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 2 

Abstract: 1 

In autism spectrum disorder (ASD), atypical sensory experiences are often associated with 2 

irregularities in predictive coding, which proposes that the brain creates hierarchical sensory 3 

models via a bidirectional process of predictions and prediction errors. However, it remains 4 

unclear how these irregularities manifest across different functional hierarchies in the brain. 5 

To address this, we used high-density electrocorticography (ECoG) in a non-human primate 6 

model of ASD during an auditory task with two layers of temporal control, and applied a 7 

quantitative model to quantify the integrity of predictive coding across two distinct 8 

hierarchies. Our results demonstrate that ASD is characterized by sensory hypersensitivity 9 

and unstable predictions across two brain hierarchies, and reveal the associated spatio-10 

spectro-temporal neural signatures. Importantly, we observe diverse configurations of 11 

underestimation or overestimation of sensory regularities within these hierarchies. This work 12 

provides a multi-layered biomarker for ASD, contributing to our understanding of its diverse 13 

symptoms. 14 

 15 

  16 
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Introduction: 1 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that includes challenges 2 

in social interaction and communication, repetitive behaviors, sensory hypo/hypersensitivity, 3 

and difficulties adapting to change. Over 250 genes have been identified with strong links to 4 

ASD [1], and various brain structures have been associated with autistic traits [2]. However, 5 

the neural mechanism of ASD remains elusive, and diagnostic biomarkers are still 6 

unavailable [3].  7 

 8 

A leading mechanistic investigation of ASD focuses on its atypical sensory perception, such 9 

as hypersensitivities to light or sound, which is reported in around 90% of autistic adults [4]. 10 

This sensory atypicality has been extensively explained by failures of Bayesian inference 11 

[5,6], such as overly-precise sensory observations [7–9], weak prior beliefs [6,10], slow 12 

belief updates [11,12], and disbalanced precision controls [10,13,14]. However, the 13 

corresponding behavioral evidence are inconsistent and conflicting. For example, prior 14 

beliefs in ASD have been shown to be both attenuated [15,16] and intact [8,17,18], and their 15 

variability has been reported to be both increased [19] and unaffected [8]. To directly test 16 

these Bayesian accounts of ASD, it is critical to identify their underlying neural 17 

implementations, which remains unknown.  18 

 19 

The most promising implementation of Bayesian inference is predictive coding, which 20 

proposes that the brain creates internal models of the sensory world by a hierarchical and 21 

bidirectional cascade of large-scale cortical signaling in order to minimize overall prediction 22 

errors [20–23]. Specifically, higher-level cortical areas predict inputs from lower-level areas 23 

through top-down connections, and prediction-error signals are generated to update the 24 

predictions through bottom-up connections when the predicted and actual sensory inputs 25 
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 4 

differ. The theory has been applied to explain how atypical internal models are created in 1 

ASD [24,25]. Experimentally, prediction-error signals have been probed by surprise 2 

responses when expected stimuli are replaced or omitted. One example is the mismatch 3 

negativity (MMN), a late responses to unexpected oddball stimuli in electroencephalography 4 

(EEG), which have been reported to show different amplitudes between ASD and typical-5 

developing individuals [26–28]. Different surprise responses in ASD have also been observed 6 

in early EEG components [28,29] and blood-oxygen-level-dependent (BOLD) signals [30]. 7 

However, meta-analyses on these reports revealed no consistent trend in these differences 8 

[31,32].  9 

 10 

We hypothesize that the heterogeneous behavioral and neural evidence is caused by a diverse 11 

combination of erroneous predictive-coding computations occur across cortical hierarchies, 12 

thus cannot be identified by a single neural representation, such as MMN, where prediction-13 

error signals across all hierarchies are mixed together. To test this hypothesis, we extract 14 

prediction-error signals across hierarchies and examine their atypical characteristics in ASD. 15 

To assess multi-level predictive coding , we use a local-global auditory oddball paradigm, 16 

where the subject passively listens to tone sequences with the temporal regularities 17 

established at two hierarchical levels [33]. This paradigm allowed a separation of hierarchical 18 

prediction-error signals [34–39]. To acquire large-scale neuronal dynamics in ASD with 19 

millisecond resolution, we combine high-density hemisphere-wide electrocorticography 20 

(ECoG) [40] with a marmoset model of ASD that showed similar functional and molecular 21 

features as in human ASD [41]. To provide a mechanistic quantification of erroneous 22 

predictive coding, we use a hierarchical predictive-coding model that was previously used to 23 

disentangle prediction and prediction-error signals across hierarchies and quantify the 24 

integrity of prediction at each hierarchy [42].  25 
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 1 

Our results reveal sensory hypersensitivity and highly-variable predictions in the autistic 2 

animals, which demonstrates the coexistence of the two primary Bayesian accounts of ASD: 3 

overly-precise sensory observations and weak prior beliefs. Furthermore, we find distinct 4 

patterns of underestimation and/or overestimation of the sensory regularities at different 5 

hierarchies in the autistic animals, supporting our hypothesis of erroneous hierarchical 6 

predictions as a source of ASD heterogeneity. Our findings map computational theories to 7 

their neural implementations and provide a potential neural marker for ASD that is multi-8 

level, high-resolution, and mechanistic. 9 

 10 

  11 
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 6 

Results: 1 

Local-Global Auditory Oddball Paradigm to Establish Hierarchical Regularities 2 

Five marmosets, identified as Ji, Rc, Yo, Ca, and Rm, were used in this study. Among those, 3 

Ca and Rm were prenatally exposed to valproic acid (VPA) (see Methods), which was 4 

previously used to create a non-human model of ASD [41]. Among 9 VPA-exposed and 10 5 

non-exposed (UE) marmosets in our breeding colony, Ca showed salivary cortisol and 6 

diurnal activity levels 1.7 times higher than the average, with a T-score of 69 (n= 19 7 

animals). High cortisol levels and high diurnal activity are characteristic of VPA-exposed 8 

marmosets [43], and Ca was considered a model marmoset that is sufficiently exposed to 9 

VPA to reproduce ASD. Rm had a twin brother, named Ba, who, according to his breeders, 10 

was the least attached to his parents of the more than 200 UE and VPA-exposed marmosets 11 

they had raised. Avoidance of parents is a characteristic behavior of ASD. Rm, as Ba, would 12 

have been exposed in utero to enough VPA to reproduce ASD. 13 

 14 

During the task, subjects were seated with the head fixed and passively listened to a series of 15 

short tone sequences based on the local-global auditory oddball paradigm (Figure 1A). 16 

Cortical activity was recorded with a 96-channel ECoG array covering nearly an entire 17 

cortical hemisphere (left hemisphere for Ji, Ca, and Rm, and right hemisphere for Rc and Yo) 18 

(Figure 1B). For Rm, 5 channels in the orbital frontal area and 3 channels in the temporal 19 

area were surgical removed during the implantation due to tissue adhesions (88 channels 20 

remained). Moreover, the data were collected at different institutes, each with a different data 21 

acquisition system, where Ji and Rc from one institute and Yo, Ca, and Rm from the other 22 

(see Methods).  23 

 24 
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 7 

During each trial, a series of 5 tones were delivered (Figure 1A). The first 4 tones were 1 

identical, either low-pitched (tone A) or high-pitched (tone B) (jointly denoted as the 2 

standard tone x), and the fifth tone could be either the same (tone x) or different (jointly 3 

denoted as the deviant tone y). This resulted in two types of sequences: xx sequence 4 

(AAAAA or BBBBB) and xy sequence (AAAAB or BBBBA). Tone sequences were 5 

delivered in blocks of 100 trials, where two types of blocks were used: xx or xy blocks. In the 6 

xx block, 20 xx sequences were initially delivered as a standard sequence to habituate the 7 

subject; then there was a random mixture of 64 xx sequences (the trial type is denoted by 8 

xx|xx: xx sequence in xx block) randomly mixed with 16 xy sequences (xy|xx: xy sequence 9 

in xx block). Conversely, in the xy block, 20 xy sequences were initially delivered as a 10 

standard sequence, followed by a random mixture of 64 xy sequences (xy|xy: xy sequence in 11 

xy block) and 16 xx sequences (xx|xy: xx sequence in xy block).  12 

 13 

This paradigm was designed to establish two levels of temporal regularity. A local regularity 14 

is established within a trial by the repetition of the first 4 tones, which is either followed or 15 

violated by the fifth tone. A global regularity is established by habituating the subject to a 5-16 

tone sequence, which is either followed or violated by subsequent sequences. Local and 17 

global regularities are orthogonally varied, yielding four trials types: local and global 18 

standards (xx|xx), local and global deviants (xy|xx), local deviant but global standard (xy|xy), 19 

and local standard but global deviant (xx|xy). 20 

 21 

Deviant Responses to Local and Global Regularity Violations 22 

To examine the effect of VPA on how the local and global regularities were learned and 23 

represented in the brain, we evaluated the deviant responses in the brain when the regularities 24 

were violated. We compared ECoG signals from the xy and xx sequences in both the xx and 25 
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 8 

xy blocks, i.e. xy|xx – xx|xx and xy|xy – xx|xy. By contrasting xy|xx and xx|xx trials, we can 1 

isolate deviant responses that arise when both local and global regularities are violated, i.e. a 2 

local deviant response that is also unpredicted by the global rule. Similarly, by contrasting 3 

xy|xy and xx|xy trials, we can capture the local deviant response that is predicted by the 4 

global rule.  5 

 6 

To analyze the large-scale ECoG data, we first identified signal sources over the 96 7 

electrodes (or 88 in Rm) by independent component analysis (ICA) (see Methods). Each 8 

independent component (IC) represented a cortical area with statistically-independent source 9 

signals (see examples of ICs from Ji in Figure 2A). ICA could identify reference signals (e.g. 10 

IC 1 in Figure 2A) and allowed us to bypass re-referencing procedure, such as common 11 

averaging re-referencing, which could create substantial bias across all electrodes [Refs]. 12 

Furthermore, ICA could help identify spatially-overlapped signal sources (e.g. ICs 59 and 89 13 

in Figure 2A), and extract artifacts (e.g. IC 96 in Figure 2A). Therefore, our further analysis 14 

was preformed based on individual ICs, instead of individual channels.  15 

 16 

The spatio-spectro-temporal dynamics of ECoG signals were quantified by the event-related 17 

spectral perturbation (ERSP) measured in decibel (dB) (with the baseline from 300 to 0ms 18 

before the onset of the first tone, see Methods). Each ERSP represents the in-trial cortical 19 

dynamics from an IC, during the time from 300ms before the first tone to 900ms after the 20 

fifth tone (a total of 600 time bins), across the frequencies between 0 and 150Hz (a total of 21 

150 frequency bins). Examples of ERSP for all four trial types and their contrasts are shown 22 

in Figure 2B for IC 58 (located in the anterior temporal lobe) and in Figure 2C for IC 65 23 

(located in the dorsal prefrontal cortex). A deviant response was defined as a significant 24 

difference in ERSP, detected by a nonparametric cluster-based permutation test (a = 0.05 25 
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 9 

corrected for multiple comparisons, two-sided, see Methods). An IC that showed deviant 1 

responses in xy|xx – xx|xx or xy|xy – xx|xy was identified as a significant IC. For example, 2 

IC 58 was a significant IC with deviant responses in both contrasts (Figure 2B), while IC 65 3 

was not (Figure 2C). The numbers of significant ICs identified in Ji, Rc, Yo, Ca, and Rm 4 

were 5, 3, 4, 4, and 5, respectively. All the significant ICs are shown in Figure 3.  5 

 6 

Univariate Analysis on Deviant Responses 7 

To compare significant ICs among subjects, we first performed an univariate analysis to 8 

quantify their spatial, temporal, and spectral characteristics. To visualize the spatial 9 

distribution of each significant IC, its spatial coefficients were normalized to values between 10 

0 and 1 by calculating their absolute values and then dividing them by the maximum (as 11 

shown in Figure 3). For each subject, the normalized spatial coefficients were then averaged 12 

across all significant ICs to obtain a joint topographic map (Figure 4A), from which we 13 

evaluated the relative contributions of three cortical areas: the posterior temporal cortex 14 

(pTC), the anterior temporal cortex (aTC), and the anterior prefrontal cortex (aPFC) (Figure 15 

4B). The brain areas were identified based on the Marmoset 3D brain atlas Brain/MINDS 16 

NA216 [44] (see Methods). For each area, the relative contribution was quantified by the sum 17 

of the spatial distribution in the area divided by the total spatial distribution across all 18 

channels. For all subjects except Rm, the relative contributions from strong to weak were 19 

pTC > aTC > aPFC. For Rm, the contribution in aPFC was 22.0%, which was 2.6 times 20 

stronger the other subjects (8.6 ± 2.0%, n= 4 subjects).  21 

 22 

To visualize the temporal and spectral distributions of significant ICs in each subject, 23 

absolute values of the deviant responses were averaged across all significant ICs to obtain a 24 

joint time-frequency representation (Figure 4C). By averaging the joint deviant response 25 
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 10 

across frequency bins, the peak responses after the last tone were found with comparable 1 

latencies of 67, 57, 80, 70, and 80ms for Ji, Rc, Yo, Ca, and Rm, respectively (Figure 4D). 2 

By averaging the joint deviant response across time points, the average frequencies were 3 

found in the high gamma band at 92, 122, 77, and 75Hz for Ji, Rc, Yo, and Ca, respectively, 4 

and in the low gamma band at 37Hz for Rm (Figure 4E).  5 

 6 

We further evaluated the size of the deviant responses by measuring the maximal and 7 

minimal contrast values in the deviant responses across significant ICs (Figure 4F). For all 8 

subjects, the maximal contrast values for contrast xy|xx – xx|xx were positive and greater 9 

than the maximal contrast values for xy|xy – xx|xy. This was consistent with the view that a 10 

greater surprise was evoked when both local and global regularities were violated (captured 11 

by xy|xx – xx|xx), while a smaller surprise was evoked when the local deviant was predicted 12 

by the global rule (captured by xy|xy – xx|xy). Furthermore, VPA-exposed Ca and Rm 13 

showed stronger deviant responses than the unexposed Ji, Rc, and Yo. On the other hand, the 14 

minimal contrasts values were found to be positive, except in Rm where negative deviant 15 

responses were found in xy|xy – xx|xy. This is also shown in Figure 3, where a power 16 

decrease in the beta/gamma bands (20~60Hz) was observed in Rm for ICs 21, 52, and 53, 17 

particularly in xy|xy – xx|xy. To further examine the ERSP for those ICs, stronger responses 18 

to the last x tone in xx|xy were observed (Figure 4G). This indicated a strong surprise toward 19 

the global deviant (last tone x), which was not observed in other subjects (e.g. see IC 58 in Ji 20 

in Figure 2B), and suggested that Rm was more sensitive to the violation of the global rule.  21 

 22 

The univariate analysis revealed some abnormal characteristics in the deviant responses in Ca 23 

and Rm. In summary: (1) VPA-exposed Ca and Rm showed stronger deviant responses than 24 

the unexposed, suggesting their hypersensitivity to deviant stimuli; (2) hyperactivity in the 25 
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prefrontal cortex was found in Rm, not Ca, which could link to its hypersensitivity to the 1 

global regularity; (3) high-gamma deviant responses, which were thought to represent 2 

bottom-up prediction errors, were absent in Rm.  3 

 4 

A Hierarchical Predictive Coding Model for the Local-Global Paradigm 5 

To further investigate how sensory sensitivity and erroneous predictions could lead to the 6 

observed abnormal deviant responses, we used a model-fitting analysis based on a 7 

quantitative model of hierarchical predictive coding. The quantitative model can explain the 8 

brain responses during the local-global paradigm with a goodness-of-fit closed to the optimal 9 

data-driven decomposition, and enable a mechanistic evaluations of the underlying sensory 10 

sensitivity and prediction strengths at the local and global levels [42]. 11 

 12 

The model describes the interactions between prediction and prediction-error signals during 13 

the last tone of a sequence after both local and global regularities are learned. It consists of 14 

three hierarchical levels (Level S, Level 1, and Level 2) and two streams (x stream and y 15 

stream). Level S is the sensory level that receives thalamic input, which was a value between 16 

0 and 1, Level 1 learns and encodes the local regularity, which is the tone-to-tone transition 17 

probability (TP), and Level 2 learns and encodes the global regularity, which is the sequence 18 

probability (SP). The x and y streams process the tone x and y, respectively.  19 

 20 

Figure 5A shows the neural operations in the x stream between Levels S and 1. Level S 21 

contains a neuronal population (denoted by xs) that receives a sensory input (black arrow) and 22 

a prediction signal (green arrow) from Level 1, and sends a prediction-error signal (blue 23 

arrow) to Level 1. Level 1 contains a neuronal population (x1) that receives the prediction-24 

error signal from Level S, and sends a prediction signal to Level S. If we assume that the 25 
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strengths of the sensory input and the prediction signal are 1 and P1x (0 £ P1x £ 1), 1 

respectively, then there are two possible situations: (1) if the last tone is x, then the strength 2 

of the prediction-error signal is 1– P1x, (2) if the last tone is not x, then the prediction error is 3 

0 – P1x (a negative value) and the strength of the corresponding prediction-error signal is |0 – 4 

P1x|= P1x (|•| indicates the absolute value). Absolute values are taken because we assume 5 

predictions and prediction errors are encoded in neuronal firing rates [45], which can only 6 

have non-negative values. Thus, the prediction-error signal received during the last tone at 7 

Level 1 in the x stream (denoted as PE1x) is either 1 – P1x or P1x, where the probability of 8 

receiving the former is the transition probability from tone x to x (TPx) and the probability of 9 

receiving the latter is 1– TPx (see the bar graph in Figure 5A).  10 

 11 

Figure 5B shows the neural operations in the x stream between Levels 1 and 2. Similar to 12 

Level 1, Level 2 contains a neuronal population (x2) that receives the prediction-error signal 13 

from Level 1, and sends a prediction signal P2x to Level 1. If the sequence is xx, then the 14 

prediction-error signal received at Level 1 is 1 – P1x (since Level S receives tone x) and the 15 

prediction-error signal received at Level 2 is |1 – P1x – P2x|. If the sequence is not xx, then 16 

the prediction-error signal received at Level 1 is P1x (since Level S receives not x) and the 17 

prediction-error signal received at Level 2 is |P1x – P2x|. Thus, the prediction-error signal 18 

received during the last tone at Level 2 in the x stream (denoted as PE2x) is either |1 – P1x – 19 

P2x| or |P1x – P2x|, where the probability of receiving the former is the sequence probability 20 

of sequence xx (SPxx) and the probability of receiving the latter is 1– SPxx.  21 

 22 

Based on the model, the strengths of the prediction signals (e.g. P1x and P2x in the x stream) 23 

are to minimize the mean-squared error received at that level, and can be determined once the 24 

transition and sequence probabilities are known (see Methods). Figure 5C shows the 25 
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complete model for the xx and xy sequences in the xx and xy blocks, which includes the 1 

values of prediction and prediction-error signals at both the local and global levels in both the 2 

x and y streams. Note that the same prediction signals appear for both the xx and xy 3 

sequences, since predictions occur before the last tone arrives. Furthermore, even though the 4 

x and y tones are processed in separate streams based on the tonotopic organization, two 5 

streams need to integrate information at Levels 1 and 2 to compute transition probabilities 6 

(TPx and TPy,) and sequence probabilities (SPxx and SPxy), respectively. In Figure 5C, we 7 

indicate these integrations for probability computations as horizontal gray bars between 8 

populations x1 and y1 and between populations x2 and y2.  9 

 10 

The deviant responses in xy|xx – xx|xx and xy|xy – xx|xy then can be calculated for the x and 11 

y streams by subtracting the model values for the xx sequence from those for the xy sequence 12 

in each block (Figure 5D). Note that only the prediction-error signals were left in the deviant 13 

responses since the same prediction signals are shared between xx and xy sequences. 14 

Furthermore, even though x and y streams are modeled separately, their prediction-error 15 

values were combined for later model-fitting (Figure 5E). This is based on the assumption 16 

that ECoG recordings offer insufficient spatial resolution to separate the x and y streams. As 17 

results, the local prediction error (PE1) and global prediction error (PE2) contained the 18 

deviant responses are 1.50 and 0.88, respectively in xy|xx – xx|xx, and are 1.14 and –0.70, 19 

respectively in xy|xy – xx|xy.  20 

 21 

Models with Erroneous Sensory Sensitivity and Hierarchical Predictions 22 

The model values shown in Figures 5C-5E represent the optimal predictions, where the 23 

mean-squared prediction errors are minimized at each level. To further evaluate the potential 24 
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erroneous sensory sensitivity and predictions for the VPA-exposed, we further added some 1 

tunings to the model across different levels (Figure 5F).  2 

 3 

At Level S, a scaling factor s0 was added to the sensory input in the x stream to account for 4 

the sensory sensitivity or adaptation for the repetitive tone x. The value of s0 was between 0 5 

and 1, where s0= 1 represents no sensory adaptation or no diminished responses to repeated 6 

exposure of tones. For the xy sequence, since tone y does not repeat, adaption does not occur 7 

in the y stream. At Levels 1 and 2, we added scaling factors s1 and s2 to the first-level 8 

predictions (P1x and P1y) and the second-level predictions (P2x and P2y), respectively, to 9 

account for imperfect predictions. When s1= 1 and s2= 1, the predictions are optimal. When 10 

s1< 1 or s2< 1, the prediction underreacts to the input (sensory input or first-level prediction 11 

error, respectively), i.e. “hypo-prediction”, and is insufficient to cancel it out. For example, if 12 

s1= 0, there will be no first level prediction, and the prediction errors continue to propagate to 13 

Level 2 without reducing. When s1> 1 or s2> 1, the prediction overreacts to the input, i.e. 14 

“hyper-prediction”, where the corresponding transition or sequence probabilities are 15 

overestimated and additional errors are created. Note that s1 and s2 were applied to both the x 16 

and y streams, since erroneous estimation of transition or sequence probabilities could occur 17 

at both streams. In Figure 5G, we show an example of PE1 and PE2 contained in the deviant 18 

responses in the xx and xy blocks under different combinations of s1 (between 0 and 2) and s2 19 

(between 0 and 2) when s0= 1 (no sensory adaptation).  20 

 21 

Model-Fitting for Optimal Decomposition of Deviant Responses  22 

We then evaluated which combination of s0, s1, and s2 could best explain the observed 23 

deviant responses. To achieve this, we first pooled all deviant responses (as shown in Figure 24 

3) to create a tensor with three dimensions: Contrast, IC, and Time-Frequency for the 25 
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functional, anatomical, dynamical aspects of the data, respectively. For each subject, the 1 

dimensionality of the tensor was 2 (xy|xx – xx|xx and xy|xy – xx|xy) by 3~5 (the number of 2 

significant ICs) by 90,000 (600 time points and 150 frequency bins).  3 

 4 

We then factorized the 3D tensor into PE1 and PE2 components by performing parallel factor 5 

analysis (PARAFAC), a generalization of principal component analysis (PCA) to higher-6 

order arrays [46], with the first dimension fixed with the model values (see Methods). This 7 

model-fitting analysis was performed for 9,261 (= 21*21*21) models, each with a unique 8 

combination of the scaling factors s0 (21 values between 0 and 1), s1 (21 values between 0 9 

and 2), and s2 (21 values between 0 and 2). For each model, the goodness-of-fit was 10 

evaluated by the residual sum of squares (RSS) and core consistency [47]. The best-fitting 11 

model was determined as the one with the smallest RSS and a core consistency above 80%.  12 

 13 

The parameters of the best-fitting models for all subjects are shown in Figure 6. The best-14 

fitting models for the unexposed (Ji, Rc, and Yo) were found with similar scaling factors: s0 = 15 

0.35~0.45, s1 = 0.8~0.9, and s2 = 0.7~0.8. For VPA-treated, the best-fitting model for Ca was 16 

found when s0 = 0.75, s1 =0.3, and s2 = 0.2. This suggested a hyper sensory sensitivity (s0 was 17 

twice the size as for the unexposed) and hypo-predictions at both the local and global levels. 18 

On the other hand, the best-fitting model for Rm was found when s0 = 0.95, s1 =1.0, and s2 = 19 

1.72. This indicated that Rm shared a similar hyper sensory sensitivity as in Ca, but with a 20 

normal local prediction and a hyper global prediction.    21 

 22 

In summary, the model-fitting analysis revealed potential mechanisms that cannot be 23 

observed by univariate analysis, and indicated that (1) predictions in the unexposed were 24 

close to optimal at both hierarchical levels, (2) hyper sensory sensitivity was found in both 25 
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VPA-treated, and (3) different types of erroneous hierarchical predictions were observed for 1 

VPA-treated.  2 

 3 

Prediction-Error Signals Extracted From Best-Fitting Models 4 

Next we visualized the spatio-spectro-temporal patterns of the PE1 and PE2 components 5 

extracted from the best-fitting models. These components were visualized by their 6 

composition in the three tensor dimensions. The first dimension showed how much PE1 and 7 

PE2 contributed to the deviant responses in the two contrasts (Figure 7A), which was 8 

determined by the model and used for the model-fitting. The model values were different 9 

across subjects, since different optimal parameters were obtained.  10 

 11 

The second dimension showed the contribution of each significant IC to PE1 and PE2 (Figure 12 

7B). For example, in Ji, only ICs 58, 69, and 94 contributed to PE1, and IC 69 contributed the 13 

most. To further visualize these contributions on a brain map, the normalized spatial 14 

distributions of significant ICs (as in Figure 3) were combined based on their contributions 15 

(see more details in Methods). The resulting brain maps are shown in Figure 7B. Overlaps 16 

between PE1 and PE2 were observed for most subjects, but primarily PE1 appeared in the 17 

posterior temporal cortex and PE2 appeared in the anterior temporal cortex and the anterior 18 

prefrontal cortex. This propagation of prediction errors from the temporal cortex to the 19 

prefrontal cortex is consistent with previous evidence from both monkey and human studies 20 

using the local-global paradigm or its variations [33–36,39]. 21 

 22 

The third dimension showed the in-trial spectro-temporal dynamics for PE1 and PE2 (Figure 23 

7C). To examine the temporal dynamics of PE1 and PE2, we averaged the time-frequency 24 

representation in Figure 7C across all frequency bins (Figure 7D). PE1 peaked at 47, 53, 80, 25 
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67, and 37msec after the last tone, while PE2 peaked later at 93, 93, 133, 100, and 103msec 1 

for Ji, Rc, Yo, Ca, and Rm, respectively. To examine the spectral profiles of the PE1 and PE2 2 

components, we measured their maximal activation at each frequency bin across all time bins 3 

(Figure 7E). The average frequencies were 97, 112, 81, 95, and 30Hz for PE1, and 100, 121, 4 

90, 64, and 41Hz for PE2 in Ji, Rc, Yo, Ca, and Rm, respectively. The high-gamma 5 

components were absent in Rm, as described in Figure 4E.   6 

 7 

Response Variability Underlying Deviant Responses  8 

For Rm, the absence of high-gamma components in the deviant responses could result from 9 

two possibilities: (1) the sizes of prediction-error signals carried in the high-gamma band 10 

were comparable between the xx and xy sequences, or (2) the sizes of prediction-error signals 11 

were different between the xx and xy sequences but the trial-to-trial variability was too high 12 

to obtain statistical significance. The former suggests that no prediction was established, and 13 

the latter suggests that the prediction was highly variable over trials.  14 

 15 

To test these two possibilities, we measured the trial-by-trial sizes of PE1 and PE2 by 16 

evaluating how much PE1 and PE2 contributed to single-trial EEG responses. This was 17 

achieved by projecting the single-trial EEG responses onto the spatio-spectro-temporal 18 

structures of PE1 and PE2. The spectro-temporal structures of PE1 and PE2 were determined 19 

by normalizing the corresponding time-frequency representations (as in Figure 7C) to values 20 

between 0 and 1 and then averaged across subjects (Figure 8A). A mask in the high-gamma 21 

band was determined as the top 75% values in frequencies above 40Hz (red contour in Figure 22 

8A). The single-trial contributions of PE1 and PE2 were then obtained by projecting single-23 

trial EEG responses of each significant IC onto these masks. For each trial, the projection 24 

values were averaged, weighted by the spatial contributions (as in Figure 7B), and resulted in 25 
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two projection values to describe how much PE1 and PE2 appeared in the high-gamma band 1 

(see details in Methods). An example of the projection values is shown in Figure 8B.  2 

 3 

For each trial type, the mean, standard deviation, and coefficient of variance (CV, the 4 

standard deviation divided by the mean) of the projection values are shown in Figure 8C. The 5 

mean activations were higher in Ca compared to the unexposed for both PE1 and PE2, while 6 

the means in Rm were comparable to the unexposed. The high mean values in Ca were 7 

consistent with the findings that Ca had high sensory sensitivity and the subsequent high 8 

prediction errors were not adequately explained away due to hypo-predictions. Furthermore, 9 

Ca and Rm showed high standard deviations for both PE1 and PE2. In Rm, the high standard 10 

deviation with the comparable mean led to high CV, which supported the second possibility 11 

that the absence of the high-gamma components was resulted from highly-variable 12 

predictions. In Ca, the high standard deviation was compensated by the high mean activation, 13 

which led to low CV and the significant high-gamma components. In addition, PE1 and PE2 14 

were both greater in xy|xx than in xx|xx in all subjects, which was consistent with the view 15 

that the xy sequence generated greater local and global prediction errors than the xx sequence 16 

in the xx block. To further demonstrate high standard deviations in Ca and Rm, we measured 17 

the probability distributions of the projection values for PE1 and PE2 for each trial type and 18 

subject (Figure 8D). Wider distributions were found in Ca and Rm, suggesting that the 19 

predictions and their subsequent prediction errors in both subjects were highly-variable at 20 

both the local and global levels.  21 

  22 
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Discussion: 1 

We combine a passive auditory paradigm with a quantitative model to extract the neural 2 

signatures of hierarchical prediction-error signals, and evaluate the integrity of predictive 3 

coding in VPA-exposed animals. Through this approach, we unveil both sensory 4 

hypersensitivity and unstable predictions in VPA-exposed animals. Notably, these fluctuating 5 

predictions present distinct patterns of underestimation and/or overestimation of hierarchical 6 

sensory regularities, potentially contributing to the diverse characteristics of ASD. By linking 7 

computational theories with their neural underpinnings, our study lays the groundwork for 8 

identifying a comprehensive, multi-tiered, and mechanistic neural marker for ASD. 9 

 10 

Similar neural signatures among macaques, humans, and marmosets  11 

The hierarchical organization of prediction-error signals in the auditory local-global 12 

paradigm has been examined in humans and non-human primates [35–39,48]. Utilizing both 13 

data-driven and model-driven analyses to decompose predictive-coding signals that are not 14 

only interdependent but also spatially and temporally overlapping, we have identified the 15 

neural signatures of local and global prediction-error signals in macaque ECoG [34] and 16 

human EEG [42]. The spatio-spectro-temporal markers observed in both macaques and 17 

humans bear similarity to those depicted in Figure 7, showing prediction-error signals in high 18 

frequency band (>30Hz) propagating from the auditory cortex to the frontal cortex with a 19 

delay of ~50msec. This suggests a shared neural organization that facilitates hierarchical 20 

predictive coding in both human and non-human primates. Moreover, it indicates the 21 

potential applicability of our animal model findings to human patients. 22 

 23 

Multi-level regularity processing in individuals with ASD 24 

The local-global paradigm has been utilized to study atypical perception and emotion 25 
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processing in ASD. In a study of adults with ASD, a smaller MMN was found in the ASD 1 

group than in the typically developing (TD) group [27]. Moreover, both groups demonstrated 2 

a reduced MMN when the global rule could be anticipated, such as in the xy block, but this 3 

reduction was more pronounced in the TD group than in the ASD group. This implies weaker 4 

local and global predictions among individuals with ASD. In a study with children (8~15 5 

year old) with ASD, no significant differences in MMN were found between ASD and TD 6 

groups, suggesting that local prediction error was processed normally [26]. When 7 

manipulating the global rule to establish various levels of expectation for local deviants, 8 

children with ASD responded differently. There was a decrease in frontocortical responses to 9 

sequences that were unexpected, whereas there was an increase in late frontal activation in 10 

response to anticipated sequences. These findings suggest that there may be abnormalities in 11 

global prediction within the ASD population. In addition, individuals with ASD demonstrated 12 

MMN in response to violations of local emotion regularity for both faces and music, but their 13 

responses to global emotion regularity violations were absent [49]. These results, derived 14 

from a group level analysis, suggest a potential deficiency in global prediction within ASD. 15 

They are in alignment with other discoveries of unusual contextual modulations in sensory 16 

processing in ASD, observed in both non-social settings [50,51] and social contexts [52–54]. 17 

However, our results demonstrate the importance of conducting an individual-level analysis, 18 

which would help in identifying the potential diversity in abnormalities in multi-level 19 

regularity processing. 20 

 21 

Sensory hypersensitivity and aberrant precision control in ASD 22 

Our findings indicate that the VPA-exposed animals exhibited elevated s0 values, suggesting 23 

that their responses to repetitive stimuli were not as significantly reduced compared to the 24 

healthy controls. We interpretate this lack of sensory adaption as heightened sensory 25 
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sensitivity, and use this evidence to support the overly-precise sensory observations account 1 

of ASD [7–9]. However, sensory hypersensitivity can also be attributed to imbalanced 2 

precision controls, where the brain faces challenges in prioritizing sensory information based 3 

on its perceived reliability or precision [10,13,14]. In this case, there is a tendency to assign 4 

higher weight to low-level sensory details, potentially intensifying the sensitivity to sensory 5 

stimuli. Importantly, these theories are not mutually exclusive and can provide 6 

complementary insights into the understanding of sensory processing in ASD. To gain a 7 

deeper understanding of their respective contributions, employing a trial-by-trial analysis 8 

with Bayesian modeling that incorporates precision parameters could be beneficial [55,56]. 9 

Additionally, conducting experiments that effectively control the precision of stimuli can 10 

provide valuable insights into the interplay between sensory processing and precision 11 

weighting [57]. 12 

 13 

It is worth noting that our model does not differentiate the origins of this presumed sensory 14 

adaption to repetitive stimuli, only its outcome. One possible cause is stimulus-specific 15 

adaptation, an inhibitory neuronal mechanism observed in both cortical and subcortical 16 

structures [58–60]. Another possible cause is predictive coding itself, where the prediction of 17 

transitions between identical tones is learned during repetitions, and the repetitive tones 18 

generate less surprise over time. To fully explain the data will require a model that includes 19 

the interplay between and stimulus-specific adaptation and predictive coding to describe the 20 

neural dynamics during each tone in both cortical and subcortical areas.  21 

 22 

Atypical perceptual learning in ASD 23 

Our findings demonstrate erroneous predictions across different cortical hierarchies in VPA-24 

exposed animals. This implies a deficiency in perceptual learning, which is a key 25 
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characteristics of the ASD phenotype [61]. This deficiency could stem from abnormalities in 1 

synaptic plasticity [62] or learning-related changes in neural connections [63], and lead to 2 

slow or irregular belief updates [11,12]. Regrettably, our current model has limitations in 3 

assessing the learning process as it only represents the signals once the temporal regularities 4 

have already been learned and the errors have been minimized. To understand the dynamic 5 

process of prediction updating and error minimization,  it is crucial to investigate the trial-by-6 

trial signaling that occurs during the learning process. 7 

 8 

A Bayesian model known as the hierarchical Gaussian filtering (HGF) has emerged as a 9 

promising candidate for understanding prediction updating and error minimization [64]. This 10 

model employs precision-weighted prediction errors [20,22,65] and has been utilized to 11 

investigate prediction-error signals in the brain during learning [66–70]. However, its current 12 

implementation is limited in terms of hierarchical prediction, despite the term "hierarchical" 13 

in its name, which primarily refers to a motor aspect of the model. Nevertheless, there is a 14 

high demand for further development and application of hierarchical prediction within this 15 

model. Another candidate is dynamic causal modeling (DCM), which is also a Bayesian 16 

model that can be used to estimate the coupling among brain regions and the changes in 17 

coupling over time and across experimental conditions [71]. This method has been utilized in 18 

studying MMN [55,72,73], albeit with the constraint that the brain regions of interest had to 19 

be predetermined. 20 

 21 

Non-human primate model of ASD 22 

The phylogenetic closeness between nonhuman primates and humans, particularly in 23 

molecular, circuitry, and morphological features of the brain, has made these species 24 

increasingly attractive as novel models of psychiatric disorders. Boasting a well-25 
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differentiated frontal lobe and intricately stratified hierarchical cortical connectivity, their 1 

cerebral cortex closely resembles that found in humans [74]. Marmosets, in particular, offer 2 

many advantages as model organisms for the developmental disorder autism. For example, 3 

early sexual maturation, high reproductive rates, efficient space utilization due to their 4 

compact size, the potential for genetic manipulation, and a complex repertoire of social skills 5 

[75]. 6 

 7 

The VPA-exposed model marmosets utilized in this study show deficits in social tasks that 8 

require sophisticated and hierarchical internal models [76,77]. This includes the ability to 9 

adjust one's motivation based on observations of others' behavior and to evaluate the 10 

reciprocity of others. It is important to note that gene expression within the marmoset cortex 11 

closely matches the postmortem brains of human ASD, suggesting that it more closely 12 

resembles humans than any prior rodent model [41]. Notably, gene expression associated 13 

with myelin and inhibitory neurons, which are thought to be important for brain computation, 14 

is commonly reduced in both individuals with ASD and the VPA-exposed marmosets. 15 

Continued studies of hierarchical predictive coding using the VPA-exposed marmosets may 16 

provide important insights into the nature of human ASD. This is especially important given 17 

the profound social deficits exhibited in ASD. 18 

 19 

In summary, we record large-scale high-resolution neural data in a non-human primate model 20 

of ASD and identify different neural signatures underlying different predictive coding 21 

accounts of ASD. This research has the potential to contribute to the identification of neural 22 

markers specific to different subtypes of ASD and shed light on the impact of prenatal VPA 23 

exposure on neurodevelopmental pathways leading to ASD.  24 

  25 
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Methods: 1 

 2 

Animals: 3 

We used five adult common marmosets (Callithrix jacchus; three males and two females, 4 

320–450 g, 22–42 months). Before the ECoG arrays were implanted into the monkeys, they 5 

were familiarized with the experimenter and experimental settings. The animals had ad 6 

libitum access to food and water throughout the experimental period. Two animals (Ji and 7 

Rc), were raised and recorded at RIKEN Center for Brain Science, and the other three 8 

animals (Yo, Ca, and Rm), were raised and recorded at the National Center of Neurology and 9 

Psychiatry (NCNP). Marmosets were housed in an environment maintained on a 12/12-hour 10 

light/dark cycle, and given food (CMS-1, CLEA Japan) and water ad libitum. Temperature 11 

was maintained at 27-30°C and humidity at 40-50%. 12 

 13 

All procedures of the ECoG study at RIKEN were conducted in accordance with a protocol 14 

approved by the RIKEN Ethical Committee. All procedures of the VPA preparation and 15 

ECoG study at NCNP were conducted in accordance with NIH guidelines and the "Guide for 16 

the Care and Use of Primate Laboratory Animals" published by the National Institute of 17 

Neurological Research, National Center of Neurology and Psychiatry, and approved by the 18 

Animal Research Committee of NCNP. 19 

 20 

VPA treatment:  21 

The method for producing VPA-exposed marmosets was identical to the one detailed in our 22 

previous work [41]. In short, serum progesterone levels in the female marmosets were 23 

monitored once a week to determine the timing of pregnancy. In addition to the blood 24 

progesterone level, pregnancy was further confirmed by palpitations and ultrasound 25 
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monitoring (Ultrasound Scanning; Xario, Toshiba Medical Systems Corp., Tochigi, Japan). 1 

We orally administered 200 mg/kg of sodium valproate (VPA, Sigma–Aldrich, St. Louis, 2 

MO, USA) seven times from day 60 to 66 after conception to the mother marmosets. We did 3 

not observe obvious malformations or deformities in VPA-exposed marmosets. 4 

 5 

Electrode implants: 6 

The whole-hemisphere 96-channel ECoG arrays (Cir-Tech Co. Ltd., Japan) were chronically 7 

implanted. We epidurally implanted the array into the right hemisphere for Rc and Yo, and 8 

the left hemisphere for Ji, Rm and Ca. Eight electrodes (channels 92~94) from Rm were cut 9 

during the implantation due to tissue adhesions. The surgical procedures for electrode 10 

implantation have been previously described in detail [40]. The coordinates of recording 11 

electrodes were identified on the basis of the combination of pre-acquired MR images and 12 

postoperative computer tomography images using AFNI software [78] 13 

(http://afni.nimh.nih.gov). Then, we estimated the location of each electrode on cortical areas 14 

by registering to the Marmoset 3D brain atlas Brain/MINDS NA216 [44] with AFNI and 15 

ANTS [79]. 16 

 17 

Experimental setup: 18 

ECoG signals from monkeys Ji and Rc were acquired at RIKEN using a Grapevine NIP 19 

system (Ripple Neuro, Salt Lake City, UT) at a sampling rate of 1 kHz. Experiments of 20 

monkeys Yo, Rm, and Ca were conducted at NCNP. The neural signals were stored at a 21 

1017.25 Hz sampling resolution into a TDT signal processing system RZ2 (Tucker-Davis 22 

Technologies, Alachua, FL). During the ECoG recordings, the marmoset was seated in a 23 

primate chair in an electrically shielded and sound-attenuated chamber with their head fixed. 24 
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The auditory stimuli were delivered bilaterally by two audio speakers (Fostex, Japan) at a 1 

distance of ~20 cm from the head at an average intensity of 65 dB SPL. 2 

 3 

Stimuli and experimental procedure: 4 

Two tones with different pitches (Tone A = 800Hz; Tone B = 1600Hz) were synthesized. 5 

Each tone was 50 ms in duration. Series of five tones were presented with a 150 ms inter-tone 6 

interval, with 950-1150 ms was set between the offset of the last tone of a sequence and the 7 

onset of the first tone of the following sequence (see Figure 1A). Four different stimulus 8 

blocks were used: AAAAA, BBBBB, AAAAB, and BBBBA blocks. In AAAAA blocks, 20 9 

AAAAA sequences were delivered, followed by a random mixture of 64 AAAAA and 16 10 

AAAAB. In BBBBB blocks, 20 BBBBB sequences were delivered, followed by a random 11 

mixture of 64 BBBBB and 16 BBBBA. In AAAAB blocks, 20 AAAAB sequences were 12 

delivered, followed by a random mixture of 64 AAAAB and 16 AAAAA. In BBBBA blocks, 13 

20 BBBBA sequences were delivered, followed by a random mixture of 64 BBBBA and 16 14 

BBBBB. In each experimental day, we conducted ECoG recordings on 1~8 blocks, 15 

depending on the animal’s condition. For each animal, we performed 7-9 recordings for each 16 

block. The ECoG data can be freely downloaded (https://dataportal.brainminds.jp/). 17 

 18 

Data analysis: 19 

Preprocessing and Independent Component Analysis (ICA): 20 

The ECoG signals were downsampled to 300Hz by EEGLAB on MATLAB [80] (function: 21 

pop_resample.m). Bad channels were then removed by visual inspections: channels 6, 7, 8, 22 

and 80 were removed in Rc; channels 8, 68, 71, 81, 83, 85, 87, and 88 were removed from 23 

Yo; channels 2, 44, 48, 61, 63, 64 were removed in Ca, channels 1, 6, 7, 8, 9, 10, 43, 43, 49, 24 

and 81 were removed in Rm. For each subject, all data were concatenated together, and ICA 25 
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was performed by the FieldTrip Toolbox [81] (function: ft_componentanalysis.m with the 1 

runica algorithm). For each trial, the ICA signals were aligned at the onset of the first tone, 2 

and signals from 0.3s before to 1.7s after the onset of the first tone were segmented and used 3 

for the further analyses. 4 

 5 

Event-related spectral perturbation (ERSP):  6 

For each subject, independent component (IC), and trial, the time–frequency representation 7 

of the ICA signal was generated by Morlet wavelet transformation at 150 different center 8 

frequencies (1~150Hz) with the half-length of the Morlet analyzing wavelet set at the 9 

coarsest scale of 7 samples, which is implemented in the FieldTrip Toolbox 10 

(ft_freqanalysis.m). Baseline normalization was then performed to calculate the decibel 11 

values by using the baseline period from –0.3 to 0s (time zero as the onset of the first tone) 12 

(ft_freqbaseline.m).  13 

 14 

Deviant response:  15 

For each subject, the deviant responses (xy|xx – xx|xx and xy|xy – xx|xy) were calculated for 16 

each IC across all trials. To measure the significance of the difference in ERSP (as the black 17 

contours shown in Figures 2B), we performed permutations by shuffling trial indices, and 18 

used a nonparametric cluster-based method for multiple comparisons correction [82], which 19 

is implemented in FieldTrip Toolbox (ft_freqstatistics.m with 500 permutations). Non-20 

significant values in the deviant responses were set to 0, and ICs with no significant deviant 21 

responses in both xy|xx – xx|xx and xy|xy – xx|xy were considered as non-significant ICs. 22 

 23 

Model-fitting with parallel factor analysis (PARAFAC):   24 

We used PARAFAC, a generalization of principal component analysis (PCA) to higher-order 25 
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arrays [46], which was previous used for the computational extraction of latent structures in 1 

functional network dynamics [34,83–85]. To decompose deviant responses into components 2 

with theorized contrast values, PARAFAC was performed with the first dimension Contrast 3 

fixed with the values proposed by the model. This was done by the N-way toolbox [86], with 4 

no constraint on all three dimensions (using FixMode and OldLoad inputs in parafac.m). The 5 

convergence criterion (i.e., the relative change in fit for which the algorithm stops) was set to 6 

1e−6. The initialization method was set to be direct trilinear decomposition (DTLD), which 7 

was considered the most accurate method [87]. For each fitting, the residual sum of squares 8 

(RSS) and the core consistency diagnostic [47] were measured.  9 

 10 

Brain spatial contribution:  11 

For each significant IC, the absolute values of the spatial filter (1 ´ number of channels) were 12 

first calculated and normalized by their maximal value (as in Figure 3). The brain map shown 13 

in Figure 7B was the linear combination of the normalized spatial filters of all significant ICs 14 

and their contributions in the model-fitting (Figure 7B).  15 

 16 

Single-trial projection: 17 

For each subject, a single-trial ERSP response (ERSP= number significant ICs ´ 150 18 

frequency bins ´ 600 time points) was projected on a PE1 or PE2 spectro-temporal mask 19 

(FT= 600 time points ´ 150 frequency bins) (as in Figure 8A) and the contributions of all 20 

significant ICs (S = 1 ´ number significant ICs) (as in Figure 7B). This was calculated as 21 

S*ERSP*FT, which yields a single scalar value. Note that the spectro-temporal masks for 22 

PE1 and PE2 were calculated from all subjects and thus shared across subjects, while the 23 

contributions of all significant ICs were different across subjects.  24 

 25 
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Model calculation: 1 

We used a simple model we previously proposed  [42]. In the model, the optimal value of 2 

each prediction signal is to minimize the mean-squared error received. For example, the mean 3 

squares of PE1x (denoted by MSPE1x) can be devised as (based on the bar graph in Figures 4 

5A):  5 

𝑀𝑆𝑃𝐸1! = 𝑇𝑃! ∗ (𝑠"#$% − 𝑃1!)& + (1 − 𝑇𝑃!) ∗ (𝑃1!)&    [1] 6 

The minimums occur when:  7 

𝑃1! = 𝑠"#$% ∗ 𝑇𝑃!         [2] 8 

And P1y can be obtained in the same fashion:  9 

𝑃1' = 𝑇𝑃'          [3] 10 

This represent the optimal prediction where first level prediction errors are minimized. Then 11 

we added the scaling factor s1 to P1x and P1y and calculate the mean squares of PE2x 12 

(denoted by MSPE2x): 13 

𝑀𝑆𝑃𝐸2! = 𝑆𝑃!! ∗ (|𝑠"
#$% − 𝑃1! ∗ 𝑠%| − 𝑃2!)& + (1 − 𝑆𝑃!!) ∗ (𝑃1! ∗ 𝑠% − 𝑃2!)&14 

           [4] 15 

The minimums occur when:  16 

𝑃2! = 𝑆𝑃!! ∗ (|𝑠"#$% − 𝑃1! ∗ 𝑠%|) + (1 − 𝑆𝑃!!) ∗ 𝑃1! ∗ 𝑠%   [5] 17 

And P2y can be obtained in the same fashion:  18 

𝑃2' = 𝑆𝑃!' ∗ 0|1 − 𝑃1' ∗ 𝑠%|1 + 01 − 𝑆𝑃!'1 ∗ 𝑃1' ∗ 𝑠%    [6] 19 

Note that the P2x and P2y here represent the optimal predictions when potential erroneous 20 

predictions at the first level are considered. Also, s2 was applied to calculate the second level 21 

prediction errors, i.e. P2x*s2 and P2y*s2 were used (as shown in Figure 5F).  22 

 23 

Based on the model, all prediction signals are determined once the transition probabilities 24 

(TPx and TPy), sequence probabilities (SPxx and SPxy), and scaling factors (so, s1, and s2) are 25 
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known. The transition probabilities can be calculated based on the number of tones in a 1 

sequence and the sequence probabilities (the MATLAB code for these calculations is 2 

provided).   3 

  4 
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 3 

Figure 1. Local-Global Paradigm and ECoG Layouts. (A) The local-global paradigm and 4 

the tone and sequence designs. (B) The layout of the 96-channel ECoG arrays in the five 5 

subjects. For Rm, 8 channels were surgical removed after implantation due to tissue 6 

adhesion, and 88 channels remained. 7 
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Figure 2. Source Signals and Deviant Responses. (A) Examples of ICs from Ji. For each 2 

IC, the absolute spatial contributions were normalized by the maximal value across 3 

electrodes, and shown on the top panel. The time courses of all the trials are shown in the 4 

bottom panel. Time zero represents the onset of the first tone, and the vertical black lines 5 

indicate the onsets of the 5 tones. (B) The deviant responses from IC 58 in Ji. The spatial 6 

contribution of the IC is shown on the left. The ERSP for each trial type and the 7 

corresponding contrasts are shown. The black contours indicate the deviant response with a 8 

significant difference in ERSP in contrasts xy|xx – xx|xx and xy|xy – xx|xy. (C) Example of a 9 

non-significant IC. The same representation is used as in panel B.    10 
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Figure 3. Significant ICs From All Subjects. For each subject, all the significant ICs are 2 

labeled and shown with their absolute spatial contributions and the corresponding deviant 3 

responses in contrasts xy|xx – xx|xx and xy|xy – xx|xy (black contours).  4 
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Figure 4. Univariate Analysis of the Significant ICs. (A) The joint topographic map of 2 

deviant responses for each subject. The electrodes on pTC,  aTC, and aPFC are labeled with 3 

black star, plus, and cross signs, respectively. (B) The relative contributions of pTC, aTC, 4 

and aPFC for each subject. (C) The joint time-frequency representation of deviant responses 5 

for each subject. (D) The temporal profile of deviant responses. The peak response is 6 

indicated by a vertical dashed line and the latency is indicated. (E) The spectral profile of 7 
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deviant responses. The average frequency is indicated by a vertical dashed line and the value 1 

is indicated. (F) The maximal and minimal sizes of the deviant responses for each subject. 2 

The contrasts xy|xx – xx|xx and xy|xy – xx|xy are indicated by circles and squares, 3 

respectively. The color scheme is shared in panels B, D, E, and F. (G) The negative deviant 4 

responses in xy|xy – xx|xy in Rm for three significant ICs (21, 52, and 53, as in Figure 3). 5 

The ERSP in xy|xy and xx|xy are also shown.  6 
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Figure 5. A Quantitative Predictive Coding Model. (A) The proposed neural operations in 2 

the x stream between Levels S and 1 during the presentation of tone x or not. An explanatory 3 
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illustration of the probability distribution of the first-level prediction error in the x stream 1 

(PE1x) is shown on the right. The neuronal populations (diamonds), prediction-error signal 2 

(blue arrow), prediction signal (green arrow), and sensory input (black arrow) are shown. (B) 3 

The neural operations in the x stream between Levels 1 and 2. An explanatory probability 4 

distribution of the second-level prediction error in the x stream (PE2x) is shown on the right. 5 

(C) The complete model during the last tone in xx and xy sequences in the xx and xy blocks. 6 

The horizontal gray bars at Levels 1 and 2 indicate integration between the x and y streams 7 

for computing transition and sequence probabilities, respectively. The negative errors, where 8 

the prediction is greater than the input or prediction error to be predicted, are shown in blue 9 

dashed arrows. (D) The contrast values (xy – xx) obtained from panel C. (E) The model 10 

values of PE1 and PE2 in the deviant responses by combining contrast values from the x and 11 

y streams in panel D. (F) Model tunings with s0, s1, and s2. A decreased response (scaled by 12 

s0) to repeated tone x during the xx sequence (left), and a fresh response to tone y during the 13 

xy sequence (right). The corresponding models of the last tone are also shown, where P1 and 14 

P2 are scaled by s1, and s2, respectively. (G) An example of PE1 and PE2 in the deviant 15 

responses in the xx and xy blocks under different combinations of s1 and s2 when s0= 1.  16 
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Figure 6. The Optimal Parameter for Model Fitting. The model-fitting results for each 2 

subject are shown in each column, where the optimal parameters are indicated. For each s0, 3 

the minimal RSS across different combinations s1 and s2 is shown in the top panel. The 4 

minimal RSS is indicated by a red circle. The combination of s1 and s2 under this minimum is 5 

indicated by a red circle in the bottom panel. Models with a fitting consistency >80% are 6 

indicated by red dots. The color bar represents RSS. 7 

 8 

 9 
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Figure 7. Prediction-Error Signals Extracted From the Best-Fitting Model. (A) The 2 

contributions of PE1 and PE2 to the deviant responses in the two contrasts, which are based 3 

on the model values from the best-fitting model. (B) The spatial dimension of the PE1 and 4 

PE2 components extracted from the best-fitting model. The contribution of each significant 5 

IC to PE1 and PE2 and the corresponding average brain maps are shown. (C) The spectro-6 

temporal dimension of the PE1 and PE2 components extracted from the best-fitting model. 7 

(D) The temporal profiles of PE1 (blue) and PE2 (orange). The maximal activations are 8 
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indicated as vertical dashed lines and the corresponding peak latencies are shown. (E) The 1 

spectral profiles of PE1 and PE2. The average frequencies activations are indicated as 2 

vertical dashed lines and the corresponding values are shown. 3 
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Figure 8. Signal Variability Underlying Absent High-Gamma Components. (A) The 2 

spectro-temporal structures of PE1 and PE2. The masks of the top 75% values in the high-3 

gamma band (> 40Hz) are indicated by red contours. (B) An example of the projection values 4 

during 100 trials of xy|xx in Ji. (C) The mean, standard deviation, and CV of the single-trial 5 

projection values. The mean and standard deviation measured for each trial type are labeled 6 

with different colors. The average values across all trial types are indicated by black circles 7 

and squares for PE1 and PE2, respectively. CV calculated from the average values are shown. 8 

The horizontal dashed line indicates the mean CV from the unexposed (across PE1 and PE2). 9 

(D) The probability distributions of the projection values for PE1 (top row) and PE2 (bottom 10 
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row) in each subject. The probability distribution for each trial types are shown in different 1 

colors (same color scheme as in panel C).  2 
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