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Abstract

Machine learning approaches have the potential for meaningful impact
in the biomedical field. However, there are often challenges unique to
biomedical data that prohibits the adoption of these innovations. For
example, limited data, data volatility, and data shifts all compromise
model robustness and generalizability. Without proper tuning and data
management, deploying machine learning models in the presence of unac-
counted for corruptions leads to reduced or misleading performance. This
study explores techniques to enhance model generalizability through iter-
ative adjustments. Specifically, we investigate a detection tasks using
electron microscopy images and compare models trained with differ-
ent normalization and augmentation techniques. We found that models
trained with Group Normalization or texture data augmentation outper-
form other normalization techniques and classical data augmentation,
enabling them to learn more generalized features. These improvements
persist even when models are trained and tested on disjoint datasets
acquired through diverse data acquisition protocols. Results hold true for
transformer- and convolution-based detection architectures. The exper-
iments show an impressive 29% boost in average precision, indicating
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significant enhancements in the model’s generalizibality. This under-
scores the models’ capacity to effectively adapt to diverse datasets
and demonstrates their increased resilience in real-world applications.

Keywords: Group normalization, data augmentation, robustness,
generalization, electron microscopy, object detection

In the biomedical field, deep learning approaches have shown promising results
in tasks such as image classification, segmentation, and detection. However,
their practical utility is limited by their poor generalization capability. To
achieve broad adoption of machine learning (ML) in biomedical applications,
robust and generalizable models are essential.

One of the main challenges is the lack of diverse and representative datasets.
Many publicly available biomedical datasets are limited to specific experi-
ments, tissue types, or acquisition instruments. Even a large amount of data
may lack diversity in terms of subject population or data collection protocols,
creating significant gaps in the data distribution. Consequently, when applying
state-of-the-art machine learning models trained on these datasets to exter-
nal data, significant performance degradation is observed [1, 2]. In addition to
dataset limitations, data shifts pose another challenge. Changes in data col-
lection protocols or variations in behavior of specimens can lead to shifts in
the data distribution [3]. Moreover, after deploying a model, the observed data
distribution may change over time, deviating from the original training data
distribution. These unavoidable shifts can result in a significant drop in model
performance, often exceeding 10% [4]. We aim to address this disparity and
propose improvements to mitigate the impact of data distribution shifts.

There are several ways to tackle the challenges posed by the lack of diverse
training data. One of the most common approaches is to collect more data.
However, in the biomedical field this is often not feasible due to limitations
in the availability of specimens. Another possibility is to use transfer learn-
ing. Transfer learning involves pre-training a model on a large and diverse
dataset, like ImageNet [5], and then fine-tuning it for the specific biomedical
task. By leveraging knowledge from the pre-training, the model can adapt to
the new problem effectively. For effective transfer learning, it is essential to
have a substantial number of samples, a wide range of diverse images, and
a close resemblance between the training data and the target application [6].
Yet another approach towards generalizability is Domain Adaptation. Domain
adaptation focuses on minimizing the differences between the training and test
domains, allowing models to generalize better. Various techniques have been
developed to align or adapt the learned representations to the target domain.
An extensive survey of different categories of domain adaptation methods
for medical images is given by Guan in [7]. Prior knowledge of the domain
differences is typically required, and these techniques often involve complex
modeling and adaptation processes.
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Hendrycks and Dietterich [8] highlighted the limited generalizability of clas-
sification models trained on ImageNet when tested on a distorted variant called
ImageNet-C. Michaelis, Mitzkus, and Geirhos [9] demonstrated similar findings
on the task of object detection. Additional benchmarking studies conducted
by [9–11] have further emphasized this issue. These studies collectively suggest
that augmenting the training data with various levels of image corruption can
enhance the robustness of models and improve their generalization capabili-
ties. Xu and Mannor [12] emphasized the importance of robustness as a key
characteristic for learning algorithms to achieve effective generalization. While
data augmentation has the potential to improve generalization performance,
training models solely on handpicked corruptions can lead to memorization
of those specific corruptions, limiting the model’s ability to generalize to new
ones [13].

In this study, the objective is to propose a recipe that utilizes simple
existing techniques to enhance the robustness and generalizability of biomed-
ical data. We explore the factors contributing to performance degradation,
with a focus on texture analysis to capture dataset variability and its impact
on machine learning algorithms. Extensive experiments are conducted using
electron microscopy (EM) images, leading to the following conclusions: i.) gen-
eralization improves significantly when texture-specific information is removed
by transitioning from batch normalization to image-specific normalization
processes, and ii.) fine-tuning combined with data augmentation techniques
specifically targeting the enrichment of image textures enhances overall model
robustness.

Fig. 1 Towards generalizing and robust detectors: a. Selected images from (clockwise)
Lucchi++, Perez, OHSU, Kasthuri++ datasets; b. Haralick texture spatial distributions of
the datasets highlighting textural variability observed in the mitochondria; c. Box-whisker
plot for four of the Haralick features for the different datasets.

We demonstrate our findings with a detection task using EM images. Accu-
rate identification of organelles is crucial for analyzing cellular structures, and
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our specific focus is on the automated detection of mitochondria. The dataset
utilized for this task comprises EM images accompanied by annotations in the
form of manually-drawn bounding boxes around each instance of the organelle
(refer to Fig. 1a). We examined four datasets, including one private dataset
and three publicly available ones:

• Private dataset: Oregon Health & Science University (OHSU) Dataset. The
OHSU dataset comprises 17 samples obtained from stage-three and -four
metastatic cancer patients, covering various types of cancers such as breast,
pancreas, ovarian, and liver originating from different body locations. The
data collection process adhered to a rigorous protocol outlined in [14]. Scan-
ning electron microscopy (SEM) was employed for data acquisition, with
large-format montages utilized. Each individual tile within the montages
measured 6000 x 4000 pixels in size, with a resolution of 4nm per pixel.
During tile acquisition, a 10% overlap was maintained. The images in the
dataset have been annotated for the detection of mitochondria, endosomes,
nuclei, and nucleoli.

• Public dataset: Kasthuri++, Lucchi++, Perez. The three public datasets
consist solely of EM images obtained from mouse brain tissue. These images
were captured using a range of SEM-based technologies. Initially, these
datasets were published for the purpose of 2D or 3D segmentation tasks.
For our study, we transformed the segmentation masks into bounding boxes
specifically for detection purposes, and they were exclusively employed in
2D detection inference.

– Kasthuri++ [15]: The images were acquired using Automated Tape-
Collecting Ultramicrotome ribbons of serial sections and SEM
(ATUM-SEM). The tissue samples were obtained from dense mam-
malian neuropil tissue, specifically from layers 4 and 5 of the S1 primary
somatosensory cortex. The original dataset was divided into two stacks:
one for training and the other for testing. For our experiments, we exclu-
sively utilized the single images from the test stack. The dimensions of
the test stack are 1334× 1553× 75 voxels, with a voxel size of 3× 3× 30
nm. The initial release of the data was made publicly available by [16],
and subsequent re-annotation was performed by [15].

– Lucchi++ [15]: The serial images in the Lucchi++ dataset were obtained
using focused ion beam-scanning electron microscopy (FIB-SEM). The
images were acquired from a 5 × 5 × 5µm section of the hippocampus
of a mouse brain, with a voxel size of 5 × 5 × 5 nm. The dataset was
divided into training and testing sets, each comprising the first 165 slices
of a 1065 × 2048 × 1536 image stack. The dataset includes manually
created mitochondria segmentation masks. Initially, it was published as
the EPFL Hippocampus Data [17], and later the image annotations were
revised, corrected, and republished as the Lucchi++ dataset. For our
experiments, we only utilize the 165 2D test images from this dataset.
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– Perez [18]: In the Perez dataset, the images were obtained using serial
block face-scanning electron microscopy from a 124.8 × 93.6 × 38.5µm
section of the hypothalamus of a mouse brain. The voxel size for these
images is 7×7×30 nm. It is important to note that the test images in the
Perez dataset do not have labels for all instances of mitochondria, leading
to a significantly lower precision in the detection task.

We selected six prominent detection architectures from the Open MMLab
Detection Toolbox repository [19]: Deformable DETR (DDETR) [20], DETR
[21], Dynamic R-CNN [22], TOOD [23], Sparse R-CNN [24], and YOLOv3
[25]. Among the selected architectures, Dynamic R-CNN, TOOD, and Sparse
R-CNN belong to the family of Region-Based Convolutional Neural Networks
(R-CNNs). These R-CNNs typically operate in two stages and are com-
monly used for instance segmentation. On the other hand, YOLOv3 and the
two transformer-based architectures (DETR and DDETR) perform instance
segmentation in a single stage. DETR and DDETR are transformer-based
architectures, while the remaining networks are convolutional neural networks.
More comprehensive details regarding the architectures and reproducibility
can be found in the Methods section.

Each of the selected networks boasted state-of-the-art performance on spe-
cific datasets at the time of their publication. Furthermore, each network has
its own distinct advantages in various aspects, such as the availability of com-
putational resources for training, the ability to detect small objects effectively,
or fast inference speed. In terms of performance evaluation, we utilize the Aver-
age Precision (AP) metric, which is commonly used in the MS COCO challenge
[26]. Specifically, we focus on the average precision for bounding box predic-
tions with an Intersection over Union (IoU) of at least 50% (AP50). Detailed
information about these performance measures can be found in the Methods
section.

In our study, we divided the OHSU dataset into training, validation, and
test datasets and trained the six selected networks on this data. Subsequently,
we evaluated the performance of these trained networks on the test datasets of
the public datasets (Kasthuri++, Lucchi++, Perez), as well as on the OHSU
test dataset. As expected, the results demonstrated significant variation in
average precision across the different methods. Moreover, we observed varia-
tions in the transferability of these methods to unseen datasets, as presented
in Table 1.

The two transformer-based methods, DDETR and DETR, exhibited rela-
tively good generalization on the Lucchi++ dataset, with performance levels
close to the AP50 achieved on the OHSU test dataset (which shares the same
data source as the training data). Additionally, these methods achieved reason-
able average precision on the Kasthuri++ dataset. However, their performance
was notably poor on the Perez dataset.

The performance of the three R-CNN-based networks showed significant
variability on the Lucchi++ dataset, ranging from 35.9% to 48.3% in terms
of average precision. Their performance further declined on the Kasthuri++
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dataset and was nearly negligible on the Perez dataset, likely due to the low
contrast in the images. Similar trends were observed for the YOLO network,
with comparable performance patterns across the different datasets.

Table 1 Establishing Baseline: Average Precision 50 (AP50) of the six models (all
trained on OHSU data) when generalizing to four different test sets

Methods OHSU DS Kasthuri++ Lucchi++ Perez

DDETR 56.6% 51.4% 56.7% 16.3%
DETR 60.0% 51.5% 58.7% 0.9%
Sparse RCNN 54.9% 37.0% 35.9% 0.0%
TOOD 54.7% 4.7% 48.3% 0.2%
Dynamic RCNN 49.5% 17.1% 43.3% 0.0%
YOLOv3 53.8% 36.2% 44.0% 4.8%

Upon further analysis of the data and its texture characteristics, we have
observed a significant difference in the contrast-entropy distribution among
the datasets, as depicted in Figure 1 b-c. This distinction is not only evi-
dent when comparing the public datasets to the training OHSU data but also
within the OHSU dataset itself. This observation presents an opportunity to
enhance the overall performance and generalizability of the models. The pri-
mary objective of this paper is to explore available techniques, which are not
commonly adopted, for improving the domain generalizability of the models.

From the results presented in Table 1, it is evident that none of the models
demonstrate satisfactory generalization across all datasets. Despite the pres-
ence of semantically similar structures and the shared nature of EM images,
the variability introduced by different tissue types, collection protocols, and
instruments creates challenges for detection across datasets. Here, we push
forward the notion that the variability lies within the texture of the images,
and we aim to investigate and find approaches to ”normalize” this texture
variability, ultimately leading to improved overall performance.

Our contributions include:

• A comprehensive investigation into the factors contributing to the per-
formance drop, focusing on the data variability captured through texture
analysis.

• Quantification of the impact of deepening the backbone architecture, replac-
ing it with a more robust backbone, or utilizing pre-training techniques such
as stylized ImageNet or unsupervised pre-training on biomedical-relevant
data.

• Introducing texture augmentation as a means to incorporate additional
plausible texture variability in the training data.

• Evaluation of the effect of replacing batch normalization in the back-
bone with group normalization, thereby mitigating the influence of contrast
variability.
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These contributions aim to shed light on the underlying causes of perfor-
mance limitations and provide potential solutions to improve the robustness
and generalizability of the models.

1 Results

In our analysis, we employ two tools: Haralick’s texture features and t-
distributed stochastic neighbor embedding (t-SNE) [27].

Haralick’s texture features [28] comprise a set of textural features calculated
from the co-occurrence matrix representation of the original image. They pro-
vide valuable insights into the texture characteristics of the images, allowing
us to quantify and compare textural variations across different datasets.

To further explore the internal representation of the images by the detec-
tors, we utilize t-SNE, which is a dimensionality reduction technique. T-SNE
enables us to visualize the high-dimensional representations of the images in a
lower-dimensional space, providing a better understanding of the relationships
and similarities between images as perceived by the detectors.

Texture in image processing refers to the spatial variation of brightness
intensity among pixels. To quantify and evaluate the texture differences within
and between datasets, we utilize Haralick’s texture features [28]. These fea-
tures are computed from a Gray Level Co-occurrence Matrix (GLCM), which
captures the co-occurrence of neighboring gray levels in the image for a speci-
fied offset. The GLCM is a square matrix with dimensions equal to the number
of gray levels (typically 255) in the region of interest. It records the normalized
frequencies or probabilities of each combination of gray level co-occurrences
in the image. From the GLCM, we can calculate 13 Haralick features that
characterize the texture properties of the image. As a consequence of a high
level of correlation among the 13 features we follow the approach of [29] and
focus on four specific Haralick features: sum entropy, correlation, contrast,
and angular second moment. The entropy feature measures the level of ran-
domness or information content in the intensity distribution of the image. A
higher entropy value indicates a more diverse and complex texture. On the
other hand, correlation measures the linearity or presence of linear structures
in the image. Contrast quantifies the local variations in intensity within the
image. A higher contrast value indicates pronounced difference between neigh-
boring pixel intensities.The angular second moment reflects the uniformity of
the image texture. Notably that EM images inherently contain noise, which
can influence the magnitude of the Haralick features [30]. While denoising the
images before the analysis could be beneficial, it is important to consider that
ML architectures also need to handle noise. Thus, the Haralick features anal-
ysis is primarily employed to gain a better understanding of the input data
and its texture characteristics, rather than being directly used for prediction
purposes.

We conducted an analysis of the Haralick texture features specifically for
mitochondria across all datasets. Figure 1b presents the relationship between
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entropy value and the measures of contrast, correlation, and angular second
moment for each mitochondria instance in the four datasets. Notably, the Perez
dataset exhibits considerable deviation from the training OHSU dataset in all
four tracked measures, providing an explanation for the observed low precision
results on the Perez dataset.

To gain a deeper understanding of the impact of input texture clustering
on the models, we examine the internal feature representation of the mod-
els. The backbone, a fundamental component in most detection architectures,
is responsible for extracting features from input images, which are then used
for further detection tasks. We aim to investigate whether this internal repre-
sentation of a particular object, specifically mitochondria in our case, retains
the texture characteristics specific to each dataset. In other words, we explore
whether we can discern mitochondria from the Perez dataset distinctly from
those in the other datasets based on their internal feature representation.

To examine the internal feature representation of mitochondria, we extract
the bounding boxes of mitochondria instances and pass them through a
ResNet50 backbone trained as part of the Deformable DETR (DDETR) detec-
tion model. The feature maps obtained after the fourth block of ResNet50 are
then dimensionally reduced using principal component analysis. Finally, for
visualization purposes, the feature maps are further reduced to two dimensions
using t-distributed stochastic neighbor embedding (t-SNE).

In the left panel of Figure 3b, we can observe that the initial texture
clustering of the datasets is preserved by the model. This suggests that the
model’s internal feature representation still retains the texture characteristics
specific to each dataset.

We conducted four-fold experiments to improve the detectors’ generaliz-
ability: 1) Switching to a more complex backbone; 2) Pre-training the backbone
on EM-specific data; 3) Direct data augmentation during training; 4) Chang-
ing the internal data normalization in the backbone. These experiments aimed
to enhance the detectors’ ability to capture intricate features, while mitigating
the impact of texture differences.

Backbone: We investigated the effect of architectural changes and pre-
training on the backbone to improve generalizability. Three directions were
explored: pre-training, alternative backbones, and deeper networks.

First, we replaced the backbone pre-training on ImageNet with pre-training
on the stylized-ImageNet dataset [31], which includes randomly stylized ver-
sions of the original images. However, this did not improve performance over
the baseline on any of the datasets.

Next, we explored pre-training the backbone on domain-specific data. We
experimented with pre-training on unlabeled OHSU data using the SWAV
training schema [32] and pre-training on the larger CEM500K dataset [33]
using the MoCo-v2 schema [34]. The SWAV pre-training showed some improve-
ments in performance on the OHSU, Lucchi++, and Kasthuri++ datasets but
not on Perez. This suggests that the SWAV schema encourages the backbone
to learn contrast-invariant features, which benefits the detection task.
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Additionally, we considered exchanging the backbone for a deeper ver-
sion (ResNet101) or more robust alternatives to ResNet50 (such as Res2Net
[35] and ResNeXt [36]). However, none of these alternatives outperformed the
baseline consistently across all datasets.

Overall, the results presented in Table 2 indicate that unsupervised pre-
training on OHSU data using SWAV schema is the most effective approach for
enhancing performance on multiple datasets but not on all.

Table 2 Studying the effect of architectural change of the backbone of DDETR: AP50

Techniques OHSU DS Kasthuri++ Lucchi++ Perez

Baseline 56.6% 51.4% 56.7% 16.3%
ResNeXt 60.8% ↑ 42.6% ↓ 57.8% ↑ 0.0% ↓
ResNet101 57.0% ↑ 35.8% ↓ 64.8% ↑ 0.0% ↓
stylized-IN ResNet 56.1% ↓ 21.7% ↓ 53.8% ↓ 0.0% ↓
Moco CELLEM 58.7% ↑ 37.3% ↓ 27.0% ↓ 0.0% ↓
SWAV OHSU 57.4% ↑ 52.5% ↑ 60.7% ↑ 0.0% ↓

Texture Augmentation: To improve generalization, we explore texture
augmentation as a method of augmenting the training data. Texture augmen-
tation involves applying photometric transformations that specifically target
the texture of the images, such as variations in jitters, contrast, sharpness,
noise, blurring, and histogram equalization. These aim to introduce additional
plausible texture variability without modifying the object annotations. Exam-
ples of texture-augmented images are shown in Figure 2. By incorporating
these texture augmentations into the training process, we aim to enhance the
models’ ability to generalize to datasets with different texture characteristics.

Fig. 2 Left to Right: Original, Histogram Equalize, Color Jitter, Gaussian Noise, Random
Brightness-Contrast, Random Snow, Hue-Saturation, Sharpen, Blur, Median blur

The results in Table 3 demonstrate that data augmentation has a significant
positive impact on the generalizability of the models. On the unseen data, we
observed improvements ranging from 7.5% to 20.5% on average, while on the
OHSU test dataset, the average improvement was 3.7%.
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Table 3 Training using different Intervention techniques - Texture Augmentation,
Group Normalization and both. Outcome measured as difference in Average Precision
(AP50) from Baseline

Intervention Methods OHSU DS Kasthuri++ Lucchi++ Perez

Texture
Augmentation

DDETR +4.1% +19.4% +14.9% 0.0%
DETR +1.8% -0.4% +4.9% +27.6%
Sparse RCNN +1.7% -8.8% +19.4% +15.4%
TOOD +2.8% +11.9% +22.3% +33.6%
Dynamic RCNN +7.9% +15.2% +20.5% +11.6%
YOLOv3 +3.8% +7.9% +18.2% +30.7%

Average Diff 3.7% 7.5% 16.7% 19.8%

Group
Norm

DDETR +9.1% +26.5% +23.4% +15.1%
DETR +3.3% +23.1% +23.5% +30.3%
Sparse RCNN +3.2% +29.9% +41.3% +25.5%
TOOD +4.8% +48.7% +30.9% +33.5%
Dynamic RCNN +9.1% +46.5% +37.8% +24.5%
YOLOv3 +1.4% +19.0% +32.2% +32.9%

Average Diff 5.1% 32.3% 31.5% 27.0%

Augment
ation
+
Group
Norm

DDETR +8.8% +4.8% +20.0% +6.7%
DETR +4.6% +4.8% +21.8% +30.6%
Sparse RCNN +3.3% +11.3% +38.4% +25.5%
TOOD +7.0% +59.5% +27.6% +15.3%
Dynamic RCNN +10.7% +37.0% +36.1% +28.2%
YOLOv3 +4.7% +10.5% +29.9% +26.2%

Average Diff 6.5% 21.3% 29.0% 22.1%

It is worth noting that texture augmentation, which was specifically tai-
lored to the OHSU dataset, led to improvements in most cases, except for
Sparse RCNN on the Kasthuri++ dataset. This highlights the importance of
carefully selecting appropriate augmentation strategies, as unsuitable choices
can potentially harm performance, as noted in previous research [13].

To gain a better understanding of how texture augmentation contributes
to these improvements, we investigated the internal feature representation of
mitochondria using the DDETR architecture.

In Figure 3 a., we observe that the augmented training dataset effectively
covers the contrast-entropy space of the Lucchi++ and Kasthuri++ datasets,
and even to some extent, the Perez dataset in terms of entropy. This indicates
that the texture augmentation strategy successfully introduces additional vari-
ability in the training data, allowing the models to learn a wider range of
texture patterns.

Figure 3 b. demonstrates the clear separation in the internal feature rep-
resentation of mitochondria between the different datasets. However, we also
observe that the augmentation helps in closing the gap between the datasets.

Group Normalization: The final step towards generalizability is replac-
ing the Batch Normalization layer (BN). Most of the detection algorithms use
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Fig. 3 Texture Augmentation: a. The Haralick entropy vs. contrast for OHSU training
data, Perez, Lucchi++ and Kasthuri++. The left panel depicts the features before augment-
ing the training dataset and the right panel after the augmentation. b. t-SNE visualization
of the internal feature representation of the mitochondria crops. The left panel depicts the
features of the baseline model; the right panel shows the expansion of the features when the
models are trained with texture augmented data.

ResNet as the backbone with a default Batch Normalization as a normaliza-
tion layer. For BN to work well we need to group the training images into
batches of size 32 or more during training (the higher the better) [37]. The
traditional BN layer calculates mean and variance within a batch of images,
making it sensitive to batch size and unsuitable for small batch sizes commonly
used in detection algorithms [19, 38, 39]. Group Normalization (GN) [37], a
viable alternative to BN, calculates mean and variance per image, making it
suitable for small batch sizes. It strikes a balance between Instance Normal-
ization and Layer Normalization and performs well for small batch sizes and
close to BN with large batch sizes. GN normalizes input per layer using mean
and standard deviation computed along the spatial dimensions and a group of
channels. In our experiments, we set the group size G to 32 as suggested in
[37]. GN also helps to normalize the contrast information of each image.

We replaced BN with GN in all six architectures and trained them on
the OHSU training dataset. The results, as shown in Table 3, demonstrate
a remarkable improvement in average precision. The two transformer-based
detectors achieve over 80% precision on the Lucchi++ dataset, while all other
models also show notable improvements. On the more challenging Kasthuri++
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dataset, Deformable DETR achieves a precision of 78%, which is a 26%
improvement over the baseline. Overall, the switch to Group Normalization
leads to a significant 27-32% improvement on the unseen datasets, highlighting
the effectiveness of this normalization approach for enhancing generalizability.

The t-SNE analysis reveals that GN is the only technique considered here
that effectively blends the texture characteristics in a uniform and indistin-
guishable manner, contributing to the generalizability of all the methods. This
can be observed in the left panel of Figure 4.

Fig. 4 t-SNE feature representation of mitochondria for ResNet50 trained as backbone of
DDETR with OHSU training data. Left panel: ResNet50 trained with Group Normaliza-
tion; Right panel: ResNet50 trained with Group Normalization and texture augmentation.

Our next step is to combine texture augmentation and group normaliza-
tion. However, the results in Table 3 demonstrate that applying both strategies
only improves performance on the OHSU test dataset. On the other datasets,
although there are improvements compared to the baseline, the handpicked
texture augmentation actually hinders the performance of GN. This trade-off
highlights the balance between task specialization (OHSU data) and expressiv-
ity (other datasets). Detection models with stronger structural priors, such as
data augmentation, can leverage them to improve precision on specific datasets
that benefit from these assumptions. In contrast, models that integrate weaker
inductive biases can adapt to diverse domains without relying on restrictive
or task-specific conjectures.
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2 Discussion

Combining data from different sources or research groups, even within the
same field, can be challenging due to variations in experimental protocols, sam-
ple preparation, equipment, and other factors. This issue extends beyond the
biomedical Electron Microscopy field. In this work, we highlight the importance
of robustness and generalizability in machine learning techniques and models,
emphasizing the need for diverse data. Texture augmentation is presented as
a means to diversify the data, but it alone does not ensure inclusiveness.

To address this, we use the Group Normalization layer, which ensures
that texturally different data subsets are treated equally by the network. We
evaluate the performance of six detection algorithms on four EM datasets,
measuring variations in performance. Haralick texture features are used to
identify texture differences among the datasets. Despite attempts to address
texture clustering through architectural changes, such as increasing backbone
size, alternative backbones (ResNext and Res2net), and domain-specific pre-
training, the clustering is preserved. Texture augmentation during training
encourages the algorithms to learn more diverse features, partially addressing
the texture clustering. However, diversity alone does not eliminate differences.

The Group Normalization layer is the only technique we found that effec-
tively normalizes the texture representation. It is important to note that this
architectural change is independent of the amount or quality of the data.
Both texture augmentation and Group Normalization help the models learn
features that better generalize to unseen and differently acquired data. We
summarize the tested techniques from Tables 2-3 in Table 4, with Group Nor-
malization showing improvements of over 29% and achieving precision rates
of over 80% for Lucchi++ and 78% for Kasthuri++. Interestingly, when tex-
ture augmentation and Group Normalization are combined, we observe better
results only on the OHSU test dataset, with a decrease compared to applying
Group Normalization alone.

We plan to further investigate the relationship between data augmentation
and Group Normalization, as well as explore new techniques for improving
robustness and generalizability in ML models.

Table 4 Summary of intervention techniques: ’+’ positive (1-20%) improvement in
performance, ’-’ zero or negative improvement in performance, ’++’ over 20%
improvement in performance

Group Intervention OHSU DS Kasthuri++ Lucchi++ Perez

Backbone
ResNeXt + - + -
ResNet101 + - + -

Pre-training
stylized-IN - - - -
Moco CELLEM + - - -
swav OHSU + + + -

Augmentation + + + +
GN + ++ ++ ++
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3 Methods

OHSU Data collection and Preprocessing. Raw data were collected
using an FEI/Thermo Scientific Helios NanoLab DualBeam FIB-SEM micro-
scope equipped with a concentric backscatter detector (CBS) in immersion-
mode. The Thermo Scientific Maps software package, a commercially-available
tool, was utilized for automated collection of large montages of the images.

The OHSU dataset comprises a collection of 527 high-resolution images,
each measuring 6K × 4K. These images were annotated by 9 annotators, who
identified a total of 25,330 endosomes, 30,352 mitochondria, and 903 nucleoli
within the images. We used only mitochondria in the current research because
that was the only organelle annotated in all of the publicly available datasets
(Lucchi++, Kasthuri++ and Perez).

To facilitate training and analysis, the large high-resolution images were
sliced into smaller patches measuring 1024 × 1024 pixels. The slicing process
was performed with a 0.2 overlap ratio, ensuring that adjacent patches overlap
by 20% of their width and height. This resulted in a training dataset consisting
of 11,520 images, a validation dataset consisting of 1,225 images, and a test
dataset consisting of 2,891 images.

During the preprocessing stage, annotations smaller than 20 × 20 pixels
were removed from the dataset. This step helps to eliminate small or irrelevant
annotations that may not provide significant information for the detection
models.

Detection Framework Details. In our research, we utilized the Open
MMLab Detection Toolbox repository [19], which is a publicly available col-
lection of detection algorithms and tools. From this repository, we selected six
specific architectures to investigate and demonstrate our findings. These archi-
tectures were chosen based on their relevance and effectiveness for the task at
hand.

Detection Networks

Method orig config file Type anchor Back-
Y/N bone

Deformable DETR [20] deformable detr twostage refine T N r50
r50 16x2 50e coco.py

DETR [21] detr r50 8x2 150e coco.py T N r50
TOOD [23] tood r50 fpn 1x ohsu.py C N r50
Dynamic R-CNN [22] dynamic rcnn r50 fpn 1x coco.py C Y r50
Sparse R-CNN [24] sparse rcnn r50 fpn 1x coco.py C Y r50
YOLOv3 [25] yolov3 d53 mstrain-608 273e coco.py C N dn53

Type T = transformer, C = CNN, r50 = ResNet50, dn53 = DarkNet53

For the datasets used in our research (OHSU, Lucchi, Kasthuri, and Perez),
we converted them into COCO format, which is a widely used data format for
object detection tasks. The conversion involved modifying the configurations’
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data annotation paths and classes to match the specific datasets. Since Luc-
chi, Kasthuri, and Perez were only used for inference (evaluation), we created
additional test dataset configurations for them.

To incorporate texture augmentation into the training process, we added
the augmentation techniques to the train pipeline section of the configuration
files. Specifically, we made use of the Albumentations package integrated into
the mmdetection library [40]. Albumentations provides a wide range of image
augmentation methods, including photometric transforms, noise addition,
blurring, histogram equalization, and others.

Regarding the architectures used, we inherited the published COCO con-
figurations from the Open MMLab Detection Toolbox repository [19]. These
configurations served as a starting point for our experiments, and we made
necessary modifications such as adjusting the data paths and classes. We ini-
tialized the models with the pre-trained weights available from MMLab to
benefit from their learned representations.

During training, we mostly followed the original training schedules provided
with the COCO configurations, with minor adjustments such as extending the
number of training epochs or adapting the learning rate decay steps to suit
our specific experiments.

To calculate the Haralick texture features, we utilized the Mahotas image
processing library[41].

Performance Metrics. In a typical detection architecture, the output
consists of three predictions: the predicted bounding box coordinates, the con-
fidence score (probability) that the bounding box contains an object, and the
class probabilities indicating the likelihood of different object classes.

To evaluate the quality of a prediction, we apply certain criteria and thresh-
olds. The bounding box prediction is used to calculate the intersection over
union (IoU) between the predicted box and the ground truth box. IoU mea-
sures the overlap between the predicted and ground truth boxes, indicating
how well the predicted box aligns with the actual object location.

To determine whether a detection is a true positive (TP), three conditions
must be satisfied: 1) The confidence score for the detection is above a specified
threshold; 2) The predicted class matches the class of a ground truth object;
3) The IoU between the predicted bounding box and the ground truth box is
greater than a specified threshold (e.g., 50%). If any of these conditions are not
met, the detection is considered a false positive (FP). If the confidence score
for an object is below the threshold, it is considered a true negative (TN),
indicating that there is no object present in the predicted bounding box.

Precision is the ratio of TP to the sum of TP and FP, while recall is the
ratio of TP to the sum of TP and FN. AP is calculated by averaging precision
values across different recall levels and classes. In COCO evaluation, AP is
computed by varying the IoU threshold from 0.5 to 0.95 with a step of 0.05.
AP50 refers to the average precision at an IoU threshold of 0.5, which is
commonly reported.
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Data Augmentation. In Figure 2, we showcase an image from the OHSU
dataset before and after applying various texture augmentations individually.
The augmentations include Median Blur, Blur, ColorJitter, HueSaturationVa-
lue, Sharpen, Histogram Equalization, Random Brightness-Contrast, Random
Snow, Color-Jitter group, Gaussian Noise, and Blur group. These augmenta-
tions are applied sequentially, with specific probabilities for each augmentation
technique. We implemented these augmentations using the Albumentations
library [40].

In the case of the YOLOv3 architecture, the original version already
incorporates PhotoMetricDistortion as part of its training pipeline, which
affects brightness, saturation, hue, and contrast. However, for the ”Aug”
and ”Aug+GN” versions of YOLOv3, we made modifications by remov-
ing the Expand augmentation and replacing PhotoMetricDistortion with our
texture augmentation technique. This ensures consistency with the texture
augmentation applied to the other detection architectures.
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