyrus
https://doi.org/10.1101/2023.11.14.567092
http://creativecommons.org/licenses/by/4.0/


2.4 Regularizing pUMAP
The theoretical upper and lower bound were computed using the CROWN method [23] (see SI for
reproduced detail) using the auto_LiRPA package [24, 25, 26] with ϵ = 0.2.

For each cell i, we obtain an upper and lower bound for each neural network output (two in
this case), u(1)

i , l
(1)
i , u

(2)
i , l

(2)
i , where u and l denotes the upper and lower bound respectively and the

superscript (1) denotes the UMAP dimension. From these upper and lower bounds, we construct the
bound loss as:

Lb = λ
C∑
i=1

(u
(1)
i − l

(1)
i )(u

(2)
i − l

(2)
i ), (5)

where λ is a scaling term that takes into account of the size of the UMAP space. This loss can be
generalize to a higher dimensional UMAP space by:

Lb = λ
C∑
i=1

N∏
j=1

(u
(j)
i − l

(j)
i ), (6)

where N is the dimensionality of the UMAP space. During training, we incorporated Lb at the very
end of the training procedure. To ensure that we only constrain the bound of the output but do not
change the shape of the embedding, we added a reconstruction loss:

Lreconstruction =
C∑
i=1

||z⃗i − ⃗̂zi||2, (7)

where z⃗i is the output of the network without the constraint imposed by Lb and ⃗̂zi is the output of the
network being trained. Hence, the loss function used during the regularization step consists of three
terms in total:

L = LUMAP + Lb + Lreconstruction. (8)
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Figure 1: A: pUMAP is capable of efficiently projecting future data onto the same space as the training
data. The effect of negative sample strength on the overall structure of the low dimensional embedding
produced by trained pUMAP for pancreatic (B) and hippocampal (C) development.

3.1 Parametric UMAP
pUMAP [13] uses neural networks to parameterize complex functions that map gene expression data
onto a lower dimensional space of an arbitrary dimension (Figure 1A). Similar to the original UMAP [9],
pUMAP begins with the construction of a k-nearest neighbour (KNN) graph from the high dimensional
space and computes a weight for the edge that points to j from i that scales with their local distance:

pj|i = exp
(
(−d(xi, xj)− ρi)σ

−1
i

)
, (9)
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Figure 2: A: (right) A schematic showing a neural network trained on a subset of the full data that
is later used to project the test set onto the low dimensional space. (left) pUMAP output of the
pancreatic and hippocampal development trained with half of the full dataset. B and C: The effect of
training set size on embedding quality for the hippocampal (B) and pancreatic (C) datasets. Neural
networks were trained with 5%, 10% and 30% of the full data going from left to right. Cells used
during training were plotted as crosses and the rest as dots.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.14.567092doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.14.567092
http://creativecommons.org/licenses/by/4.0/


where ρi is the distance between xi with respect to its nearest neighbour. Next, a symmetrized
edge weight between point i and j is computed as:

pij = (pj|i + pi|j)− pj|ipi|j . (10)

For the low dimensional space, “distance” between embedded points zi and zj is quantified by:

qij =
(
1 + a||zi − zj ||2b

)−1
, (11)

where a and b are hyperparameters to be selected. Lastly, a suitable embedding is then constructed
by optimizing (see details in SI) the fuzzy set cross entropy, defined as:

C(x, z) =
∑
i,j

pij log

(
pij
qij

)
+ (1− pij) log

(
1− pij
1− qij

)
. (12)

3.2 Parametric UMAP separates known cell types
To see whether pUMAP is suitable for analyzing single cell data, we first investigated if it can map gene
expression onto lower dimensions that separates annotated cell types. We ran our own implementation
of the pUMAP on two separate datasets. One charted the differentiation of pancreatic cells [18, 17]
and the other characterized that of the hippocampus [20], both containing branching trajectories. We
found that pUMAP can separate different cell types well (Figure 1B, C). Additionally, we observed
that when the graph-based (See details of the graph-based and probability-based implementation of
pUMAP in methods) version of the pUMAP was implemented, one can decrease negative sample
strength to enhance the ability of the final embedding to discern between major branches while losing
resolution within the individual branch (Figure 1B, C).

3.3 Parametric UMAP shows generalizability
Next, we evaluated the performance of pUMAP when trained on only a subset of the full data (Fig-
ure 2A, left). We sought to find out two things. First, is a small subset of the data sufficient to separate
the different cell identities within the population. If so, will the train and test dataset be projected to
the same space?

By training with half of the full data, we observed that the annotated cell types are well separated
for both the pancreatic and hippocampal development (Figure 2A, right), and the resulting embeddings
are qualitatively similar to that obtained when the full datasets were used during the training step
(Figure 1B, C).

To examine the extent to which the trained model can be generalized, we conducted training with
5%, 10% and 30% of the full data. Amazingly, we found that cell identities were well separated even
when training was done with only 5% of the full data in both cases (Figure 2B, C, left plot). However,
the lack of training data also resulted in a loss of resolution (Figure 2B, C), unable to recover fine
structures such as the diverging development of alpha and beta cells during pancreatic development,
a feature that was recovered when 10% of the pancreatic dataset was used for training (Figure 2C).

The input to our model are zscored normalized counts (see details of data preprocessing in method),
which means that the input to the network for each cell can be slightly different based on the full dataset
(the full data used to compute zscores) from which it is drawn and subsequently generate different
embeddings. To test whether this would happen, we input zscores computed with the full datasets
to models trained with zscores computed from only the training set. We observed that while zscores
computed from the full and train set would be different, the full data was projected onto the same space
in all test cases with train samples spreading qualitatively uniformly across the embedding (Figure 2B,
C). We reasoned that as long as the train set can well-represent the full data in the sense that all cell
types are present with similar proportion, as expected if the train set is a random sample drawn from
the full data, the zscores for each cell would remain similar and all data will be projected onto the
same space even if most are out of sample cases.
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Figure 3: A: A schematic showing a neural network trained on the full data with just the grey cell type
removed, resulting in a gap in the final embedding. B: Neural network trained on the hippocampal
dataset with the Nbl expressing cells (Nbl1 and Nbl2 clusters) removed produced an embedding with
a gap region. Projecting the full data using networks trained without the Nbl expressing cells (C), the
immature granule cells (D), or all of the immature granule cells, Nbl expressing cells, and CAs removed
(E). Data seen during training were plotted as crosses and unseen data as dots. To aid visualization,
the approximate regions of the cells removed during training have been circled.

3.4 Parametric UMAP fills in gap in the embedding
Having shown that pUMAP can generalize when the train set can well represent the full data, we
investigated the impact of having a train set that is not a good representation (Figure 3A). To do this,
we first constructed a train set by removing all of the Nbl expressing cells. We hypothesized that the
removal of cells that connect between the immature granules (ImmGranule1 and ImmGranule2) and
radial glial cells (RadialGlia) will leave a gap region in the lower dimensional embedding (Figure 3A).
As expected, we observed a clear gap region on the final embedding (Figure 3B) while the relative
position of the rest of the cell types remained similar to embedding produced from models trained with
the full data (Figure 1C).

This observation led to the hypothesis that the gap regions within the embedding represent unob-
served, intermediate cell types. To test this, we projected the full hippocampal dataset onto model
trained without the Nbl expressing cells. Surprisingly, we found that the two clusters missing in the
training set were projected to where they belong (Figure 3C). Though they do not fully cover the gap
region, we have observed that the Nbl1 cluster to be located on the same side as the radial glial cells
and the Nbl2 cluster on that of the immature granules, in congruence with the full model (Figure 1C)
and the published embedding [19].
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To further test our hypothesis that gap regions represent intermediate cell types, we conducted
training with the ImmGranule2 cluster removed. This time, we observed that the model is capable of
“learning” where the ImmGranule2 cluster belong, correctly projecting them so that they connect the
ImmAstro cluster to the rest of the cells (Figure 3D).

Having observed that pUMAP can at least in some cases successfully fills in the gap on the low
dimensional embedding with data unseen during training, we sought to test the extent of its capability
by conducting training with the ImmGranule2, Nbl1, Nbl2 and CA clusters removed, resulting in at
least three disconnected clusters on the low dimensional embedding. To our surprise, model trained
with subsetted data can place unseen cells almost perfectly (Figure 3E), showcasing the power of using
a pre-trained model.

To further confirm that pUMAP is suitable for the analysis of single cell data, we turned to test the
performance of pUAMP against another major characteristic of single cell data, sparsity. To this end,
we first trained a model with the full dataset and randomly set a chosen fraction of the data to zero
(Figure 4A). By comparing the embedding produced with the full dataset to that from datasets that
contained additional dropouts, we observed that their coordinates remain highly correlated even when
80% of the non-zero counts have been set to zero (Figure 4B). However, examination of the resulting
embedding produced from data containing dropouts revealed a severe loss of resolution while cell types
remained qualitatively separated (Figure 4C).
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Figure 4: A: A schematic showing a neural network trained on the full data with induced dropouts
produced an embedding similar to that trained with the full data. B: Boxplot showing the correlation
coefficient between the embedding produced with models trained with dropouts and that produced
with model trained without. For each dropout ratio, the same analysis were repeated 100 times. C:
Example embeddings produced with a dropout ratio of 0%, 30%, 40%, and 70% respectively.

3.5 Robust parametric UMAP with CROWN regularization
While we have shown that pUAMP is suitable for analyzing single cell data in terms of computational
cost, generalizability to unseen cell types and robustness to dropout, there still remains a vast sources
of noise that could potentially be significant and diminish its usefulness. For example, recent statistical
modeling of single cell data have started to consider factors such as the PCR reaction, droplet size,
capture efficiency, and even ambient RNA (cell-free RNA) [27, 28]. Our inability to test the impact of
these factors directly led us to take an even simpler approach of computing upper and lower bounds. In
other words, for the construction of a robust model, we want to ensure that any point located near the
an observation will not be projected too far away. Formally, we constraint the model by minimizing
the area needed to enclose the region on the low dimensional space constructed by projecting all
points on the high dimensional space that are located within a ball of radius ϵ centered at a data
point(Figure 5A). This area can be computed analytically for neural network with simple activation
functions by CROWN [23] and added to the loss function as a regularization term.

To test whether the addition of this regularization term increases robustness, we took advantage
of the parametric nature of our approach to quantify the effect of a small change in the input by
directly computing the gradient. Denote the entirety of the input data by X with shape C by G
which represents the number of cells and genes respectively. For each gene in a particular cell (a row
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in X), we can compute how Xi,j impacts the output U⃗ = (UMAP1,UMAP2), ∂U⃗
∂Xc,g

|Xc,i=Xc,i , using
automatic differentiation and sum over c to get the overall impact of this gene:

gene impactg =
C∑

c=1

∣∣∣∣ ∂U⃗

∂Xc,g
|Xc,i=Xc,i

∣∣∣∣.
We computed the gene impact for all genes from one model that has the additional regularization

term and another without. As expected, we observed that the distribution of gene impact for the
regularized pUMAP has a sharp peak near zero that is much taller than that of the other pUMAP
model without regularization (Figure 5B). Additionally, we found that regularized pUMAP is even
more robust to dropout noise, having a higher correlation with the unperturbed embedding especially
when the dropout ratio is low (Figure 5C).
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Figure 5: A: (left) A schematic showing a high dimensional space with three data points each being
the center of a sphere with radius ϵ that do not overlap. (right) A schematic showing neural networks
trained with and without regularization. When data are projected down to the low dimensional space
using the unregularized model, their theoretical bounds showed significant intersections that can be
reduced with regularization using CROWN. B: Distribution of gene impact computed from a model
with and a model without regularization. Gene impact of model without regularization has a much
bigger variance. C: Boxplot showing the correlation coefficient between the embedding produced with
models trained with dropouts and that produced with model trained without. D: (Top row) Embedding
produced from a model with and a model without regularization subjected to perturbation to one single
gene. (Bottom row) Embedding produced from a model with and a model without regularization
subjected to perturbation to all genes.

Lastly, we tested the strength of regularized pUMAP by targeting specific genes. For pUMAP
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without regularization, we observed that perturbing the one gene with the highest gene impact can
severely decrease the quality of the embedding (Figure 5D, upper left). However, when the same input
was given to the regularized pUMAP, we observed little effect (Figure 5D, upper right). To ensure our
observation is not an artifact of over-fitting, we contaminated all data points and observed a loss of
structure in both cases (Figure 5D, bottom row).

4 Discussion
In this work, we showed that the parametric UMAP is a suitable tool for the analysis of single-cell
RNA seq data. In a world where an enormous amounts of new data are being generated everyday,
using pUMAP allows one to generate a model from a small subset of the data to reduce computational
cost. Additionally, even in the situation where one wants to train a model with as much data as
possible, the batch-wise training scheme adopted by pUMAP allows one to partition the data for
efficient memory allocation. Moreover, we showed that in at least some cases, the underlying neural
network that parameterized pUMAP appeared to have learned something about the biology, capable
of filling in gaps within the embedding with cells never seen during training.

To enhance the robustness of pUMAP when it is impossible to account for the effect of all factors
involved in the data generation process, we exploited the parametric nature of our approach and
theoretically computed an upper and lower bound [23, 24, 25, 26], which is then incorporated as
an regularization term in the loss function. We showed that regularizing with CROWN [23] greatly
enhanced the robustness of the model and confirmed that our observation is not an artifact of over-
fitting by perturbing all genes simultaneously.

While we showed that regularizing with CROWN is a viable way to enhance the robustness of the
neural network underlying pUAMP, it is not guaranteed that such approach can remove batch effect.

Future work is still needed especially in combining pUMAP with other analysis. For example, given
our observation that, at least in some cases, gap regions on embeddings produced by pUMAP represent
unseen cell types, one can train a VAE [29] like model that sample directly from the UMAP space to
infer the gene expression profile of cells that could fill in the gap. We envision such work may be able
to identify critical points of transition in diseases and pinpoint potential genes for targeted therapy.
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5 Supplemental material

5.1 Certified Robustness
Below is a review of the derivation of the upper and lower bound proposed by Zhang [23], which is
hopefully a bit simpler for a non-mathematical audience to follow.

Consider a neural network with m layers with input dimension n0 and output dimension nm. In
the layer m − 1, the pre-activated input to the i-th neuron is y

(m−1)
i = W(m−1)

i,: ϕm−2(x) + b(m−1)
i .

Assume we can find functions h
(m−1)
U,i (y) = α

(m−1)
U,i (y + β

(m−1)
U,i ) and h

(m−1)
L,i (y) = α

(m−1)
L,i (y + β

(m−1)
L,i )

such that:
h
(m−1)
L,i (y

(m−1)
i ) ≤ σ(y

(m−1)
i ) ≤ h

(m−1)
U,i (y

(m−1)
i ), (13)

where σ(y) is some predefined activation function and ϕk(x) = σ(W(k)ϕk−1(x)+b(k)) defines the map
that maps the input to the k-th layer, our goal is find functions that bound the final output of the
network f : Rn0 → Rnm . The j-th output of our network fj(x) is defined as:

fj(x) =
nm−1∑
i=1

W
(m)
j,i [ϕm−1(x)]i + b(m)

j (14)

=

nm−1∑
i=1

W
(m)
j,i σ(y

(m−1)
i ) + b(m)

j (15)

We will drop bolded letters. Employing the bound defined in (13), we have for positive W
(m)
j,i :

W
(m)
j,i h

(m−1)
L,i (y

(m−1)
i ) ≤ W

(m)
j,i σ(y

(m−1)
i ) ≤ W

(m)
j,i h

(m−1)
U,i (y

(m−1)
i ), (16)

and for negative W
(m)
i,j :

W
(m)
j,i h

(m−1)
L,i (y

(m−1)
i ) ≥ W

(m)
j,i σ(y

(m−1)
i ) ≥ W

(m)
j,i h

(m−1)
U,i (y

(m−1)
i ). (17)

Plug (16) and (17) into (15), we can derive an upper bound, fU,(m−1)
j (x) based on the upper and lower

bound of ϕm−1(x):

f
U,(m−1)
j (x) =

∑
W

(m)
j,i <0

W
(m)
j,i h

(m−1)
L,i (y

(m−1)
i ) +

∑
W

(m)
j,i >0

W
(m)
j,i h

(m−1)
U,i (y

(m−1)
i ) + b(m)

j (18)

=
∑

W
(m)
j,i <0

W
(m)
j,i α

(m−1)
U,i (y

(m−1)
i + β

(m−1)
U,i ) +

∑
W

(m)
j,i >0

W
(m)
j,i α

(m−1)
L,i (y

(m−1)
i + β

(m−1)
L,i ) + b(m)

j

(19)

To merge these two sums, define λ
(m−1)
i,j and ∆

(m−1)
i,j :

λ
(m−1)
j,i =

{
α
(m−1)
U,i , if W (m)

j,i ≥ 0

α
(m−1)
L,i , if W (m)

j,i < 0
(20)

∆
(m−1)
i,j =

{
β
(m−1)
U,i , if W (m)

j,i ≥ 0

β
(m−1)
L,i , if W (m)

j,i < 0
(21)

Plug (20) and (21) to (19), we get:

f
U,(m−1)
j (x) =

nm−1∑
i=1

W
(m)
j,i λ

(m−1)
j,i (y

(m−1)
i +∆

(m−1)
i,j ) + b(m)

j (22)

Imposing the relationship y
(m−1)
i = W

(m−1)
i,: ϕm−2(x) + b(m−1)

i , we obtain:

f
U,(m−1)
j (x) =

nm−1∑
i=1

W
(m)
j,i λ

(m−1)
j,i (

nm−2∑
r=1

(
W

(m−1)
i,r ϕm−2(x)r

)
+ b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j (23)
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(23) can be simplified by defining Λ
(m−1)
j,i = W

(m)
j,i λ

(m−1)
j,i :

f
U,(m−1)
j (x) =

nm−1∑
i=1

Λ
(m−1)
j,i

nm−2∑
r=1

(
W

(m−1)
i,r ϕm−2(x)r

)
+

nm−1∑
i=1

Λ
(m−1)
j,i (b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j

=

nm−2∑
r=1

(
nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r

)
ϕm−2(x)r +

(
nm−1∑
i=1

Λ
(m−1)
j,i (b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j

)
(24)

Note that f
U,(m−1)
j (x) is not the bound that we desire. In reality, ϕm−2(x) will also have “error”. As

a result, we need to “propagate” this “error” to the input of the network where the error is known. To
find the bound of the output of the network as a function of the bound of the input, we need to express
ϕm−2(x) = σ(y(m−2)) in terms of its upper bound, defined also by (13). Note that if we redefine a
weight matrix W̃

(m−1)
j,r =

∑nm−1
i=1 Λ

(m−1)
j,i W

(m−1)
i,r , whether or not to use the upper or lower bound of

ϕm−2(x)i will depend on the sign of W̃ (m−1)
j,i . Consequently, we need to define:

λ
(m−2)
j,i =

{
α
(m−2)
U,i , if W̃ (m−1)

j,i ≥ 0

α
(m−2)
L,i , if W̃ (m−1)

j,i < 0
(25)

∆
(m−2)
i,j =

{
β
(m−2)
U,i , if W̃ (m−1)

j,i ≥ 0

β
(m−2)
L,i , if W̃ (m−1)

j,i < 0
(26)

Plug (25), (26), and the definition of the upper and lower bound of ϕm−2(x) to (24), we get:

f
U,(m−2)
j =

nm−2∑
r=1

(
nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r

)(
λ
(m−2)
j,r y(m−2)

r +∆
(m−2)
r,j

)
+

(
nm−1∑
i=1

Λ
(m−1)
j,i (b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j

)
(27)

Again, impose the relationship y
(m−2)
r = W

(m−2)
r,: ϕm−3(x) + b(m−2)

r :

f
U,(m−2)
j =

nm−2∑
r=1

(
nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r

)(
λ
(m−2)
j,r

(
nm−3∑
k=1

W
(m−2)
r,k ϕm−3(x)k + b(m−2)

r

)
+∆

(m−2)
r,j

)

+

(
nm−1∑
i=1

Λ
(m−1)
j,i (b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j

)
(28)

=

nm−2∑
r=1

W̃
(m−1)
j,r

(
λ
(m−2)
j,r

(
nm−3∑
k=1

W
(m−2)
r,k ϕm−3(x)k + b(m−2)

r

)
+∆

(m−2)
r,j

)

+

(
nm−1∑
i=1

Λ
(m−1)
j,i (b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j

)
(29)

To simplify (29), define Λ
(m−2)
j,r = W̃

(m−1)
j,r λ

(m−2)
j,r , we get:

f
U,(m−2)
j =

nm−3∑
k=1

(
nm−2∑
r=1

Λ
(m−2)
j,r W

(m−2)
r,k

)
ϕm−3(x)k +

(
nm−2∑
r=1

Λ
(m−2)
j,r (b(m−2)

r +∆
(m−2)
r,j )

)

+

(
nm−1∑
i=1

Λ
(m−1)
j,i (b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j

)
(30)
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If we define:

W̃
(m−1)
j,r =

nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r (31)

W̃
(m−2)
j,k =

nm−2∑
r=1

Λ
(m−2)
j,r W

(m−2)
r,k (32)

b̃
(m−1)

j =

(
nm−1∑
i=1

Λ
(m−1)
j,i (b(m−1)

i +∆
(m−1)
i,j ) + b(m)

j

)
(33)

b̃
(m−2)

j =

(
nm−2∑
r=1

Λ
(m−2)
j,r (b(m−2)

r +∆
(m−2)
r,j )

)
+ b̃

(m−1)

j (34)

...

we can simplity (24) and (30) to:

f
U,(m−1)
j (x) =

nm−2∑
r=1

W̃
(m−1)
j,r ϕm−2(x)r + b̃

(m−1)

j (35)

f
U,(m−2)
j (x) =

nm−2∑
r=1

W̃
(m−2)
j,r ϕm−3(x)r + b̃

(m−2)

j (36)

Note that from Λ
(m−1)
j,i = W

(m)
j,i λ

(m−1)
j,i and Λ

(m−2)
j,r = W̃

(m−1)
j,r λ

(m−2)
j,r , we get obtain an iterative

relationship for Λ as:
Λ
(m−2)
j,r = Λ

(m−1)
j,: W (m−1)

:,r λ
(m−2)
j,r (37)

In the situation when m = 3, one can write out the general form of the upper bound as:

fU
j (x) = Λ

(0)
j,: x +

m∑
k=1

Λ
(k)
j,: (b

(k) +∆
(k)
:,j ) (38)

The result for deriving the lower bound is essentially the same as above and we will direct readers
to the original paper.

When the input x0 can be perturbed within a ball of radius ϵ, B(x0, ϵ), we can write out its upper
bound as:

max
x∈B(x0,ϵ)

fU
j (x) = max

[
Λ
(0)
j,: x +

m∑
k=1

Λ
(k)
j,: (b

(k) +∆
(k)
:,j )

]

= max
[
Λ
(0)
j,: x

]
+

m∑
k=1

Λ
(k)
j,: (b

(k) +∆
(k)
:,j )

= max

[
Λ
(0)
j,: (ϵ

x − x0

ϵ
+ x0)

]
+

m∑
k=1

Λ
(k)
j,: (b

(k) +∆
(k)
:,j )

= max
y∈B(0,1)

ϵ
[
Λ
(0)
j,: y

]
+ Λ

(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b

(k) +∆
(k)
:,j )

= ϵ||Λ(0)
j,: ||∞ + Λ

(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b

(k) +∆
(k)
:,j ), (39)

where ||Λ(0)
j,: ||∞ denotes the maximum absolute value of the vector Λ

(0)
j,:
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