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Abstract
The relationship between hippocampal volume and memory
function has produced mixed results in neuroscience research.
However, an experience-dependent efficient encoding
mechanism underlies these varied observations. We present a
model that utilizes an autoencoder to prioritize sparseness and
transforms the recurrent loop between the cortex and
hippocampus into a deep neural network. We trained our
model with the Fashion MNIST database and a loss function
to modify synapses via backpropagation of mean squared
recall error. The model exhibited experience-dependent
efficient encoding, representing frequently repeated objects
with fewer neurons and smaller loss penalties and similar
representations for objects repeated equally. Our findings
clarify perplexing results from neurodevelopmental studies:
linking increased hippocampus size and memory impairments
in ASD to decreased sparseness, and explaining dementia
symptoms of forgetting with varied neuronal integrity. Our
findings propose a novel model that connects observed
relationships between hippocampus size and memory,
contributing to the development of a larger theory on
experience-dependent encoding and storage and its failure.
Keywords: Memory; Hippocampus; Autoencoder; Autism
Spectrum Disorder; Alzheimer’s Disease; Computational
models; ACT-R

The hippocampus is a region of the medial temporal lobe
that is critical for long-term memory storage and retrieval.
The size of the hippocampus can vary significantly between
individuals and these variations in size have been associated
with corresponding differences in memory function
(Pohlack et al. 2014; Hardcastle et al. 2020; Botdorf,
Canada, & Riggins 2022). The relationship between
hippocampus size and memory function, however, is
complex and not always straightforward. On one hand, there
is evidence that greater hippocampus volume is associated
with better memory function. For example, greater
hippocampus volume is associated with better spatial
memory performance in a laboratory task (Erickson et al.
2011; Guderian et al. 2015). Conversely, reduced
hippocampus size is associated with significant impairments
in long-term memory. For example, in frontotemporal
dementia and Alzheimer’s disease, neuronal loss results in
markedly reduced hippocampal volume, and the degree of

volume loss positively correlates with the severity of
amnestic symptoms (Dickerson et al. 2009).
The relationship between hippocampus size and memory

performance is also, at least partially, mediated by
experience. A notable case is the fact that London taxi-cab
drivers have larger hippocampi than the normal population,
likely due to the amount of information that cab drivers
need to memorize (“The Knowledge”) to pass the license
test (Maguire et al. 2000). In fact, a follow-up study
revealed that changes in hippocampus size follow, and do
not precede, the amount of studying necessary to pass the
test (Maguire, Woollett, & Spiers 2006). Similarly, changes
in hippocampus size correlate with an individual’s years of
education (Nobis et al. 2019).
An intuitively appealing explanation for these effects

might be that the hippocampus grows with the amount of
data it needs to, or can, store. Thus, pressure to store more
information results in the growth of the hippocampus, and a
reduction in hippocampal size results in loss of memory.
This simple explanation, however, is complicated by a
number of other findings. Reductions in hippocampus size
are observed in a variety of mental disorders, including
post-traumatic stress disorder (PTSD) and anxiety. In these
cases, significant reductions in hippocampal size are not
accompanied by corresponding changes in long-term
memory function (Karl et al. 2006). Conversely, larger
hippocampal volume has been observed in autism spectrum
disorder (ASD), where a corresponding increase in memory
function was not observed (Varghese et al., 2017). In fact,
evidence suggests that the prevalence of amnestic forms of
dementia in ASD is up to four times higher than the
neurotypical average, despite the fact that greater
hippocampus size could have represented a buffering factor
against neuronal loss (Fyfe, 2021). Thus, while it has been
shown that experience drives changes in hippocampus size,
changes have also been observed in clinical conditions
without corresponding changes in memory.
At least three possible explanations can be proposed to

reconcile these findings. The first and most mundane is that
changes in hippocampus size might not always reflect
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underlying changes in the number of hippocampal cells or
synapses. Virtually all of the studies assess hippocampal
size through anatomical MRI, and the sheer volume of a
region in an MRI scan can be affected by a variety of other
factors, such as greater water density (Bansal et al. 2013).
A second explanation is that two or more biological

mechanisms might be at play. Thus, while
experience-dependent growth following intense memory
training and dementia-related loss of memory function are
connected to the number of cells and synapses, changes in
other clinical domains might be related to other processes.
For example, prolonged stress exposure causes neuronal
death through the accumulation of cortisol. Thus, it is
possible that the volume loss in PTSD and anxiety are due
to cortisol-related pruning, which does not play a role in
dementia or ASD (Kim, Pellman, & Kim 2015).
The third and last explanation is that these varied

phenomena are indeed connected by experience-dependent
efficient allocation of hippocampal cells and synapses to
varying memory demands, but that this relationship is
complex and non-linear.
In this paper, we put forward a neurocomputational

framework that provides a possible account for the latter
hypothesis. According to this framework, the need to store
and retrieve memories demands an efficient allocation of
neural resources, and the principles underlying this
allocation can be understood in terms of information theory.
The remainder of the paper is structured as follows. First,

we review previous computational attempts to model the
relationship between memory function and hippocampus
size. Specifically, we review a model that explicitly links
resource allocation in the hippocampus to the information
entropy of its memories, and how entropy is altered in
PTSD. Second, we propose a possible neural network model
of how such changes could happen. The model, based on the
autoencoder architecture, shows that, under realistic
conditions, the hippocampus can spontaneously learn to
allocate neurons adaptively according to the demands.
Finally, we speculate on the implications of this mechanism
for two important memory-related phenomena, sleep, and
spontaneous brain activity,

Previous Models
To the best of our knowledge, the first computational

account of the relationship between memory demands and
hippocampus size was put forward by Smith et al (2021).
The authors proposed a mathematical model of memory
storage and retrieval based on information entropy.
The model is based on the framework originally proposed

by Anderson and Schooler (1991) and currently
implemented in the ACT-R architecture (Anderson, 2009).
According to this framework, each memory is a collection
of traces, each corresponding to a specific episode in which
the memory’s contents were encoded. This makes the model
broadly consistent with the Multiple Trace Theory of
memory (Moscovitch et al. 2005). The strength of each trace
decays over time according to a power function. The
memory’s total strength, or activation, is the log of the sum

of its traces. Thus, if a memory m is made of n traces
encoded at times t1, t2 … tn, its activation at time t is:

A(m,t) = log ∑i (t – ti)-d

where d is an individual-specific decay rate (Sense et al.,
2016; Zhou et al, 2021). Note that Equation 1 naturally
captures the effects of recency (through the decay term d)
and frequency (through the accumulation of traces). The
probability P(m) of retrieving a memory can be computed as
a function of its activation, relative to all other memories:

P(m) = e–A(m, t) / ∑j e–A(j, t) (1)
Smith et al. (2021) proposed that the distribution of

probabilities across memories could be used to predict
changes in hippocampus volume. The authors assumed that
the hippocampus would use efficient coding, and allocate
fewer resources to store information that is most likely to be
retrieved. This is a common principle in lossless
compression algorithms (Huffman, 1952). Consider, for
example, the problem of efficiently encoding the quote “All
those moments will be lost in time like tears in rain”. Using
standard ASCII coding, each character in the string would
be represented by 8 bits and the entire string would take a
total of 456 bits. To efficiently encode the string, however,
one would first count the occurrence of each character in the
string and then proceed to assign the shortest possible code
to the most common character, the second shortest to the
second, and so on. In this case, the letter “e”, “i”, and “l”,
which appeared six times each, would be assigned the
three-bit codes 001, 010, and 011, while the letter “k”,
which appears only once, would be given the six-bit code
101001. This would result in the entire string being encoded
with only 206 bits.
We currently do not know with sufficient precision how

information is encoded in the hippocampus. However,
independently of the specific code, the degree of
compression allowed by any adaptive scheme of this sort is
functionally related to the information entropy H of the data:

H = –∑i p(i) log p(i) (2)
Smith et al. (2021) showed that the reduced hippocampus

size in individuals suffering from PTSD could be predicted
by calculating the entropy of the retrieval probabilities
(Equation 2) associated with every memory in the model.
Specifically, when the model was modified to simulate
emotional trauma, the persistence of intrusive memories had
a significant effect on the probability distribution of the
memories that could be retrieved. The more likely the
intrusive memory was to be retrieved, the lower the entropy
of the model’s memory system, and as a correlate, the lower
the volume of the hippocampus.

Limits of the Model
The original model by Smith et al (2021) was noteworthy

but did not address a number of limitations. First, it
provided no biological mechanisms by which neurons could
be efficiently allocated to different representations. In fact, it
could not solve the problem of how the hippocampus could
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form an efficient engram without knowing in advance its
future activation level.
A second limitation of the original model was its scope: it

only addressed changes in hippocampal volume due to
PTSD. The same framework can be arguably applied to
anxiety, which shares with PTSD the transdiagnostic
symptom of intrusive thoughts that are ruminated upon. It
could be possibly extended to include experience-dependent
changes as well (such as the effects of education). It does
not address, however, other findings, such as the greater
hippocampus volume in ASD and the association between
smaller hippocampus size and memory loss in dementia.

A Neural Network Model of the Hippocampus
To address these limitations, we examined the behavior of

a neural network model of the hippocampus and conducted
a series of simulations to test whether (a) Efficient coding
spontaneously emerges in more biological models, and (b)
Whether the model can account for the diversity of findings
relating hippocampus size and memory function.1
The connections between the cortex and the hippocampus

form a recurrent loop. The exact set of synapses varies
slightly across regions; as an example, this paper will
consider the connectivity between the inferior temporal lobe
and the hippocampus. This specific circuit is well
understood and underlies memory for higher-level visual
objects, which will be used as experimental stimuli.
Projections from the inferior temporal cortex pass through
the entorhinal cortex and the dentate gyrus before reaching
area CA3 of the hippocampus, which is considered the
initial seat of an engram (Tonegawa et al., 2015).
During recall, memories are then reactivated in the cortex

(Danker and Anderson, 2010) through a series of
connections that originate in CA3 and progress through area
CA1, the entorhinal cortex again, and finally return to the
temporal cortex.

Figure 1: Architecture of the neural network model

1 All data and code are available at https://osf.io/wxh2r/

For convenience, this recurrent loop can be “unrolled”
and transformed into a feedforward deep neural network
with multiple layers. The first half of the model corresponds
to the neural populations encountered from the cortex to the
hippocampus, and the second half to the neurons
encountered from the hippocampus back to the cortex. In
this design, the cortex is both the input and the output of the
network, and the hippocampus is the central bottleneck.
This architecture is technically known as an autoencoder
(Kramer, 1991) and is used, in deep-learning applications, to
learn a set of features that would efficiently compress the
original input so that its output is minimally different from
its input. To a large extent, the application of autoencoders
can be construed as exactly the function of episodic memory
and, by extension, of the hippocampus.
The model’s final architecture is shown in Figure 1. Its

input is a 28×28 matrix that contains a visual representation
of an object. This representation is then flattened to a layer
of 784 neurons, which represents the object as encoded in
the inferior temporal cortex. This representation is passed
through a smaller layer of 512 neurons, representing the
entorhinal cortex, and an even smaller one of 384 neurons,
representing the dentate gyrus. It finally reaches a layer of
256 neurons that hold a compression representation of the
original content and stands for the hippocampus’ CA3 field.
The output of the hippocampus is then passed through a
mirror series of layers representing CA1, the entorhinal
cortex, and the temporal cortex again (784 neurons),
generating a reconstructed version of the original stimulus.
All of the neurons in the model are Rectified Linear Units
(ReLUs), with the exception of the very last layer, which
uses a sigmoid function to ensure that all of the predicted
pixel values are, like the inputs, between 0 and 1.
The model was used in five different simulations, each of

which addresses a different facet of the relationship between
hippocampus size and memory function.

Materials and Methods
Model Implementation
The model was implemented in Keras with an underlying

TensorFlow engine. In addition to those of Figure 1, the
model contains four additional layers that perform purely
technical operations such as reshaping inputs and outputs
and computing penalty terms for the cost functions (see
below); although necessary, these layers are not functionally
relevant. Altogether, the model has a total of 1,347,282
trainable parameters.

Training and Testing Data
The model was trained on a selection of objects from the

Fashion MNIST database (Xiao, Rasul, & Vollcraf, 2017), a
collection of 70,000 28×28 black-and-white images from 10
clothing categories. A subset of 1,111 images was randomly
selected at every run. The images were repeated with
varying frequencies across simulations (see below) but
always formed a training set of 4,000 stimuli.
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Model Training and Loss Function
In all simulations, the model was trained on all of the

training set items for five consecutive epochs using
stochastic gradient descent with adaptive moment
estimation (Adam: Kingma & Ba, 2014). We used a
combined loss function L that included two terms:

L = ∑i,o
N (yi – yo)2/N + λ∑ h∈CA3 |yh|

The first term is the accuracy cost of the network’s recall
function, and is the mean squared difference between the
activations yi and yo of each input neuron i and
corresponding output neuron o. The second term is the
resource cost and is the sum of the activation yh of each
hippocampal neuron h in the CA3 layer. (Note that the
penalty cost only interests the CA3 neurons). The
hyperparameter λ regulates the weight of the penalty and
was set to 0.00001 throughout these simulations; pilot tests
showed that the results did not qualitatively change for
different λ values, as long as λ was below a critical threshold
of 0.0001, above which the penalty became too severe.
Note that the resource cost penalty is equivalent to the L1

penalty used in regularization methods, such as LASSO
(Tibshirani, 1996). Unlike other penalties, the L1 penalty
can force its terms to zero, thus reducing the number of
active neurons within a representation.

Dependent Variables
For each of the 1,111 objects in the training set, four

dependent variables were computed. Two variables
measured the sparseness of the hippocampus representation:
the value of the resource cost L1 penalty and the total
number of active neurons (that is, with activation yh ≠ 0) in
the hippocampus The other two variables measured the
model’s recall accuracy, and they were the value of the error
penalty, i.e. the squared sum of differences between target
and predicted activations in the output layer, ∑i,o (yi – yo)2,
and the Pearson correlation coefficient between the encoded
and recalled image. Because of their constrained range,
correlation coefficients were normalized using Fisher’s
r-to-Z transform: Z = [log(1 + r) - log(1 – r)] / 2.

Results
Simulation 1: Emergence of Efficient Coding
In the first simulations, the set of 1,111 objects was used

to create a 4,000-item training set in which different objects
were repeated with different frequencies. Specifically, 1,000
objects occurred only once; 100 objects occurred 10 times,
10 objects occurred 100 times, and a single image occurred
1,000 times. If the model is learning a form of efficient
coding, the internal hippocampal representation of an object
should depend on its frequency in the training set, and,
therefore, objects that are repeated the most should have
representations with fewer neurons and smaller L1 penalties
than objects that are repeated the least.
Figure 2 illustrates the results of one such simulation. The

top row shows four example objects from one specific
simulation, chosen from the sets of stimuli repeated 1, 10,

100, or 1,000 times, respectively. The middle row represents
the corresponding responses of the simulated CA3 layer,
with the activations of its 256 neurons arranged in a 16x16
grid. The dependent variables for hippocampus sparseness
(L1 penalty and number of neurons) are also reported.
Finally, the bottom row depicts the recalled memory.

Figure 2: (Top) Four example stimuli that were repeated 1,
10, 100, or 1,000 times in the training set. (Middle)
Corresponding CA3 representations of the stimuli; (Bottom)
Recalled stimuli reconstructed by the decoder from the CA3
representations.

Although representative, Figure 2 only illustrates four
examples from a single run. A complete overview of all
simulations is instead reported in Figure 3, where the mean
L1 penalty and the mean number of neurons are reported as
the blue lines in the two panels. As the figure shows, higher
frequency results in a dramatic reduction in the number of
neurons needed to represent an object.
This change in representation has no consequences for the

model, which has a fixed and immutable structure in which
all synapses exist all the time, even when they are connected
to silenced neurons. In a biological hippocampus, however,
synapses and neurons change over time: synapses with a
value of zero do not exist, and those connected to mute cells
would simply be pruned. Thus, the sparse representations in
Figures 2 and 3 could be associated with a smaller
hippocampus size.
But how closely does the reduction in the CA3

representations match the predictions of information theory?
According to Huffmann (1952), efficient codes are such that
the length of a code for an object x matches its information
content I(x), which is the negative log of its probability: I(x)
= –log2 p(x). The value of p(x) can be calculated from the
number of occurrences of stimulus x in the training set.
Figure 4 compares the relationship between the number of
neurons used to encode an object in the CA3 layer and its
corresponding information content. As the figure shows, the
number of neurons closely mirrors (r = .97) the information
content, a hallmark of efficient coding.
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Figure 3: A summary overview of sparseness metrics (left:
L1 penalty; Right: Number of neurons) across stimuli of
different frequencies, averaged over 50 simulations. Colors
represent different model conditions (Blue = Sparse; Red =
Non-Sparse; Green = sparse with an unbiased training set).
Lines and ribbons represent means +/- SD.

Figure 4: Relationship between the number of neurons that
encode a stimulus (blue line and ribbon, representing mean
+/- SD) and its information content (red line).

Simulation 2: Frequency Drives Efficient Coding
To ensure that the effect is driven by frequency and not by

other confounding factors, a second series of simulations
were run. In these series, the model was trained with a
dataset of identical size (4,000 items) and containing the
same 1,111 objects but with an unbiased number of
repetitions per object, i.e., with each object being repeated 3
or 4 times.The results of these simulations are shown as the
green line in Figure 3. Under these conditions, both the L1
penalty and the number of neurons remain invariant and
equal to the values of the least-frequent memories in
Simulation 1. Note that, for the unbiased training model, the
frequencies on the x-axis do not actually reflect the
frequencies of the simulation training set; instead, they are
used to identify the corresponding group of objects in
Simulation 1.
The results of this simulation could be used to explain the

increased hippocampal volume in London taxi cab drivers
compared to bus drivers (Maguire et al., 2006): as noted by
Smith et al. (2021), taxi cab drivers, unlike bus drivers, have

to rehearse the streets of London with comparable frequency
to prepare for the license test.

Simulation 3: Enlarged Hippocampus in ASD
In the model, sparseness is achieved by adding a penalty

to the loss function. In a biological network, however,
sparseness must be achieved through some neural
mechanism. The most straightforward candidate is lateral
inhibition, that is, inhibitory synapses between neurons
belonging to the same region. Inhibitory synapses typically
express GABA receptors, and abnormally low expression of
GABA receptors is a key characteristic of ASD (Cellot &
Cherubini, 2014), one of the disorders also characterized by
abnormalities in hippocampus size. Recent studies estimate
that individuals with ASD express as much as 40% fewer
GABA receptors than healthy controls. Thus, we
hypothesized that the reduced availability of GABA
receptors in ASD may lead to a decrease in lateral
inhibition, resulting in less efficient coding and thus the
larger hippocampus observed in ASD.
To test this hypothesis, a series of simulations were

carried out using the biased training set but with the λ
parameter set to λ=0, allowing for a minimum amount of
sparseness based solely on the thresholds of the ReLU units.
The results of the simulations with such a Non-Sparse
model are shown in the red lines of Figure 2. As it can be
seen, without the resource cost penalty, the model now uses
a disproportionately large number of neurons and incurs in
large L1 penalties. Furthermore, both measures remain
remarkably stable even when encoding extremely
high-frequency stimuli, indicating that the hippocampus is
not using efficient coding.

Simulation 4: Hippocampal Damage in Dementia
As noted in the introduction, some reductions in

hippocampus size are associated with distinctive deficits in
memory. This is the case, for example, of neurodegenerative
diseases such as Alzheimer’s Disease. In these cases,
neuronal loss afflicts long-term memory by harming the
engram associated with a specific memory.
To simulate the effects of dementia, we ran a fourth series

of simulations, identical in nature to Simulation 1 but with
an additional manipulation. After completing the training
phase, the model’s hippocampus was artificially damaged
by applying a binary mask to the activation of its units.
Binary masks were generated by creating a null vector of
256 elements, and randomly setting a percentage of its
elements to 1. The proportion of units set to 1 represents the
neuronal integrity of the hippocampus and was
parametrically varied from 0.1 to 0.9. After every simulated
lesion, the model’s recall was tested again, and the two
accuracy measures (squared recall error and recall
correlation) were recorded. Figure 5 illustrates these results.
Interestingly, and consistent with the observed symptoms

of dementia, less frequent memories are more affected, even
at higher levels of neuronal integrity, than the more frequent
ones, which remain comparatively well preserved even at
lower levels of neuronal integrity.
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Figure 5: Effects of neural damage on recall accuracy. Lines
and ribbons indicate means +/ SD.

Simulation 5: Interactions Between ASD and
Neurodegenerative Disorders
Although ASD per se is not associated with notable

changes in long-term memory function, it has been noted
that dementia has a higher prevalence in individuals with
ASD than in neurotypical controls (Fyfe, 2021). The results
of Simulations 3 and 4 suggest that an additional advantage
of efficient coding of memories is to buffer against neuronal
death. Conversely, the less sparse memory representations in
ASD might be more susceptible to damage from neuronal
loss, thus explaining the greater prevalence of dementia in
ASD. To test this hypothesis, we conducted a second series
of lesion simulations, identical to the ones in Simulation 4
but with the model’s λ parameter set to λ = 0. Because we
are especially interested in the earlier stages of
neurodegenerative disease, only the neuronal integrity
values from 0.5 to 0.9 were examined. The results are
summarized in Figure 6. As the figure shows, the
Non-Sparse model is consistently more affected than the
sparse model by damage, across all levels of stimulus
frequency and neuronal integrity.

Discussion
This paper has dealt with the relationship between

hippocampus size and memory functions across clinical and
neurotypical populations. Specifically, it has shown that
some puzzling findings in the literature can be reconciled
when one analyzes the behavior of a neural network model
of the hippocampus whose loss function includes a resource
cost. The resource cost penalty induces sparseness in a form
that is consistent with the principles of efficient coding and
with the idea, first proposed by Smith et al. (2021), the
hippocampus size reflects the information content of the
stored memories. These contributions notwithstanding, a
number of limitations must be acknowledged. First and
foremost, the model uses an autoencoder architecture, while
hippocampus models are more commonly implemented as
autoassociators (e.g., Treves & Rolls, 1994).

Figure 6. The Z-scored recall correlation coefficients of
Sparse (blue) and Non-Sparse (red) models. Line and
ribbons indicate means +/- SD.

As a consequence, the model requires error-driven
methods to learn properly and is incapable of “one-shot”
Hebbian learning. Autoencoders were chosen because they
make it easier to capture the dynamics of encoding and
recall and the relationship between cortical areas and the
hippocampus. A proper model, however, should attempt to
combine both architectures and include principles of
auto-associative Hebbian learning with the hippocampus.
Second, a number of factors that affect the model’s

memory recall and performance are left unexplored. Among
those, perhaps the most important is the role played by the
number of epochs used in training. It is possible, for
example, that sparse models would require longer epochs to
achieve the same recall accuracy. The combined use of
error-driven learning and multiple training epochs highlights
another aspect of the model, namely, its need for multiple
learning passes to discover efficient representations. As
noted in the introduction, the hippocampus cannot assign
efficient memory codes right away, as they require
knowledge of an object’s frequency. In the autoencoder, it is
the presence of multiple learning passes and gradient
descent that pushes for sparser and more efficient coding. It
is possible that spontaneous brain activity, which is
prominently displayed in the hippocampus at rest and during
sleep (Pfeiffer, 2020), provides a biological surrogate for the
necessary re-experience of memories that are needed for
efficient coding.
Lastly, the model is silent about the nature of forgetting,

another prominent feature of memory that might be
connected to the spontaneous replay of memories at rest
(Zhou et al., 2021). Future research will be needed to further
explore the nature of these processes within the model.
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