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Abstract

Identifying statistical associations between biological variables is crucial to understand
molecular mechanisms. Most association studies are based on correlation or linear regression
analyses, but the identified associations often lack reproducibility and interpretability due to
the complexity and variability of omics datasets, making it difficult to translate associations
into meaningful biological hypotheses.

We developed StableMate, a regression framework to address these challenges through
a process of variable selection across heterogenous datasets. Given datasets from different
environments, such as experimental batches, StableMate selects environment-agnostic (stable)
and environment-specific predictors in predicting the response of interest. Stable predictors
represent robust functional dependencies with the response, and can be used to build regression
models that make generalizable prediction in unseen environments.

We applied StableMate to 1) RNA-seq data of breast cancer to discover genes that
consistently predict estrogen receptor expression across disease status, 2) metagenomics data
to identify microbial signatures that show persistent association with colon cancer across
study cohorts and 3) scRNA-seq data of glioblastoma to discern signature genes associated
with development of pro-tumour microglia regardless of cell location.

Our case studies demonstrate that StableMate is adaptable to regression and classification
analyses and achieves comprehensive characterisation of biological systems for different omics
data types.

1 Introduction

Inferring relationships between biological variables is a critical problem in systems biology. Among
different types of biological relationships, causal relationships are of high interest as they enable a
deeper understanding of the function and regulatory mechanism of fundamental biological processes.
However, this type of relationship is extremely difficult to identify based on observational studies
alone without further investment in experimental design. In contrast, statistical associations
(e.g. based on correlation or linear regression analyses) can be easily computed, but these
associations may lead to spurious findings. In recent years, a large number of methods have
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been proposed for statistical association analysis. Most of theses methods are network modelling
approaches that infer gene regulation by identifying associations between genes through their
expression levels (Aibar et al., 2017; Chan et al., 2017; Chickering, 2002; Faith et al., 2007; Huynh-
Thu et al., 2010; Langfelder and Horvath, 2008; Moerman et al., 2019; Spirtes et al., 2000). However,
these approaches result in associations that are not robust against small variations in the data, are
not reproducible or lack interpretability (Kang et al., 2021; Nguyen et al., 2021; Pratapa et al.,
2020).

The concept of stability has gained popularity in recent years to improve the reproducibility
and interpretability of conventional association analysis (Bühlmann, 2020). A statistical association
is considered stable if it is invariant under small perturbations of the data, and hence is more likely
to be reproducible across different studies or conditions. Stability analysis in this context allows us
to gain unique biological insights that are not accessible with conventional inference association
methods . Indeed, biological variables that show stable associations are more likely to be closely or
even causally related in function compared to those with unstable associations. While stability is
itself not sufficient to establish causality, a causal relationship is necessarily stable in some sense
(Pearl et al., 2000). Thus, identifying stable associations may serve as a first step towards the
inference on causal relationships. It is also enlightening to identify associations that are unstable
as they are sensitive to a change of study and experimental conditions and provide insights into
how these conditions influence a biological system (Shojaie, 2021).

We developed StableMate, an statistical framework to identify both stable and unstable
associations through variable selection in a regression context. Inherent to variable selection is
the motivation to infer regression function that encapsulates potential functional dependencies
between the response and selected predictors beyond using simple correlations. StableMate is
based on the recent theoretical development of stabilised regression (Pfister et al., 2021). Stabilised
regression considers data collected from different ‘environments’ or experiments, including technical
or biological conditions. Typical environments can be batches, cohorts, and also disease states.
Given a response variable and a set of predictors measured on samples in multiple environments,
there are two goals in stabilised regression. The first goal is to distinguish stable predictors from
unstable predictors, based on whether these predictors are able to make consistent or inconsistent
prediction of the response across multiple environments. The second goal is to build regression
models using stable predictors that are generalisable to unseen environments. While the original
approach from Pfister et al. (2021) provides an elegant framework for stabilised regression, its
application is computationally inefficient for high-dimensional biological data. We showed in our
simulation study that it can lead to inaccurate results. StableMate provides a new version of
stabilised regression. While stabilised regression selects stable predictors by performing stability
tests on every possible predictor subsets, StableMate optimises efficiency with a greedy search
based on our improved stochastic stepwise selection algorithm.

We illustrate the broad applicability and flexibility of StableMate through three case studies
across a broad range of biological questions and data types. We show that StableMate is able to
1) identify genes and gene modules involved in the trancriptional regulation of a critical breast
cancer gene (Section 2.2), 2) identify fecal microbial markers for prediction of colon cancer while
accounting for batch effects in a multi-cohort data (Section 2.3), and 3) characterise changes of
microglia transcriptional identity during their transitions to a pro-tumour phenotype (Section 2.4).
In both simulated and real data (Section 5, Supplementary Figure S2,S1), we benchmarked the
prediction and the variable selection performances of StableMate against other commonly used
regression methods, including the original stabilised regression algorithm in Pfister et al. (2021).
The results show that StableMate yields superior performances compared to competing methods.
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Figure 1. Toy example for StableMate analysis. (A) Stable predictors. Consider a regression problem
where the response 𝑌 𝑒 and predictors 𝑋𝑒 were generated from three different environments (e.g. batches, cohorts)
𝑒 = 𝑒1, 𝑒2, 𝑒3, as represented in (A1). Stable predictors are a subset of all predictors that are useful for predicting 𝑌 𝑒

and whose association with the response 𝑌 𝑒 does not change with 𝑒. If we fit a regression model in each environment
to predict the response using only the stable predictors (A2), then the fitted models should be approximately the same
across all environments (A3). Thus identifying stable predictors is useful for constructing regression models that are
agnostic to environment and hence may be more generalisable to unseen environments. On the other hand, predictive
but unstable (referred to as‘environment-specific’) predictors may be useful for understanding environment-specific
regulatory mechanisms of the response 𝑌 𝑒. (B) Difference between stable and environment-specific predictors.
We simulated 900 samples, each with response 𝑌 𝑒 and predictors 𝑋𝑒1 , . . . , 𝑋

𝑒
20 across environments 𝑒 = 𝑒1, 𝑒2, 𝑒3.

Left panel plots 𝑌 𝑒 against a stable predictor 𝑋𝑒3 ; right panel plots 𝑌
𝑒 against an environment-specific predictor

𝑋𝑒15. Linear regression lines were fitted per environment. Both 𝑋𝑒3 and 𝑋𝑒15 are useful for predicting 𝑌𝑒 since they
are both strongly negatively correlated with 𝑌 𝑒 in each environment. However, for the stable predictor 𝑋𝑒3 , the
regression lines have the same slope and intercept in all three environments. For the environment-specific predictor
𝑋𝑒15, the regression lines have the same slope but differ in their intercepts. (C) StableMate variable selection plot.
StableMate takes as input the predictors 𝑋𝑒1 , . . . , 𝑋

𝑒
20 measured from the 900 samples across all environments, where

the environment index 𝑒 is known for each sample, and the response 𝑌 𝑒 for each sample. The variable selection
plot shows the prediction score (x-axis) and the stability score (y-axis) assigned to each predictor. Vertical and
the horizontal dashed lines represent the significance thresholds for prediction and stability respectively based on
bootstrap of selections, as defined in the Method section. The predictive variables are further labeled as stable (blue)
or environment-specific (red), where, in particular, 𝑋𝑒3 and 𝑋𝑒15 are both correctly labeled.

2 Results

2.1 Illustration of StableMate on toy example

We simulated 900 samples measured on 21 variables from three environments 𝑒 = 𝑒1, 𝑒2, 𝑒3, with
300 samples in each environment. Denote by 𝑌 𝑒 the response variable of interest we wish to predict.
We use the remaining 20 variables 𝑋𝑒1 , . . . , 𝑋

𝑒
20 as predictors (see Figure 1A). In particular, 𝑋𝑒3 is
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a causal parent of 𝑌 𝑒 and is expected to be stable, whereas 𝑋𝑒15 is a causal child of 𝑌 𝑒 and hence
is expected to be environment-specific (see details in Supplementary Methods Section 7.2.1). To
illustrate StableMate results we plotted 𝑌 𝑒 against 𝑋𝑒3 and 𝑋𝑒15 in Figure 1B. Here, 𝑋𝑒3 is stable in
the sense that its relationship with 𝑌 𝑒 can be described by the same linear equation for 𝑒 = 𝑒1, 𝑒2, 𝑒3,
whereas 𝑋15 is environment-specific as its relationship with 𝑌 𝑒 varies for different 𝑒.

Briefly, the StableMate procedure first pools samples from all environments to identify the
variables that are most predictive of the response regardless of the environment. Then, among these
predictive variables, stable and unstable (environment-specific) variables are further differentiated.
The variable selection results of StableMate can be summarised in Figure 1C, where every variable
is assessed in terms of prediction and stability. First, all variables with low prediction scores (in
gray) are filtered out. Second, among the predictive variables, we further differentiate between
those that are significantly stable, unstable or indeterminate. In this example 𝑋𝑒3 that expected to
be stable received the highest prediction and stability score whereas 𝑋𝑒15 that is expected to be
environment-specific received a high prediction score but the lowest stability score. We further
detail in the Method Section 4.2 how we defined these scores and significance thresholds.

We evaluated the ability of StableMate to accurately identify stable and environment-specific
predictors in a benchmark study where we compared our performance with existing approaches
including the original stabilised regression algorithm. Our results show that StableMate leads to
superior accuracy and computational efficiency, as detailed in Supplementary Figures S2,S1.

The next sections highlight the flexibility of StableMate to identify stable and environment-
specific predictors in different analytical settings. The different types of analyses are described in
Table 1.

2.2 StableMate identifies genes associated with ESR1 expression in
ER+ breast cancer using RNA-seq data

In this first case study, we used StableMate to identify genes and gene modules associated with
regulation of the ESR1 gene based on transcriptomic data. ESR1 is one of the marker genes
of the ER+ subtype of breast cancer (BC), characterised by the high expression of the estrogen
receptor (ER) (Johnson et al., 2021). We are interested in the association between ESR1 and other
genes across normal and ER+ samples. In particular, we expect that genes identified as stable for
predicting ESR1 expression are not confounded by disease status, suggesting close or potential
causal relationship with ESR1 in its transcriptional regulation. In contrast, genes identified as
disease-specific might be interacting with ESR1 indirectly, e.g, at the downstream of ER regulation
or by co-regulating with ER.

Data and StableMate setting. We used the publicly available BC gene expression (BRCA)
data from The Cancer Genome Atlas (TCGA, Weinstein et al. (2013)). We filtered the dataset to
retain 113 normal and 778 ER+ tumour samples.

Since we were interested in the regulation of ESR1, we set ESR1 as the response and all other
genes as predictors. We set the disease status (normal or ER+) as the environment variable, so that
we could identify stable genes, whose association with ESR1 did not change significantly between
normal vs. ER+ samples, and disease-specific genes, whose association with ESR1 significantly
varied significantly between disease status. In addition to identifying individual genes, we also
combined StableMate with principal component analysis (PCA) to identify stable and disease-
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Figure 2. StableMate selects genes from TCGA-BRCA dataset which predict ESR1 expression across
normal and ER+ samples. We used (A) gene expression or (B) principal components (PCs) of gene expression
as predictors. The stability score (y-axes) of a gene is a measure of how consistently this gene predicts ESR1
regardless of the disease status (normal or ER+). Stable and disease-specific genes/PCs are colored in blue and red,
respectively. (C) ESR1 expression (y-axis) against PC scores (x-axis). The correlation between ESR1 with the
highly disease-specific PC3 changed from positive to negative between normal and ER+ samples, whereas the sign of
the correlations between ESR1 and the stable PC1 and PC2 remained unchanged between normal and ER+ samples.
We analysed PC1 (i.e. the most important stable PC) and PC3 (i.e. the most important disease-specific PC) as
an example. (D) Gene ontology enrichment on the top 200 genes from PC1 (top) and PC3 (bottom) suggested
biological activities related to hormonal regulation and epidermis development, respectively. The predictive ability
and stability of PC1 suggest that ESR1 may directly participate in hormonal regulation, which is corroborated
by the knowledge that ESR1 is a transcriptional factor activated by the estrogen binding. (E) Reproduciblility
of StableMate results using external databases, GTEx for normal breast tissue and the METABRIC data from
cBioPortal for ER+ BC: ESR1 expression against the expression of the metagene defined by the top 200 genes
contributing to PC3 (i.e, linear combination of these 200 genes according to the loading vector of PC3) confirm the
opposite trends we observed in (C) of ESR1 against PC3 in normal and ER+ samples.5
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specific gene modules. Namely, we still took ESR1 as the response and disease status as the
environment variable, but we used metagenes (first a few PCs of all genes except ESR1) as
predictors. Then, we defined the stable and disease-specific gene modules as the the most important
genes of stable and disease-specific meta-genes.

StableMate selected genes proxy to ESR1 regulation. The StableMate variable selection
results are summarised in Figure 2A. Among the most stable genes predictive of the ESR1 expression,
CCDC170 and ARMT1 are the closest genes located to the upstream genomic region of ESR1
(Supplementary Figure S3A) and have been reported to fuse with ESR1 (Vitale et al., 2022). Their
proxy to ESR1 suggests that they might be subject to the same transcriptional regulation as ESR1,
thus explaining their stability. On the other hand, the STC2 gene was identified as disease-specific.
This might be explained by the fact that STC2 has been identified as a downstream target of the
ER signaling (Bouras et al., 2002; Raulic et al., 2008). In addition, the proximal promotor region
of STC2 is not directly subject to ER binding but is dominated by other transcriptional activities
such as hypoxia induced stress response (Law et al., 2008; Law and Wong, 2010). As a result, ER
signaling is indirectly involved in the STC2 activation (Raulic et al., 2008). This evidence supports
our hypothesis that STC2 and ESR1 should be indirectly or distally related in transcriptional
regulation as indicated by their environment-specific associations.

StableMate with PCA identified gene modules associated with ESR1. Feature selection
from transcriptional data is often followed by gene set enrichment analysis. While the stability
analysis on individual genes gave us some insights into the ER regulation here, it selected relatively
few genes as either stable or disease-specific - insufficient for statistically meaningful enrichment
analysis. To overcome this issue, we used the first 50 PCs of all genes (except ESR1) as predictors
for ESR1 expression rather than individual genes. In this context, each PC is a linear combination
of the expression of all genes except ESR1, and can be viewed as a meta-gene, which is useful for
quantifying the activities of gene modules (Langfelder and Horvath, 2007). Similar to our previous
analysis, disease status (normal and ER+) was set as the environmental variable.

The StableMate variable selection results are summarised in Figure 2B. PC1 and PC2 were
found to be highly stable and predictive, suggesting that the major source of variation they explain
(15.56% and 10.83% respectively) is closely related to the ER regulation. All subsequent PCs
up to PC6 were predictive but disease-specific. We considered the top 200 genes contributing to
PC1 (most stable) and PC3 (disease-specific) and conducted an enrichment analysis. Genes from
PC1 were mainly associated to biological processes related to hormone regulation (Figure 2C).
The ESR1 mediated estrogen signaling is at the center of hormone regulation, and hence the high
prediction ability and stability of PC1 is manifest. Genes from PC3 were associated with basal cell
like transcriptional activities in epidermis development. The top genes contributing to PC3 (see
details in Supplementary Figure S3B), included a high proportion of basal cytokeratins (BCKs),
such as KRT5, KRT7, KRT14 and KRT17, suggesting that PC3 may reflect the ‘basalness’ of
samples (Figure 2C). Interestingly, PC3 scores were positively correlated with ESR1 expression in
normal samples but negatively correlated with ESR1 in ER+ samples (Figure 2C). This trend was
also observed between the basal BC enriched genes (listed in Li et al. (2022)) and ESR1 expression
(Supplementary Figure S3C), confirming the PC3 characterisation of basalness.

To validate the reproducibility of our findings, we queried the gene expression portals GTEx
(Lonsdale et al., 2013) for normal breast tissue and the METABRIC data from cBioPortal (Cerami
et al., 2012) for ER+ BC. Our analysis using these external datasets showed similar trends between
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ESR1 and PC3 (Figure 2E). The negative correlation between BCKs (contributing to PC3) and
ESR1 expression may be explained by the fact that the BCK induction in ER+ BC requires low ER
expression (Li et al., 2022). However, to the best of our knowledge, no study so far has reported
that this correlation may turn positive in normal breast tissues.

2.3 StableMate discerns global microbial signatures for colon cancer
in multi-cohort metagenomics data

There has been considerable research interest in using fecal microbiome as biomarkers for colorectal
cancer (CRC). If successful, this non-invasive way of screening for CRC may reduce the mortality
rate through early intervention (Labianca et al., 2010; Sears and Garrett, 2014). By pooling fecal
metagenomics data from a large number of independent CRC–control studies, several meta-analyses
have been conducted to identify cross-cohort microbial signatures of CRC and to build predictive
models for its diagnosis (Dai et al., 2018; Thomas et al., 2019; Wirbel et al., 2019). However, these
analyses ignored the technical differences between cohorts, which could have confound their results.
We addressed this problem by conducting a meta-analysis based on StableMate using the cohort
as the environmental variable. In particular, we selected stable microbial signatures that make
consistent predictions of CRC across cohorts, as well as cohort-specific signatures that highlight
confounding factors in CRC prediction. Our results showed better prediction accuracy compared
to the methods used in these studies.

Data and StableMate setting. We retrieved eight CRC case-control fecal metagenomic datasets
from the R package curatedMetagenomicData (Pasolli et al., 2017). The datasets were generated by
eight different cohorts from seven countries (refer to Table 1 for the cohort used and for the number
of CRC and controls in each cohort). Data were curated into abundance data using a standardised
data processing pipeline by Pasolli et al. (2017). In total, we collected 604 CRC and 596 control
samples. Our analysis focused on the species abundance data measured on 313 microbial species.
The analysis of pathway abundance data measured on 431 pathways is detailed in Supplemental
Figures S4 and S6.

Since we were interested in the CRC diagnosis using metagenomics data, we set the disease
status (CRC or normal) as the response and the microbial species as predictors. We implemented
StableMate using the following two strategies. In a first analysis, we applied StableMate as in the
toy example (Section 2.1) and our first case study (Section 2.2), where all cohorts were pooled to
select predictive species and assessed their stability by setting cohort as the environment variable.
From this analysis, we found that the majority of the selected predictive species were stable and
none of them was cohort-specific. Therefore, in a second analysis, we applied StableMate on
each cohort to identify cohort-specific predictive species, and tested the stability of the species
selected in the remaining seven cohorts combined. There we considered only two environments: the
specific cohort and the remaining cohorts combined. These ‘cohort-specific analyses’ are useful for
identifying species that are highly predictive in a specific cohort but their association with CRC in
the specific cohort cannot be generalised to other cohorts.

StableMate identified stable microbial species predictive of colon cancer. From the
pooled analysis, we identified 23 stable species to predict disease status (CRC or normal) (Figure
3A). To assess these stable species, we compared the principal coordinate analysis (PCoA) using all
313 species versus the 23 stable species. The PCoA results combined with a permutation ANOVA
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Figure 3. StableMate meta-analysis of metagenomic data reveals key species predictive of CRC across
eight independent study cohorts. (A) StableMate variable selection plot of the pooled analysis. The majority
of highly predictive species were found stable and none was identified as cohort-specific. (B) Principal coordinate
analysis (PCoA) with samples coloured by either disease status (left column) or cohorts (right column). B1: using
all 313 species shared by all cohorts, regardless of their stability; B2: using only the 23 stable species selected by
StableMate. Permutation ANOVA 𝑅2 statistics on the first two principal coordinates is shown on the top-left corner
of each panel. The coloured bar at the bottom shows the composition of the total variance. When considering all
313 species, the cohort effect is much larger than the disease effect (almost negligible); with 23 species identified as
stable, the cohort effect is still present but smaller than the disease effect. (C) StableMate variable selection plot of
the Austria cohort-specific analysis (one of the eight cohort-specific analyses). Prevotella copri was found to be
an Austria-specific species for predicting CRC, since it has a high prediction score but a low stability score. Such
species are interesting for studying cohort-specific effects that may confound the CRC diagnosis.

showed that the main source of variation was the cohort effect rather than disease status (Figure
3B1) when all species were used. This implies that a predictive model built using all species is
likely to be affected by cohort (batch) effects. In contrast, the PCoA and ANOVA results of the
23 stable species selected by StableMate showed a decrease in cohort effects and an increase in
the effects of disease status (Figure 3B2). In particular, the CRC and normal samples were better
separated in the PCoA when using only the 23 stable species (left panel of Figure 3B2).

StableMate identified cohort-specific microbial species predictive of colon cancer. We
conducted cohort-specific analyses for each of the eight cohorts to identify predictors with high
cohort specificity. As an example, Figure 3C shows the results for the Austrian cohort. A number
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of species were found to be highly predictive in the Austrian cohort but with a very low stability
score, and therefore were identified as cohort-specific. Among them, Prevotella copri was the most
predictive and one of the most cohort-specific species, suggesting that Prevotella copri might be
a marker for CRC specific to the Austrian cohort only. It should be noted however, that diet
could be a confounder, as the Austria-specific species might be related to the low-fiber diet in that
population (see Supplementary Results 5.1 for details).

Pooling data improves generalisability of prediction models. Most of the predictive
species selected on the pooled data were stable (Figure 3A), whereas predictive species selected
in the individual cohorts showed less stability (Supplementary Figure S5). This is expected since
training regression models on pooled data can yield improved generalisability compared to training
on individual datasets as shown in the other meta-analysis studies (Dai et al., 2018; Thomas et al.,
2019; Wirbel et al., 2019). However, aside from pooling data, we were able to further improve
generalisability of prediction models by taking into account the cohort effect through stability
analysis. We conducted a benchmark study in Section 2.5, where we showed that the StableMate
model built using the stable species outperformed several commonly used regression methods in
the pooled analysis.

2.4 StableMate characterises cell identity transition of glioblastoma
associated microglia with scRNA-seq data

Glioblastoma (GBM) is the most invasive type of brain tumour that presents significant therapeutic
challenges. GBM harbors a heterogeneous tumour microenvironment dominated by Tumour-
Associated Macrophages (TAM) and microglia, which were recruited by GBM to promote tumour
growth, migration, recurrence and resistance to immunotherapy (Andersen et al., 2021). Since the
majority of TAM in GBM are thought to be derived from microglia (i.e. tissue-resident macrophages
in the brain) infiltrating the tumour, identifying key genes involved in this process could have
therapeutic potential.

In this case study, we analysed a single cell RNA sequencing (scRNA-seq) dataset of myeloid
cells at the periphery (migrating front) and the core of the GBM tumour. These locations represent
the start and the end points of the transition from microglia to TAM. We used StableMate to
extract the key genes involved in this transition, while taking location into account. Hence we were
able to investigate how does the transition differs between the locations and reveal location-agnostic
and -specific immune activities

Data and StableMate setting. From the scRNA-seq dataset from Darmanis et al. (2017) of
four GBM tumours, we extracted and analysed 1,847 myeloid cells from the tumor core (1,329 cells)
and from the tumor periphery (518 cells) with the cell annotation provided by the authors of the
study.

We visualised the scRNA-seq data and observed a clear cell trajectory between the two locations,
which may represent the celluar transition of microglia to TAM. We conducted a pseudo-time
analysis to quantify this trajectory, and used StableMate to predict as a response the pseudo-time
based on expression of the genes as predictors. The cell location, core or periphery, was set as the
environment variable. StableMate selected several cytokines as being predictive of the pseudo-time.
To further investigate the possible mechanism of these cytokines, we performed a second analysis
to build a gene regulatory network for these cytokines. More specifically, we applied StableMate
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Figure 4. Characterising transition of microglia cell identity from periphery to core in glioblastoma
tumour with scRNA-seq data. (A1) Sincast projection of the query single cells (crosses) onto a bulk RNA-seq
reference atlas of myeloid cells (dots) to assign cell identity. The cells from the tumour periphery were located close
to the reference fetal microglia, while the cells from the tumour core showed a transition towards the reference
monocytes and macrophages. (A2) is identical to (A1) except that cells are coloured according to Diffusion
Pseudo-Time (DPT), representing a cell state transition. StableMate was applied to select genes predictive of DPT,
where cell location (core and periphery) was set as the environmental variable. (B)-(F) The expression of the
cytokines was imputed based in Sincast. We identified several cytokines that are typical microglia activation and
polarisation markers, including (B) CCL3 and CCL4, which are stable and (C) TNF, IL1B, CCL2 and CSF1,
which are periphery-specific. (D) A gene regulatory network was built by running StableMate on each of the seven
response variables, namely DPT and six cytokines CCL3, CCL4, TNF, IL1B, CCL2 and CSF1 (represented as large
nodes). The aim was to select stable and predictive genes associated with each of these response variables. The cell
location was still set as the environment variable. An edge indicates that a gene is stable and predictive of a response
variable. We found that CCL3 and CCL4 were stable and predictive of DPT as a separate graphical community
than TNF, IL1B, CCL2 and CSF1, which were predictive but unstable of DPT. (E) The expression levels of MHC-II
molecule HLA-DOA and the macrophage marker MARCO. (F) The expression levels of large extracellular matrix
protein VCAN. MARCO, VCAN and HLA-DOA were all identified as core-specific. The up regulation of MARCO,
VCAN and the down regulation of HLA-DOA suggests a development of M2-like immunosuppressive macrophage.10
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on each of the cytokines as response and all other genes as predictors. We then summarised the
selection results in the form of a network, where the cytokines are connected to their stable predictor
genes.

Diffusion pseudo-time tumour periphery to core. We first visualised the myeloid cells
projected onto a bulk RNA-seq reference atlas of myeloid cells (Rajab et al., 2021) to assign the
identity of the cells. We performed this using Sincast (Deng et al., 2022) (Figure 4A1). The
projection showed that the cells from the periphery of the tumour closely matched fetal microglia
in the reference, and the cells from the core of the tumour matched a wider range of monocytes
and macrophages (Supplementary Figure S8A). The projection also showed a continuous state of
transition, rather than discrete clusters. We also confirmed the transition by a separate diffusion
map analysis in Supplementary Figure S8B. This exploration suggested that the data were suitable
for diffusion pseudo-time (DPT) analysis (Figure 4A2), where we set the cells at the tumour
periphery as the root (start) of the trajectory (Haghverdi et al., 2016). The inferred DPT was then
used as response for our first StableMate analysis described below.

StableMate analysis identifies cytokines that signify microglia pre-activation and
polarisation in tumor periphery. Among the genes selected by StableMate as predictive
of DPT, we identified six cytokines whose expression were all negatively correlated with DPT
(Supplementary Figure S8C). Amongst these cytokines, CCL3 and CCL4 were identified as stable
(Figure 4B), while TNF, IL1B, CCL2 and CSF1 were identified as periphery-specific (Figure
4C). The selection of the six cytokines are interesting as they are important markers of microglia
activation in response to disease (Jurga et al., 2020).

In order to visualise the relationships of these cytokines, we ran StableMate on each cytokine
as a response, where all the other genes were used as predictors, and built a gene regulatory
network (Figure 4D - DPT was included as a ‘pseudo gene’ here to incorporate the result from
the first analysis). This network showed that the two stable cytokines (CCL3 and CCL4) formed
a community with DPT, whereas the four periphery-specific cytokines (TNF, IL1B, CCL2 and
CSF1) formed another community.

Other stable genes predictive of DPT represented on this network include EGR2 and CD83
which were connected to both DPT and CCL3 (Supplementary Figure S8D). CCL3, CCL4, CD83
and EGR2 are all known to be associated with immediate early inflammatory response by microglia
in a pre-activated state, which are in between homeostasis to those fully activated under pathological
conditions (Kohno et al., 2014; Masuda et al., 2019, 2020; O’Donovan et al., 1999; Sinner et al., 2023;
Veremeyko et al., 2018). These four genes showed consistent down-regulation during the transition
regardless of cell location. On the contrary, the periphery-specific cytokines, which are known
markers for microglia polarisation to either the pro-inflammatory M1 or anti-inflammatory M2
phenotype (Jurga et al., 2020), exhibited stronger negative association with DPT in the periphery -
resulting in low expression levels, and weak association with DPT in the core. (Figure 4C).

Core-specific genes revealed reprogramming of tumour-infiltrating microglia into
immunosuppressive TAM in GBM tumours. The core-specific genes identified by StableMate
included two interesting cell surface markers: the marcophage marker MARCO and MHC class
II antigen HLA-DOA (Supplementary Figure S8C). MACRO was lowly expressed in the tumour
periphery but up-regulated along the DPT trajectory towards the tumor core (Figure 4E upper).
HLA-DOA expression levels had a low-high-low pattern along the trajectory, with high expression
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levels at the boundary of tumour periphery and core (Figure 4E lower, other MHC-II genes were also
examined in Supplementary Figure S8E). The up-regulation of MARCO and the down-regulation
of HLA-DOA towards the core may indicate the presence of MARCOℎ𝑖, MHC-II𝑙𝑜 macrophages,
which are characteristic of the M2-like immunosuppressive TAM (Georgoudaki et al., 2016; Wang
et al., 2011). In addition to these two cell surface markers, many pro-tumour markers were
also identified by StableMate as core-specific and showed similar expression patterns as MACRO
(Supplementary Figure S9A). One example is VCAN, which encodes a large extracellular protein
contributing to the establishment of tumour microenvironments (Figure 4F). The expression
patterns of these core-specific pro-tumour markers suggest that they responded specifically to the
tumour microenvironment and hence are potentially good therapeutic targets.

In addition, we examined the immune activation state of the cells at the beginning of the core
stage of the transition. We observed high expression of the stable cytokines CCL3 and CCL4
(Figure 4C), as well as the microglia marker TMEM119, which were all then gradually suppressed
in the core (Supplementary Figure S8F). This may imply the reprogramming of activated microglia
in the early stages of the core-transition to TAMs.

2.5 Benchmarking StableMate variable selection and prediction on
metagenomics data

We used the species abundance data from eight metagenomics studies of CRC described in Section
2.3 to benchmark the variable selection and prediction performances of StableMate (using logistic
regression model as the base model) against Generalised Linear Model (GLM with logistic regression
using all predictors), Lasso regression (Tibshirani, 1996) and random forest (RF, Breiman 2001).
To assess the prediction performance of these methods, we used a leave-one-dataset-out (LODO)
cross-validation strategy. That is, in each of the eight cross-validation iterations, we left out one
of the cohort and trained the different regression models using the other seven cohorts (based on
all 313 species). The left-out cohort was then used as a test dataset, on which the area under the
receiver operating characteristics curve (AUC) was calculated for each regression model. Since the
left-out cohort represents an unseen environment, regression models receiving higher AUC can be
considered as more generalisable. To assess the variable selection performance of StableMate, recall
that we have already applied StableMate to do a pooled meta-analysis as described in Section 2.3
and identified 23 stable species. We applied Lasso and RF to the same pooled data with eight
cohorts to select 23 species (for RF, we ranked all species by their importance scores in descending
order, and then selected the top 23). We use these three lists of species to build RF models and
assess their generalisability using LODO.

StableMate outperformed commonly used regression models in classifying CRC. The
LODO AUC values for all competing methods are shown in boxplots in Figure 5A. To illustrate
the benefits of using stable predictors to build regression models, we considered two versions of
the StableMate prediction model, one built using all selected predictive variables, the other using
only the stable predictors. To further investigate if the differences in AUC values were statistically
significant, we conducted a series of two-sided paired t-tests and the p-values of these tests are
shown on Figure 5A.

We first compared the performances of all methods except RF, since they all use variants
of linear models to make prediction, whereas RF is a nonlinear approach. From Figure 5A we
observed that the StableMate prediction using only stable predictors was significantly better than
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A B C

Figure 5. StableMate outperforms commonly used regression methods in prediction and variable
selection based on the colon cancer case study. (A) We used leave-one-dataset-out (LODO) cross-validation
to calculate area under the ROC curve (AUC, y-axis) and assess the generalisability of the classification when applied
to an unseen cohort. Paired t-tests compare the AUC values and adjusted p-values (Benjamini and Hochberg, 1995)
are shown . Each point presents the AUC value calculated on a left-out cohort. Methods include GLM: generalised
linear model (logistic regression), Lasso: Lasso logistic regression, RF: random forest and two versions of StableMate
(logistic regression), SM-Stab based stable predictors only and SM-Pred using all predictive variables. Among all
linear methods (all except RF), SM-Stab obtained the highest mean AUC (difference is statistically significant).
Compared to RF, SM-Stab had slightly lower mean AUC, but this difference was not statistically significant. Note
that RF is a more flexible non-linear classification method. (B) Venn diagram to compare the three lists of species
(each containing 23 species) selected by StableMate, Lasso and RF. StableMate and Lasso made similar selections,
with 20 species selected by both. The RF selection was quite different to the other two methods. Nine species
were selected by all three methods, all of which are known to be associated with CRC (Ternes et al., 2020). In
addition, two species, also known to be associated with CRC, were selected by both Lasso and RF but not by
StableMate. This is because these two species were not significantly stable as suggested by StableMate selection.
(C) Generalisability of six sets of species: top 23 species selected by StableMate (‘SM’), Lasso and RF, the 9 species
selected by all the methods (‘RF & Lasso & SM’), the 20 species selected by both Lasso and StableMate (‘Lasso &
SM’) and the 26 species selected by either Lasso or StableMate (‘Lasso | SM’). We built six RF classifiers using
these six sets of species and reported their AUC values (mean AUC on the x-axis). The stable species selected by
StableMate led to the the best RF model, with a higher AUC than RF trained with all 313 species in (A).

GLM, Lasso and StableMate using all predictive variables. Among these methods, GLM had
the worst generalisability. As GLM does not perform variable selection, the prediction model
potentially included many noisy features. Lasso’s selected variables led to poorer prediction
compared to the two variants of StableMate. The version of StableMate using only stable predictors
led to slightly higher mean AUC compared to StableMate using all predictive variables, with a
p-value indicating a significant difference. The superior performance of StableMate based on stable
predictors highlighted the benefits of using such type of predictors to build prediction models.

Finally, we observed that the AUC performance of StableMate based on the stable predictors
was indistinguishable from RF. This can be explained as StableMate only uses an ensemble
of stringent logistic models to make predictions (see Method section 4.2), whereas RF uses an
ensemble of nonlinear and highly flexible decision trees targeted for classification tasks. The notable
classification performance of RF motivated our second benchmark study below, in which we assessed
the generalisability of species selections by evaluating RF models built on these selections.
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Species selected by StableMate lead to more generalisable prediction models. We
applied StableMate, Lasso and RF to select three species lists, each containing 23 species. Figure
5B shows a Venn diagram that compares these three lists (see also Supplementary Figure S7A
for a more comprehensive comparison). The three lists included an overlap of nine species, all
of which are well-known species associated with CRC (Ternes et al., 2020). Among these three
methods, StableMate and Lasso shared 20 species, many more than with RF species selection.
For a quantitative comparison, we built RF models using six different selections of species and
computed their AUC using the LODO cross-validation approach. The results are summarised in
Figure 5C, where the 23 stable species selected by StableMate led to the highest mean AUC (0.818).
StableMate and Lasso selections had high AUC values, since their selections were similar. The
difference between StableMate and RF selections was not statistically significant, probably due
to a lack of cohorts and statistical power. However, the StableMate selection led to less variable
prediction performances (smaller interquartile range) compared to RF.

Of note, two species, Dialister pneumosintes and Parvimonas micra, were selected by Lasso
and RF but not by StableMate (Figure 5B). In particular, Parvimonas micra is known to be
associated with CRC as it promotes tumourigenesis (Chang et al., 2023; Zhao et al., 2022). However,
StableMate identified these two species as predictive but not significantly stable. The fact that
there was no improvement in prediction performance of RF trained on the StableMate selection
with these two additional species (comparing ‘Lasso | SM’ and ‘SM’ in Figure 5C) justifies why
StableMate did not select these two species.

A similar benchmarking analysis based on the pathway abundance data showed that StableMate
outperformed the other methods, including RF, in predicting CRC (hightest mean AUC, see
Supplementary Figure S6B). However, the pathway abundance data were less stable and less
predictive of CRC compared to the species abundance data. All methods obtained lower AUC
scores in LODO assessment. We observed strong differences in variable selections between the
cohorts and the methods (Supplementary Figure S6A, S7).

3 Discussion

The unbiased characterisation of a biological system requires a comprehensive understanding of
the relationships between biological variables. Current methods that infer biological relationships
attempt to define and identify statistical associations but often lack generalisability or biological
interpretability (Kang et al., 2021; Nguyen et al., 2021; Pratapa et al., 2020). We developed
StableMate, a new regression framework based on stabilised regression (Pfister et al., 2021) to
address these challenges.

StableMate selects stable and environment-specific (unstable) predictors of the response variable
to represent statistical associations across different technical or biological environments. Discern-
ing stability of associations allows us to make interpretable inference on biological relationships.
On the one hand, stable predictors suggest closer relationships with the response compared to
environment-specific predictors. On the other hand, environment-specific predictors are useful for
characterising the environmental differences on the biological system under study.

In the three case studies dealing with different types of cancer omics data, we showed that
StableMate brings novel biological insights. In the simulation study, we showed the benefit of using
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StableMate for better prediction accuracy and computational efficiency, and accuracy of variable
selection compared to existing methods.

In the first case study, we analysed RNA-seq data of breast cancer. Stability analysis allowed
us to identify genes and gene modules that directly or indirectly relate to ESR1 regulation.

In the second case study, we conducted a meta-analysis of eight metagenomic studies of colon
cancer. StableMate analysis revealed global microbial signatures that can make consistent prediction
of colon cancer regardless of the cohorts, as well as cohort-specific microbial signatures that can shed
light on confounders in colon cancer prediction. In this study, we also benchmarked the performance
of different existing methods in making cross-cohort predictions, showing that StableMate is highly
competitive. We noted that StableMate did not significantly outperform random forest, probably
due to either a small number of cohorts affecting statistical power, or because of the difference
between a linear logistic regression (StableMate) and a non-linear classification method (random
forest). This, therefore, also motivated our simulation study where we considered a continuous
response and generated enough repetition of experiments (Supplementary Figure S1, S2).

In the third case study we analysed scRNA-seq data of myeloid cells residing in the core and
the surrounding periphery tissues of glioblastoma. We first identified a trajectory of continuous
cell state transition between the cells at the two locations, then applied StableMate to identify
stable and location-specifc genes associated with this cell state transition. By analysing periphery-
and core-specific genes, we hypothesised that microglial polarisation seem to occur primarily in
the tumour periphery, and the reprogramming of microglia into pro-tumour TAM happens after
microglia infiltrate the tumour core. The stable genes exhibited consistent expression patterns in
both the locations, hence ubiquitously involved in the development of both the pro- and the anti-
inflammatory microglia.

In these case studies, the biological interpretation of the variable selections mainly focused
on significant genes or microbial signatures. However, further experimental validations could
hypothesise on the causal implication of stable predictors to the response.

StableMate is based on stabilised regression but implements a different algorithm for stochastic
stepwise variable selection to select stable and environment-specific predictors with higher com-
putational efficiency and accuracy. The stepwise framework of StableMate can be implemented
with different base regressors to address different regression problems, such as ordinary least square
regression and logistic regression, as we illustrated in our case studies. StableMate is available in R
and can flexibly implement user-defined regression methods. One such extension could for example
include non-linear regression methods, as well as penalised regression to avoid the pre-screening
step currently proposed in StableMate.

4 Methods

4.1 Data and preprocessing

A summary of the data and StableMate analysis from the case studies is presented in Table 1.

4.1.1 Breast cancer gene expression data

We analysed the RNA-seq dataset from The Cancer Genome Atlas Program (TCGA-BRCA) to study
the transcriptional regulation of ESR1 in ER+ breast cancer (BC), available from the R package
TCGAbiolinks (Colaprico et al., 2016). The dataset includes the expression quantification of 60,660
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Table 1. Summary of case studies. Sample break down per environment, response, predictors and the environment
variables are described for StableMate regression are described. We performed two types of StableMate analysis
based on how predictive variables were defined. In the first type, we pooled environments to select predictive
variables and assess their stability across environments. In the second type, we select predictive variables in each
environment and tested the stability of the predictor selected in the remaining combined environments. These two
types of StableMate analysis are referred to as pooled and environment-specific.

Data Samples Response Predictors Environment Used in

N = 1,207 =

113
normal samples +

P = 19,937
protein coding genes,

pre-filtered further see Section 4.2

Section 2.2
pooled StableMate analysis

(ESR1 vs genes)

Breast cancer RNA-seq data
from

The Cancer Genome Atlas
(TCGA-BRCA) 1,094

ER+ breast cancer samples

ESR1 gene expression

P = 50
principal components

learnt on the 19,937 genes
excluding ESR1

Disease status
(ER+ breast cancer

or
normal)

Section 2.2
pooled StableMate analysis

(ESR1 vs PCs)

Lonsdale et al. (2013)
RNA-seq data of

normal breast tissue from GTEx

N = 980
normal samples

−− −− −− Section 2.2
external validation

Curtis et al. (2012)
Microarray data of

breast cancer from METABRIC

N = 2,509
ER+ breast cancer samples

−− −− −− Section 2.2
external validation

N = 1,429 =

107 (61 control, 46 case)
samples from an Austrian cohort

(Feng et al., 2015) +

128 (54 control, 74 case)
samples from a Chinese cohort

(Yu et al., 2017) +

Section 2.3, 2.5
pooled StableMate analysis
(Disease status vs species)

114 (61 control, 53 case)
samples from a French cohort

(Zeller et al., 2014) +

125 (65 control, 60 case)
samples from a German cohort

(Wirbel et al., 2019) +

P = 313
species detected in all cohorts

Section 2.3
environment-specific
StableMate analysis

(Disease status vs species)

53 (24 control, 29 case)
samples from an Italian cohort A

(Thomas et al., 2019) +

60 (28 control, 32 case)
samples from an Italian cohort B

(Thomas et al., 2019) +

Section 2.5
pooled StableMate analysis
(Disease status vs pathways)

509 (251 control, 258 case)
samples from a Japanese cohort

(Yachida et al., 2019) +

Metagenomics studies of
colon cancer collected from

Pasolli et al. (2017)

104 (52 control, 52 case)
samples from US cohort
(Vogtmann et al., 2016)

Colon cancer incidence
(cancerous

or
normal)

P = 431
pathways detected in all cohorts

Study cohort

Supp 5.1
environment-specific
StableMate analysis

(Disease status vs pathways)

N = 1,847 =

1,329
cells from tumor core +

Diffusion pseudo time

Section 2.4
environment-specific and

pooled StableMate analysis
(DPT vs genes)

Darmanis et al. (2017)
scRNA-seq data of glioblastoma

518
cells from tumor periphery

Each of CCL3, CCL4
TNF, IL1B, CSF1, CCL2

gene expression

P = 23,368
protein coding genes,

pre-filtered further see Section 4.2

Cell location
(periphery

or
core) Section 2.4

pooled StableMate analysis
(Each cytokine vs genes)

Rajab et al. (2021)
Bulk transicriptional atlas of

myeloid cells

N = 901
myeloid cells

−− −− −− Section 2.4
for cell identify profiling
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genes on 113 normal samples and 1,094 BC samples. We focused on the log-Transcript-Per-Million
(logTPM) of 19,937 protein coding genes for analysis.

We used two other gene expression studies as validation: the microarray data of 2,509 BC
samples from the METABRIC cohort (Curtis et al., 2012; Pereira et al., 2016), available from
cBioProtal (Cerami et al., 2012) in the form of z-score relative to all samples (log), and RNA-seq
data of 980 normal breast samples from GTEx (Lonsdale et al., 2013) in the form of logTPM.

4.1.2 Colon cancer metagenomics data

We obtained nine CRC case-control studies of fecal metagenome from the R package
curatedMetagenomicData (Pasolli et al., 2017). We excluded two studies with a sequencing depth
lower than the average ten million reads per sample. The remaining studies included curated
microbial species abundance and pathway abundance data from seven different countries and eight
different cohorts: including 107 samples from Austria (Feng et al., 2015), 104 samples from the
United States (Vogtmann et al., 2016), 125 samples from Germany (Wirbel et al., 2019), 509
samples from Japan (Yachida et al., 2019), 128 samples from China (Yu et al., 2017), and 114
samples from France (Zeller et al., 2014), as well as two cohorts containing 53 and 60 samples from
Italy (Thomas et al., 2019). In total, all cohorts included 1,429 samples. We filtered the species
and pathway abundance data from each cohort down to 313 species and 431 pathways that were
detected across all cohorts.

To normalise the abundance data, we applied rank transformation by calculating the within-
sample ranking quantile of the abundance of each species (or pathway). A species ranked the 𝑞𝑡ℎ

most abundant in a sample is assigned the value (1 − 𝑞)/(𝑝 − 1), where 𝑝 is the total number of
species analysed. Therefore, the most abundant species of a sample has a rank transformed value
of 1 and the least abundant species a value of 0.

4.1.3 Glioblastoma single cell RNA-seq data

We analysed the glioblastoma (GBM) single cell RNA-seq (scRNA-seq) data from Darmanis et al.
(2017) who sequenced single cells sampled from four GBM patients at their tumour cores and
surrounding peripheral tissues. The raw and curated read count data included 3,589 cells measured
on 23,368 genes available from http://gbmseq.org/. We retained 1,874 cells of myeloid cell types,
including 1,329 cells sequenced from the core and 518 cells sequenced from the periphery for analysis.
We used the R package Seurat to log normalise the data and identify the most variable 2,000
genes with the FindVariableFeatures function (Butler et al., 2018). We then imputed the log
normalised data using Sincast imputation with default tuning (Deng et al., 2022) for StableMate
variable selection and single cell projection. Diffusion map and diffusion pseudotime learning was
performed on the original log-data (without imputation).

4.2 StableMate to identify stable and environment-specific statistical
associations

We developed a variable selection method based on the stabilised regression framework proposed
by Pfister et al. (2021), where the predictors and response are measured in different biological
environments. The goal is to select stable and environment-specific (unstable) predictors that
respectively make consistent and inconsistent predictions of the response across environments. A
final model is built on the stable predictors, and is generalisable to unseen environments.
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4.2.1 The original stabilised regression

Briefly, stabilised regression (SR) examines all possible subsets of predictors in a brute force search,
fits a regression function on each subset and evaluate the subset’s stability across environments
and its prediction ability. First, the stability of predictor subsets are constructed based on ei-
ther a Chow test (testing for equal regression coefficients of the predictors between regression
functions fitted in a specific environment), or a resampling approach. Subsequently, prediction
ability of stable subsets are evaluated based on negative mean squared prediction error combined
with bootstrapping to define a cut-off for selecting the most predictive sets. The importance of
each variable with respect to their stability, unstability, and prediction ability is then assessed
via frequency of selection. The final SR model is obtained as a weighted average of the regres-
sion functions fitted on the stable and predictive subsets (refer to Pfister et al. 2021 for more details).

We identified several limitations of SR in its current form.

• It is computationally infeasible to enumerate every possible subset of predictors in ‘omics
data where the number of predictors 𝑃 is very large (i.e, > 30). Pfister et al. (2021) proposed
the following solution: 1) pre-filter data to tens of predictors. Then from the pre-filtered
predictor sets, 2) randomly sample thousands of subsets to test for stability and subsequently
prediction ability. However, we argue that this solution is inefficient, as thousands of subsets
is not sufficient to represent the subset space of many predictors. A drastic pre-filtering is
therefore required but can result in filtering out important predictors.

• Identifying first the stable predictor sets, then assess their prediction ability is not efficient.
This not only because the stable and predictive sets are included in the predictive sets, as
we describe in Supplemental Methods 7.1.1, but also because stability is more difficult to
compute compared to prediction ability.

Because of these limitations, SR results lack both variable selection and prediction accuracy for
large datasets, as we highlight in our simulation (Supplemental Figure S1).

The StableMate approach StableMate addresses these issues by 1) implementing a greedy
rather than a brute force approach to select predictor sets based on an improved version of stochastic
stepwise regression (ST2*), which is a stochastic selector, 2) building a variable selection ensemble
using repeated ST2*, 3) pre-screening predictors before each ST2* using random Lasso to enable a
much larger starting set of predictors than SR, 4) identifying first the predictive variables, then
narrowing down to the stable predictors to be more efficient in the search, 4) developing the concept
of pseudo-predictor to benchmark ST2* selections. The full methodological details are available in
Supplementary Methods 7.1.3.

4.2.2 Main steps of StableMate

We summarise the main steps of StableMate, a more detailed algorithm is presented in Algorithm 1
in Supplemental Methods 7.1.3.

1. Depending on the type of analysis, a base regressor for ST2* is first specified, for example, we
used Ordinary Least Square regression for case studies in Sections 2.2 and 2.4 and Generalised
Linear Models in Section 2.3.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.09.26.559658doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559658
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. For each iteration 𝑘, 𝑘 = 1, . . . , 𝐾

(a) Apply random Lasso pre-screening, then add pseudo-predictor

(b) Run ST2* to select the most predictive predictor set denoted Spred
𝑘

.

(c) Run ST2*to select the stable predictors within Spred
𝑘

such that Sstabpred
𝑘

⊆ Spred
𝑘

.

3. Define importance score for prediction and stability.

4. Calculate significance cut-off scores to define stable, unstable and non-significant variables.

5. Fit the final ensemble regression model as weighted average of the fitted regressions on

Sstabpred
𝑘

.

4.2.3 Pre-screening predictors based on random Lasso

We first pre-filter predictors based on a random Lasso procedure. For each ST2* run (described
below), we randomly sample one half of samples to select the top 𝑝 predictors with Lasso (Tibshirani,
1996). As an example, we chose 𝑝 = 100 for Sections 2.2 and 2.4. The advantages are of two
folds. First, across the different resampling runs, the top 𝑝 predictors are expected to differ thus
enabling to cover a large and diverse range of predictors in our overall search. Second, we improve
the stability of Lasso pre-screening when subjected to sample perturbation (Meinshausen and
Bühlmann, 2010) (see more details in Supplementary Methods 7.1.6).

4.2.4 ST2*: a new stochastic stepwise variable selection procedure

We improved the ST2 algorithm proposed by Xin and Zhu (2012). ST2 is a stochastic version of
the classic stepwise variable selection. ST2 searches for a set of predictor maximising a particular
objective function to quantify the predictive ability or stability of predictor sets. It uses a greedy
approach with iterative forward and backward searching steps. ST2 starts with an initial predictor
set (which can be empty). In the forward step, a collection of predictor sets are randomly sampled
from predictors that are not included in the current model. The predictor set which yields the
largest increase of the objective function is then added to the current model. In the backward step,
a collection of predictor sets is randomly sampled from predictors that are included the current
model. The set which yields the largest increase of the objective function is then removed from the
current model. The forward and backward steps alternate until the objective function does not
improve further. However, the major drawback of ST2 is that it samples subsets of a fixed size
that is randomised at each step. If a wrong size is sampled, ST2 may stop prematurely, leading to
inaccurate variable selection.

In ST2*, we follow the ST2 algorithmic framework but we improved the procedure to sample
different predictor subset sizes at each step (refer to the Supplementary Methods 7.1.4 for a detailed
description of the ST2* algorithm.). We also added objective functions that are well suited to assess
prediction, and stability, namely, we used the Negative Bayesian Information Criterion (NBIC) and
Negative Prediction Sum of Squares (NPSS) (Supplementary Methods 7.1.5).

Finally, we run ST2* on 𝐾 iterations (for example 𝐾 = 2000 in our case studies) first to identify
the predictive subsets of predictors, second to identify the stable subsets within each predictive
subset. As a result, we select an ensemble of stable and predictive predictor sets. These iterations
address the stochastic nature of ST2* which can yield to potentially different predictor sets for each
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iteration. The sets of stable predictors are then used to build the final regression model (described
below).

4.2.5 Cut-off prediction and stability scores

We calculate a prediction score of each predictor based on how often the predictor is selected
as predictive across the ensembles. We do similarly for the stability score. The output can be
represented in a variable selection plot such as Figure 2A, where the scores are represented on the
𝑥-axis (prediction) and 𝑦-axis (stability).

To define a significance cut-off of these scores, we create a pseudo-predictor as a negative control.
A pseudo-predictor is represented as an artificial index 𝑃 + 1 so that its inclusion in the regression
model does not affect the model fitting nor the value of the objective function in ST2*, but it is
still taken into account when calculating the scores of all predictor sets.

We applied a bootstrap procedure on the variable selections to compare the distributions of
the prediction and stability scores of the predictors to that of the pseudo-predictor to assess their
significance. A predictor with a prediction score larger than the pseudo-predictor’s in more than
97.5% times of the bootstrap iterations is considered as significantly predictive. We do similarly for
the cut-off stability score. A predictor is considered environment-specific (unstable) it its stability
score is lower than that of the pseudo-predictor. Finally, the rest of the predictors is assigned as
‘Non-significant’, as shown in plot Figure 2A. Note that since these cut-off scores are based on
bootstrap of variable selections the significance indicates the variability in the ST2* selections, and
hence provide a reference on whether more ST2* runs need to be performed.

4.2.6 Final ensemble regression model generalisable to unseen environments

The final regression model is then built on the different sets of stable and predictive predictors.
Each regression model is fitted by regressing the response variable on each stable and predictive
subset in the ensemble. We then aggregate these models as the average of the fitted regression
weighted by the ranking of objective functions NBIC and NPSS.

4.3 Principal component analysis

We used the prcomp function from the R package stats (R Core Team, 2013) to perform Principal
Component Analysis (PCA).

Gene modules. PCA (centered but not scaled) was used to identify meta-genes in the form of
principal components that represent gene modules from the TCGA breast cancer RNA-seq data.
The meta-genes were then used as the predictors of ESR1 expression for the subsequent StableMate
analysis. To avoid overfitting, ESR1 was removed from the data.

Aggregation of gene expression with similar expression patterns. We applied PCA (not
centered nor scaled) on the set of genes, and extracted the loading coefficients of each gene on the
first principal component using a soft-thresholding approach to identify the top contributing genes
with loading coefficients of the same sign. We then considered the absolute value of the loading
coefficients of these top genes to obtain positive weights, which we then used for aggregating their
expression by a linear combination.
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4.4 Principal coordinates analysis

We used the cmdscale function from the R package stats (R Core Team, 2013) to perform Principal
Coordinates Analysis (PCoA). PCoA was performed on the combined colon cancer case-control
studies with classical multidimensional scaling on Euclidean distances between samples. We
calculated two distances matrices on either the 313 species of the full data and on the 23 species
selected by StableMate. Permutational Multivariate Analysis of Variance (PERMANOVA) was
then used to test the separation of the sample groups based on disease status, or cohorts. We used
the adonis function from the R package vegan (Oksanen et al., 2022).

4.5 Methods benchmark

We benchmarked the prediction performance of StableMate against other commonly used methods,
including Ordinary Least Square regression (OLS), Generalized Linear Model (GLM or logistic
regression), Lasso regression (Lasso, Tibshirani (1996)) and Random Forest (RF, Breiman (2001)).

The regression models were trained for the different benchmarking tasks described below on
the pooled data of training environments. For predicting continuous responses in the simulation
study, we used GLM Lasso with a Gaussian family. For binary classification of colon cancer in the
second case study, we used GLM Lasso with a binomial family. StableMate requires to specify the
different sample environments, while in RF samples were weighted according to the inverse of the
size of the environment each sample belongs to. Lasso penalties were tuned using cross-validation,
where each environment is used as a fold to minimize the averaged mean squared error. We used
the functions lm for OLS, glm for GLM, cv.glmnet from the package caret for Lasso (Kuhn, 2022)
and the R package randomForest for RF (Liaw and Wiener, 2002).

Simulation study. The benchmark results are shown in Supplementary Figures S2 and S1.
We simulated systems of variables observed from four environments. A system is a model that

describes the causal relationships between variables, and an environment is the probability distribu-
tion of variables that generates data. Therefore, a system of variables in different environments
are generated by different probability distributions but with the same causal relationships. The
simulations are described in Supplementary Methods 7.2.1. For each simulation run, a variable
in the system was randomly sampled as the response while the remaining variables were set as
predictors. The regression models were trained on data generated in the first three environments
to predict the response. The data of the fourth environment was used for testing.

Metagenomics case study (Section 2.3). We trained each regression model to predict colon
cancer disease status. We performed Leave One Dataset Out (LODO) cross-validation. We
considered either all 313 species, or 431 pathway abundances (no pre-filtering). In addition, we
also performed LODO validation to evaluate the performance of the RF models trained using the
different sets of predictors selected by either StableMate, Lasso and RF.

4.6 Diffusion map and diffusion pseudotime.

Diffusion map In case study 3 (Section 2.4) we visualised the scRNA-seq data using Diffusion
Map (DM), which is a non-linear dimension reduction method highly suitable for single cell data
with potential cell state transitions. DM learns transition probabilities between cells and projects
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cells into a lower dimensional Euclidean space that approximate the ‘diffusion distances’ between
cells accordingly. DM was run on the most 2,000 most variable genes of the log normalised data
using the R function DiffusionMap with default parameters from the package destiny (Haghverdi
et al., 2015).

Diffusion pseudotime. Diffusion pseudotime (DPT) inference was then applied following DM
learning (Haghverdi et al., 2016). The cell that has the largest DC1 score in the tumour periphery
was chosen as the root of the cell trajectory. (Figure S8B). The distance between the cumulative
transition probabilities of any cell with the root cell is defined as its pseudotime.

4.7 Sincast projection of scRNA-seq onto a reference atlas of myeloid
cells

We used Sincast (Deng et al., 2022) available at https://github.com/meiosis97/Sincast to
impute scRNA-seq data and to query GBM cell types and cell states. We queried the identity
of a specific subset of GBM cells, namely myeloid cells classified by Darmanis et al. (2017). The
reference myeloid atlas was from Rajab et al. (2021) who compiled bulk RNA-seq and microarray
data of myeloid cells from 44 independent studies. Sincast projects the query scRNA-seq cells onto
the atlas by calculating predicted principal components of the cells, that are then represented on
the PCA of the reference atlas. The result is a 3D PCA plot (i.e., Figure 4A) where we can infer
the identity of the query cells according to the biology of their surrounding atlas samples.

Sincast imputation. The log normalised scRNA-seq data were imputed using the sincastImp
function with its default parameters, where the imputation of any cell is cased on its nearest
neighbouring cells.

Sincast projection. Only the most 2,000 most variable genes of the query scRNA-seq data were
considered. The query data were projected onto the reference PCA atlas after rank transformation.
The projection is then reorganised and visualised via diffusion map.

Quantification of query cell identity. To quantify the identity of each query cell based on the
reference cell types, we used Sincast modified version of Capybara cell scores of Kong et al. (2022).
The approach is based on Weighted Restricted Least Square regression (Deng et al., 2022).
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5 Supplementary Results

5.1 CRC metagenomics meta-analysis: low fiber and high protein diet
can confound colon cancer prediction in the Austrian cohort

In traditional meta-analysis, we can identify cohort-specific species predictive on CRC in one cohort
but not in the others. However, this type of analysis limits comparisons of the selected species
across cohorts. In contrast, StableMate defines cohort-specificity in a more comprehensive way
by incorporating stability as a measure that quantifies the consistency of CRC-species association
pattern across cohorts.

As an example of Austrian-specific species with StableMate analysis, we identified Prevotella
copri and Bacteroides xylanisolvens, that are known to be associated with high-fiber non-Westernized
diet and function in fiber digestion (Figure 3C) (Despres et al., 2016; Yeoh et al., 2022). Notably,
Prevotella copri was the most predictive species but with a stability score close to zero. In the
Austria cohort, these two species were merely detected in normal samples but were dominant in the
CRC samples (Supplementary Figure S4). Interestingly, this pattern was not observed in the other
cohorts, especially In the Asian cohorts (Chinese and Japanese cohorts), these two species were
abundant in normal samples. Our observations were consistent with the common dietary habits of
the countries of the cohorts.

To further gain functional evidence on dietary effects on CRC prediction, we queried Austrian-
specific pathways using StableMate and identified the L-arginine biosynthesis III pathway that
is enriched in the Austrian CRC patients but not in the other cohorts (Supplementary Figure
S6A,D). The abundance of this pathway has been found to be potentially related to the intake of
protein-rich diet as an important source of L-arginine in human body other than self-production.
The Austrian diet is protein-rich, which could explain the low L-arginine synthesis activity observed
in the healthy individuals of the Austrian cohort (Supplementary Figure S6C).

Therefore, StableMate enables us to formulate a plausible explanation of the specificity in
the Austrian cohort, which may be attributed, in part, to the population’s relatively low daily
consumption of dietary fiber, as well as an increased fiber intake subsequent to a diagnosis of CRC.
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6 Supplementary Figures

A
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D E

Figure S1. Benchmark of StableMate in selecting truly stable and unstable predictors and in building
generalisable prediction models. To benchmark StableMate against stability regression (SR) in selecting truly
stable and unstable predictors, we simulated datasets with 50, 100 and 200 predictors, where the subsets of truly
stable and unstable predictors were known. For each choice of the number of predictors, 100 datasets were simulated
from a structural causal model, each comprising equal number of samples from four environments (see Supplementary
Methods 7.2.3). In all sub-plots, p-values of paired t-tests between StableMate and one of the competing methods are
represented by the number of asterisks ∗ (∗ : 𝑝 < 0.05, ∗∗ : 𝑝 < 0.005 etc.). (A) Area under the curve (AUC) values
for correctly selecting the stable predictors. According to the paired t-test results, StableMate had significantly
higher AUC values in all cases. (B) and (C): balanced accuracy, i.e. average of sensitivity and specificity, in
selecting stable and unstable predictors. According to the paired t-test results, StableMate had significantly higher
balanced accuracy in all cases.
To benchmark StableMate against the ordinary least squares (OLS) regression, SR, the Lasso regression and random
forest (RF) in building generalisable prediction models, we used the same simulated data. We trained the regression
model on three out of the four environments and tested on the fourth environment. (D) Negative mean squared
error for predicting in testing environments. According to the paired t-test results, StableMate outperformed all
competing methods with a significantly higher accuracy. (E) Computation times. StableMate was at least two times
faster to compute compared to SR.
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Figure S2. Benchmark of our proposed ST2* in selecting truly predictive variables, against stabilised
regression (SR) and stochastic stepwise selection (ST2). We simulated datasets with 50, 100 and 200
predictors, corresponding to the three columns above, where the subsets of truly predictive variables were known.
For each choice of the number of predictors, 100 datasets were simulated according to a structural causal model (see
Supplementary Methods 7.2.2 for details). For each dataset, ST2 and ST2* were run 100 times to build variable
selection ensembles. In all subplots, p-values of paired t-tests between ST2* and one of the competing methods are
represented by the number of asterisks ∗ (∗ : 𝑝 < 0.05, ∗∗ : 𝑝 < 0.005 etc.). (A) Area under the curve (AUC) values
for correctly identifying the predictive variables. Although the difference between ST2E* and ST2E was not large in
terms of the absolute values of AUC, the paired t-test results suggested that the AUC values of our ST2E* were
significantly higher the other two methods in all three cases. In particular, the superiority of ST2* over ST2 became
increasingly significant when the total number of predictors increased. (B) Mean negative Bayesian information
criterion (NBIC) across the ensemble of ST2* and ST2 for the further comparison of ST2* and ST2. Again, ST2*
outperformed ST2 in all cases by having significantly higher NBIC values. (C) Computation time in seconds. ST2*
and ST2 had comparable computation times. Both methods were significantly faster than SR.
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Figure S3. Breast cancer case study (Section 2.2). (A) UCSC Genome Browser view of ESR1 annotated by
GENCODE v43. StableMate identified ARMT1 and CCDC170 as stable. These two genes are the closest to ESR1
in the upstream genomic region of ESR1 and are subject to similar transcriptional regulation as ESR1. This may
explain why there were identified as stable predictors by StableMate. (B) Loading plots of the first and the third
principal components (PC1 and PC3) shown in Figure 2C. Genes were ordered, in descending order, by the absolute
value of their loading coefficients in each component (𝑥-axis), and the top 200 genes are coloured according to their
sign (positive in blue and negative in red). The names of the top 20 genes are shown. Genes dominating PC3
included multiple basal cytokeratins with positive loading coefficients, suggesting that PC3 is positively correlated
with basal cytokeratin expression. (C) ESR1 expression (left panel, similar to Figure 2C) and PC3 score (right
panel) against aggregated expression levels of basal BC signature genes, which were retrieved from Li et al. (2022).
The expression level of basal genes were positively correlated with ESR1 expression in normal samples and negatively
in ER+ breast cancer. Recall that we observed similar patterns between PC3 score and ESR1 expression in Figure
2C, suggesting that PC3 was associated with ‘basalness’ characteristics of the samples. The positive correlation
between PC3 and basal genes in the right panel further validated our hypothesis.
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Figure S4. Colon cancer metagenomics case study (Section 2.3). Boxplot showing the abundance of
Prevotella copri and Bacteroides xylanisolvens that were selected as Austrian-specific. These two species are known
to relate to fiber digestion, showing enrichment in the CRC samples of the Austrian cohort, but not in the Asian
cohorts.
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Figure S5. Colon cancer metagenomics case study (Section 2.3). Prediction scores of the selected species
predictive of CRC (rows). StableMate was applied to select species predictive of CRC on all eight cohorts/countries
combined, refered as ‘Pooled ’ in the first column, or on each separate cohort in the other columns. The rank of the
species selected as predictive is shown (low rank = high prediction). The last column (‘Mean’) averages the ranks
across all cohorts. Rows are ordered according to the Pooled column ranks. The stability score was calculated by
setting cohorts and the environment variable. Asterisks indicate stable species whose prediction on CRC is consistent
regardless of the cohort. The frequency of stability selection across each of the eight cohorts is indicated, showing
that species with high prediction scores in the pooled analysis were mostly stable and more frequently selected as
stable across individual cohorts.
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Figure S6. Colon cancer metagenomics case study (Section 2.3) on the pathway abundance data. (A)
StableMate selects metabolic pathways predictive of CRC. Annotation and interpretation of this figure is similar to
Figure 3B but indicate pathway names. Compared to Figure 3B, the prediction scores in the individual cohorts were
less consistent. (B) Benchmark of prediction performance with Leave One Dataset Out (LODO) cross validation,
similar to Figure 3C. StableMate outperformed the other methods with the highest mean AUC scores. (C) Boxplot
showing the abundance of L-arginine biosynthesis III pathway, which was selected as predictive in the Austrian
cohort, but was identified as unstable. L-arginine, which can either be synthesised by human body or be taken
from high-protein diet, was enriched in the CRC samples of the Austrian cohort, but not in the other cohorts. (D)
StableMate selection on CRC predictive pathway in the Austrian cohort only.
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Figure S7. Colon cancer metagenomics case study (Section 2.3): comparisons between StableMate,
Lasso and Random Forest (pooled data of all cohorts). (A) The top 50 predictive species were selected by
either StableMate, Lasso and RF and visualised in a heatmap where cells are colored and labeled according to their
selection ranks. Selected predictors were ranked according to stability and prediction scores for StableMate; their
order in entering the Lasso selection path for Lasso; importance scores for RF. Rows represent species and columns
represent methods, with the last column (labeled by ‘Mean’) depicts the average ranking across the three methods.
Rank 1 indicates that a species is selected as top predictor. (B) Similar to (A) for the pathway abundance data,
showing a lower consistency between methods compared to the species abundance data.
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Figure S8. Glioblastoma scRNA-seq case study (section 2.4). (A) Heatmap illustrating Capybara
quantification of cell identity based on a reference myeloid cell atlas (Rajab et al., 2021). Columns represent query
cells and were ordered from left to right by increasing DPT. Rows represent reference myeloid cell types. Peripheral
cells, which were located mainly at the start of the inferred trajectory, obtained high scores on microglia. The
identity of core cells were heterogeneously shared among monocytes, dendritic cells, macrophages and microglia.
(B) Data visualization using diffusion map, showing a continuous cell state transition from the cells at the tumour
pheriphery. (B2) correspond to (B1) and (A2) respectively, but cells are colored according to Diffusion Pseudotime
(DPT), illustrating a cell state transition. (C) Genes selected as predictive of pseudo-time (DPT) by StableMate
– illustrated in Figure 4A, where cells were pooled from both location (left panel), or were only from the tumour
periphery (middle panel) or the tumour core (right panel). Genes that were stable in the full data but unstable in
either location, such as TNF, were considered false discovery. (D) DPT (top) and the expression of stable cytokines
CCL3 (bottom) versus the expression of EGR2 imputed with Sincast. EGR2 is selected as a stable predictor for both
DPT and CCL3 by StableMate. (E) Expression levels of the genes that encode alpha-chains of MHC-II molecules,
including HLA-DOA, which was selected as one of the core-specific genes (imputed by Sincast). The MHC-II genes
displayed no correlation with DPT in the periphery and strong negative correlation with DPT in the core; (F)
Expression levels of microglia markers identified by Darmanis et al. (2017) imputed by Sincast. The expression
pattern of these genes was similar to that of HLA-DOA but with a large decrease in expression levels in the core.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.09.26.559658doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559658
http://creativecommons.org/licenses/by-nc-nd/4.0/


A2

A3

A1

B

Figure S9. Glioblastoma scRNA-seq case study (section 2.4). (A) StableMate was applied to select genes
predictive of DPT, where cell location (core and periphery) was set as the environmental variable. Four gene modules
were identified via hierarchical clustering. In the heatmap of the min-max transformed gene expression levels, cells
in columns are ordered according to pseudo-time, and genes in rows are only labelled if mentioned in the text. Left
margin highlights the major gene modules of the periphery-specific genes (tumor periphery predictive genes, (A1)),
the stable genes (consistently associated with DPT, (A2)) and the core-specific genes (tumor core predictive genes,
(A3)). The red dashed line indicates the DPT of the last peripheral cell. The stable genes in A2 can be clustered
into two major groups based on their correlation sign between their expression levels and DPT. The expression levels
of the periphery-specific genes were mostly negatively correlated with DPT in A1, whereas the expression levels of
the core-specific genes were mostly positively correlated with DPT in A3. (B) Aggregated expression levels of the
four predictive gene modules identified in (A). Genes were either ‘negatively stable’ (stable and negatively correlated
with DPT), ‘positively stable’ (stable and positively correlated with DPT), periphery-specific or core-specific.
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7 Supplementary Methods

7.1 StableMate: stabilised regression to identify stable and environment-
specific predictors

Stabilised Regression (SR) is a variable selection framework aiming at finding predictors that are
predictive of the response variables and stable across multiple environments, such that the resulted
regression model is generalisable to unseen environments (Pfister et al., 2021). In system biology,
an environment can refer to either a technical or biological condition, such as batch, disease state
or patient, under which the data are generated. It is also of interest to identify unstable predictors
that are predictive of the response, but their relationship with the response is not stable across
environments. We introduce StableMate, an SR framework which (1) selects and distinguishes
predictors with high predictive ability that are either stable or unstable; and (2) builds a regression
model based on the stable predictors that is generalisable to unseen environments.

7.1.1 Mathematical setting

Consider a set of environments E. In each environment 𝑒 ∈ E, observations are distributed as
(𝑋𝑒, 𝑌 𝑒), where 𝑋𝑒 = (𝑋𝑒1 , . . . , 𝑋

𝑒
𝑃
) denotes the 𝑃 predictors and 𝑌 𝑒 denotes the response.

We assume that, for each 𝑒 ∈ E, there exists a subset S ⊆ {1, . . . , 𝑃} such that

𝑌 𝑒 = 𝑓 𝑒S(𝑋
𝑒) + Y𝑒S ,

where Y𝑒S is a zero-mean noise term and where 𝑓 𝑒S represents the true relationship between the
response 𝑌 𝑒 and the predictors 𝑋𝑒S = (𝑋𝑒

𝑖
)𝑖∈S. Note that 𝑓 𝑒S does not depend on predictors outside

S and hence 𝑓 𝑒S(𝑋
𝑒) = 𝑓 𝑒S(𝑋

𝑒
S).

The goal of SR is to find the stable and predictive predictors of 𝑌 . Such predictors are defined as
members of the Stable Blanket (SB), denoted as Ssb, defined as the smallest subset S ⊆ {1, . . . , 𝑃}
of predictors that satisfy the following conditions. They are both

1. Generalisable: for any environments (𝑒, 𝑒′) ∈ E, we have 𝑓 𝑒S = 𝑓 𝑒
′

S ; and

2. Regression optimal with respect to all generalisable sets: S achieves the lowest pooled mean
square error among all generalisable sets, such that, for all predictor set S′ ⊆ {1, . . . , 𝑃}
satisfying the generalisable condition 1 above, we have∑︁

𝑒∈E
𝜋𝑒 E{𝑌 𝑒 − 𝑓 𝑒S′(𝑋

𝑒)}2 ≥
∑︁
𝑒∈E

𝜋𝑒 E{𝑌 𝑒 − 𝑓 𝑒S(𝑋
𝑒)}2,

where 𝜋𝑒 denotes the probability that an observed sample belongs to environment 𝑒.

The generalisable condition 1 requires that we use the same regression function 𝑓Ssb , independent
of 𝑒, to describe the relationship between 𝑌 𝑒 and 𝑋𝑒 across all environments (𝑒 ∈ E). The regression
optimal condition 2 requires that regressing 𝑌 𝑒 on predictor set Ssb yields the best prediction across
environments. The predictor set satisfying both conditions may not be unique, hence we define Ssb

as the smallest of such sets. The reader can refer to Pfister et al. (2021) for their discussion on
identifiability of SB and their relation to causal inference.
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We define the Markov blanket (MB), denoted as Smb ⊆ {1, . . . , 𝑃}. MB is the smallest subset
of predictors that is regression optimal with respect to all predictor sets, whereas SB is regression
optimal with respect to all generalisable sets. Hence SB is always a subset of MB, and the difference
of the sets Smb − Ssb is referred to as the non-stable blanket (NSB). NSB predictors are predictive
but not stable. They are useful to identify predictors whose relationships with the response change
across environments. In the main text, for simplicity, we refer to predictors in SB as ‘stable
predictors’ and those in NSB as ‘environment-specific predictors’.

7.1.2 The original SR algorithm

The goal of SR is two-fold: to identify SB and NSB, and to build a regression model that is
generalisable to unseen environments with SB. Motivated by the fact that SB is regression optimal
among generalisable sets, SR selects SB by identifying all generalisable sets first and assemble the
most predictive (regression optimal) ones to build a variable selection ensemble. An outline of the
SR algorithm is given below:

1. Conduct a statistical test for the generalisable condition on each predictor subsets S ⊆
{1, . . . , 𝑃}. Build an ensemble of generalisable subsets ℰgen that pass the test.

2. Conduct a statistical test for the regression optimal condition on each generalisable subsets
S ∈ ℰgen. Build an ensemble of generalisable and regression optimal subsets ℰgenopt that
pass the test.

3. An importance score (e.g, selection frequency) is calculated based on ℰ
genopt, for 𝑝 = 1, . . . , 𝑃,

to evaluate how stable and predictive each predictor 𝑝 is in terms of how well it satisfies
the generalisable and regression optimal conditions. A final estimate of SB is generated by
selecting predictors with the highest importance score.

4. A regression model is fitted using each S ∈ ℰgenopt. All models are aggregated (e.g., by taking
the average) into a final model for prediction.

5. Repeat step 1 to 3 multiple times, each time on a re-sample of data according to the method
proposed by Meinshausen and Bühlmann (2010). Probability of selection for each predictor is
calculated over repeated variable selections.

An estimate of MB can be generated analogously by building an ensemble of regression optimal
sets ℰopt identified without considering generalisability (i.e, let ℰgen = {1, . . . , 𝑃}2 in the above
procedure). The differences in the importance scores calculated based onℰgenopt andℰopt highlights
the predictors that are in NSB.

While the algorithm of Pfister et al. (2021) is statistically principled, it suffers from large
computational drawbacks. Generalisable sets are selected based on enumerating all possible subsets
of predictors. This can incur formidable computational cost even when the total number 𝑃 of
predictors is moderately large. To handle such cases, the authors suggested either to pre-screen the
predictors or to consider only some random subsets of certain sizes, thus effectively reducing the
number of predictor sets being considered. However, determining appropriate numbers and sizes of
predictor sets to examine requires prior knowledge, as well as a trade-off between computational
efficiency and accuracy. The selections resulting from random subsets are also highly variable – this
was addressed by incorporating stability selection that repeats the SR procedure and considers the
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averaged selections over several repetition (Meinshausen and Bühlmann, 2010) . However, stability
selection is also computationally intensive. These limitations hinder the wide applicability of SR in
biological data.

7.1.3 StableMate

We propose a highly flexible computational framework, StableMate, to improve the original SR
procedure. Instead of selecting SB by exhaustive testing predictor sets on the regression optimal and
generalisable conditions, we first use a greedy approach, namely an improved stochastic stepwise

variable selection (ST2*), to select the 𝐾 most predictive predictor sets Spred
1 , . . . ,Spred

𝐾
in MB

(Xin and Zhu, 2012). Then, we narrow down our search by identifying the stable and predictive

variables within Spred
𝑘

to obtain Sstabpred
𝑘

⊆ Spred
𝑘

, also using ST2*. This step is motivated by the
fact that SB must be a subset of MB. This greedy approach avoids enumerating each subset of
predictors. Selecting stable predictors in SB within the predictor sets MB also greatly reduces the
search space and thus improvse computational efficiency. Similar ideas of search space reduction for
finding stable predictors have been investigated in the domain of causal adaptation, e.g. Javidian
et al. (2021); Rojas-Carulla et al. (2018).

Summary of methodological contributions. We emphasize the major modifications that
distinguish StableMate from SR:

1. Variable selection method:

• SR: selects stable and predictive predictor subsets by performing statistical tests on the
regression optimal and generalisable conditions.

• StableMate: employs ST2* to search for a predictor set that maximize an objective
function quantifying stability or prediction ability.

• Improvement: avoids the ambiguity in deciding appropriate significant thresholds for
statistical tests, as well as the need of randomly sampling predictors subsets to test.

2. Ensemble building:

• SR: randomly samples predictor subsets to test, and constructs an ensemble by the
subsets that pass the tests.

• StableMate: uses ST2* as a stochastic selector, and builds an ensemble by repeating the
ST2* process.

• Improvement: follows as a consequence of changing variable selection method.

3. Order of selection:

• SR: selects stable predictor subsets first and then tests selected subsets for their prediction
ability.

• StableMate: runs ST2* to select sets of most predictive variables first, and then within
each predictive set, runs ST2* to select a stable and predictive set.

• Improvement: Stability is more difficult to assess compared to prediction ability since
the former involves an additional environment factor to consider. Therefore, StableMate
improves computational efficiency by reducing the search space of stable and predictive
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sets down from all predictors to predictive sets only. This modification is justified by
the fact that a stable and predictive set must be a subset of a predictive set.

Other than the differences listed above, we also contributed in developing ST2* based on ST2
originally proposed by (Xin and Zhu, 2012). We not only improved the accuracy of ST2 (Supple-
mentary Figure S2), but also introduced the concept of pseudo-predictor to create an automatic
benchmark for the selection of true predictors in ensemble learning (see the paragraph below and
also Supplementary Methods 7.1.4 for details).

Generating stable and predictive ensembles. To select the sets Spred
𝑘

and Sstabpred
𝑘

, we
developed a new version of stochastic stepwise variable selection ST2 from Xin and Zhu (2012),
which we refer to as ST2*. Similar to stepwise selection, ST2* runs a greedy algorithm to search the
subset of predictors maximising or minimising an objective function. Stochastic stepwise variable
selection is designed to actively avoid suboptimal solutions, hence addressing a known limitation of
stepwise selection. We postpone the description of our ST2* algorithm to Supplementary Methods

7.1.4 to first focus on how we use ST2* to generate ensembles of Spred
𝑘

and Sstabpred
𝑘

sets.

First, to select predictive sets Spred
𝑘

, 𝑘 = 1, . . . , 𝐾, we aim at maximising the objective function

denoted objpred, defined as the Negative Bayesian Information Criterion (NBIC) (see equation (10)
in Supplementary Methods 7.1.5). For the purpose of statistical inference, we propose to include
a pseudo-predictor indexed by 𝑃 + 1. This pseudo-predictor is purely nominal: its inclusion in a
regression model does not change the model fitting nor influences the objective function (see details
in Section 7.1.5). We run ST2* 𝐾 times to maximise objpred. Each iteration results in a predictor

set Spred
𝑘
⊆ {1, . . . , 𝑃, 𝑃+1}. Note that Spred

𝑘
may include the pseudo-predictor, which will be useful

for statistical inference. Since ST2* is stochastic, each run will result in a potentially different pre-

dictor set. We denoteℰpred = {Spred
1 , . . . ,Spred

𝐾
} the resulted ensemble of 𝐾 predictive predictor sets.

Next, for each 𝑘 iteration we use ST2* to select stable predictors within Spred
𝑘

by maximising

the objective function objstab defined as the Negative Prediction Sum of Squares (NPSS) (see
equation (11) in Supplementary Methods 7.1.5). This enables us to identify an ensemble of stable

and predictive sets ℰstabpred = {Sstabpred
1 , . . . ,Sstabpred

𝐾
}, where each Sstabpred

𝑘
⊆ Spred

𝑘
.

Importance scores. After obtaining the ensembles ℰpred and ℰ
stabpred, we evaluate the im-

portance of each individual predictor. For 𝑝 = 1, . . . , 𝑃 + 1, we define the importance score 𝜋pred𝑝

measuring the predictive ability of the predictor 𝑝 (without considering its stability yet) as

𝜋
pred
𝑝 =

∑𝐾
𝑘=1 rank(𝑠

pred
𝑘

)1(𝑝 ∈ Spred
𝑘

)∑𝐾
𝑘=1 rank(𝑠

pred
𝑘

)
, (1)

where 𝑠pred
𝑘

= objpred(Spred
𝑘

) is the NBIC obtained on the predictive set Spred
𝑘

, and rank(𝑠pred
𝑘

) is

the rank, in ascending order, of 𝑠pred
𝑘

among 𝑠pred1 , . . . , 𝑠
pred
𝐾

(ties are assigned a rank equals to

the average of neighbouring integer ranks). The importance score 𝜋pred𝑝 measures how frequent a

predictor 𝑝 is included in the Spred
𝑘

sets (large weights represent highly predictive sets).
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To measure the stability of each predictor 𝑝 within Spred
𝑘

, we then calculate the importance

score 𝜋stabpred𝑝 by considering both NBIC and NPSS, that is,

𝜋
stabpred
𝑝 =

∑𝐾
𝑘=1

{
rank(𝑠stab

𝑘
) ∗ rank(𝑠pred

𝑘
)
}
1(𝑝 ∈ Sstabpred

𝑘
)∑𝐾

𝑘=1

{
rank(𝑠stab

𝑘
) ∗ rank(𝑠pred

𝑘
)
} , (2)

where 𝑠stab
𝑘

= objstab(Sstabpred
𝑘

) is the NPSS obtained on the stable and predictive set Sstabpred
𝑘

,

and rank(𝑠stab
𝑘

) is the rank, in ascending order, of 𝑠stab
𝑘

among 𝑠stab1 , . . . , 𝑠stab
𝐾

.

As we consider the product of rank(𝑠stab
𝑘

) and rank(𝑠pred
𝑘

) to weight the Sstabpred
𝑘

sets, a predictor

𝑝 with a high score 𝜋stabpred𝑝 requires to be included more frequently in the Sstabpred
𝑘

sets with

both high prediction score 𝑠stab and high stability score 𝑠pred. Therefore, a direct measurement of

stability 𝜋stab𝑝 is obtained by adjusting 𝜋stabpred𝑝 by normalizing according to the predictive ability
of the predictor. We propose a measurement that is an analogy to conditional probability:

𝜋stab𝑝 = min

(
1,
𝜋
stabpred
𝑝

𝜋
pred
𝑝

)
. (3)

Intuitively, we measured the likely stability of predictor 𝑝 when 𝑝 is predictive. This score is output
in our variable selection plot.

Identification of the blankets MB, SB and NSB. We use a bootstrapping approach to
identify MB, SB and NSB by comparing the bootstrap distributions of the importance scores 𝜋stab𝑝

and 𝜋pred𝑝 for all predictors 𝑝 = 1, . . . , 𝑃, to the bootstrap distributions of the importance scores

𝜋stab
𝑃+1 and 𝜋pred

𝑃+1 of the pseudo-predictor. Predictors with 𝜋pred𝑝 significantly larger than 𝜋pred
𝑃+1 are

considered predictive and are hence included in MB. Predictors in MB with 𝜋stab𝑝 significantly

larger than 𝜋stab
𝑃+1 are considered as stable and predictive, and included in SB. Predictors in the

MB with 𝜋stab𝑝 significantly smaller than 𝜋stab
𝑃+1 are considered as unstable but predictive, and are

included in NSB. The remaining predictors are either considered outside the MB, or within MB
but their stability cannot be ascertained by data at hand.

More specifically, for 𝑏 = 1, . . . , 𝐵, where 𝐵 is the total number of bootstrap iterations, we

sample with replacement, 𝐾 indices from {1, . . . , 𝐾} and denote the resample as {𝑘(𝑏)1 , . . . , 𝑘
(𝑏)
𝐾
}. Let

ℰ
pred,(𝑏) = {Spred

𝑘
(𝑏)
1

, . . . ,Spred

𝑘
(𝑏)
𝐾

} and ℰ
stabpred,(𝑏) = {Sstabpred

𝑘
(𝑏)
1

, . . . ,Sstabpred

𝑘
(𝑏)
𝐾

} denote the 𝑏th bootstrap

resample of ℰpred and ℰ
stabpred, respectively. Then, for the predictors 𝑝 = 1, . . . , 𝑃, we define the

significance of stability based on the probability that 𝜋stab𝑝 > 𝜋stab
𝑃+1 as

𝜌stab𝑝 = 𝐵−1
𝐵∑︁
𝑏=1

1{𝜋stab,(𝑏)𝑝 > 𝜋
stab,(𝑏)
𝑃+1 }, (4)

where the 𝜋
stab,(𝑏)
𝑝 ’s are the bootstrap versions of the importance scores 𝜋stab𝑝 in (3). Similarly, we

define the significance of unstable 𝜌nstab𝑝 and of predictive ability 𝜌pred𝑝 of the predictor 𝑝 as in (4),

as the estimates of the probabilities of 𝜋stab𝑝 < 𝜋stab
𝑃+1 and 𝜋pred𝑝 > 𝜋

pred
𝑃+1 , respectively.
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Finally, a predictor 𝑝 with 𝜌pred𝑝 larger than a fixed significance threshold (e.g., 0.95) is selected

as a predictor in MB. If such predictor 𝑝 also has 𝜌stab𝑝 (𝜌nstab𝑝 ) larger than this threshold, then it
is selected as a predictor in SB (NSB respectively).

Final regression model. The identification of MB, SB and NSB is useful for interpreting the
role of the different predictors in the regression model. It is then natural to use the predictors in
SB to build a regression model that is generalisable to unseen environments. We use an ensemble
approach for this purpose. Let 𝑓Sstabpred

𝐾

denote the regression model fitted by regressing 𝑌 on

the predictor set 𝑋Sstabpred
𝑘

. Then, our aggregated model is defined as the weighted average of the

𝑓Sstabpred
𝐾

, that is,

𝑓 stabpred(𝑥) =

∑𝐾
𝑘=1{rank(𝑠stab𝑘

) ∗ rank(𝑠pred
𝑘

)} 𝑓Sstabpred
𝑘

(𝑥)∑𝐾
𝑘=1{rank(𝑠stab𝑘

) ∗ rank(𝑠pred
𝑘

)}
(5)

where the NBIC 𝑠
pred
𝑘

and the NPSS 𝑠stab
𝑘

and their rank rank(𝑠pred
𝑘

) and rank(𝑠stab
𝑘

) are defined as
in equations (1) and (2).

Another version of aggregated model 𝑓 pred is the model trained without considering stability,

defined by equation (5), but with {rank(𝑠stab
𝑘

) ∗ rank(𝑠pred
𝑘

)} and 𝑓Sstabpred
𝑘

replaced by rank(𝑠pred
𝑘

)

and 𝑓Spred
𝑘

, respectively. We compared the prediction performance of 𝑓 stabpred(𝑥) and 𝑓 pred(𝑥) in

Case study 2 (Section 2.3).

StableMate pseudo-code is presented in Algorithm 1.

Algorithm 1 StableMate

Require:
𝑌 ∈ R𝑁×1: response variable of 𝑁 samples;
𝑋 ∈ R𝑁×𝑃: matrix of 𝑁 samples and 𝑃 predictors;
𝑒: nominal vector of length 𝑁 specifying the environments;
ST2*: modified stochastic stepwise selection procedure (described in Algorithm 2);
𝐾: size of selection ensemble;
𝐵: number of bootstrap iterations;
objpred, objstab: objective functions (described in Supplementary Methods 7.1.5);

1: for 𝑘 = 1, . . . , 𝐾 do ⊲ Build ensemble ℰ
pred

2: Select Spred
𝑘
⊆ {1, . . . , 𝑃, 𝑃 + 1} using ST2* with objective function objpred

3: Fit regression model 𝑓Spred
𝑘

4: Calculate 𝜋pred𝑝 , 𝑝 = 1, . . . , 𝑃 + 1 as in eq. (1);

5: Build 𝑓 pred(𝑥) by aggregating 𝑓Spred1
, . . . , 𝑓Spred

𝐾

as in eq. (5);

6: for 𝑘 = 1, . . . , 𝐾 do ⊲ Build ensemble ℰ
stabpred
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7: Select Sstabpred
𝑘

⊆ Spred
𝑘

using ST2* with objective function objstab

8: Fit regression model 𝑓Sstabpred
𝑘

;

9: Calculate 𝜋stabpred𝑝 and 𝜋stab𝑝 for each 𝑒, 𝑝 = 1, . . . , 𝑃 + 1, as in eq. (2) and (3);

10: Build 𝑓 stabpred(𝑥) by aggregating 𝑓Sstabpred1
, . . . , 𝑓Sstabpred

𝐾

, as in eq. (5);

11: for 𝑏 = 1, . . . , 𝐵 do ⊲ Bootstrap
12: Sample ℰpred,(𝑏) and ℰ

stab,(𝑏) with replacement from ℰ
pred and ℰ

stabpred;

13: Calculate 𝜌pred𝑝 , 𝜌stab𝑝 and 𝜌nstab𝑝 , 𝑝 = 1, . . . , 𝑃, as in eq. (4);

14: Return {𝜌pred𝑝 , 𝜌stab𝑝 , 𝜌nstab𝑝 } for 𝑝 = 1, . . . , 𝑃; 𝑓 pred(𝑥); 𝑓 stabpred(𝑥)

7.1.4 ST2*: a new stochastic stepwise variable selection procedure

Our proposed ST2* plays an important part to select stable and predictive predictor sets, as we
describe in this section.

ST2* improves Stochastic Stepwise Variable Selection (ST2, Xin and Zhu (2012)) to fit into
the SR framework. Recall that a classical stepwise variable selection looks for predictor sets that
maximise some objective function obj, e.g., the Bayesian Information Criterion (BIC), in a greedy
search. It combines forward and backward steps iteratively. In a forward (respectively, backward)
step, we add (respectively, delete) one predictor at a time to the current model that best increase
the value of the objective function. The stepwise variable selection is complete when the objective
function is not longer improved.

While stepwise variable selection is scalable to high dimensionality, it fails to select important
predictors when they are highly correlated (Smith, 2018). This is a strong limitation in our case as
we expect some underlying causal and correlated structures of our predictors. ST2 was proposed
by randomly select a number of candidate predictor sets and then choose the best set to add to or
remove from the current model for each forward or backward step (Xin and Zhu, 2012). We refer
to candidate predictor set as a proposal and the number of predictors in a proposal as the proposal
size. For each forward / backward step, ST2 generates proposals of the same size. However, our
simulation studies showed that an ill-suited proposal size can cause ST2 to stop prematurely. We
therefore proposed a new ST2* procedure that randomises proposal sizes.

Proposal size sampling in forward selection in ST2*. Let S𝑝𝑜𝑜𝑙 be the predictor pool
wherein an optimal predictor set is searched, and S∗ the set of predictors in the current model. At
a forward step, we generate a proposal S+

𝑖
by sampling without replacement |S+

𝑖
| predictors from

S𝑐 = S𝑝𝑜𝑜𝑙 − S∗, the set of predictors not in the current model, for 𝑖 = 1, . . . , [+, where [+ denotes
the total number of proposals to generate at the current step (we will discuss shortly how to select
[+).

The proposal size |S+
𝑖
| is sampled from a shifted beta-binomial distribution

|S+𝑖 | ∼ Binomial(a+, 𝑝+) + 1 with a+ =
⌈
_ ∗ (𝑚 − |S∗ | − 1)

⌉
, 𝑝+ ∼ Beta(𝛼, 𝛽). (6)
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where a+ is the proposal size, 𝑝+ is the success probability of the binomial distribution, and _, 𝑚, 𝛽
and 𝛼 are hyperparameters:

• 𝑚 is a positive integer that satisfies 0 < 𝑚 ≤ |S𝑝𝑜𝑙 | and represents the maximum number of
predictors allowed in a model. If |S∗ | ≥ 𝑚, then we skip the current forward step to the next
backward step.

• _ is a fine tuning parameter with 0 < _ ≤ 1. We define a+ so that |S+
𝑖
| ≤ 𝑚 − |S∗ | – this

upper bound represents the maximum number of predictors that can be added when _ = 1.

• 𝛼 and 𝛽 control the shape and the scale of the beta distribution.

By default, we set _ = 0.5, 𝛼 = 1 and 𝛽 = 5 to allow for left skewed sampling of proposal sizes. Our
rationale is to propose small steps for local search, while allowing large steps with relatively smaller
probabilities to reduce the likelihood of local optimal. The choice of 𝑚 is data specific. We set
𝑚 = |S𝑝𝑜𝑙 |, which seemed to work well in our simulation and case studies.

Among the forward proposals S+1 , . . . ,S
+
[+ , we add the proposal to the current model that best

improve the objective function obj to complete the forward step.

Proposal size sampling in backward selection in ST2*. The backward step is described
analogously to the forward step. Briefly, we generate [− backward proposals S−1 , . . . ,S

−
[− by

sampling from S𝑐. The proposal size |S−
𝑖
| is sampled by

|S−𝑖 | ∼ Binomial(a−, 𝑝−) + 𝐶 with a− =
⌈
_ ∗ (|S∗ | − 𝐶)

⌉
, 𝑝− ∼ Beta(𝛼, 𝛽). (7)

where 𝐶 = max(|S∗ | −𝑚, 1) is the number of predictors that must be removed from S∗ as restricted
by 𝑚. If the model is empty and there are no more predictors to remove, we directly enter the next
forward step. Both backward and forward steps shares the same hyperparameters in eq. (6). Since
we cannot remove more predictors than those in the current model S∗

𝑖
, our definition of a− restricts

that |S−
𝑖
| ≤ |S∗

𝑖
| when _ = 1.

Number of proposals to sample in forward selection. To complete our ST2* procedure, we
need to determine how the total number of proposals [+ (forward step) and [− (backward step) are
selected.

The original ST2 performs a grid search to select a best [+, which is computationally intensive. A
small change in the tuning of [+ originally proposed by Xin and Zhu (2012) results in a large change
in [+. However, we found that in practice, ST2 was not very sensitive to the [+ value, as long as
it was not extremely large or small. This motivated our following heuristic approach for selecting [+.

ST2* chooses the number [+ of proposals at each forward step as

[+ =
⌈
𝑎 |S𝑐 |𝑡 + 𝑏𝐷+

⌉
with 𝐷+ =

a++1∑︁
𝛿=1

P+(𝛿) log

Ç
|S𝑐 |
𝛿

å
(8)

where P+(𝛿) is the probability of generating a proposal of size 𝛿 from S𝑐 (predictors not in the
current model), and a+ + 1 is the maximum size of the proposals that can be generated. P+(𝛿) and
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a+ are calculated as in eq. (6). The binomial coefficient
(|S𝑐 |
𝛿

)
represents the amount of unique

proposals of size 𝛿 that can be potentially generated. 𝐷+ is defined as a weighted average of the
logarithm of binomial coefficients. If proposals of size 𝛿 are more likely to be generated, then its
abundance influences more on 𝐷+ and hence [+. The more unique proposals are available, the
larger [+ is. In the extreme case where P+(𝛿 = |S𝑐 |) = 1, [+ = 1 is all we need for sampling S𝑐,
which corresponds to the only proposal available. If P+(𝛿 = 1) = 1, then each predictors in |S𝑐 | can
be generated as a unique proposal by itself. In this case, it would be better to make more than
one proposal. 𝑎 |S− |𝑡 defines a lower bound of [+ that can be flexibly tuned in case 𝐷+ becomes
too small due to the logarithm. 𝑎, 𝑏 and 𝑡 are new hyperparameters. We found in our simulation
studies that ST2* procedure worked reasonably well with 𝑎 = 1, 𝑏 = 1 and 𝑡 = 0.5.

Number of proposals to sample in a backward selection. Similarly to the forward selection,
we define [− as follows,

[− =
⌈
𝑎 |S∗ |𝑡 + 𝑏𝐷−

⌉
with 𝐷− =

a−+𝐶∑︁
𝛿=1

P−(𝛿) log

Ç
|S∗ |
𝛿

å
(9)

where P−(𝛿) is the probability of generating a proposal of size 𝛿 from S∗ (predictors in the current
model), a− +𝐶 is the maximum size of proposals that can be generated. We refer the calculation of
P−(𝛿) and a− + 𝐶 to eq. (7). We use the same parameters 𝑎, 𝑏, 𝑡 as in the forward selection.

We present the pseudocode for our ST2* procedure in Algorithm 2. Since some preliminary
filtering of predictors can be applied prior to ST2* – for example by using random Lasso as
we propose, we denote Spool the pool of filtered predictors. Recall that ST2* aims to select
S∗ ⊆ Spool to maximise some objective function obj. In StableMate (Algorithm 1), to build
ensemble ℰpred with ST2* , we set by default Spool = {1, . . . , 𝑃 + 1} when no predictor filtering is
needed (see Supplementary Section 7.1.6 otherwise); to build ensemble ℰstabpred with ST2*, we

have Spool = Spred
𝑘

, since each Sstabpred
𝑘

is restricted to be a subset of Spred
𝑘

, 𝑘 = 1, . . . , 𝐾.

Algorithm 2 ST2* stochastic stepwise selection

Require:
𝑌 ∈ R𝑁×𝑄: response matrix of 𝑁 samples and 𝑄 variables;
𝑋 ∈ R𝑁×𝑃: predictor matrix of 𝑁 samples and 𝑃 variables;
Spool ⊆ {1, . . . , 𝑃, 𝑃 + 1}: predictor pool where 𝑃 + 1 is the index of the pseudo-predictor;
S∗ ⊆ Spool: predictor set to be updated (e.g. S∗ = ∅ or S∗ = Spool);
𝑓 : regression model; for S ⊆ Spool, 𝑓S denotes the fitted model obtained by regressing 𝑋S on
𝑌 ;
obj: objective function;
Hyperparameters

𝑚: maximum model size
𝛼, 𝛽, _: for selecting proposal size, as in eq. (6)
𝑎, 𝑏, 𝑡: for selecting total number of proposals, as in eq. (8)

1: S𝑐 ← Spool − S∗; ⊲ Initialisation
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2: Fit the regression model 𝑓S∗ . If 𝑃 + 1 ∈ S∗ (including for any subsequent model), fit without
𝑃 + 1.

3: counter← 0 is the counter for unsuccessful updates;

4: while counter ≤ 1 do
5: If |S∗ | ≥ 𝑚, switch to backward step; ⊲ Forward step
6: Select number of forward proposals [+, as in eq. (8);
7: For 𝑖 = 1, . . . , [+, generate proposals S+

𝑖
⊆ S𝑐 with size |S+

𝑖
| determined as in eq. (6);

8: Fit 𝑓S∗+S+
𝑖
by adding S+

𝑖
to the current model 𝑓S∗ ;

9: Define 𝑖∗ = argmax𝑖=1,...,[+ obj(S∗ + S+𝑖 );
10: if obj(S∗ + S+

𝑖∗) ≥ obj(S∗) then
11: Update 𝑓S∗ ← 𝑓S∗+S+

𝑖∗
, S∗ ← S∗ + S+

𝑖∗, S𝑐 ← S𝑐 − S+𝑖∗ and counter← 0;
12: else
13: counter← counter+1;

14: If |S∗ | = 0, switch to forward step; ⊲ Backward step
15: Select number of forward proposals [−, as in eq. (9);
16: For 𝑖 = 1, . . . , [−, generate proposals S−

𝑖
⊆ S∗ with size |S−

𝑖
| determined as in eq. (7);

17: Fit 𝑓S∗−S−
𝑖
by removing S−

𝑖
from the current model 𝑓S∗ ;

18: Define 𝑖∗ = argmax𝑖=1,...,[− obj(S∗ − S−𝑖 );
19: if obj(S∗ − S−

𝑖∗) > obj(S∗) then
20: Update 𝑓S∗ ← 𝑓S∗−S−

𝑖∗
, S∗ ← S∗ − S−

𝑖∗ , S𝑐 ← S𝑐 + S−𝑖∗ , counter← 0;
21: else
22: counter← counter+1;

23: Return S∗, obj(S∗), 𝑓S∗

7.1.5 Objective functions in StableMate and definition of the pseudo-predictor

We define the objective functions in StableMate when using Ordinary Least Square regression as
the default regressor of ST2* for selecting stable and predictive predictor sets.

Denote S ⊆ {1, . . . , 𝑃 + 1} a predictor set where 𝑃 + 1 is the index of the pseudo-predictor. For
environment 𝑒 ∈ E, 𝑁𝑒 denote the number of samples observed in 𝑒 and 𝑁 =

∑
𝑒∈E 𝑁𝑒 denote the

sample size. Denote 𝑓 𝑒S the regression model fitted using data in environment 𝑒 and using S as

predictors. Denote 𝑓S the regression model fitted using data pooled across all environments and
using S as predictors.

The pseudo-predictor 𝑃 + 1 is an index that can be added or removed from S. When the
pseudo-predictor is included in S, the regression models are fitted on all predictors in S but without
the pseudo-predictor. However, we treat the pseudo-predictor as if it was used to fit the model,
similar to the other predictors in S. Therefore, the pseudo-predictor can be selected by ST2* but
does not influence the model fitting nor the objective function, which depends on S through the
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fitted model.

To measure the predictive ability of the predictor set S, we define the Negative Bayesian
Information Criterion (NBIC) objpred(S) for 𝑓S as

objpred(S) = 2L( 𝑓S) − | 𝑓S | log(𝑁), (10)

where L( 𝑓S) denotes the log-likelihood of 𝑓 , | 𝑓S | the model complexity and 𝑁 is the pooled sample
size. objpred attains the largest value when S is the Markov blanket of the response, hence this
criterion can be used to identify MB (see Supplementary Methods 7.1.1).

To measure the stability of the predictor set S, we define the objective function objstab(S) as
the Negative Prediction Sum of Squares (NPSS) of all 𝑓 𝑒S’s as

objstab(S) = −
∑︁
𝑒∈E

Å
RSS𝑒( 𝑓

−𝑒
S ) + RSS𝑒( 𝑓 𝑒S)

ã
, (11)

where RSS𝑒( 𝑓
−𝑒
S ) denotes the residual sum of squares from the regression function 𝑓 −𝑒S trained

without the environment 𝑒 to data observed in the environment 𝑒. A small RSS𝑒( 𝑓
𝑒′

S ) implies that

𝑓 −𝑒S is more generalisable to the new environment 𝑒. Hence if the predictor set S is truly stable

so that all 𝑓 𝑒S with 𝑒 ∈ E tend to be generalisable to other environments, then RSS𝑒 values will

be small and hence objstab(S) large. Since the within environment measure of predictive ability
RSS𝑒( 𝑓

𝑒
S) always decreases with increasing model complexity, we add this term in eq. 11 to ensure

that Sstabpred ⊆ Spred obtains the highest objstab(Sstabpred) at Sstabpred = Spred if there is no
environmental effect that perturbs the prediction.

We have extended these objective functions in StableMate for Generalized Linear Model by
replacing RSS in (11) by the sum of deviance.

7.1.6 Pseudo-predictors in Lasso pre-screening in StableMate

Since pseudo-predictors are indexes with no real form (as described in Supplementary Methods
7.1.5), Lasso selection is not applicable to them. Therefore, we included a pseudo-predictor in
all pre-filtered sets to calculate importance scores of selections as in equation (1). To benchmark
selections as in equation (4), the importance score of the pseudo-predictor needs to adjust for the
fact that the true predictors are pre-filtered but not the pseudo-predictor. Pseudo-predictors are
defined as predictors at the boundary of selections where they can be either selected or not. If
pseudo-predictors are selected by Lasso, they are expected to be selected with confidence similar
to the 𝑝th important predictor of Lasso, which is also at the boundary. Therefore, we propose
to downscale the importance score of a pseudo-predictor by multiplying it with the 𝑝𝑡ℎ largest
selection frequency of Lasso to mimic Lasso selection on that pseudo-predictor.

7.2 Simulation studies

We conducted simulation studies for the following purposes:

• To generate a toy example to illustrate the StableMate analysis in Section 2.1;
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• To compare the performances of 3 methods in selecting highly predictive variables, including
the new ST2* algorithm used in StableMate, the ST2 algorithm in Xin and Zhu (2012) and
the original SR algorithm in Pfister et al. (2021). The results are reported in Supplementary
Methods Section 7.2.2.

• To compare the performances of StableMate and the original SR algorithm in selecting stable
and environment-specific predictors. The results are reported in Supplementary Methods
Section 7.2.3.

• To compare the performances of StableMate, SR, ordinary least squares regression, Lasso
regression (OLS, Tibshirani 1996) and random forest (RF, Breiman 2001) in building regression
models generalisable to unseen environments. The results are reported in Supplementary
Methods Section 7.2.3.

7.2.1 Model and methods

As in Pfister et al. (2021), we simulated data from structural causal models to benchmark our
method. To construct an structural causal model, we first need to construct a directed acyclic
graph (DAG), which is a graph representation of the underlying causal structure of all variables.
Specifically in our setting, a node on DAG represents either a variable (a response and predictors)
or a source of environmental perturbation, whereas a directed edge between two nodes represents
the causal relations between them. Then, we simulate observations on each variable according to
the DAG structure.

To simulate a DAG with environmental interventions, we used a two-step procedure as follows.
Firstly, we use the rgraph function from the R package gmat to randomly generate a DAG. For our
regression analysis, we randomly choose a node (variable) as the response 𝑌 𝑒, with the remaining
variables as predictors 𝑋𝑒1 , . . . , 𝑋

𝑒
𝑃
. Then, to simulate environmental interventions, we add to the

DAG a set of exogenous nodes b1, . . . , b𝐸 (the number 𝐸 is proportional to the number nodes
in DAG; see Section 7.2.2), each randomly assigned as a parent of one of the predictor nodes.
These exogenous nodes simulate the environmental interventions exogenously influencing the causal
structure of the predictors. Given a DAG, we can then identify three sets of predictors, namely
the Markov blanket (MB), i.e. the predictive variables, the stable blanket (SB), i.e. the stable
predictors and the non-stable blanket (NSB), i.e. the environment-specific predictors. MB and SB
have been defined in Supplementary Methods 7.1.1 and NSB is the set difference between MB and
SB. For the relationship between the MB, SB and NSB and how to identify them on a given DAG,
see Pfister et al. (2021).

Given a DAG specifying the causal relations of variables and the environmental interventions,
as in Pfister et al. (2021), we simulate observations from Z𝑒 = (𝑌 𝑒, 𝑋𝑒1 , ..., 𝑋

𝑒
𝑃
, b𝑒1, . . . , b

𝑒
𝐸
) using the

following linear model
Z𝑒 = (𝐼 −𝑊)−1U𝑒,

where 𝐼 is a 𝑃 by 𝑃 identity matrix, 𝑊 is a weight matrix representing the causal structure specified
by DAG, and U𝑒 = (𝑈𝑌𝑒 ,𝑈𝑋𝑒1 , ...,𝑈𝑋

𝑒
𝑃
,𝑈b𝑒1 , . . . ,𝑈b

𝑒
𝐸
) is a multivariate normal random vector. Let

𝑈𝑒
𝑖
denote a generic element of U𝑒. We assume that

𝑈𝑒
𝑖 ∼
®
𝑁(`𝑖, 𝜎

2
𝑖
), if 𝑈𝑒

𝑖
is one of 𝑈𝑌𝑒 ,𝑈𝑋𝑒1 , ...,𝑈𝑋

𝑒
𝑃
,

𝑁(`𝑒
𝑖
, 𝜎2

𝑖
), otherwise.
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That is, the endogenous 𝑈𝑒
𝑖
’s are identically distributed across environments but the exogenous

ones have environment-specific distributions.
To simulate samples from environments 𝑒 ∈ E, we first generate the weight matrix 𝑊 = (𝑊𝑖, 𝑗)

and the distributional parameters `𝑖, `
𝑒
𝑖
and 𝜎2

𝑖
as follows. To simplify the notation, let 𝑍𝑖 and 𝑍 𝑗

denote two generic nodes. Then 𝑊𝑖, 𝑗 is defined by

𝑊𝑖, 𝑗 =

®
0, if there is no directed edge from 𝑍 𝑗 to 𝑍𝑖;

𝑤 ∼ 0.5Unif(−2,−0.25) + 0.5Unif(0.25, 2), otherwise.

Then, we generate

𝜎𝑖 ∼ Unif(0.1, 0.5), `𝑖 ∼ Unif(−3, 3),
`𝑒𝑖 ∼ 0.5Unif(−10,−2) + 0.5Unif(2, 10), for each 𝑝.

Once these parameters 𝑊 , `𝑖, `
𝑒
𝑖
and 𝜎2

𝑖
are generated, we treat them as deterministic and simulate

from U𝑒 for all 𝑒 ∈ E.
We keep only copies of 𝑌 𝑒 and 𝑋𝑒1 , . . . , 𝑋

𝑒
𝑃
as simulated data. The simulated environmental

interventions are discarded as they are not observable in practice.

7.2.2 Benchmark study for predictivity selection

In this section, we benchmark the performance of our ST2* algorithm in selecting predictive
variables, i.e. predictors in the underlying MB, in a single environment (i.e. no stability selection
is involved), against the ST2 algorithm in Xin and Zhu (2012) and the original SR algorithm in
Pfister et al. (2021).

We considered 3 DAGs with increasing number of nodes. In addition to 1 response, the first DAG
has 50 predictors, 30 environmental interventions and 10 percent of all possible edges connected;
the second DAG has 100 predictors, 60 interventions and 5 percent of all possible edges connected;
the third DAG has 200 predictors, 120 interventions and 2.5 percent of all possible edges connected.
From each DAG, we simulated 100 single-environment datasets each with 300 samples.

Both ST2 and ST2∗ are ensemble-based approaches and a key tuning parameter is the number
of selections (predictor sets) per ensemble. In our simulation study, we included 100 selections in
each ensemble. As for other tuning parameters, ST2∗ was run with the default parameters as in
Section 7.1.4, while ST2 was tuned so that its running time was approximately equal to the running
time of ST2∗. This is the computation of ST2 will be much more time-consuming if we use their
default parameters. To quantify the performance of SR, we used the stability selection strategy as
in Meinshausen and Bühlmann (2010) (see 7.1.2). That is, for each simulated dataset, we repeated
the SR procedure for 100 times. In each run, to reduce the high computational cost of SR, we did a
Lasso pre-screening to reduce the number of variables. In particular, for a dataset with 𝑃 predictors,
we pre-selected 𝑃/5 predictors as input to the SR algorithm. Then, the input predictors were
randomly subsampled 20𝑃 times to generate 20𝑃 predictor sets. The negative Bayesian information
criterion (NBIC) defined in Supplementary Methods 7.1.5 was used to assess the prediction ability
of each predictor set. Predictors within the sets that were founded significantly predictive (with
significance level 0.01) were viewed as an estimate of MB. This SR procedure of MB selection was
then repeated 100 times and a selection probability of each predictor was calculated.

To evaluate how accurately each method selected predictors in MB, we computed the area under
the curve (AUC) as follows. For ST2∗ and ST2, AUC were calculated based on the prediction score
defined by (1) in Section 7.1.3. For SR, the AUC was computed based on the selection probabilities
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returned by the stability selection procedure as described above. Since ST2 and ST2∗ had similar
performance measured by their AUC, we further compared them by the mean NBIC. The results
are summarised in Supplementary Figure S2, showing that ST2* was the most accurate method in
selecting MB among all three methods and it had higher efficiency to achieve the optimal NBIC
compared to ST2.

7.2.3 Benchmark study for stability selection and model generalisability

We first benchmark the performance of StableMate in selecting stable and environment-specific
predictors, against the original SR algorithm in Pfister et al. (2021). Then we benchmark the
performance of the regression model built by StableMate using stable predictors, against the original
SR algorithm, OLS regression, Lasso regression (Tibshirani, 1996) and RF (Breiman, 2001). From
each of the 3 DAGs described in Section 7.2.2, we simulated 100 datasets, each containing 1200
samples from 4 environments (300 samples per environment).

To implement StableMate, we used the default parameters as described in Section 7.1.3. SR was
implemented with Lasso pre-filtering as described in Supplementary Methods 7.2.2. After building
an ensemble of predictor sets with significantly high prediction ability, SR conducted a stability test
based on the Chow-test (Chow, 1960) with 0.01 significance level to build an ensemble of stable
predictor sets. Predictors within the stable predictor sets were selected as in SB. Predictors that
are in MB but not in SB were selected as in NSB. Again, we repeat this SB (or NSB) selection
procedure for 100 times, and a selection probability of each predictor was calculated.

As in Section 7.2.2, we benchmarked StableMate and SR selections for SB using AUC, this time
based on the stability scores (2) in Section 7.1.3 and selection probabilities of SB predictors. Since
StableMate does not generate selection importance scores for NSB predictors to calculate AUC for
selections, we compared instead the balanced accuracy of NSB selections (defined as the average of
sensitivity and specificity) between StableMate and SR.

Finally, to compare the prediction performance of StableMate to SR, OLS, Lasso and random
forest, we trained each method in the first three environments and computed the negative mean
squared errors of the fitted regression model applied to the fourth environment. We implemented
random forest using the R package randomForest with the default tuning parameters. The Lasso
regression was tuned with cross-validation. The results are summarised in Supplementary Figure
S1. From there we can see that StableMate and SR achieved superior prediction in unseen test
environments compared to the other regression methods. Furthermore, StableMate outperformed
SR, achieving higher prediction and variable selection accuracy with reduced computational cost.

52

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.09.26.559658doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559658
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Illustration of StableMate on toy example
	StableMate identifies genes associated with ESR1 expression in ER+ breast cancer using RNA-seq data
	StableMate discerns global microbial signatures for colon cancer in multi-cohort metagenomics data 
	StableMate characterises cell identity transition of glioblastoma associated microglia with scRNA-seq data
	Benchmarking StableMate variable selection and prediction on metagenomics data

	Discussion
	Methods
	Data and preprocessing
	Breast cancer gene expression data
	Colon cancer metagenomics data
	Glioblastoma single cell RNA-seq data

	StableMate to identify stable and environment-specific statistical associations
	The original stabilised regression
	Main steps of StableMate
	Pre-screening predictors based on random Lasso
	ST2*: a new stochastic stepwise variable selection procedure
	Cut-off prediction and stability scores
	Final ensemble regression model generalisable to unseen environments

	Principal component analysis
	Principal coordinates analysis
	Methods benchmark
	Diffusion map and diffusion pseudotime.
	Sincast projection of scRNA-seq onto a reference atlas of myeloid cells

	Supplementary Results
	CRC metagenomics meta-analysis: low fiber and high protein diet can confound colon cancer prediction in the Austrian cohort

	Supplementary Figures
	Supplementary Methods
	StableMate: stabilised regression to identify stable and environment-specific predictors
	Mathematical setting
	The original SR algorithm
	StableMate
	ST2*: a new stochastic stepwise variable selection procedure
	Objective functions in StableMate and definition of the pseudo-predictor
	Pseudo-predictors in Lasso pre-screening in StableMate

	Simulation studies
	Model and methods
	Benchmark study for predictivity selection
	Benchmark study for stability selection and model generalisability



