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Abstract9

1. Biodiversity monitoring is undergoing a revolution, with fauna observations data being increasingly10

gathered continuously over extended periods, through sensors like camera traps and acoustic recorders, or via11

opportunistic observations. These data are often analysed with discrete-time ecological models, requiring the12

transformation of continuously collected data into arbitrarily chosen non-independent discrete time intervals.13

To overcome this issue, ecologists are increasingly turning to the existing continuous-time models in the14

literature. Closer to the real detection process, they are lesser known than discrete-time models, not always15

easily accessible, and can be more complex. Focusing on occupancy models, a type of species distribution16

models, we asked ourselves: Should we dedicate time and effort to learning and using these continuous-time17

models, or can we go on using discrete-time models?18

2. We conducted a comparative simulation study using data generated within a continuous-time framework,19

aiming to closely mirror real-world conditions. We assessed the performance of five occupancy models: a20

standard simple detection/non detection model, a model based on count data, a continuous-time Poisson21

process, and two types of modulated Poisson processes. Our goal was to assess their respective abilities to22

estimate occupancy probability with continuously collected data.23

3. We found that, in most scenarios, both discrete and continuous models performed similarly, accurately24

estimating occupancy probability. Additionally, variation in discretisation intervals had minimal impact on the25

discrete models’ capacity to estimate occupancy accurately.26

4. Our study underscores that when the sole aim is to accurately estimate occupancy, opting for complex27

continuous models, with an increased number of parameters aiming to closely mimic ecological conditions,28

may not offer substantial advantages over simpler models. Therefore, choosing between continuous and29

discrete occupancy models should be driven by practical considerations such as data availability or30

implementation time, and the specific study objectives. For example modulated Poisson processes may be31

useful to better understand temporal variations in detection, which may reflect specific species behaviour. We32

hope that our findings offer valuable guidance for researchers and practitioners working with continuously33

collected data in wildlife monitoring and modelling.34

Keywords Camera trap, Continuous-time model, Discrete-time model, Markov Modulated Poisson Process,35

Occupancy modelling, Poisson Process, Sensors, Wildlife monitoring36
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1 Introduction37

The alarming decline of biodiversity has led to a scientific, ethical, and legal need to better understand its38

drivers in order to protect nature more effectively (IPBES, 2019). With the reinforcement of regulations and39

recommendations for achieving the objectives of no net loss of biodiversity, the need for wildlife monitoring is40

growing rapidly (UNECE, 2023). Concurrently, the development of increasingly sophisticated and accessible41

technologies is leading to a digital revolution. Sensors, such as camera traps or autonomous recording units,42

are now available to address current ecological challenges (Burton et al., 2015; Potamitis et al., 2014).43

Sensors offer many advantages compared to traditional field observations by naturalists. They are44

non-invasive, often cost-effective, particularly adapted to observe some elusive or shy species, potentially in45

challenging terrain, and they can improve reproducibility and protocol standardisation (Steenweg et al., 2017;46

Zwerts et al., 2021). Sensors are therefore good candidates for setting up large-scale monitoring (Oliver et al.,47

2023) and collaborations such as Biodiversity Observation Networks (Gonzalez et al., 2023). Policies now48

emphasise the use of sensors, big data and artificial intelligence to improve knowledge and understanding of49

species and ecosystems, such as the International Union for Conservation of Nature (IUCN) Nature 203050

programme (IUCN, 2021) or the Biodiversa+ European Biodiversity Partnership (Høye et al., 2022; Vihervaara51

et al., 2023).52

We often use ecological models to analyse observation data for monitoring purposes. These models typically53

assess the presence (Guillera-Arroita, 2016) or abundance (Gilbert et al., 2021) of a species, often while54

considering the relation with environmental factors. They can be used for a particular species or within a55

multi-species framework (Pollock et al., 2014). These models produce actionable knowledge about species,56

influencing our actions and our approach to biodiversity conservation. For example, the area of occupancy,57

i.e. the spatial distribution where a species is present, is one of the criterion used by the IUCN to establish the58

Red list of Ecosystems (Rodríguez et al., 2015).59

In this paper, we focus on occupancy models, a category of ecological models aiming to estimate species60

presence. Occupancy models, as introduced by MacKenzie et al. (2002), are hierarchical models that include61

two sub-models. The first sub-model describes the ecological process, occupancy, typically of interest to62

ecologists. The second sub-model accounts for measurement errors arising from imperfect detection. A site is63

said occupied when at least one individual went through it (Emmet et al., 2021). At a broader scale, occupancy64

corresponds to the proportion of sites within a study area that are occupied by the species (MacKenzie et al.,65

2002). The occupancy model proposed by MacKenzie et al. (2002) uses binary data (0 if the species was not66

detected, 1 if it was) at each site during each sampling occasion. This model has underpinned numerous67

occupancy studies in the last two decades, and was refined or adapted by many modellers (Bailey et al., 2014).68

These adaptations have given rise to new occupancy models, most of them aiming to mirror more closely the69

expected ecological or detection conditions, impacting the input data required by each model.70

Ecological models, including occupancy models, have historically been developed to analyse observation data71
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collected by field operators during one or several short sampling occasions (Bailey et al., 2014). However, the72

deployment of sensors involves continuous data collection, often over long time periods (e.g. Cove et al., 2021;73

Cusack et al., 2015; Moore et al., 2020). For instance, Kays et al. (2020) recommend deploying sensors for three74

to five weeks at multiple locations to estimate relative abundance, occupancy, or species richness. Short-term75

deployments can equate traditional discrete sampling occasions. However, when sensors are stationed at the76

same location for extended periods, data is often discretised in order to use traditional models in discrete time.77

We suggest using the term session for these discretised time intervals, because they differ from traditional78

sampling occasions in two respects: (1) sampling occasions are determined before the data collection,79

whereas the discretisation is done after the data has been collected; and (2) sessions occur consecutively80

without any gaps between them, while the traditional sampling occasions are separated by periods of time81

when the site is not monitored.82

Occupancy discrete-time models have been around for 20 years and are commonly used because they are83

relatively simple to implement. However, continuous-time ecological modelling is not new. The fist mention84

of a continuous-time model in the capture-recapture literature dates back to Becker (1984). It was not until the85

advent of sensors, which highlighted the limitations of discrete-time models, that modellers began to turn86

towards continuous-time models (Kellner et al., 2022; Rushing, 2023; Schofield et al., 2017). Nonetheless,87

continuous-time models are not a universal cure-all. Each family of models have their pros and cons.88

Discretisation simplifies the information. Discretisation is, in other words, an aggregation of data into89

sessions. This aggregation simplifies the data and blurs the residual variability, which can help in interpreting90

broad observed trends. However, simplification is also information loss. It can obscure fine patterns that may91

have ecological significance and enhance our understanding of the species (Kellner et al., 2022). Such patterns92

could provide insights into the disentanglement of the observation process from the ecological process of93

interest, leading to improved models and more accurate estimations.94

Discretisation is arbitrary. Researchers usually choose the aggregation period so that the detection95

probability is not too low, and the occupancy probability is not estimated at its boundaries (close to 0 or 1).96

Schofield et al. (2017) highlighted that the chosen session length can impact the models results for97

capture-recapture. Hence, it most likely impacts occupancy models outputs, as capture-recapture and98

occupancy models are very similar (the individual capture history equates the site "detection history",99

MacKenzie et al., 2002). Eliminating arbitrary discretisation in occupancy modelling can enhance the method100

objectivity and reproducibility, and is expected to improve result reliability, at least compared to a non-optimal101

discretisation.102

Model complexity and data availability. Although models with a continuous-time detection process are103

likely to overcome the limitations mentioned above, they can swiftly become intricate if researchers strive to104

mirror the species-specific ecological observation process. Complex models entail a large number of105
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parameters, requiring large data sets for parameter estimation. However, due to the common scarcity of106

ecological data, such complexity might impede rather than enhance the model’s ability to derive essential107

ecological insights. Additionally, if the system is not assumed to be constant over time, continuous-time108

covariates are necessary for a continuous-time model, and these covariates are often not readily available.109

Zhang and Bonner (2019) showed that it was not necessarily the discretisation that impacted the results, but110

rather the distribution law chosen for modelling the detection process. When dealing with mathematically111

equivalent models, both continuous- and discrete-time models would yield equivalent outcomes. Thus, the112

preference for one over the other becomes less significant. Opting for a continuous-time model would likely113

be worthwhile only for exploring intricate temporal variations within the data, which is not the typical goal of114

most studies.115

In an operational context, users select an occupancy model depending on a trade-off between model116

performance and implementation cost. This cost encompasses factors such as model familiarity,117

programming if necessary, and accessibility to data, all of which can be influenced by the complexity of the118

model. Existing comparisons between discrete and continuous models are presented in papers introducing119

new continuous models, focusing on evaluating the new model formulation, and often limited to just two120

models. In this paper, we investigate whether continuous-time modelling is beneficial for occupancy121

estimation using sensor-based observation data and under which circumstances.122

We conduct a comprehensive comparison of five occupancy models, varying in the complexity of their123

detection processes. These five models cover the full scope of single-species static occupancy models with no124

false positives (MacKenzie et al., 2013). We compare the ability of occupancy models to retrieve occupancy125

probability using four complementary comparison metrics: bias, error, coverage, and the width of confidence126

intervals. To fully control the environment, we simulate continuous detection data. This allows us to explore127

how the rarity and elusiveness of the target species influences the model’s ability to retrieve the occupancy. We128

also simulate extreme cases to refine the models’ application limits. Our aim is to offer recommendations for129

choosing discrete- or continuous-time models based on the study objectives, and to discuss various130

considerations that researchers should address when analysing fauna observation data collected through131

sensors.132

2 Material and methods133

2.1 Occupancy models134

In this section, we describe the five hierarchical occupancy models compared, with an ecological process135

modelling presence or occupancy, and an observation process addressing imperfect detection. The occupancy136

sub-model is consistent across all five models, while the observation sub-model differs. Fig. 1 provides a137

overview of the formulation and input data of the considered models, which are described in detail in the138

following paragraphs. The mathematical notation are listed in Table 1.139
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(a) Bernoulli Process occupancy model
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(b) Counting Occurrences Process occupancy model
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(c) Poisson Process occupancy model
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(d) Two-state Markov Modulated Poisson Process occupancy model

Figure 1: Five occupancy models compared. With: ψ the occupancy probability; (a) BP p the detection probability;
Yi s the detection/non detection observed in site i during session s; (b) COP λ the detection rate; Ts the duration of a
session; Ni s the number of detections in site i during session s; (c) PP λ the detection rate; Ni the number of detections
in site i ; ti k the time of the kth detection in site i ; (d) 2-MMPP λ1 the detection rate in state 1; λ2 the detection rate in state
2; µ12 the switching rate from state 1 to state 2; µ21 the switching rate from state 2 to state 1; Ni the number of detections
in site i ; ti k the time of the kth detection in site i . IPP is a special case of 2-MMPP with no detection in one state.
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Table 1: Notation.

I Number of sites

ψ Occupancy probability

Zi Occupancy state of site i (present = 1, absent = 0)

Ti Deployment’s duration in site i

Ni t Number of detections of the species in site i during t

pt Probability of detecting at least one individual during t

nsi m Number of simulations per scenario

Discrete time occupancy models

Ts Duration of a discretised session

S Number of sessions during Ti

Bernoulli Process

Yi s Species detected in site i during session s (detection = 1, non-detection = 0)

p Probability of detecting at least one individual during Ts

Counting Occurrences Process

Ni s Number of detections of the species in site i during session s

λ Detection rate

Continuous-time occupancy models

ti j Time of the j th detection in site i

Poisson Process

λ Detection rate

Two-state Markov Modulated Poisson Process ; Interrupted Poisson Process

λ1 Detection rate in state 1, with λ1 = 0 for the IPP model

λ2 Detection rate in state 2

µ12 Switching rate from state 1 to state 2

µ21 Switching rate from state 2 to state 1

π1 Time-ratio spent in state 1 when the system is stationary

π2 Time-ratio spent in state 2 when the system is stationary
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2.1.1 Occupancy sub-model140

All five models relate on a site-specific latent variable, the occupancy state of the site i , Zi , which is assumed to141

follow a Bernoulli distribution with parameter ψ, the occupancy probability. The sites are assumed142

independent, regarding both occupancy and detection.143

Zi
i .i .d .∼ Bernoulli(ψ), i = 1, . . . , I . (1)

If the species is detected at least once in a site, that site is considered occupied, with no room for false144

detections. Temporal changes in occupancy are not considered; for simplicity, we focus on single-season145

occupancy models with no covariates.146

2.1.2 Detection sub-model147

Two models rely on the time discretisation of the sensor-based observation data (Bernoulli Process (BP) and148

Counting Occurrences Process (COP)), while three others consider the detection as the realisation of a149

continuous-time stochastic process (Poisson Process (PP), Two-state Markov Modulated Poisson Process150

(2-MMPP) and Interrupted Poisson Process (IPP)). Their growing complexity, associated with an expected151

closer alignment with reality, influences the input data required for each model. Our primary focus is to152

determine if more complex representations of the detection process lead to improved estimates of occupancy153

probability, with minimised error and bias.154

Bernoulli Process (BP) In the classical occupancy model proposed by MacKenzie et al. (2002), the raw data155

are aggregated and simplified. The continuous data are aggregated into S sessions of duration Ts , and simplified156

into the observation Yi s , which is 1 if at least one detection occurs during session s at site i , and 0 otherwise.157

Conditionally on the occupancy state Zi of site i , the model assumes that the distribution of the variable of158

interest Y depends on p the probability of detecting at least one individual during a session:159

Yi s |Zi = 1 i .i .d∼ Bernoulli(p), i = 1, . . . , I , s = 1, . . .S,

Yi s |Zi = 0 i .i .d∼ 0
(2)

Counting Occurrences Process (COP) In the BP model, detecting few or many individuals during a session160

leads to the same observation Yi s = 1, although it corresponds to very different situations. We simplified the161

approach proposed by Emmet et al. (2021) to avoid references to secondary sessions and to use probability. As162

a result, its likelihood has been adjusted and is provided in supplementary information.163

Although the data is aggregated by session like in the BP model, more information is retained since this164

approach models Ni s , the number of individuals seen at site i during session s. Conditionally on the165

occupancy state Zi of site i , as it is typical for count data, the COP model assumes that the number of166
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detections Ni s follows a Poisson distribution of parameter λ the detection rate multiplied by Ts the session167

duration:168

Ni s |Zi = 1 i .i .d∼ Poisson(λTs), i = 1, . . . , I , s = 1, . . .S,

Ni s |Zi = 0 i .i .d∼ 0
(3)

In practical terms, if the time-unit is a day, then when the detection rate λ = 3, there are on average three169

individuals detected by day. If each session lasts a week, Ts = 7, then there are on average λTs = 3× 7 = 21170

individuals detected per session. The probability of detecting k individuals during a session is (λTs )k e−λTs/k !.171

With this example, in an occupied site during a session, there is a 8.67% chance of detecting 21 individuals, a172

0.35% chance for 10 individuals, and a 7.58e−8% chance of detecting nothing.173

Poisson Process (PP) Unlike the two previous models which required data discretisation, the PP occupancy174

model proposed by Guillera-Arroita et al. (2011) uses the time of detections as data, with ti j the time of the j th
175

detection in site i . These raw, unaggregated data retain all of its information. The time of detections are176

transformed into interdetection times to calculate the likelihood of these data given the model and its177

parameters. The first interdetection time is usually defined as the time between the deployment beginning178

and the first detection, the second as the time between the first detection and the second, and so forth. The179

last value in this vector can be defined as the time between the last detection and the end of deployment. If the180

time at which the deployment ended is not known, e.g. because the battery died, the likelihood can be adapted181

so that this last value can be the time between the second-to-last detection and the last detection182

(Guillera-Arroita et al., 2011).183

When the site i is occupied, the detection process is modeled as a homogeneous Poisson point process of184

parameter λ, the detection rate. This means that the interdetection times are exponential variables with rate λ.185

In practical terms, if the time-unit is a day, then a detection rate λ= 3 means that on average, three individuals186

are seen per day. The average time between two detections is 1/3 of a day.187

One property of a Poisson process of parameter λ is that the number of detections over a period of time T188

follows a Poisson distribution with parameter λT . This model is therefore mathematically equivalent to the189

COP model presented above (Zhang & Bonner, 2019). Nonetheless, using the raw data could enable ecologists190

to delve deeper and consider the detection rate heterogeneity with the model residuals.191

Two-state Markov Modulated Poisson Process (2-MMPP) The 2-MMPP occupancy model was also proposed192

by Guillera-Arroita et al. (2011) and uses the time of detection events as data, transformed into interdetection193

times. When the site i is occupied, the detection process is modeled as a system of Poisson processes with194

two different rates. When the system is in state 1, the detection events are modeled by a Poisson process of195

parameter λ1. In state 2, the rate is λ2. This is a two-state Markov chain, where the system switches from one196
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hidden state to the other, with parameters µ12 (switching rate from state 1 to state 2) and µ21 (switching rate197

from state 2 to state 1).198

With day as the time-unit and a set of parameters of λ1 = 1, λ2 = 5, µ12 = 1/15, µ12 = 1, this means that:199

• State 1 is a low-detection state with 1 detection per day on average (λ1), State 2 is a high-detection state200

with 5 detections per day on average (λ2)201

• When the system is in state 1, there is 1/15 switch to state 2 per day on average (µ12), corresponding to 15202

days spent on average in state 1 before switching to state 2 (1/µ12). When the system is in state 2, there is203

1 switch to state 1 per day on average (µ21), corresponding to 1 days spent on average in state 2 before204

switching to state 1 (1/µ21)205

• The system is in state 1 for 93.75% of the deployment time on average (π1 in Equation 4), and in state 2206

for 6.25% of the time (π2 in Equation 4)207

• In an occupied site, there are on average 1.25 detections per day (Equation 5) and the variance of the208

number of daily detections is 4.11 (Equation 6)209

The proportion of time spent in each state when the system is stationary is the steady-state vector Π of the210

Markov chain for a 2-MMPP, is presented in Equation 4 (Fischer & Meier-Hellstern, 1993).211

Π=
(
π1 π2

)
=

(
µ21

µ12+µ21

µ12

µ12+µ21

)
(4)

The number of events (here Ni t the number of detections at site i taking place during an observation time t ) of212

a 2-MMPP is described by its expected value E[Ni t ] in Equation 5 and by its variance V[Ni t ] in Equation 6 (see213

Supplementary Informations and Bhat, 1992).214

E[Ni t ] = (λ1π1 +λ2π2)T (5)

V[Ni t ] =

λ1π1 +λ2π2 + 2(λ1
2 +λ2

2)

µ12
2µ21

2
(

1
µ12

+ 1
µ21

)3

T (6)

The probability of having at least one detection during an observation period of duration T , written pT , is given215

in Equation 7, with exp the matrix exponential function (from Guillera-Arroita et al., 2011, section 4.2).216

pT = 1−Π×exp

−µ12 µ12

µ21 −µ21

−
λ1 0

0 λ2

×T

×
1

1

 (7)

MMPPs are a type of Cox processes (Cox, 1955). 2-MMPPs can also be referred to as switched Poisson processes217

(SPP, Arvidsson and Harris, 1991) or as a doubly stochastic Poisson processes (Bhat, 1992, 1994). For more218
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informations on MMPPs in general (with possibly more than 2 states), see Fischer and Meier-Hellstern (1993),219

Guillera-Arroita (2012), and Rydén (1994).220

Interrupted Poisson Process (IPP) The IPP occupancy model is a special case of a 2-MMPP where there are221

no detections in one of the state. Since usually, λ1 <λ2 (Skaug, 2006), an IPP is a 2-MMPP where λ1 = 0.222

2.2 Continuous detection data simulation223

We simulated detection data in I = 100 sites, with one deployment per site of Ti = 100 time-units. For the sake224

of simplicity, one time-unit corresponds to one day throughout this article. We simulated data with various225

occupancy probability and detection parameters. All simulation parameters are described in Table 2. In226

detection scenarios (a) and (b), we simulated extreme cases of species elusiveness to identify the models’227

limits and behaviour in extreme situations, even if we expect these to produce insufficient data to perform228

occupancy modelling. We carried out nsi m = 500 simulations simulation scenario.229

Table 2: Simulation parameters. With p100 the probability of having at least 1 detection during a deployment of
Ti = 100 days at an occupied site (Equation 7); p1 the probability of having at least 1 detection during 1 day (Equation 7);
E[N100] the expected number of detections during a deployment of Ti = 100 days at an occupied site (Equation 5);V[N100]
the variance of the number of detections during a deployment of Ti = 100 days at an occupied site (Equation 6)

(a) General parameters

I 100 sites

Ti 100 days

nsi m 500 simulations per scenario

ψ 0.10, 0.25, 0.50, 0.75, 0.90

Ts 30 (month), 7 (week), 1 (day)

(b) Parameters of the 7 detection scenarios

λ1 λ2 µ12 µ21 p100 p1 E[N100] V[N100]

(a) 0.00 1.00 1/15 30 0.19 0.002 0.22 0.24

(b) 0.00 5.00 1/15 30 0.61 0.01 1.11 1.48

(c) 0.00 1.00 1/15 1 0.96 0.04 6.25 17.24

(d) 0.25 0.25 1/15
1/10 1.00 0.22 25.00 61.00

(e) 0.00 5.00 1/15 1 1.00 0.09 31.26 306.03

(f) 0.00 1.00 1/15
1/10 1.00 0.26 40.01 327.98

(g) 0.00 5.00 1/15
1/10 1.00 0.42 200.06 7399.34

The occupancy status of each site was determined as the outcome of a Bernoulli trial with probability ψ. The230

detection process was simulated as a 2-MMPP of parameters λ1,λ2,µ12,µ21, using R version 4.2.3 (R Core Team,231

2023). The state at the beginning of a deployment was drawn according to the stationary distribution, as a232

random sampling with probability π1 (resp. π2) of being in state 1 (resp. 2). Until the end of the deployment,233

the time to next event was a draw from an exponential distribution with parameter µ12 +λ1 in state 1, and with234

parameter µ21 +λ2 in state 2. In state 1, this event was either a detection with probability λ1
µ12+λ1

, or a switch to235

state 2. In state 2, it was either a detection with probability λ2
µ21+λ2

, or a switch to state 1 (Fig. 2).236
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Figure 2: Simulated detection data. To help understand the impact of the detection parameters, two examples are
given per detection scenario. With scenarios (a to g) described in Table 2. The detection process is simulated in an
occupied site during 100 days.

Discretisation into sessions For the two models that required discretisation into sessions, we used three levels237

of discretisation: monthly, weekly, and daily. Incomplete sessions are deemed invalid and will be excluded from238

the analysis. Consequently, when the data is discretised into months, there are three sessions consisting of 30239

days each, and the detection data of the last 10 days of each deployment is disregarded. Similarly, when the data240

is discretised into weeks, there are 14 sessions of 7 days each, the last 2 days of each deployment is discarded.241

2.3 Frequentist parameter estimation242

We estimated models parameters by maximum likelihood estimation and implemented it in R version 4.2.3 (R243

Core Team, 2023). For the COP, PP, 2-MMPP and IPP models, we used the optim function from the stats244

package (R Core Team, 2023) to maximise the log-likelihood. For the BP model, we used the function occu245

from the unmarked package version 1.3.2 (Fiske & Chandler, 2011), which calls the same optim function. We246

used the Nelder-Mead algorithm to maximise the likelihood. To reduce the optimisation time, we used the247

simulated parameters as the initial parameters to start the optimisation algorithm. The likelihood248

maximisation methodology was equivalent for the 5 models, making their results comparable. In order to249

perform unconstrained optimisation, we applied a logit transformation to the probabilities (ψ, p) and a log250

transformation to rates (λ, λ1, λ2, µ12 and µ21). In addition, we fitted the models with the BFGS optimisation251

algorithm. The results are not shown here but presented in supplementary information.252

2.4 Performance comparison for occupancy probability estimation253

For each simulation scenario, we calculated the Root Mean Square Error (RMSE, Equation 8) as an error metric,254

measuring the absolute difference between the models’ point estimates of occupancy probability (ψ̂) and the255
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ground-truth occupancy probability (ψ), used to simulate data sets of this simulation scenario.256

RMSE =
√√√√ 1

nsi m

nsi m∑
j=1

(
ψ̂ j −ψ

)2 =
√(

ψ̂−ψ)2 (8)

To complete this metric, we calculated absolute bias (AB, Equation 9) to better understand if this error was due257

to under-estimation or over-estimation of ψ.258

AB = 1

nsi m

nsi m∑
j=1

(ψ̂ j −ψ) = (
ψ̂−ψ)

(9)

To compare the distributions of the point estimates ψ̂ of the five different models and the different259

discretisations for BP and COP, we performed a Kruskal-Wallis test for each simulated scenario. We also260

conducted Wilcoxon tests with Bonferroni correction and visualised the distribution of ψ̂.261

We calculated for each inference the 95% confidence interval (CI) of the occupancy probability. To summarise262

this information for all the nsi m simulations by model in each simulation scenario, we used two metrics, the263

coverage (Equation 10) and the average range of the confidence interval (ARCI, Equation 11). We note C Il and264

C Iu the lower and upper bounds of the 95% confidence interval of the estimated occupancy probability.265

Coverage is the proportion of simulations for which the true simulated occupancy probability (ψ) is within the266

95% CI of the estimated occupancy probability. In other words, coverage can be interpreted as the percentage267

of good predictions of the occupancy probability by a model.268

Coverage = 1

nsi m

nsi m∑
j=1

I (C Il ≤ψ≤C Iu) = I (C Il ≤ψ≤C Iu) (10)

The average range of the 95% confidence interval measures the precision of the estimation, with the width of269

the confidence interval. It completes coverage, since even a model with poor performances can have a coverage270

of 100%: If its range is 1, it means that this model predicts that the occupancy probability is between 0 and 1.271

ARCI = 1

nsi m

nsi m∑
j=1

C Iu −C Il =C Iu −C Il (11)

3 Results272

When a species is easily detectable, all models retrieve well the simulated occupancy probability. With detection273

parameters (d), (e), (f) and (g), bias ranges from −0.0094 to 0.0025 (Fig. 3) and RMSE are no less than 0.060 (Fig.274

S2). With those detection parameters, the Kruskal-Wallis tests indicate that there are no statistically significant275

difference in the distribution of ψ̂ between models, except with simulation parameters (e) and ψ= 0.1, (e) and276
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Figure 3: Absolute bias of the occupancy probability point estimate. Depending on ψ the simulated occupancy
probability and detection scenarios as described in Table 2. The average value of the occupancy probability point
estimate ¯̂ψ is inside each cell. For two scenarios characterised by low occupancy and detection probabilities, certain
repetitions failed to yield any data. With no detection within any of the sites, it was impossible to infer parameters. With
detection parameters (a) andψ= 0.25, 494 simulations were used to estimate the models’ ability to retrieve the simulation
parameters. With detection parameters (a) and ψ= 0.1, only 423 simulations were used.
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Table 3: Kruskall-Wallis test results for simulation scenario of occupancy (ψ) and detection (as described in
Table 2). Presented with the Kruskal-Wallis rank sum statistic and the corresponding p-value. We compare nine groups
(BP-month, BP-week, BP-day, COP-month, COP-week, COP-day, PP, IPP, and 2-MMPP) based on the distribution of the
point estimate of the occupancy probability.

ψ= 0.1 ψ= 0.25 ψ= 0.5 ψ= 0.75 ψ= 0.9

(g)
3.08 1.68 1.62 2.90 6.84

p = 0.929 p = 0.989 p = 0.990 p = 0.940 p = 0.554

(f)
7.06 4.53 3.38 5.37 16.30

p = 0.530 p = 0.806 p = 0.908 p = 0.717 p = 0.038 (*)

(e)
15.91 5.37 2.44 5.41 17.02

p = 0.044 (*) p = 0.717 p = 0.964 p = 0.713 p = 0.030 (*)

(d)
2.12 1.40 0.90 0.23 1.31

p = 0.977 p = 0.994 p = 0.999 p = 1.000 p = 0.995

(c)
53.88 86.21 169.74 342.59 515.45

p = 7.3e-09 (***) p = 2.7e-15 (***) p < 2e-16 (***) p < 2e-16 (***) p < 2e-16 (***)

(b)
744.68 1624.07 1280.08 1385.93 1405.16

p < 2e-16 (***) p < 2e-16 (***) p < 2e-16 (***) p < 2e-16 (***) p < 2e-16 (***)

(a)
2729.87 2187.90 2533.64 2516.00 2449.81

p < 2e-16 (***) p < 2e-16 (***) p < 2e-16 (***) p < 2e-16 (***) p < 2e-16 (***)

ψ = 0.9 and (f) and ψ = 0.9 (Table 3). The Wilcoxon tests indicate that there is no difference in medians with277

(e) and ψ= 0.1 (Fig. S3). With (e) and ψ= 0.9 and (f) and ψ= 0.9, only the BP model with daily sessions differs278

from the others, with a slight underestimation of ψ (Fig. 3).279

With detection parameters (c), the BP model’s ability to retrieve the simulated occupancy probability is slightly280

inferior to other models, with a RMSE ranging from 0.057 to 0.121 while the RMSE of other models are still less281

than 0.060. (Fig. S2). The Wilcoxon tests (Fig. S3) indicate differences between BP and the other models, and282

this difference depends on the discretised session duration. The distribution of ψ̂ with BP is wider than for the283

other models with the same simulated data (Fig. S1).284

With detection parameters (b), and even more with (a), all five models reach their limits. BP, COP and PP tend285

to overestimate ψ, whereas IPP and 2-MMPP tend to underestimate ψ (Fig. 3). BP tend to estimate ψ at 0 or286

most often at 1 (Fig. S1). COP and PP point estimates of ψ have similar distributions, both are widely spread287

(Fig. S1). IPP and 2-MMPP tend to underestimate ψ, with a tighter distribution for its point estimate, which288

often does not include the simulated value of ψ (Fig. S1).289

It was not always possible to calculate the confidence interval (CI) of the occupancy probability estimate, when290

the hessian matrix was not invertible. This occurred in two main cases in our study: when there were not many291

sessions with detections in the BP model, or when λ1 was estimated to zero in the 2-MMPP model. As a result,292

the 2-MMPP CIs are not interpretable with detection parameters other than (d), where data were simulated as293

an IPP.294

With detection parameters (e), (f) and (g), all models have similar coverages (Fig. S4) and occupancy probability295

CI ranges (Fig. S5). As detectability decreases, the CIs widens for BP, COP and PP, although this is more marked296
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and quicker for BP than for COP and PP (Fig. S5). The IPP CIs do not widen, but the coverage drops (Fig. S4).297

4 Discussion298

The focal ecological parameter of interest is the occupancy probability ψ, which is represented similarly in all299

the five models compared. However, the precision of the occupancy estimation is impacted by the quality of the300

estimation for the detection process (Kellner & Swihart, 2014; Kéry & Schmidt, 2008). In this study, we focused301

on cases in which data is collected continuously, for example with sensors or opportunistic data. We aimed302

to evaluate whether modelling the detection process in continuous-time could enhance the precision of the303

estimated probability of occupancy.304

In line with the concept of operating models, commonly used for assessing management strategies305

(Butterworth, 1999; Punt et al., 2016), we simulated data under models that aim to closely mimic the ecological306

reality expected when observing biodiversity. Specifically, we considered special cases of 2-MMPP, consisting307

of four scenarios with detections simulated under an IPP framework (scenarios a, b, c, e, f, g) and one scenario308

simulated under a PP framework (scenario d). Subsequently, we aimed to recover the simulation parameters,309

focusing on occupancy probability, using these complex models, as well as simpler models well-known and310

widely used by ecologists. By simplifying the information and the detection process, we asked the question of311

whether these models are sufficient to estimate the ecological parameter of interest in a situation that we312

expect to be close to reality.313

We expected that continuous models would outperform discrete models in accurately retrieving the simulated314

occupancy probability, since data simulation aligned with the framework of the continuous models we tested315

and discretisation is an aggregation that produces a loss of information. However, in the majority of cases316

where detectability was sufficiently high (with a minimum expectation of 25 detections in occupied sites317

throughout the entire deployment), all models produced equivalent results, all were able to retrieve the318

occupancy probability well, with little bias and error.319

For models requiring discrete data, we expected that different discretisations would impact the models320

outputs (Schofield et al., 2017), but in most simulated scenarios, that was not the case. Our results indicate321

that estimation of ψ with BP is more impacted by the session duration’s choice than with COP. Since COP is322

mathematically equivalent to PP (Zhang & Bonner, 2019), minor variations in the occupancy estimates323

between session lengths for COP are likely due to data discarding. Our comparison framework could be reused324

to further test the impact of discretisation, by choosing more diverse session durations that reuse exactly the325

same data - rather than dropping data of incomplete sessions as we did.326

The BP model, as noted by MacKenzie et al. (2002), tends to produce estimates of ψ close to one for rare and327

elusive species. Our findings align with this observation, suggesting however that elusiveness has a more328

pronounced impact on this limit than rarity.329
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The COP model was adapted from the model proposed by Emmet et al. (2021). Their model differs from the330

one presented here mainly because they considered site use. However, they compared their counting model331

with its detection/non-detection equivalent from Bled et al. (2013), much like we compared COP with BP.332

Their model estimated occupancy probability with either equivalent or smaller bias compared to the333

equivalent detection/non-detection model, which aligns with our results.334

In a simulation study, Guillera-Arroita et al. (2011) evaluated BP and PP using data generated within a PP335

framework. They reported that both models provided reasonably unbiased estimates of occupancy, except for336

rare and elusive species. In these cases, BP exhibited greater bias and variance, particularly with larger337

discretisation intervals and fewer sessions, which matches our results. They also compared PP and 2-MMPP338

using clustered detection data generated within an IPP framework. They noted negative bias in the occupancy339

estimates with the PP model, which was not observed in our results. In our study, both models performed340

similarly for easily detectable species. However, for elusive species, the 2-MMPP and IPP models exhibited341

more pronounced negative bias than the PP and COP models.342

To better define the limitations of these models, we could perform additional comparisons using simulation343

scenarios with various detection parameters. Given the impossibility of exhaustively covering all potential344

scenarios, we encourage modelers encountering borderline cases to conduct their own comparisons based on345

their specific study goals to choose the best model for them. Our code is available to use as a base for346

additional comparisons.347

4.1 Choosing the appropriate model348

4.1.1 Occupancy modelling for easily detectable species349

When the species is easily detectable and thus enough observation data have been obtained, all models350

accurately estimate the occupation probability. Under these conditions, if the sole aim of a study is to351

accurately estimate occupancy, selecting any of these models essentially amounts to choosing the right one.352

Therefore, the choice can be guided by other considerations, to find the right balance between performance353

and execution costs.354

Learning and implementation costs Continuous-time models may be unfamiliar to ecologists, potentially355

requiring a steep learning curve to become proficient with these seemingly complex models. For models that356

are not readily available, the implementation costs can be substantial for a study. As time-to-detection357

occupancy models become accessible to ecologists, such as through R packages like unmarked (Kellner et al.,358

2023), the costs shifts from fully implementing a model to using existing functions, which is much faster.359

Study objectives If the primary goal is to estimate the occupancy of the target species, any of the models can360

be employed effectively. Simple models, such as BP, COP or PP, require the estimation of only two parameters:361

one for occupancy and one for detection. Choosing such a model can enhance interpretability and provide a362
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greater statistical power than models with more parameters. This is especially advantageous when363

incorporating several spatial and temporal covariates into the analysis. Conversely, if the aim is to conduct a364

detailed analysis of the target species detection timeline, for instance, to gain insights into its temporal activity365

patterns, then a model that accommodates the detection process in multiple states (e.g., 2 states for a 2-MMPP,366

potentially more) can be more advantageous. For these models, we could reconstruct the hidden state to367

better understand the detection variability.368

Temporal auto-correlation Unlike sampling occasions, consecutive discretised sessions are not temporally369

independent (Bailey et al., 2014), and there may be significant temporal auto-correlation (Neilson et al., 2018).370

Therefore, discretised session data does not meet the discrete-time model assumption of independence.371

However, the PP model has the exact same drawback when considering a constant detection rate, since the372

numbers of events on two disjoints time intervals are independent. In this study, we did not thoroughly373

examine the influence of time dependence on occupancy estimates, although two-state models do introduce374

some time dependence due to differing detection rates conditional on state. It would be interesting to explore,375

especially since clustered observation data prompted the use of two-state models by Guillera-Arroita et al.376

(2011).377

Calculation time All models were fairly fast to fit, so calculation time should probably not be the main reason378

for choosing a model for most studies. We have not robustly evaluated the optimisation time for each model, as379

we used different computers with varying characteristics. However, the two-state models seemed significantly380

longer to fit than the other models. BP, COP and PP all took less than 6 seconds to fit, even in the simulation381

scenario with most detections, in which there was 200 detections on average in occupied sites. IPP and 2-MMPP382

often took more than a minute, up to 28 minutes.383

Detection rate A detection probability per discretised session, as in the BP model, is relevant only at the384

discretisation scale. This is not the case with a detection rate, as used in the discrete-time COP model or in385

continuous-time models. We argue that using a detection rate instead of a detection probability would386

enhance the comparability among studies. Moreover, it could simplify the process of experimental design,387

especially concerning observation duration, by using the insights from existing literature on the target species.388

4.1.2 Occupancy modelling for highly elusive species389

When the species is highly elusive, the five models we considered provided inaccurate estimates of its presence390

probability, exhibiting high bias, error, and a low precision or coverage. The BP model’s limits became apparent391

at lower species elusiveness compared to the other models. This could be because valuable information gets lost392

when simplifying the data into detection and no detection. The 2-MMPP and IPP models showed larger errors393

in estimating ψ compared to the COP and PP models. This might be due to the higher number of parameters394

in the 2-MMPP and IPP models (5 and 4, respectively, versus 2 for COP and PP), which would require more395
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data to fit them correctly. COP and PP models appear to strike a good balance between simplification and396

realism. One is discrete, while the other is continuous, but both perform similarly, which is consistent with the397

demonstration of Zhang and Bonner (2019) that a Poisson process in continuous time is equivalent to a classical398

model with discretisation where the detection process is not a Bernoulli trial but a Poisson distribution draw.399

However, if the species’ high elusiveness resulted in the collection of insufficient observation data, the best400

course of action probably is to collect more data by extending the monitoring period (Kays et al., 2020). In401

cases where it is expected that the species will be challenging to detect, conducting simulations and402

comparing different models with expected detection and occupancy parameters could assist in fine-tuning403

the study design and model choice.404

If obtaining more data is not feasible, it might be best to refrain from running an occupancy model, or at least405

approach the results with caution, regardless of the chosen model. In this case, we recommend fitting different406

models, particularly when using the two-state models. For these models, our findings indicate that with highly407

elusive species, the confidence interval of the estimated ψ can be narrow but substantially different from the408

actual ψ. This can potentially lead to a misleading perception of model reliability.409

4.2 Implications for continuous monitoring frameworks410

The advanced processors available today offer great computing power, enabling the fast development of411

artificial intelligence. Recognising species automatically is becoming more common, on camera-trap images412

(Le Borgne & Bouget, 2023), ARUs recordings (Potamitis et al., 2014), or even with sensors networks (Wägele413

et al., 2022). Artificial intelligence combined with sensors offers the potential to fully automate the analysis414

workflow (Gimenez et al., 2022; Lahoz-Monfort & Magrath, 2021). Overall, sensors and AI have led to a415

paradigm shift in the conditions and capabilities of biodiversity monitoring (Besson et al., 2022; Tuia et al.,416

2022; Zwerts et al., 2021). With our comparison, we found that continuous occupancy modelling is not417

necessary to estimate occupancy accurately. Therefore, in operational conditions, the necessary trade-off418

between accuracy and ease of implementation may turn in favour of discrete-time models, with easily419

available data for temporal covariates. This advantage for operational studies could also be beneficial to420

large-scale biodiversity conservation using sensor-based monitoring and occupancy modelling (Oliver et al.,421

2023).422

Our results do not only concern sensor data, but all continuously collected data. Opportunistic data, collected423

at non-defined and irregular intervals, pose some of the same challenges as sensor data (Altwegg & Nichols,424

2019; Hsing, 2019). Some studies use classical discrete-time models that discretise data into long sessions (e.g.,425

by year, as in van Strien et al., 2013). Continuous-time capture-recapture models have been used for their426

potential to analyse opportunistic data (Choquet et al., 2017). The insights gained from this comparison study427

suggest that even discrete occupancy models could be used with a wide range of unmarked opportunistic data.428

They could produce accurate occupancy estimates, if other challenges of opportunistic data such as highly429

variable observation effort are managed.430
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