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ABSTRACT

Most popular methods of phylogenetic biogeography discard the spatial 
component of geographic distributions, dividing Earth into a handful of 
predefined areas. Other methods use explicit geographic ranges, but 
unfortunately, these methods assume a static Earth, ignoring the effects 
of plate tectonics and the changes in the landscape. To address this 
limitation, I propose a method that uses explicit geographic ranges and 
incorporates a plate motion model and a paleolandscape model directly 
derived from the models used by geologists in their tectonic and 
paleogeographic reconstructions. The underlying geographic model is a 
high-resolution pixelation of a spherical Earth. Biogeographic inference 
is based on diffusion, approximates the effects of the landscape, uses a 
time-stratified model to take into account the geographic changes, and 
directly integrates over all probable histories. By using a simplified 
stochastic mapping algorithm, it is possible to infer the ancestral 
locations as well as the distance and speed traveled by the ancestral 
lineages. For illustration, I applied the method to an empirical phylogeny 
of the Sapindaceae plants. This example shows that methods based on 
explicit geographic data, coupled with high-resolution paleogeographic 
models, can provide detailed reconstructions of the ancestral areas but 
also include inferences about the probable dispersal paths and traveling 
speed across the taxon history that are not possible with current methods
based on predefined areas.

Keywords: ancestral area estimation; historical biogeography; 
paleogeographic models; phylogeography; phylogenetic biogeography; 
Sapindaceae; spherical diffusion.
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INTRODUCTION

The main objective of phylogenetic biogeography is to infer the evolution of 
geographic ranges within a clade based on its phylogenetic relationships and the 
observed geographic locations of its terminals (Brundin 1965, 1966, 1972; Nelson 
1969; Ronquist and Sanmartín 2011). Most current methods model geographic range 
data using predefined areas. These approaches include character mapping (Bremer 
1992; Ronquist 1994; Clark et al. 2008; Landis 2016; Gunnell et al. 2018; Landis et al. 
2021), dispersal-vicariance analysis (DIVA, Ronquist 1997), and the dispersal-
extinction-cladogenesis model (DEC, Ree et al. 2005; Ree and Smith 2008; Matzke 
2014) and its derivatives (Goldberg et al. 2011; Webb and Ree 2012; Landis et al. 
2022). However, the predefined areas approach is problematic (Ree and Sanmartín 
2009; Arias et al. 2011; Landis et al. 2013; Quintero et al. 2015; Arias 2017; O’Donovan 
et al. 2018). Even detailed models have a small number of areas (up to 25 by Landis 
2016); the usual analysis uses between four and twelve areas. As a consequence, 
most predefined areas have large surfaces, clumping together the ranges of many 
species, even if their ranges are allopatric. The boundaries of these predefined areas 
are usually poorly defined, and in most cases, no primary data is provided for area 
assignment, hindering the repeatability of the research. Predefined areas are usually
defined for each different paper, making it difficult to compare the results of 
different studies. While there are some ad hoc solutions proposed for these problems
(e.g., constructing a distance-based dispersal matrix, Webb and Ree 2012; Landis 
2016; Landis et al. 2022; or an automated process to assign predefined areas, Töpel et
al. 2016), these do not address the fundamental problem: the geographic data of the 
terminals is discarded.

Using explicit range data, such as georeferenced specimen locations or geographic 
range maps, offers an alternative to the predefined area model. There are two main 
approaches that use explicit geographic range data. The first approach is based on 
the ideas of DIVA and DEC, in which an evolutionary model of dispersal and 
extinction is used to infer changes along branches, and widespread ranges are 
assigned to internal nodes. These methods are implemented using parsimony (Arias 
et al. 2011; Arias 2017; see also Hovenkamp 1997, 2001) or a probabilistic 
evolutionary model (Landis et al. 2013). The second approach is more similar to 
character mapping, in which a diffusion process models the evolution along the 
branches without taking extinction into account. These models were initially 
developed for intra-specific phylogeography (Lemmon and Lemmon 2008; Lemey et 
al. 2010; Bouckaert et al. 2012; Pybus et al. 2012; Bouckaert 2016; Louca 2021) and 
then extended to model inter-specific conventional phylogenetic biogeography 
(Nylinder et al. 2014; Quintero et al. 2015; O’Donovan et al. 2018). These models 
assign a single point to the ancestor instead of a widespread range distribution, 
which speeds up the computing time and directly calculates the likelihood of any 
geographic location (only observed locations are used in Arias et al. 2011; Arias 2017; 
additional locations must be explicitly included by the user in Landis et al. 2013). 
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There are several developments to make the diffusion model more realistic, 
including using a spherical Earth (Bouckaert 2016; Louca 2021) or taking into 
account the effects of landscape (Bouckaert et al. 2012).

Although explicit geography methods provide an important advance in modeling the
evolution of geographic ranges, they fall short in other aspects. In particular, one of 
the main advantages of the predefined area methods is the incorporation of a 
paleogeographic model (Ree et al. 2005; Ree and Smith 2008; Webb and Ree 2012; 
Landis 2016). All methods using explicit geographic ranges lack this critical element 
of inference, so they effectively assume that Earth’s geography is static or that the 
effects of the dynamic nature of the Earth in the evolution of ranges are minimal 
(O’Donovan et al. 2018). There is another limitation of methods based on explicit 
geographic ranges: they rely on data augmentation in internal nodes (Lemmon and 
Lemmon 2008; Landis et al. 2013; Quintero et al. 2015; Bouckaert 2016; O’Donovan et 
al. 2018), then Monte Carlo sampling is required to approximate the integral over all 
possible histories, which makes most analyses slow.

The objective of this paper is to introduce a phylogenetic biogeography method that 
uses explicit geographic ranges, uses a spherical Earth, is based on diffusion, and 
incorporates a dynamic paleogeography model as part of its inference machinery. 
The method accounts for changes in the location of continents (plate tectonics) and 
includes changes in the landscape (e.g., marine transgressions). Different from 
predefined area methods, these paleogeographic models are the same models used 
by geologists for tectonic reconstructions (e.g., Müller et al. 2019, 2022). Taking 
advantage of the geographic data model, this method provides direct integration 
across all possible histories using the pruning algorithm (Felsenstein 1981). 
Although developed for inter-specific phylogenetic biogeography in deep time, this 
method is also applicable for infra-species phylogeography analyses. Thanks to its 
reliance on models of high spatial and temporal resolution, this method will allow 
researchers to gain a more detailed understanding of the spatial component 
(Quintero et al. 2015; O’Donovan et al. 2018) and the geographical context of the 
range evolution than is not possible using current predefined area methods.

MODEL COMPONENTS

An overview of the input data, the elements used for the reconstruction, and the 
products of the method is given in Figure 1.
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Figure 1. A sketch overview of the method presented in this paper. The basic input data for a 
phylogenetic biogeography analysis used here are the dynamic paleogeography model, the distribution
data, and a time-calibrated phylogenetic tree (left). This data is used in the reconstruction phase 
(center) by modeling diffusion with a spherical normal and optimizing it by the Felsenstein pruning 
algorithm, and then stochastic mapping is used to produce the main output of the method: the pixel 
posteriors and the speed and distance of the reconstructions (right).

Geographic Data Model

Geographic data is typically modeled in two ways: the vector model and the raster 
model (Fotheringham et al. 2000; Neteler and Mitasova 2008). In the vector model, 
spatial objects are represented by points, lines, and polygons. While this data model 
is continuous, it is typically used to represent discrete units such as the contours of 
continents, islands, or rivers. It has been applied in phylogenetic biogeography for 
diffusion-based methods (Lemmon and Lemmon 2008; Lemey et al. 2010; Bouckaert 
et al. 2012; Pybus et al. 2012; Nylinder et al. 2014; Quintero et al. 2015; Bouckaert 
2016; O’Donovan et al. 2018; Louca 2021). The raster model represents geographic 
space as a matrix of pixels. While this data model is discrete, it is commonly used to 
represent continuous variables, such as climate data or digital elevation models. The
raster model has been applied in phylogenetic biogeography (Arias et al. 2011; Arias 
2017) as well as in other fields of biogeography, such as distribution modeling 
(Phillips et al. 2006) or identifying areas of endemism (Szumik and Goloboff 2004). 
Although either the vector or raster model can represent any geographic data, the 
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decision to use one or the other is generally based on ease of implementation. Here, I
use a raster model because it is straightforward to use for continuous fields, which 
are critical for the implementation of the pruning algorithm.

Most vector and raster models in biogeography use an equirectangular projection 
(e.g., Lemey et al. 2010; Arias et al. 2011; Pybus et al. 2012; Quintero et al. 2015; Arias 
2017), which assumes a flat, cylindrical Earth and produces high distortions outside 
the equatorial region. Some vector model implementations use a spherical Earth 
(Bouckaert et al. 2012; O’Donovan et al. 2018; Louca 2021). Here, I use a raster model 
based on equal area partitioning (Saff and Kuijlaars 1997) that takes into account 
the sphericity of the Earth. This pixelation divides Earth into latitude rings of equal 
size, and each ring is divided according to its circumference, using the size of a pixel 
in the equatorial ring. Each pole has its own pixel, and the starting point is offset by 
a half pixel in odd rings. This pixelation is easy to implement, and pixels can be 
located quickly. It also ensures that the area of pixels is more or less the same (in 
fact, the total number of pixels can be calculated as pix = eq2 ÷ π, where eq is the 
number of pixels at the equator; this formula is the same as the area of a sphere 
using pixel units) and has a good isotropy, meaning that on average, each pixel has 
the same number of neighbors at a given distance (supp. Fig. 1).

To indicate the resolution of a pixelation, I use the notation e<Number>, where 
<Number> represents the number of pixels in the equatorial ring. For example, e360
denotes a pixelation with 360 pixels at the Equator.

The spatial resolution of the pixelation is dependent on the computational power 
available. As the number of pixels increases exponentially with resolution, any 
increase in resolution significantly impacts memory usage and computation speed. 
For example, an e120 pixelation has 4,586 pixels, while an e360 pixelation has 41,258 
pixels. To achieve higher resolutions with a manageable number of pixels, it may be 
useful to prohibit certain pixels. For example, prohibiting pixels in deep ocean areas 
on an e360 pixelation can reduce the number of pixels to approximately 18,500.

Dynamic Paleogeography Models

To model continental drift, geologists build plate motion models. These models are 
based on Euler’s theorem and involve a sequence of rotations along different axes of 
rotation on a sphere, which can be used to infer the location of a tectonic feature at a
particular time (these models are also known as rotation models; for an 
introduction, see Cox and Hart 1986). These models are usually vectorial and 
continuous in time (e.g., Müller et al. 2019, 2022; Merdith et al. 2021). Here, to 
reduce computational time, plate motion models are pixelated and divided into time 
stages in which the geography is assumed to be static, as is done in DEC and other 
methods (Ree et al. 2005; Ree and Smith 2008; Webb and Ree 2012; Bielejec et al. 
2014; Landis 2016). Under the model used here, each pixel at the current time is 
associated with a tectonic element and an assigned age. Then the plate motion 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.567427doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.16.567427
http://creativecommons.org/licenses/by/4.0/


J.S. Arias, Phylogenetic Biogeography with Dynamic Paleogeography p. 6 of 32

model is used to determine the location of a pixel in an older stage while preserving 
its identity. However, due to the discrete nature of the pixelation, there can be 
instances where the location equivalent to a pixel after rotation can be in two or 
more pixels. As tectonic features are moved independently of any other feature, two 
or more different pixels can be moved to the same location after rotation. As tectonic
features have a particular age, no pixel is assigned if the time stage is older than the 
pixel age. These issues are addressed with specific procedures during the 
reconstruction (see below in the RECONSTRUCTION section).

Although plate tectonics is a major driver of ancient geography, landscapes are also 
dynamic; for example, a location that is currently on land may have been part of an 
epicontinental sea in the past. This can be represented using a paleolandscape or 
paleogeography model. Typically, these models are represented as raster files or 
vector polygons and divided into discrete time stages (e.g., Cao et al. 2017; Kocsis and
Scotese 2021). In the method presented here, the paleolandscape model is pixelated 
using the same spatial and temporal resolution as the plate motion model, and each 
pixel at every time stage is assigned a landscape identifier (e.g., shallow sea, 
lowlands, ice sheets). It is important to note that while the paleolandscape model 
stores pixel locations, it does not track pixel identities over time (that is done by the 
plate motion model). Keeping both models separated is a flexible solution, as the 
same plate model can be coupled with different paleolandscape models.

The temporal resolution of dynamic paleogeography models is a matter of 
practicality: it must be fine enough to make the static Earth assumption valid yet 
long enough to minimize computations over long branches. Moreover, the models 
should be available for the expected time stages. Fortunately, recent developments 
in free and open software such as GPlates (Müller et al. 2018) and publicly available 
datasets, like those found at https://www.earthbyte.org/category/resources/data-
models/global-regional-plate-motion-models/, make it easier than ever to create 
and edit these models. While biologists can build these models by themselves (e.g., 
Bolotov et al. 2022), I think that it can be better seen as an opportunity for 
interdisciplinary collaboration, as paleogeographic models must be based on large 
amounts of geological evidence (e.g., Müller et al. 2022). Probably the most common 
situation is using an already defined dynamic paleogeography model. With this in 
mind, I created a GitHub repository (https://github.com/js-arias/geomodels) with 
ready-to-use dynamic paleogeography models as well as instructions for importing 
the user’s own GPlates model.

Phylogeny and Terminal Geographic Ranges

The method presented here requires a fully dichotomous, time-calibrated 
phylogenetic tree. Although the method can be adapted to polytomic trees, I will not 
attempt to do it here. In cases where a lineage intersects with one or more time 
stages as defined in the dynamic paleogeography model, it is divided into distinct 
time slices, and inter-nodes are inserted between these divisions as is done in DEC 
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and other methods (Ree et al. 2005; Ree and Smith 2008; Webb and Ree 2012; 
Bielejec et al. 2014; Landis 2016).

Each terminal must include an explicit geographic range. This geographic range can 
take the form of georeferenced specimen locations or continuous range maps. In the 
case of specimen locations, the localities are transformed into a presence-absence 
pixelation. For continuous range maps, each pixel within the range map is assigned 
a value; in a simple range map, all pixels have the same value, whereas distribution 
models allow for different values per pixel. During setup, regardless of the source, 
the values stored in terminal ranges are scaled so that the sum of all pixel values is 
equal to 1.0 (Bouckaert et al. 2012).

Diffusion Model

The geographic range of a species can be seen as a collection of particles that move 
randomly across the Earth’s surface. Under that approach, the movement of these 
particles can be modeled using a diffusion process.

In phylogenetic biogeography, most diffusion models are based on the assumption 
of a flat Earth (Lemmon and Lemmon 2008; Lemey et al. 2010; Bouckaert et al. 2012; 
Pybus et al. 2012; Nylinder et al. 2014; Quintero et al. 2015). Under this assumption, 
diffusion is only the traditional normal distribution scaled over time, allowing 
speed-ups such as Gibbs sampling (Lemey et al. 2010; Quintero et al. 2015) or just 
storing the means and variances (Pybus et al. 2012; Nylinder et al. 2014). Under a 
flat Earth model, it is also possible to use different diffusion parameters for latitude 
and longitude (Lemey et al. 2010; Pybus et al. 2012; Quintero et al. 2015). But 
distances calculated using latitude and longitude as flat coordinates are neither 
Euclidean nor spherical, with distortion particularly pronounced near the poles. 
O’Donovan et al. (2018) used a 3D model of the Earth and computed a normal 
distribution for each axis with the same diffusion parameter using the Euclidean 
distance between point coordinates. While O’Donovan et al. (2018) conditioned start 
and end points at the Earth’s surface, they used a flat measure that ignores Earth 
sphericity, and its distortion relative to great circle distances increases with 
geographic distances. Moreover, as the movement is integrated over a 3D space, 
impossible paths in the Earth’s interior will have higher likelihoods than paths over 
the Earth’s surface.

An explicit spherical normal is a more preferable function for diffusion over the 
spherical surface of the Earth (Brillinger 1997; Bouckaert 2016; Louca 2021). Several 
approximations to the spherical normal have been proposed (e.g., Pennec 2006; 
Ghosh et al. 2012; Hauberg 2018), and for this paper I use the approximation given 
by Hauberg (2018):

S N (x|μ , λ ) ∝e x p(− λ
2
d i s t 2 ( x ,μ ))
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where x is a point on the sphere, μ is the mean point, λ is the concentration 
parameter in units of radians-2 (analogous to the κ parameter of the von Mises-
Fisher distribution or the precision in the flat normal distribution), exp is the 
exponential function, and dist is the great circle distance between two points. One of 
the drawbacks of the spherical normal is its isotropy. Although anisotropic 
formulations exist (Hauberg 2018), their axes must follow a geodesic line (a great 
circle) on the sphere, meaning that the concentration matrix is uniquely associated 
with a particular mean point; therefore, it is not possible to use the same matrix 
when the mean point is rotated to a new position (Hauberg 2018).

Hauberg (2018) provides a function to scale the spherical normal at any point, but 
for the purpose of this paper, and taking advantage of equal area partitioning of the 
pixelation, a numerical integration over all pixels is used to produce a discrete 
approximation of the spherical normal.

RECONSTRUCTION

The main issue with event-based methods is that they treat widespread ranges as 
the units of inference (Ronquist 1994; Ree et al. 2005; Landis et al. 2013), which 
results in an exponential increase in the number of potential ancestral ranges with 
the number of pixels (or predefined areas). To obtain the reconstructions of the 
ancestors, all these widespread ranges are integrated out, so their identity is 
discarded, and the result is the posterior probability of each individual pixel (Landis 
et al. 2013). An alternative approach is to focus directly on a single pixel (or location)
as the unit of inference. The goal is to calculate the probability that a pixel in a node 
gives rise to any of the observed pixels in each descendant of the node (Lemmon and
Lemmon 2008; Lemey et al. 2010; Bouckaert et al. 2012; Pybus et al. 2012; Nylinder et
al. 2014; Quintero et al. 2015; Bouckaert 2016; O’Donovan et al. 2018) instead of the 
probability of the whole ancestral range.

Calculating the Likelihood

Ideally, distances and the landscape can be taken into account through a numerical 
integration of the spherical normal over small time segments (Bouckaert et al. 2012).
However, this approach can be computationally expensive and is limited to 
relatively small problems in time and space (Bouckaert et al. 2012). Therefore, most 
methods ignore landscape effects in the diffusion process and allow particles to 
move freely across the entire geography (Lemmon and Lemmon 2008; Bouckaert et 
al. 2012; Pybus et al. 2012; Quintero et al. 2015; Bouckaert 2016; O’Donovan et al. 
2018). Here, the landscape is only taken into account to condition the probability of 
arrival at a particular point (Bouckaert et al. 2012).

To model the diffusion from an ancestral point to a descendant point on a branch 
segment, a probability function f is defined as:
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f (x t→ y t|λ ,b )=S N ( y t|x t , λ÷ b ) p ( y t )

where SN is either the continuous or discrete spherical normal; x and y are points at 
time stage t; x is the point at the beginning of the branch segment, and y is the point 
at the end of the segment; b is the length in time of the branch segment, which is 
used to scale the λ parameter with time (Ghosh et al. 2012; Bouckaert 2016), just as 
is done in the planar diffusion; and p is the prior of the arrival point at time stage t. 
The priors of the points are defined using the pixel values in the landscape model.

Then the likelihood of a phylogenetic tree T with n nodes, including terminals, split 
nodes, and inter-nodes in each time segment of a branch, given a set of terminal 
locations D and a λ parameter, using f with the continuous spherical normal, is 
(Bouckaert 2016):

L (T|D , λ )=∫
xn1

⋯∫
xr oo t

[ ∏
i=n1⋯r oo t

f c on t (xanc (i )→x i|λ ,b i) ] p (xro ot )d xn1
⋯d xr oo t

that is the sum of all possible histories from any point in the root to the observed 
points in the terminals (Lemey et al. 2010; Bouckaert et al. 2012; Pybus et al. 2012; 
O’Donovan et al. 2018). This integral is analytically intractable (Lemmon and 
Lemmon 2008; Bouckaert 2016). Therefore, a numerical approximation is necessary.
The fastest alternative is to use independent contrast (Louca 2021) but geographic 
locations on the ancestral nodes, one of the main objectives of the analysis, are lost. 
The common approach to keeping the inference of ancestral pixels is to sample a 
single point from each terminal (Bouckaert et al. 2012; Nylinder et al. 2014; 
O’Donovan et al. 2018) and augment the data by assigning a single point to each 
internal node, either to maximize the likelihood (Lemmon and Lemmon 2008; 
Bouckaert 2016) or to perform an MCMC integration (Lemey et al. 2010; Bouckaert 
et al. 2012; Quintero et al. 2015; Bouckaert 2016; O’Donovan et al. 2018). Quintero et 
al. (2015) were able to skip the terminal sampling and use the whole geographic 
range of terminals, but continued to use the MCMC step for the augmented data in 
the internal nodes.

But if the problem is seen through the lens of a raster model, full numerical 
integration can be done by transforming the integrals of an infinite number of 
points into sums of pixels, using f with the discrete spherical normal:

L (T|D , λ ) ≈∑
xn1

⋯∑
x ro ot

[ ∏
i=n1⋯ r oo t

f d i s c ( xanc ( i)→xi|λ ,bi )] p (xr oo t )

this formulation has an identical structure to the problem solved by Felsenstein 
(1981) with the pruning algorithm as recursive multiplications of conditional 
likelihoods.
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The conditional likelihood of a pixel in the terminals is just the scaled value used for
the terminal ranges, either a presence-absence pixelation or a range map, so that the
sum of all pixel values is equal to 1.0 (Bouckaert et al. 2012; Quintero et al. 2015).

For an internode m, the conditional likelihood for the pixel x at the time stage t is 
(Ree and Smith 2008):

Lm (x t )=∑
y t

f d i s c (x t→ yt|λ ,bm )Lde sc (m) ( y t )

At inter-nodes, there is a change in the time stage, so the pixel locations are 
updated by applying the rotation model to move the conditional likelihood of a pixel 
from its previous location (at a younger age) to a potentially different location in the
new time stage (at an older age). If multiple pixels are moved to a single destination,
the maximum value is retained (i.e., likelihoods are not summed). If the source pixel
has multiple destinations, the same value is assigned to all pixels (i.e., likelihoods 
are not divided). This procedure is made to maintain the smoothness of the 
ancestral likelihood field. If there is no destination pixel, the likelihood vanishes.

In the splits, the conditional likelihoods of both descendants of n are multiplied:

Ln (xt )=Ll e f t (n ) (x t ) Lr i ght (n ) (x t )

At the root, the full likelihood is the sum of the conditional likelihoods of all pixels at
the root multiplied by the prior of the pixels at the root stage:

L (T|D , λ ) ≈∑
xt

Lroo t ( xt ) p (x t )

Estimation of λ Parameter

With the likelihood function, it is possible to estimate the value of λ using 
maximum likelihood or Bayesian estimation. The likelihood function seems to be 
quite smooth, so it can be maximized by a simple hill-climbing algorithm. There is 
no known conjugate prior for the spherical normal (Hauberg 2018), so Gibbs 
sampling cannot be implemented, but as only a single parameter is estimated 
instead of using an MCMC algorithm, the Bayesian posterior can be computed 
directly by a numerical integration of the product of the likelihood and the prior.

Estimation of Ancestral Pixels

I use a stochastic version of the demarginalization procedure of Yang et al. (1995) to 
estimate the pixel posterior probabilities at nodes. This approach allows for 
additional estimates, for example, of the average distance traveled by a particle 
(O’Donovan et al. 2018). This procedure is equivalent to a reduced version of 
stochastic mapping (Nielsen 2002; Dupin et al. 2017) and is labeled as such in the 
remainder of this paper. The posterior probability of a pixel at the root of the tree is 
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the final likelihood of the pixel divided by the likelihood of the whole 
reconstruction:

pr o o t (x t|T , D )=
Lr o o t (xt ) p (x t )

∑
y

Lr oo t ( yt ) p ( y t )

For each internode m, the probability of a destination y is the probability of reaching
that pixel from the ancestral pixel x multiplied by the conditional likelihood of y at 
the end of the segment m, scaled by all possible arrivals:

pm ( y t|x t , λ , bm )=
f d i s c (x t→y t|λ ,bm ) Lm ( y t )

∑
z

f d i s c ( xt→z t|λ ,bm )Lm ( z t )

When a time stage changes, the location of a source pixel is changed using the plate 
motion model. As mentioned earlier, it is possible that the source pixel is 
represented by two or more destination pixels in the younger time stage. To solve 
this problem, a single destination pixel is randomly selected using the priors of the 
destination pixels in the younger time stage. At splits, both descendants inherit the 
same particle location.

This procedure is repeated multiple times, resulting in a collection of pixel locations 
and particle trips. The frequency with which a pixel is selected provides an 
approximation of the posterior probability for that pixel at a node during a given 
time stage. As trips are stored, the traveled distances of each trip can be calculated. 
As particles are moved with the plate motion model as the time stage changes, but 
the distance measure is taken within a single time stage, this approach only 
measures the distance traveled by the particle for reasons different from plate 
motion.

IMPLEMENTATION

The method described in this paper is already implemented. The source code is 
written in the Go programming language and is available at https://github.com/js-
arias/phygeo. This implementation takes advantage of the Go concurrency model 
and the current multiprocessor architecture to run the pruning algorithm and the 
stochastic mapping in parallel. There are two additional shortcuts worth 
mentioning. First, as the spherical normal is isotropic and the neighborhood of each 
pixel is also nearly isotropic, it is possible to precalculate the discrete normal density
of any pixel in a latitude ring (i.e., a discrete spherical normal centered in the north 
pole) and then create a lookup table for the probability at each distance. Second, it 
will be possible to build a precalculated distance matrix for all pixels. This matrix 
requires more memory resources (for example, the distance matrix for an e360 
pixelation takes about 1.4 GB), but because it removes the calculation of the great 
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circle distances in the reconstruction phase, it produces a noticeable speedup in the 
calculations.

When the branch leading to a terminal taxon is small and the value of λ is large, it is
possible that the full likelihood of far-away pixels cannot be calculated in a fast way.
In such cases, only the maximum value will be stored (i.e., the most probable path 
from the source pixel to any destination); this will provide a reasonable 
approximation of the full likelihood (Bouckaert 2016) for mostly irrelevant pixels 
(i.e., pixels far away from the destination in a low diffusivity scenario).

The implementation has a reasonable speed for the size of the current datasets. In 
the empirical data set (see below), calculating the likelihood of a given λ parameter 
(including 1000 stochastic mappings) takes about 60 minutes on a 10-plus-year-old 
i5 machine with four cores at 2.9 GHz. The same data set runs in about 9 minutes on 
a modern M1 MacBook with eight cores at 3.2 GHz. Then estimating the maximum 
value of λ takes less than a day, while the approximate Bayesian estimation (see 
below) takes less than a week.

BIOGEOGRAPHY OF SAPINDACEAE

To demonstrate the use of the model presented here in an empirical case, I made a 
biogeographic analysis of the Sapindaceae, a world-wide distributed, mostly tropical,
family of angiosperms in the order Sapindales. The phylogeny of this group (Buerki 
et al. 2009, 2011, 2013, 2021; Joyce et al. 2023) provides a fair representation of many 
current analyses, in which the whole group is well sampled, but it is incomplete at 
the species level. While there are previous biogeographic analyses for the group 
(Buerki et al. 2011, 2013), they are based on predefined area methods, and the 
phylogenetic relationships are slightly different from the tree used here (Joyce et al. 
2023).

Materials and Methods

Paleogeographic model.—The paleogeographic model uses an e360 pixelation. The 
plate motion model is the Müller et al. (2022) model, with time stages separated by 5
Myr (for a total of 22 time stages from present to 105 Ma). The paleolandscape 
model is the Cao et al. (2017) model, rotated with the Müller et al. (2022) model. The 
full paleogeographic model (which extends to 540 Ma) is available at 
https://github.com/js-arias/gm-muller-2022. In the previous analyses (Buerki et al.
2011, 2013), they used seven areas in four time stages, so the current paleogeographic
model represents an increase of 2600 times in spatial resolution and five times in 
temporal resolution. The prior probability for pixels was set at 1.00 for emerged land
(either low or highlands), 0.005 for shallow sea on continental shelves, and 0.001 for
oceanic plateaus and continental ice sheets.
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Phylogenetic tree.—The phylogenetic tree was extracted from the Sapindaceae 
branch of Joyce et al. (2023) phylogenomic analysis of Sapindales. As the original 
publication does not provide a machine-readable file, the relationships and ages 
were extracted manually from their figure 4a. The phylogeny was augmented with a 
few terminals from Buerki et al. (2013), mostly to enlarge the sampling of a few 
genera. The species Matayba tenax was excluded, because it does not match any 
Matayba species or synonym in the Plants of the World database 
(https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30007598-2), this 
particular terminal float in a previous analysis (Buerki et al. 2021), and the genus 
Matayba did not appear as monophyletic in previous studies (Buerki et al. 2011, 
2013). The taxonomy was updated from the Plants of the World database 
(https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30000506-2; PoWO 
2023), replacing synonym names with accepted names. Terminals with a defined 
genus name but an unidentified species are replaced with sampled species of the 
same genus from previous studies (Buerki et al. 2011, 2013; Chery et al. 2019). The 
total number of terminals in the tree was 146, with the root node age of 104.37 Ma. 
The used tree is available as supplementary data and illustrated in the 
supplementary figure 2.

Geographic data.—All georeferenced preserved specimens for Sapindaceae in GBIF 
were downloaded (https://www.gbif.org/occurrence/download/0000527-
230828120925497; GBIF.org 2023), for a total of 387,463 records. Then the taxonomy 
of the terminal species of the phylogenetic tree, updated with Plants of the World 
(PoWO 2023), was matched with the taxonomy in GBIF. As Plants of the World 
includes the countries in which each species was reported, the matched taxonomy is
also used to keep only records sampled in the countries in which the species is 
native. This cleaning procedure is quite simple and does not remove all wrong 
records, in particular in large countries (as the filtering is done at the country level),
and rejects potentially correct data in countries in which a species is not currently 
reported. While more careful filtering will be preferable, it provides a good enough 
dataset for the illustrative purpose of this example. After the filtering, 68,307 records
are kept in the database. Note that this does not mean that most data is wrong in 
GBIF; rather, it shows that a large part of the diversity of the family was not sampled
in the phylogenetic tree. As there are no geo-referenced specimen records for 
Euchorium cubense, I use a record based on a material citation for this taxon 
(https://www.gbif.org/occurrence/4135894102). The resulting dataset is available 
at https://github.com/js-arias/sapindaceae.

Biogeographic analysis.—To make inferences about the root of the tree, a root 
branch (Landis et al. 2013) with a length equal to 10% of the root age (i.e., 10 My) 
was added. Reconstructions for this root branch are ignored.

A Bayesian analysis of the λ parameter using a uniform prior is approximated in the
following form: (1) The maximum likelihood value of λ was estimated; (2) a 
numerical integration was used to find the posterior distribution of λ using an 
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uniform prior; (3) the posterior distribution of λ was approximated with a Gamma 
distribution, and 1000 random samples were taken from this Gamma distribution. 
In each sample, a likelihood reconstruction is performed with 100 stochastic maps, 
for a total of 100,000 probable histories from the posterior distribution.

To build the ancestral range maps, all the samples were smoothed using a KDE 
based on a spherical normal with λ = 1000 and using only the pixels in 95% of the 
CDF. For a better visualization, I also provide the reconstructions rotated to present 
day locations using the plate motion model. Lineage richness is calculated using the 
overlap of the reconstructions of all lineages that cross the most recent limit of a 
given time stage. For the speed analysis, the speed of a particular history is 
calculated by using the sum of the distance between the starting and ending pixels 
in each branch segment, measured in kilometers, and then dividing it by the length 
of the branch, measured in million years.

Results

The maximum likelihood value for λ was 35.9 (logLike = -2197.005; 95% credibility 
interval 31.0-41.0), equivalent to a standard deviation of 1495.6 Km/My and the 
posterior distribution was approximated with a Gamma function with α = 108.0 and β = 3.0 (supp. Fig. 3; supp. data). The posterior average speed of a particle in the tree 
was 586.79 Km/My (95% CI 539.12-643.13).

Figures 2 and 3 show the main biogeographic results (see also supp. Figs. 4; 
reconstructions of all nodes are provided as image files in the supplementary data). 
In the following discussion, I use the 50% credibility interval to define the ancestral 
areas as well as the routes and times of dispersal (red to green interval in Figure 3). 
As in previous research (Buerki et al. 2011, 2013) the origin of Sapindaceae is 
inferred from what is today the eastern part of Asia, at the east of the Turgai Sea, at 
the end of the Early Cretaceous, (Fig. 2; supp. Fig. 4), but the credibility interval of 
95% includes all of Eurasia and the northeastern part of North America (Fig. 2). The
ancestral location inferred for all subfamilies and most tribes (except most tribes in 
the Haplocoeleae + Paullinieae group and Stadmanieae; supp. Fig. 4) is also the 
eastern part of Asia. Then, for most of its history, the main lineages of the group 
have remained mostly in eastern Asia and the northern hemisphere and reached 
tropical latitudes in relatively recent times (Figs. 2-3; supp. tables 1-6). This result is 
superficially similar to early results using predefined areas (Buerki et al. 2011, 2013), 
although the results found here have more geographic precision, both because the 
predefined area analyses used previously had large surfaces, and the result of their 
analysis produced several ambiguous assignments in the ancestral nodes. A 
difference from that previous research (Buerki et al. 2011, 2013) is that instead of a 
network of interoceanic dispersal between tropical landmasses, here the most 
probable solution involves multiple independent invasions of the tropics from 
landmasses just as north of them through land connections (Figs. 2-3; supp. tables 1-
6).
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Figure 2. Distribution of Sapindaceae over time. The maps approximate the lineage richness by adding
the posterior CDF values for all lineages alive at the end of a given time stage and scaling to the 
maximum value in each time stage.
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As in previous research (Buerki et al. 2011, 2013), an early dispersal involves a trip 
from Eurasia to North America, but the date of these initial dispersals is most 
recent: it is in the 145-80 Ma time slice in previous research (Buerki et al. 2011, 
2013). Here, the earliest dispersal begins at 68 Ma and continues until very recent 
times (supp. table 1). The most probable land route for these dispersals is through 
Europe and Greenland, using the De Geer land route (Fig. 3g-h; supp. table 1). Many 
of these dispersals use North America as an intermediate stop on trips that end in 
Central America, the Caribbean, or South America (Fig. 3g-i). Most lineages in South 
America originate from North American ancestors (supp. table 2). They reach South 
America through two routes: an ancient route (45-20 Ma) that uses ancient Central 
America (Fig. 3g-j; supp. table 2), and a more recent one using either Central 
America or the Caribbean (15-0 Ma; supp. table 2). It is inferred in a few lineages 
that an Atlantic crossing from Africa occurred in recent times (15-0 Ma, Fig. 3e-f; 
supp. table 2), although there is some ambiguity as a proposed alternative is a 
dispersal using the De Geer pass. Different from previous results (Buerki et al. 2011, 
2013), there is no instance of a dispersal from Australia to South America, either 
through Antarctica or using the West Wind Drift.

There are some early dispersals into Africa (50-35 Ma; supp. table 3), centered 
around what is today the Mediterranean. Most of the dispersals into Africa start at 
the Oligocene (30-20 Ma), and the main route is using Anatolia peninsula and what 
today is Iran through the Arabian peninsula to reach Africa (fig. 3a-b; supp. table 3).
The majority of the lineages in Madagascar originated from an African ancestor and 
reached Madagascar in quite recent times (10-0 Ma; supp. table 4). Contrary to 
previous research (Buerki et al. 2011, 2013) that proposes a large amount of dispersal
from Madagascar into Africa, no instance was inferred here. Also, there was no 
support for a route connecting Africa and Southeast Asia via Madagascar and India 
during the Paleocene-Eocene. Two recent dispersals involving very short branches 
with sister groups far away indicate a potential Indian ocean dispersal, one to 
Madagascar (sister in New Guinea) and the other in West Africa (sister in New 
Caledonia). As these branches are small (less than a million year) and their 
descendants are separated by the ocean, the ancestors are inferred from the Malesia 
archipelago and even Kerguelen, and the speed of these branches is far greater than 
any other branch (Fig. 3), from 5300 to 13200 Km/My (supp. data).

While previous work set the first dispersal into Australia in the Paleocene to Eocene 
time slice (61-33 Ma; Buerki et al. 2011, 2013), here the oldest movement into what is 
today Australia and New Guinea was inferred in the Miocene (20 Ma; supp. table 5). 
All of the dispersals are through the Malesia archipelago (Fig. 3k-n). Contrary to 
previous research (Buerki et al. 2011, 2013), no dispersal from Australia into Asia 
was found. The origin of the New Caledonian taxa is left out in previous research as 
it is inside a predefined area with Australia (Buerki et al. 2011, 2013). Here, the origin
of New Caledonian taxa is quite recent (<5 Ma), and from Australia or New Guinea 
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(Fig. 3n; supp. table 6), the only exception is the already mentioned small branch 
connecting a New Caledonian taxon with a West African taxon.

The fastest branches are found in the Cupanieae tribe, including the two faster 
groups of the Indian Ocean disjunction (Fig. 3). While not as fast, many of the basal 
branches of this tribe reached relatively high speeds (1000-1500 Km/My), which is 
consistent with their recent time of origination (<30 Ma) and their widespread 
presence in Africa, Madagascar, Australia, and South America. While previous 
research set the ancestral area of the group in Australia, and then a lot of dispersal 
using the West Wind Drift (Buerki et al. 2011, 2013), the history found here started in
Asia, and then mostly land routes were used to quickly reach their current 
distribution (Fig. 3k-n).
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Figure 3. Biogeographic history of Sapindaceae. Sapindaceae phylogenetic tree with branches shaded 
by their posterior mean velocity in Km/My and log10 transformed. The maps show reconstructions of 
95% of the cumulative density function (CDF) of the posterior at particular nodes, with shading 
reflecting the CDF value under a paleogeographic model (top) and projected in the current geography 
(bottom).

DISCUSSION

Plate Tectonics

While paleogeography and plate tectonics have been fundamental to phylogenetic 
biogeography since its inception (Brundin 1965, 1966, 1972; Nelson 1969, 1974), it was
not until the implementation of the DEC model (Ree et al. 2005; Ree and Smith 2008;
Webb and Ree 2012; Landis 2016) that these concepts were fully integrated into the 
inference machinery of phylogenetic biogeography. Unfortunately, DEC was 
developed under the paradigm of predefined areas, and therefore its 
paleogeographic models inherit the problems of these methods, including poor 
spatial resolution, but add some more (Ree and Sanmartín 2009). As there are few 
areas, the temporal resolution of the models is also poor; for example, the most 
complex predefined area model (Landis 2016) uses only 25 areas for the whole world
and 26 time slices for the whole Phanerozoic (540 Myr, i.e., on average one time slice
every 20 Myr). Given their low resolution, predefined areas mask the complex 
history of the tectonic elements that make up these predefined areas; a 
paradigmatic example is the “Oriental region” in southeast Asia in most global 
models (e.g., Buerki et al. 2011, 2013; Webb and Ree 2012; Landis 2016; Kawahara et 
al. 2023). Usually users are responsible for building the dispersal matrix, which is 
cumbersome for models with a large number of predefined areas and requires 
subjective and poorly documented choices that can be critical to final results, such 
as defining how well connected two areas are.

Following previous authors (Ree et al. 2005; Ree and Smith 2008; Webb and Ree 
2012; Landis 2016), this paper advocates for the integration of paleogeography 
models as the best way to incorporate the Earth’s deep time history into the 
analysis. However, I take a step further and propose that these models should be the 
same models used by geologists for their paleogeographic reconstructions (e.g., 
Merdith et al. 2021; Müller et al. 2019, 2022) under an explicit geographic data 
model. As a way of contrast with predefined area models, the paleogeographic model
used in the empirical part of this paper (Cao et al. 2017; Müller et al. 2022) is defined
for 109 time slices for the Phanerozoic (each time slice has a duration of 5 million 
years) and about 18,500 pixels in each time slice, which represent an increase of four
times in the temporal scale and three orders of magnitude in the spatial scale 
relative to the most detailed predefined area model (Landis 2016).

As O’Donovan et al. (2018) did not use a paleogeographic model in their analysis of 
dinosaurs, they suggested that the effect of plate motion is minimal because it is a 
global group and biological and ecological forces are more influential than plate 
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movement. However, plate tectonics affects not only the speed and direction of the 
movement of taxa but also the opportunities and limitations of taxon movement due
to changes in spatial configuration. As such, it underlies biological and ecological 
forces that shape the taxon’s movement. O’Donovan et al. (2018) also argue that 
directional movement implies that most movement is biological. But the only way to
separate tectonic movement from biological movement is by including both types of 
movement in the model. In the model presented here, tectonic movement (provided 
by the plate motion model) is explicitly separated from biological movement 
(inferred using the diffusion model).

The use of paleogeography models in biogeography is sometimes criticized for giving
less weight to biogeographic evidence relative to geological evidence (e.g., Parenti 
and Ebach 2009). They argue that biogeographic analysis should be used to propose 
new paleogeographic hypotheses. As far as I know, there are few explicit attempt to 
transform the results of a biogeographic analysis into a plate motion model (e.g., 
Meert and Lieberman 2004; Bolotov et al. 2022), but they are based on a small 
datasets, and the methodology to move from a biogeographic hypothesis to a 
paleogeographic model is not well defined. A more achievable goal is to compare the 
likelihood of two or more paleogeography models using many clades (as proposed 
by Ree and Smith 2008; Webb and Ree 2012). However, such comparisons require 
the same plate motion model used by geologists (as in the method proposed here) in 
order to accurately test specific paleogeographic reconstructions.

A potential limitation of using time slices is that it increases the required 
computational resources (Bielejec et al. 2014; Landis 2016). These are because 
conditional likelihoods need to be calculated for each internode and values for each 
pixel need to be stored in memory. The model used in the empirical analysis has 
relatively close time stages (each 5 Myr), and while closer time stages will be 
preferable, it seems that it is good enough to provide reasonable answers to a typical
biogeographic problem and to be treatable with current computer power.

Spherical Earth

Early attempts to incorporate a spherical Earth model into phylogenetic 
biogeography often fell short due to various limitations. Some studies used great 
circle distances without scaling the probability with the area of available 
destinations in a sphere (Lemmon and Lemmon 2008; Lemey et al. 2010; Pybus et al.
2012; Landis et al. 2013), while others made a 3D representation of the Earth but 
failed to use great circle distances in the likelihood calculations (O’Donovan et al. 
2018). While the difference with a full spherical model will be minimal for cases 
where the λ parameter is large, either because the lineages have a slow diffusion or 
the branch lengths are small, or when the geographic span of a clade is quite 
restricted (as could be the case of some intra-specific phylogeographic analyses), 
they may not be appropriate for inter-specific phylogenetic biogeography analyses 
with long time scales, many long branches, and widespread distributions (this last 
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case is also possible in intra-specific phylogeography). In such scenarios, it is critical
to use a spherical diffusion approach (Bouckaert 2016; Louca 2021), even if it 
sometimes requires more complex computations.

Using a flat Earth model can lead to some unintended consequences, such as 
applying methods that work well in flat Euclidean geometry but not on a spherical 
Earth. For example, some authors use latitude as a trait value, in which a particle 
has the same probability to move to the north or south (e.g., Silvestro et al. 2019), but
because of Earth’s sphericity, this probability is dependent on latitude. Another 
common scenario is to model the movement in latitude and longitude as diffusion 
on independent axes (Lemey et al. 2010; Pybus et al. 2012; Quintero et al. 2015) or 
compare the bearing from points in different locations (Lemmon and Lemmon 2008;
O’Donovan et al. 2018). On flat Euclidean geometry, this can be done, as these 
measures are made relative to coordinate axes, so, for example, rotating the axes will
rotate all relationships in the same magnitude. On Earth, latitude and bearing are 
measured relative to a particular point (usually the North Pole), and any change in 
this point will produce changes in coordinates and bearings of different magnitudes.
This is the same reason that makes it impossible to compare the covariance matrices
of the anisotropic spherical normal at different points (Hauberg 2018).

Landscape

Although the model presented here utilizes some landscape information (pixel final 
positions are conditioned by a prior in the pixel), it is not a full landscape model, as 
particles have unrestricted movement in any pixel. A better alternative is to 
condition particle movement according to the type of pixel it traverses. This 
landscape model has been proposed for phylogeographic analysis (Bouckaert et al. 
2012). However, it incurs a significant computational cost, with a significant 
reduction in the geographic resolution of the model.

Despite its limitations, the landscape model used here has some influence on the 
inference, as shown in the empirical example, where some dispersal routes can be 
inferred above emerging land instead of a more “direct” path over the ocean. As the 
values of λ become larger, the movement slows down; therefore, there will be more 
influence from the landscape as movement will be restricted to nearly suitable 
pixels. In fact, the Bouckaert et al. (2012) method is based on the numerical 
integration of small time steps and very slow diffusion (analogous to a large λ 
value). This observation is consistent with what we expect: the higher the capability 
of dispersal, the fewer the restrictions on movement because of geographic barriers. 
There is another consequence of the use of a landscape: as pixels near the 
boundaries have fewer suitable pixels, the ancestral pixels are most probably 
assigned far from the boundaries, which is more noticeable when the ancestral area 
is on a large landmass.
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From a computational standpoint, a model without landscape allows for faster 
computation, either by using contrasts (but losing ancestral locations Louca 2021), 
only storing the means (Bouckaert 2016), traditional MCMC with data augmentation
(Bouckaert 2016; O’Donovan et al. 2018), or heuristic searches of the maximum 
likelihood (Lemmon and Lemmon 2008). But as the effects of the landscape are not 
linear, they cannot be solved analytically, which requires full integration over all 
pixels. Fortunately, at least for the simple landscape model used here and shown 
with the empirical example, current computational power is generally adequate for 
most common cases and provides a good approximation of the effect of landscape 
connectivity.

Diffusion

The diffusion model has been criticized because uncertainty in assignment increases
with time (Ronquist and Sanmartín 2011; Quintero et al. 2015). For fast-moving 
groups, it will be difficult to find a meaningful answer, but this problem affects any 
other biogeographic method. Previous uses of the diffusion model (Bouckaert et al. 
2012; Bouckaert 2016; Nylinder et al. 2016; O’Donovan et al. 2018; Swenson et al. 
2019), as well as the empirical example presented in this paper, show that it is 
possible to use the diffusion model on both large temporal and geographic scales.

Another criticism of the diffusion model is that it is unsuitable for taxa living on 
islands (Lemmon and Lemmon 2008; Quintero et al. 2015). This criticism arises from
two factors: first, the diffusion process is modeled as homogeneous across the Earth 
surface, and second, it fails to account for founder event speciation. However, as 
shown in the empirical example and discussed in the landscape section before, the 
coupling of a diffusion model with a landscape model (even if the landscape model 
is not complete) can provide reasonable results in the presence of a heterogeneous 
landscape (see also Swenson et al. 2019). The current diffusion model does not 
account for founder event speciation. This event remains a topic of controversy even
in predefined area models (Ree and Smith 2008; Ree and Sanmartín 2018; Matzke 
2022; Landis et al. 2022). But as seen in the empirical example, the diffusion model 
was able to detect the movement speedup that is usually associated with founder 
events.

Johansson et al. (2018) criticized the diffusion model for its inability to assess the 
strength of the biogeographical signal in its comparison with DEC. However, similar 
to predefined area methods or any likelihood-based analysis, the signal strength in a
diffusion model is determined by the size of the interval of the assignments. If there 
are several peaks in the posterior or the pixels with the highest posterior spread 
over a large surface, it indicates a weak signal. Conversely, if the most pixels cluster 
around a small posterior peak, it indicates a strong signal.
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Explicit Geography

Methods based on explicit geographic ranges use all available geographic 
information in the terminal data. As already discussed in the literature, there are 
several advantages over methods based on predefined areas (Arias et al. 2011; Landis
et al. 2013; Quintero et al. 2015; Arias 2017; O’Donovan et al. 2018).

Explicit geography methods allow for detailed geographic assignments both as split 
nodes and along specific parts of a lineage, providing a more detailed view of the 
evolution of the geographic range of each lineage of the studied phylogeny (Lemmon
and Lemmon 2008; Arias et al. 2011; Bouckaert et al. 2012; Pybus et al. 2012; Landis 
et al. 2013; Quintero et al. 2015; Bouckaert 2016; Arias 2017; Johansson et al. 2018; 
O’Donovan et al. 2018). This explicit geographic assignment offers the opportunity to
test more detailed hypotheses about the space and evolution of lineages. Here are 
three examples, that can be derived from a comparison of the empirical example 
with previous analysis of the same group using predefined area methods (Buerki et 
al. 2011, 2013). (i) With explicit geography methods, specific geographic locations are
inferred as the ancestral location at each node, and even when the assignment is 
ambiguous (i.e., a large surface), its geographic scope is clearly delimited. As 
predefined areas used in methods such as DEC are usually large surfaces, their users 
must attempt ad hoc procedures to improve the geographic scale of their analyses 
(e.g., Smith and Donoghue 2010). (ii) In predefined area methods, such as DEC, the 
potential connection between areas is defined either a priori or left free, without any
geographic constraint (Ree et al. 2005; Ree and Smith 2008), which discards 
geographic knowledge. As shown in the empirical example, with methods based on 
diffusion, it is possible to infer the potential dispersal pathway connecting the 
ancestor and descendant points. These paths are detected from the data and not 
defined a priori, and explicitly include the constraints of the geography. (iii) 
Spatially explicit models can infer distances and speeds from the movement through
the phylogeny; this is impossible to measure with predefined area methods, as they 
discard any movement inside a predefined area (Ronquist and Sanmartín 2011) and 
resort to ad hoc methods to measure the distance between two predefined areas 
(Landis et al. 2022).

Ronquist and Sanmartín (2011) argue that methods based on explicit geography 
treat all changes as equal, then common movement within an area can be 
“saturated” (as molecular data), and “swamp” the rare and more informative 
movement between areas. This characterization seems to be based on a confusion of 
unconstrained predefined area models (which treat all changes as equal Ronquist 
1997; Ree et al. 2005; Ree and Smith 2008) with a diffusion model, in which 
movements are constrained by the distance between points. As moving to farther 
distances is more unlikely, any unexpected large-distance movement required by 
the data will be quickly detected as an increase in diffusion speed (fig. 3). On the 
other hand, if the movement is between close areas, the diffusion movement will 
infer this movement as simple diffusion (see the empirical example).
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To make use of explicit geographic data, high-quality data is required for the 
terminal distributions. Fortunately, centuries of careful taxonomic work, as well as 
modern open-access databases and repositories such as GBIF 
(https://www.gbif.org/) and FossilWorks (http://www.fossilworks.org/), provide a
large amount of digitalized spatial data associated with specific taxa. However, these
datasets often require cleaning and are not always complete. Despite the potential 
for error and incomplete geographic distribution data, using large, predefined areas 
is not a viable solution. Doing so would discard the information content of these 
scarce but valuable data points (Landis et al. 2013). Even if a researcher is hesitant 
to give weight to a few observations, it is possible with the current method (as in 
previous ones Bouckaert et al. 2012; Nylinder et al. 2014; Bouckaert 2016; Louca 
2021) to assign a large geographic area to a terminal around the observed point(s), 
thus reducing the weight of the data. This approach differs from using predefined 
areas in two critical ways: it takes geographic locations into account, and the 
assigned area can be different for each terminal.

Similar to the method presented by Quintero et al. (2015), the current 
implementation avoids Monte Carlo integration of tip data. However, the present 
approach goes further by avoiding Monte Carlo integration of augmented data at 
internal nodes as well. This step does make calculations slower compared to a single 
iteration with data augmentation. Nonetheless, the large number of iterations 
required by the Monte Carlo integration of the augmented node data to produce a 
good sample of the pixel likelihoods at each node reduces the benefits of this 
acceleration. In particular, incorporating paleogeography models requires 
estimation in many intermediate branches, which can hamper the convergence of 
the Monte Carlo integration of augmented data (Pybus et al. 2012).

Limitations

In the previous sections, I highlighted some of the limitations of the method 
presented here, including the fact that landscape information is not used in its 
entirety. However, there are other limitations to the method that are worth 
mentioning.

The current implementation employs a strict clock model, with a single diffusion 
rate used throughout the entire tree. This limitation is shared with most 
biogeographic methods based on statistical models (Ree et al. 2005; Lemmon and 
Lemmon 2008; Ree and Smith 2008; Landis et al. 2013; Quintero et al. 2015; Landis 
2016), and even with this limitation, they are used for empirical research on large 
and ancient clades (e.g., Buerki et al. 2011, 2013; Dupin et al. 2017; Landis et al. 2021; 
Bolotov et al. 2022; Kawahara et al. 2023). The main issue with a strict clock is that it
can distort the inference when fast and slow-moving lineages are mixed. As 
demonstrated in the empirical example, many branches move at different speeds, so 
it will be fruitful to implement a relaxed clock procedure (e.g., Lemey et al. 2010; 
O’Donovan et al. 2018) in the future.
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The method presented here does not estimate or use widespread ancestral ranges, 
which prevents the inference of cladogenetic events and the inference of the 
extinction process. The method implicitly assumes sympatric speciation. While 
potential allopatric scenarios might be detected by examining the results closely, it 
would be preferable if the model included these events in its inference machinery. 
While estimating extinction is desirable, it is worth noting that this is a challenging 
parameter to estimate in most biogeographic methods (e.g., Ronquist 1997; Ree et al. 
2005; Ree and Smith 2008; Matzke 2022), and how to couple it with the diffusion 
model remains an open question.

While producing maps with ancestral ranges is more satisfactory than the abstract 
results of methods based on predefined areas, they are more challenging to display, 
as usually they require a full map (and as the geography has changed a lot, results 
rotated to present locations are required to understand the geography). Note that 
this is also a problem in predefined areas when the number of area combinations is 
large and it is difficult to differentiate between the colors of the different 
reconstructions (the usual result presented in those analyses). In a similar way, if 
age uncertainty is to be taken into account, it is not clear how to represent the 
results when the age ranges of a node cross more than one time stage, as the 
assigned pixels will only have meaning in a particular time stage.

CONCLUDING REMARKS

The method presented in this paper is the first to incorporate an explicit plate 
motion model into an explicitly geographic phylogenetic biogeography method. The 
method also uses a spherical Earth (previously used by Bouckaert 2016; O’Donovan 
et al. 2018; Louca 2021) and considers landscape information (although it is not a 
full landscape implementation; Bouckaert et al. 2012) that changes with time. The 
method is flexible and can use data from sample locations or range maps, both 
homogeneous (like a distribution map) and heterogeneous (like a distribution 
model). It can also be used for intra-specific phylogeography as well as deep-time 
phylogenetic biogeography.

The method presented here provides several possible avenues of inference not 
explored in this paper. For example, if the reconstructions are not of interest, it may 
be possible to optimize multiple trees from a posterior set with a low-resolution 
model, say an e120, to provide a biogeographic dating estimation (Webb and Ree 
2012; Landis 2016). If there are multiple phylogenies, it is possible to study changes 
in the richness gradient in a similar way to that illustrated in Figure 2.

Explicit geography methods are an improvement over predefined area methods 
because they take into account the data from the distribution range of the terminals 
and use high-resolution models of the spherical Earth, which make better use of 
biological and paleogeographic data to explain the evolutionary history of the 
geographic ranges.
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