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Abstract

Our views of fold space implicitly rest upon many assumptions that impact
how we analyze, interpret and understand biological systems—from protein
structure comparison and classification to function prediction and evolutionary
analyses. For instance, is there an optimal granularity at which to view protein
structural similarities (e.g., architecture, topology or some other level)? If so,
how does it vary with the type of question being asked? Similarly, the discrete/
continuous dichotomy of fold space is central in structural bioinformatics, but
remains unresolved. Discrete views of fold space bin ‘similar’ folds into distinct,
non-overlapping groups; unfortunately, such binning may inherently miss many
remote relationships. While hierarchical databases like CATH, SCOP and ECOD
represent major steps forward in protein classification, a scalable, objective and
conceptually flexible method, with less reliance on assumptions and heuristics,
could enable a more systematic and nuanced exploration of fold space, partic-
ularly as regards evolutionarily-distant relationships. Building upon a recent
‘Urfold’ model of protein structure, we have developed a new approach to
analyze protein interrelationships. Termed ‘DeepUrfold’, this method is rooted
in deep generative modeling via variational Bayesian inference, and we find it
to be useful for comparative analysis across the protein universe. Critically,
DeepUrfold leverages its deep generative model’s learned embeddings, which
occupy high-dimensional latent spaces and can be distilled for a given protein
in terms of an amalgamated representation that unites sequence, structure, bio-
physical and phylogenetic properties. Notably, DeepUrfold is structure-guided ,
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versus being purely structure-based, and its architecture allows each trained
model to learn protein features (structural and otherwise) that, in a sense,
‘define’ different superfamilies. Deploying DeepUrfold with CATH suggests
a new, mostly-continuous view of fold space—a view that extends beyond
simple 3D structural/geometric similarity, towards the realm of integrated
sequence↔structure↔function properties. We find that such an approach can
quantitatively represent and detect evolutionarily-remote relationships that
evade existing methods.

Availability: Our results can be explored in detail at https://bournelab.org/
research/DeepUrfold. The DeepUrfold code is available at http://www.github
.com/bouralab/DeepUrfold, and associated data are available at https://doi.org/
10.5281/zenodo.6916524.

Keywords: deep learning; evolution; fold space; generative model; protein structure;
protein classification; remote homology

Introduction

The precise historical trajectory of the protein universe [1] remains quite murky, and
likely corresponds to an evolution from (proto-)peptides, to protein domains, to multi-
domain proteins [2]. Presumably, the protein universe—by which we mean the set
of all unique protein sequences (known or unknown, natural or engineered, ances-
tral or extant)—did not spontaneously arise with intact, full-sized domains. Rather,
smaller, sub-domain–sized protein fragments likely preceded more modern domains;
the genomic elements encoding these primitive fragments were subject to natural evo-
lutionary processes of duplication, mutation and recombination to give rise to extant
domains found in contemporary proteins [2–6]. Our ability to detect common polypep-
tide fragments, shared amongst at least two domains (in terms of either sequence or
structure), relies upon having (i) a similarity metric that is sensitive and accurate,
and (ii) a suitable random/background distribution (i.e., null model) for distances
under this metric; historically, such metrics have been rooted in the comparison of
either amino acid sequences or three-dimensional (3D) structures, often for purposes of
exploring protein fold space. The recent advent of high-accuracy structure prediction
[7, 8], enabled by deep learning, presents new opportunities to explore fold space; to do
so effectively requires new methods to accurately and sensitively detect weak/distant
relationships.

Fold Space, Structural Transitions & Protein Fragments

Fold space1, as the collection of all unique protein folds, corresponds to a many-to-
one mapping: vast swaths of sequence space map to fold A, another vast swath maps
to fold B, a narrower range might map to fold C, and so on. Two proteins that are

1The term “protein structure space” (PSS) means the set of all protein 3D structures, known and
unknown; the term “fold space” refers to the set of all protein folds. Though not strictly equivalent [12],
we treat these terms interchangeably here unless noted otherwise.
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Fig. 1 Overview of the Urfold model and DeepUrfold approach to identify domains
that might reflect the phenomenon of “architectural similarity despite topological variabil-
ity”. (A) The SH3 and OB domains are prototypical members of the small β-barrel (SBB) urfold
because they have the same barrel architecture, yet different strand topologies: they have strikingly
similar 3D structures and share extensive functional similarities (e.g., PPI binding on the same edge-
strand, involvement in nucleic acid–binding and processing pathways [9, 10]), yet these similarities
are obscured by the SH3 and OB superfolds having been classified differently. In the case of the SBB
urfold, the loops linking the strands are permuted in the SH3 and OB, yielding the different topolo-
gies seen in their 3D superposition. (B) If the Urfold phenomenon is viewed in terms of CATH, it
is hypothesized to be a discrete structural entity or ‘level’ that lies between the Architecture and
Topology strata, as schematized here. (C) DeepUrfold, which applies deep learning to the Urfold con-
ceptualization of protein structure, identifies new potential urfolds by creating 20 SF-specific VAE
neural network models and comparing output scores from all representative domains from those
superfamilies (numbering 3,674) to every other SF model. As a metric to compute initially, we can
imagine comparing the latent variables from domain representatives using models trained on the same
SF (colored lines; see Fig. 3). Then, we can perform an all-vs-all comparison to begin mapping fold
space, which we view as being organized as mixed-membership communities, versus hierarchically-
clustered, mutually-exclusive bins; as detailed below and illustrated in Fig. 4, such communities can
be computed via stochastic block models (SBMs; reviewed in [11]).

closely related (evolutionarily) might adopt quite similar folds (A, B), leading to their
proximity in this high-dimensional space. Traditionally, fold space has been examined
by hierarchically clustering domains based upon 3D structure comparison; in such
approaches, whatever metric is used for the comparison can be viewed as structuring
the space. The transition of a protein sequence from one fold to another, whether it be
nearby (A → B) or more distant (A → C), and be it naturally (via evolution) or arti-
ficially (via design/engineering), likely occurs over multiple intermediate steps. These
mechanistic steps include processes such as combining or permuting short secondary
structural segments or longer regions (such as whole secondary structural elements
[SSEs]), or mutating individual residues via nonsynonymous substitutions [5, 13–16].
In general, each such step may yield a new 3D structure, and that structure may cor-
respond to the same or a different ‘fold’. Similarities across these transitional states,
A → A′ → A′′ → · · · → B, blur the boundaries that delineate distinct groups—
increasing or decreasing a relatively arbitrary and heuristic quantity, such as an RMSD
or other similarity threshold, effectively alters the granularity of groupings in this
space, and can change which structures belong to which groups. In this sense, the
discrete versus continuous duality of fold space can be viewed largely as a matter of
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semantics or thresholding, versus any ‘real’ (intrinsic or fundamental) feature of the
space itself [17].

Despite their limitations, it was pairwise similarity metrics in structure space that
first indicated remote connections in a continuous fold space via shared fragments
(see [18] and references therein). In an early landmark study, Holm & Sander [19]
created an all-by-all similarity matrix from 3D structural alignments and discovered
that the protein universe harbors five peptide ‘attractors’, representing frequently-
adopted folding motifs (e.g., the β-meander). Nearly a decade later, and armed with
vastly more 3D structures, similar pairwise analyses across protein structure space
showed that ‘all-α’ and ‘all-β’ proteins are separated by ‘α/β’ proteins [20]. All-by-all
similarity metrics applied to full domains (or fragments thereof) can be equivalently
viewed as a graph-theoretic adjacency matrix, thus enabling the creation of a network
representation of fold space. Such networks have been found to be “nearly connected”,
linking various domains (graph nodes) in ≈4-8 hops [21–23].

Graph-based representations of individual proteins have also motivated the study
of common short (sub-domain) fragments. In pioneering studies, Harrison et al. [24, 25]
found maximal common cliques of connected SSEs in a graph-based protein repre-
sentation; their model took SSEs (helices, strands) as vertices and used the pairwise
geometric relationships between SSEs (distances, angles, etc.) to decorate the graph’s
edges. In that work, 80% of folds were found to share common cliques with other folds,
and these were quantified by a new concept termed ‘gregariousness’.

Although short, sub-domain–sized peptide fragments have been thoroughly stud-
ied, relatively few approaches have taken an evolutionary perspective, in the context
of a continuous fold space. Goncearenco et al. [26] identified common loop frag-
ments flanked by SSEs, called ‘elementary functional loops’ (EFLs), that couple in
3D space to perform enzymatic activity. Youkharibache [6] noticed that peptide frag-
ments, called ‘protodomains’, are often composed (with C2 internal symmetry) to give
a larger, full-sized domain. More recently, Bromberg et al. identified common frag-
ments between metal-binding proteins using ‘sahle’, a new length-dependent structural
alignment similarity metric [4]. These studies underscore the functional (and thus
evolutionary) roles of sub-domain structural fragments.

The two state-of-the-art, evolution-based fragment libraries that are currently
available, namely ‘primordial peptides’ [2] and ‘themes’ [27], involved creation of a
set of common short peptide fragments based on HHsearch [28] profiles for pro-
teins in SCOP and ECOD, respectively. The sizes of the libraries created by these
two sequence-driven approaches (40 primordial peptides, 2195 themes) vary greatly,
reflecting different stringencies of thresholds (and, ultimately, their different goals).

Another approach to study shared, commonly-occurring sub-domain fragments is
to represent a protein domain as a vector of fragments. For example, the FragBag
method [29] describes a protein by the occurrence of fragments in a clustered fragment
library [30]. A recent and rather unique approach, Geometricus [31], creates protein
embeddings by taking two parallel approaches to fragmentation: (i) a k-mer based
fragmentation runs along the sequence (yielding contiguous segments), while (ii) a
radius-based fragmentation uses the method of spatial moment invariants to compute
(potentially non-contiguous) geometric ‘fragments’ for each residue position and its
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neighborhood within a given radius, which are then mapped to ‘shape-mers’. Concep-
tually, this allowance for discontinuous fragments is a key step in allowing an algorithm
to bridge more of fold space, as similarities between such non-contiguous fragments
can imply an ancestral (contiguous) polypeptide that duplicated and lost one or more
N ′- or C ′-terminal SSEs, perhaps in a “creative destruction” process that yields two
different folds (i.e., different topologies) despite the preserval of similar architectures
[5, 16].

Limitations of Hierarchical Systems, and the Urfold

The conventional view of fold space as the constellation of all protein folds, grouped by
their ‘similarities’ to one another, largely rests upon hierarchically clustering domains
based upon 3D structure comparison, as exemplified in pioneering databases such as
CATH [32], SCOP [33, 34], and ECOD [35]. Despite being some of the most com-
prehensive and useful resources available in protein science, these databases have
intrinsic limitations that stem from their fundamental structuring scheme, reflecting
assumptions and constraints of any hierarchical system (e.g., assigning a given protein
sequence to one mutually exclusive bin versus others); in this design schema, domains
with the same fold or superfamily (SF) cluster discretely into their own independent
‘islands’. The difficulty in smoothly traversing fold space, at least as it is construed by
these databases—e.g., hop from island-to-island or create ‘bridges’ between islands in
fold space—implies that some folds have no well-defined or discernible relationships
to others. That is, we miss the weak or more indeterminate (but nevertheless bona
fide) signals of remote relationships that link distantly-related folds. In addition to
the constraints imposed by mutually exclusive clustering, the 3D structural compar-
isons used in building these databases generally rely upon fairly rigid spatial criteria,
such as requiring identical topologies for two entities to group together at the finer
(more homologous) classification levels. What relationships might be detectable if we
relax the constraints of strict topological identity? As described below, this question
is addressed by a recently proposed ‘Urfold’ model of protein structure [9, 12], which
allows for sub–domain-level similarity.

Motivated by sets of striking structure↔function similarities across disparate
superfamilies, we recently identified relationships between several SFs that exhibit
architectural similarity despite topological variability, in a new level of structural
granularity that allows for discontinuous fragments and that we termed the ‘Urfold’
(Fig. 1B; [9, 12]). Urfolds2 were first described in the context of small β-barrel (SBB)
domains (Fig. 1A), based on patterns of structure↔function similarity (as well as
sequence signatures in MSAs, albeit more weakly) in deeply-divergent collections of
proteins that adopt either the SH3/Sm or OB superfolds [9]. Notably, the SH3 and
OB are two of the most ancient protein folds, and their antiquity is reflected in the
fact that they permeate much of information storage and processing pathways (i.e.,
the transcription and translation apparatus) throughout all three domains of cellular
life [16, 36, 37].

2We use the capitalized term ‘Urfold’ to refer to the concept/theory/model, as a general idea; the low-
ercase ‘urfold’ is used when we intend for that specific instance of the word to be limited to a specific case
(e.g., “the SBB urfold”). Our goal is not to be dogmatic, but rather to be clear and precise as this new
concept is being developed.
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DeepUrfold: Motivation & Overview

The advent of deep learning [38], including the application of such approaches to pro-
tein sequences and structural representations, affords opportunities to study protein
interrelationships in a wholly new and different way—namely, via quantitative com-
parison of ‘latent space’ representations of a protein in terms of its lower-dimensional
‘embedding’. Such embeddings can be derived at arbitrary levels of granularity (e.g.,
atomic) and can subsume virtually any types of properties, such as amino acid type,
physicochemical features (e.g., electronegatitivty), geometric attributes (e.g., surface
curvature), phylogenetic conservation of sites, and so on. Two powerful benefits of
such approaches are that (i) models can be formulated and developed in a statistically
well-principled manner (or at least strive to be clear about their assumptions), and
(ii) models have the capacity to be integrative, by virtue of the encoding (or ‘featuriza-
tion’) of structural properties alongside phylogenetic, chemical, etc. characteristics of
the data (in this case, augmenting purely 3D structural information about a protein).
The methodology presented here explores the idea that viewing protein fold space in
terms of feature embeddings and latent spaces (what regions are populated, with what
densities, etc.)—and performing comparative analysis via such spaces (versus in direct
or ‘real’ 3D/geometric space)—is likely to implicitly harbor deep information about
protein interrelationships, over a vast multitude of protein evolutionary timescales.
Such distant timescales are likely to be operative at the Urfold level of structure [12].

Here, we present a deep learning–based framework, ‘DeepUrfold’, to systematically
identify urfolds by using a new alignment-free, topology-agnostic, biochemically-aware
similarity metric of domain structures, based on deep generative models, together
with mixed-membership community detection algorithms. From a probabilistic per-
spective, our metric is rooted in the variational Bayesian inference that underpins
variational autoencoders (VAEs [39]). From a deep learning perspective, our algo-
rithm leverages embeddings and similarities in latent-space representations rather than
simple (purely-geometric) 3D structures directly, enabling us to encode any sort of
biophysical or other types of properties and thereby allowing more subtle patterns of
similarities to be detected—such as may correspond to architectural similarities among
(dis-)contiguous fragments from different folds, or even superfolds, that are related
only at great evolutionary distances (Fig. 1C).

In brief, DeepUrfold’s four distinct methodological stages are: (i) Dataset con-
struction, whereby 3D structures are prepared, featurized and allocated into suitable
training/test splits for machine learning; (ii) Training of SF-specific models, using fea-
turized protein structural data and a hybrid 3D-CNN/VAE-based deep network; (iii)
All-by-all inference calculations, computing VAE-derived ELBO-based scores to assess
the ‘fit’ of each 3D structural domain representative to each SF (i.e., subject each SF
representative, i, to each SF-specific VAE model, j); (iv) Elucidation of any commu-
nity structure in these protein↭SF mappings, via stochastic block modelling of the
patterns of scores.
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Results

The DeepUrfold Computational Framework: Deep Generative
Models

Conventionally, two protein structures that have similar architectures but varying
topologies (i.e., folds) might be viewed as having resulted from convergent evolution.
However, as in the case with the SH3 and OB superfolds, the structure ↔ function
similarities [9], and even sequence ↔ structure ↔ function similarities [16], can prove
to be quite striking, suggesting that these domain architectures did not arise indepen-
dently [6, 16] but rather are echoes of a (deep) homology. To probe what may be even
quite weak 3D similarities, in DeepUrfold we model the evolutionary processes giving
rise to proteins as an integrated 3D structure/properties ‘generator’. In so doing, we
seek to learn probability distributions, p(x|θ), that describe the specific geometries and
physicochemical properties of different folds (i.e., features that largely define protein
function), where the random variable x denotes a single structure drawn from (x ∈ x)
a set of structures labelled as having the same fold (x), and θ denotes the collec-
tion of model parameters describing the variational distribution over the background
(i.e., latent) parameters. We posit that folds with similar latent space embeddings
and learned probabilistic distributions—which can be loosely construed as “structure
↔ function mappings”, under our feature-set—likely have similar geometries/archi-
tectures and biophysical properties, regardless of potentially differing topologies (i.e.,
they comprise an urfold), and that, in turn, may imply a common evolutionary history.

Using the principles of variational inference [40], DeepUrfold learns the background
distribution parameters θi for superfamily distributions, i.e. models pi(xij |θi), by con-
structing and training a variational autoencoder (VAE) model for each superfamily i
and domain structure j. In the current work, DeepUrfold is developed using 20 highly-
populated SFs from CATH (see Fig 1C and Supp Table 1). The original/underlying
likelihood distribution, pi(xij |θi), is unknown and intractable, but it can be estimated
by considering an easier-to-approximate posterior distribution of latent space param-
eters, qi(zij |xi), where z denotes the latent variables we wish to infer and, again, x
is our data (protein structures); in our case, the approximating distribution q(z|x)
is taken as sampling from a Gaussian. To ensure that qi(zij |xi) optimally describes
pi(xij |θi), one can seek to maximize an evidence lower bound (ELBO) quantity as a
variational objective, which supplies a lower bound of the marginal log-likelihood of a
single structure, ln[pi(xij)]. The ELBO inequality can be written as:

ln[pi(xij)] ≥ Eqi(zij |xi)[ln pi(xij |zij)] −
DKL[qi(zij |xij) || p(zij)]

(1)

where pi(xij) is the likelihood, E is the expectation value of q in terms of p, and
DKL[q||p] is the Kullback-Leibler divergence, or relative entropy, between the two
probability distributions q and p. In other words, maximizing the ELBO corresponds
to maximizing the expected log-likelihood of our learned model and minimizing the
entropy or ‘distance’ (DKL) between (i) the true/exact underlying prior distribution
of the data given a model, p(x|θ), and (ii) our learned/inferred approximation, as
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a posterior distribution of latent parameters given the data, q(z|x). Pragmatically,
DeepUrfold’s variational objective is formulated as a minimization problem (Supp Info
§3), so we compute –(ELBO) values.3 In a similar vein, part of DeepUrfold’s testing
and development (detailed below) involved training “joint models” using a bag of SFs
with intentionally different topologies, e.g., a mixed SH3 ∪ OB set, while accounting
for the class imbalance [41, 42] that stems from there being vastly different numbers
of available 3D structural data for different protein SFs (e.g., immunoglobulin [Ig]
structures, which are disproportionately abundant). Further details of the multi-loop
permutation analyses used in testing and developing DeepUrfold can be found in Supp
Info §4.

Fig. 2 Likelihood-based ELBO values can quantify similarities among multi-loop per-
muted structures. To gauge the sensitivity of DeepUrfold’s VAE-based metric to loop orderings
(topology), we generated a series of fictitious folds and analyzed their patterns of scores. Specifically,
we implemented a multi-loop permutation algorithm [43] to systematically ‘scramble’ the SSEs found
in an SH3 domain (1k2A00) and an OB domain (1uebA03); in these loop ‘rewiring’ calculations, we
stitched together the SSEs and energetically relaxed the resultant 3D structures. While 96 unique
permutations are theoretically possible for a 4-stranded β-sheet [9], only 55 SH3 and 274 OB per-
muted domains were able to be modeled, presumably because their geometries lie within the radius
of convergence of MODELLER (e.g., the loop-creation algorithm did not have to span excessive dis-
tances in those cases). Each novel permuted structure was subjected to a DeepUrfold VAE model
that had been trained on all other domains from either SH3-only (left panel), (B) OB-only (middle),
or (C) joint SH3∪OB domain (right) datasets. Fits to models were approximated by the –(ELBO)
score, which can be viewed as a similarity metric or a measure of ‘goodness-of-fit’ between an indi-
vidual structure and the SF-level VAE model trained via DeepUrfold. In reference to a given model,
a given permutant query structure having a –ELBO less than its wild-type structure for that model
can be considered as structurally more ‘similar’ (a better fit) to the model, and thus perhaps more
thermodynamically or structurally stable. As reference points, we also include the –ELBO scores for
ancestrally-reconstructed progenitors of the OB (uL2) and SH3 (uL24) superfolds, based on recent
work by Alvarez-Carreño et al. [16]; note that these latter data are single 3D structures (not dataset-
s/distributions of structures) subjected to a single inference pass through a trained VAE model,
and therefore they appear as thin vertical ‘tick’ lines along the horizontal axis. See Supp Info §4.2
and Supp Fig S8 for further discussion of these traces, including interpretations of the background
distributions (maroon traces) and the single-tick entities.

3This reasoning underlies the interpretation of Fig 2: Maximizing the ELBO equates to minimizing
DeepUrfold’s –(ELBO) loss function, which is why a shift leftwards along the horizontal axis in Fig 2
corresponds to ‘better’ models. Similarly, more positive values of the –(ELBO) quantity reflect poorer
agreement between a domain structure and the VAE model it is being subjected to in an inference calculation
(e.g., the single-tick marks in Fig 2); see also the analysis provided in Supp Info §4.2.
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As input to the VAE, we encode the 3D structure of a protein domain by repre-
senting it as a 3D volumetric object, akin to the input used in 3D convolutional neural
networks (CNNs). Indeed, DeepUrfold’s neural network architecture can be viewed as
a hybrid/stacked 3D CNN-based VAE. In our discretization, atoms are binned into
volumetric elements (voxels), each of which can be tagged or labeled, atom-wise, with
arbitrary properties (biophysical, phylogenetic, etc.). A critical point is that this rep-
resentation scheme is agnostic of polypeptide chain topology, as the covalent bonding
information between residues, and the order of SSEs, is not explicitly retained; note,
however, that no information is lost by this representation, as such information is
implicit in the proximity of atom-occupied voxels in a model (and can be used to
unambiguously reconstruct a 3D structure). The above preparatory and featurization
steps utilized ‘Prop3D’, a computational toolkit that we have developed for machine
learning with protein structures [44].

Note that we do not use VAEs to generate new samples from a given SF per se.
Rather, the role of the VAE in DeepUrfold can be viewed as that of an anomaly
detection tool, to robustly and quantitatively address the question: “Based on learned,
superfamily-specific latent space representations, what is the likelihood that a given
domain structure (from any SF, i) arose from (or, alternatively, was generated by) a
particular SF-specific VAE model, j?”.

DeepUrfold Models Can Detect Similarities among
Topologically-distinct, Architecturally-similar Proteins

To initially assess our SH3, OB and joint SH3/OB DeepUrfold models—and to exam-
ine the properties of the Urfold model more broadly—we directly probed the Urfold’s
core concept of “architectural similarity despite topological variability”. This test
was performed by considering sets of artificial protein domains that have identical
architectures but with specifically introduced loop permutations; we obtained these
systematically engineered perturbations of a 3D structure’s topology by ‘rewiring’ the
SSEs (scrambling the loops), while retaining the overall 3D structure/shape (i.e., archi-
tecture). Specifically, (i) we systematically created permuted (fictitious) 3D structures
starting with representative SH3 and representative OB domains (Supp. Fig. 7A) via
structural modeling (including energetic relaxation), and (ii) we then subjected each
of these rewired structures, in turn, to each of the SH3, OB and joint SH3/OB Deep-
Urfold models. The SH3/Sm and OB superfolds comprise the first-identified urfold [9],
namely the small β-barrel (SBB). While SBBs typically have six SSEs (five strands
and a helix), there are four ‘core’ β-strands, meaning an SBB’s β-sheet can theoret-
ically adopt one of at least 96 distinct loop permutations [9]; note that, based on
the operational definitions/usage of the terms ‘topology’ and ‘fold’ in systems such as
SCOP, CATH, etc., such engineered permutants almost certainly would be annotated
as being from different homologous superfamilies, implying no evolutionary related-
ness. Thus, the loop-scrambling approach described here is a systematic way to gauge
DeepUrfold’s ability to discern similarities at the levels of architecture and topology,
in a self-contained manner that is agnostic of preexisting classification schemes such
as CATH.
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In general, we find that the synthetic/permuted domain structures have similar dis-
tributions of –(ELBO) scores as the corresponding wild-type domains (Fig 2). Those
permuted domain structures with –(ELBO) scores more negative than the wild-type
domains (i.e., distributions that shift leftward in Fig 2 and Supp Fig S8) can be
interpreted as being more similar (structurally, biophysically, etc.) to the DeepUrfold
variational model (a ‘consensus’ model, of sorts4), and thus perhaps more thermody-
namically stable or structurally robust were they to exist in reality—an interesting
possibility as regards protein design and engineering. In terms of more conventional
structural similarity metrics, the TM-scores [45] for permuted domain structures
against the corresponding wild-type topolog (Supp Fig S7a) typically lied in the range
≈ 0.3−0.5—i.e., values which would indicate that the permutants and wild-type are
not from identical folds, yet are more than just randomly similar (Supp Fig S7b).

The findings from these test calculations suggest that the DeepUrfold model is
well-suited to our task because our encoding is agnostic to topological connectiv-
ity information and, rather, is sensitive only to 3D spatial architecture/shape. Even
though polypeptide connectivity is implicitly captured in our discretization, our Deep-
Urfold model intentionally does not consider if two residues are linked by a peptide
bond or if two spatially proximal SSEs are contiguous in sequence. The generality
of this approach is useful in finding similarities amongst sets of seemingly dissimilar
3D structures—and thereby identifying specific candidate urfolds—because two sub-
domain portions from otherwise rather (structurally) different domains may be quite
similar to each other, even if the domains which they are a part of have different
(domain-level) topologies but identical overall architectures. This concept can be rep-
resented symbolically: for an arbitrary subset of SSEs, d, drawn from a full domain
D, the Urfold model permits relations (denoted by the ‘∼’ symbol) to be detected
between two different ‘folds’, i and j (i.e. di ∼ dj), at the sub-domain level, without
requiring that the relation also be preserved with the stringency of matched topolo-
gies at the higher ‘level’ of the full domain. That is, di ∼ dj ⇏ Di ∼ Dj , even though
di ⊂ Di and dj ⊂ Dj (in contrast to how patterns of protein structural similarity
are traditionally conceived, at the domain level). Here, we can view the characteristic
stringency or ‘threshold’ level of the Urfold, ‘d’, as being near that of architecture,
while D reflects both architecture and topology (corresponding to the classical usage
of the term ‘fold’).

Latent Spaces Capture Gross Structural Properties Across
Many Superfamilies, and Reveal a Highly Continuous Nature
of Fold Space

The latent space of each superfamily-level DeepUrfold model offers a new, nuanced
view of that superfamily, and examining the patterns of similarities among such models
may offer a uniquely informative view of fold space. Each SF-specific model captures
the different 3D geometries and physicochemical properties that characterize that indi-
vidual SF as a single ‘compressed’ data point or embedding; in this way, the latent

4In the sense that DeepUrfold’s likelihood-based scores can be viewed as measures of the goodness-of-fit
of protein domain structures to VAE models that are learnt, against the variational objective, at the SF
level.
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space representation (or ‘distillation’) is more comprehensible than is a full 3D domain
structure (or superimpositions thereof). In a sense, the DeepUrfold approach—and its
inherent latent space representational model of protein SFs, with featurized proteins—
can reconcile the dichotomy of a continuous versus discrete fold space because the
Urfold model (i) begins with no assumptions about the nature of fold space (i.e.,
patterns of protein interrelationships), and (ii) does not restrictively enforce full topo-
logical ordering as a requirement for a relation to be detected (even a rather weak one)
between two otherwise seemingly unrelated domains (e.g., d SH3

i ∼d OB
j is not forbidden,

using the terminology introduced above). We posit that DeepUrfold can detect these
weak similarities (i.e., exhibit high sensitivity) because it operates on protein domains
that are featurized beyond purely 3D spatial coordinates; our rationale here is that
molecular evolution acts on proteins holistically, not on merely their 3D geometries.

As a first view of fold space through the lens of the Urfold, we used DeepUrfold to
represent/compute and analyze the latent spaces of representative domains for highly
populated SFs, including mapping the latent space embeddings into two dimensions
(Fig 3). Proteins that share similar geometries and biophysical properties should have
similar embeddings, and would be expected to lie close together in this latent-space
representation, regardless of the annotated ‘true’ SF. Though this initial picture of
the protein universe is limited to 20 highly populated CATH SFs (in this work),
already we can see that these SF domains appear to be grouped and ordered by
secondary structure composition (Fig 3)—a result that is consistent with past analyses
which used approaches such as multidimensional scaling to probe the overall layout
of fold space (e.g., [20]). Variable degrees of intermixing between SFs can be seen
in UMAP projections such as illustrated in Fig. 3; this is a compelling finding, with
respect to the Urfold and its relaxed notion of allowing for intermixed superfamilies.
In addition to this mixing, the latent space projection is not punctate: rather than
consist of clearly demarcated, well-separated ‘islands’, instead it is fairly ‘compact’
(in a loose mathematical sense) and well-connected, with only a few disjoint outlier
regions. Manual inspection of these outlier domain structures shows that many of
them are incomplete sub-domains or, intriguingly, a single portion of a larger domain-
swapped region [46]. Together, these findings support a rather continuous view of fold
space, at least for these 20 exemplary superfamilies.

While each superfamily model is trained independently, with different domain
structures (SH3, OB, etc.), we find that the distributions that the VAE-based SF
models each learn—again, as ‘good’ approximations to the true likelihood, pi(xij |θi)—
are similar, in terms of the dominant features of their latent spaces. In other words,
the multiple VAE models (across each unique SF) each learn a structurally low-level,
‘coarse-grained’ similarity that then yields the extensive overlap seen in Fig. 3. When
colored by a score that measures secondary structure content, there are clear direc-
tions along which dominant features of the latent-space can be seen to follow, as a
gradient from ‘all-α’ domains to ‘all-β’ domains, separated by ‘α/β’ domains. These
findings are consistent and reassuring with respect to previous studies of protein fold
space (e.g., [20]), as well as the geometric intuition that the similarity between two

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2022.07.29.501943doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501943
http://creativecommons.org/licenses/by/4.0/


507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

Fig. 3 Dominant variables of DeepUrfold’s latent-space models capture gross structural
properties and indicate a highly continuous fold space. In a pilot study, we used DeepUrfold to
develop 20 distributions/models for 20 CATH homologous superfamilies. Representatives from each
SF were subjected to deep models that were trained on domains from the same SF, and then the latent
space variables for each structural domain were examined via the uniform manifold approximation and
projection (UMAP) method, thereby reducing the 1024 dimensions of the actual model to the two-
dimensional projection shown here. In this representation, kernel density estimates (isodensity contour
lines) surround domains with the same annotated CATH Class. Each domain is colored by a secondary
structure score; computed as ( 1

2
(#β atoms−#α atoms)/(#β atoms + #α atoms) + 0.5), this score

ranges from zero (for all-α) to unity (for all-β). The protein domains here, as captured in DeepUrfold,
can be seen to group together by secondary structure composition; moreover, they are roughly ordered,
with the α/β region extensively overlapping the mostly-β region (yellow, predominantly in the vertical
direction) and mostly-α region (purple, running predominantly horizontally).

domains would roughly track with their secondary structural content (e.g., two arbi-
trary all-β proteins are more likely to share geometric similarity than would an all-β
and an all-α).

Protein Interrelationships Defy Discrete Clusterings

Our initial finding that fold space is rather continuous, at least under the DeepUr-
fold model, implies that there are, on average, webs of interconnections (similarities,
relationships) between a protein fold A and its neighbors in fold space (A′, A′′,
B, ...). Therefore, we posit that an optimally realistic view of the protein universe
will not entail hierarchically clustering proteins into mutually exclusive bins, regard-
less of whether such binning is based upon their folds (giving fold space) or any
other relatively simple (standalone) geometric feature/criterion. Alternatives to dis-
crete clustering could be such approaches as fuzzy clustering, multi-label classification,
or mixed-membership community detection algorithms. DeepUrfold’s strategy is to
detect communities of similar protein domains, at various levels of stringency, based
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on the quantifiable similarities of their latent-space representations (versus, e.g., hier-
archical clustering based on RMSD or other purely-geometric measures). Again, this
is possible because we are armed with a battery of ELBO-based scores of the ‘fit’ of
each SF domain representative to each of the top 20 SF VAE models (Fig 1C).

In DeepUrfold, we formulate this labeling/classification/grouping task as a problem
in nonparametric Bayesian stochastic block modelling (SBM; [47, 48]). In particular,
we fit an edge-weighted [49], degree-corrected, mixed-membership [50, 51], hierarchical
[52] SBM to a fully connected bipartite graph that is built from the similarity scores
between (i) the VAE-based SF-level models (one side of the bipartite graph) and (ii)
representative structural domains from the representative SFs (the other side of the
bipartite graph), as schematized in Fig 1C. In our case, we capture the ‘fit’ between
a domain representative and a particular SF (more precisely, that SF’s VAE model)
by weighting each edge by the quantity −log(−(ELBO)) (see Fig 1 and Eq 1). The
motivation for this approach is that the full, global collection of –(ELBO)-weighted
protein interrelationships (again, between SFs and domain representatives) most nat-
urally corresponds to a bipartite graph, or network, which can be represented by its
adjacency matrix, Ad×sfam; this matrix features covariate edge weights x that link
vertices from the two ‘sides’ of the bipartite graph, where sfam ∈ 20 highly-populated
SFs and d ∈ 3,674 representative domains from the 20 SFs. Following Peixoto [49],
we can write the full joint probability of a given bipartite graph/network occurring by
chance—with precisely the same vertices connected by the same edges, with the same
weights—as the following product over distributions of data and model parameters:

P (A, x, γ,G, k, e, b) =

P (A|G)P (x|G, γ)P (γ|e, b)P (G|k, e, b)P (k|e, b)P (e|b)P (b)
(2)

where b is the overlapping partition that represents the numbers of blocks (protein
communities) and their group memberships (which nodes map to which blocks), e
is a matrix of edge counts between the groups (thus allowing for mixed-membership
between blocks), k is the labelled degree sequence, and G is a tensor representing the
labeling of half-edges (each edge end-point r, s) to account for mixed-membership,
satisfying the constraintAij =

∑
rs G

rs
ij . The edge covariate parameters x (e.g., ELBO-

based scores) are sampled from a microcanonical distribution, P (x|G, γ), where γ
imposes a hard constraint such that

∑
ij G

rs
ij xij = γrs (Sec. VIIC of [47] and personal

communication with T. Peixoto). We seek an SBM that best captures A, where ‘best’
is meant as the usual trade-off between model accuracy (to the observed data) and
model simplicity (i.e., mitigating overparametrization). An optimal SBM is obtained
by considering this as a nonparametric Bayesian inference problem, meaning that (i)
model features (the number of groups/blocks, node membership in blocks, patterns of
edges between nodes and between groups, etc.), as well as (ii) model parameters and
hyperparameters that are sampled over (marginalized out, via integration), are not
set a priori but rather are determined by the data itself.

We estimate the optimal parameters for a given SBM via Markov chain Monte
Carlo (MCMC) methods. Several different models are created for different b and e in
order to find the optimal number of blocks with overlapping edges between them, and
these are evaluated using a posterior odds-ratio test [50, 51].
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Armed with the above SBM methodology, we can now summarize DeepUrfold’s
overall approach as consisting of the following four stages: (i) Dataset construction,
e.g. via the aforementioned discretization of 3D structures and biophysical properties
into voxelized representations [44]; (ii) Training of SF-specific models, using our hybrid
stacked 3D-CNN/VAE-based deep networks; (iii) In an inference stage, calculation
of ELBO-based scores for ‘fits’ obtained by subjecting SF representative i to the
VAE models of all other SFs, j; (iv) To decipher any patterns amongst these scores,
utilization of SBM-based analysis of ‘community structure’ within the complete set of
similarity scores for the VAE-based SF-level models (i.e., the full bipartite network,
SFi ×modelj).

Fig. 4 Protein interrelationships defy discrete clusterings: Stochastic block modeling of
an all-vs-all comparison of domain structures and superfamily models. Here, we depict (A)
the SBM communities predicted by DeepUrfold as a circle packing diagram, following a similar repre-
sentational scheme as for (B) the CATH hierarchy. While DeepUrfold avoids hierarchical clustering,
we display the groupings in this manner for the sake of visual representation and to facilitate compar-
ison to CATH. Each domain representative is drawn as an innermost circle (corresponding to leaves
in a hierarchical tree), colored by the annotated CATH SF and sized by the number of atoms. All of
the SF labelled nodes were found to cluster together and were removed from this list (Supp. Fig. 15).
Note that many SH3 and OB domains lie within the same lowest-level communities (labeled ‘Small
β-barrel’ in (A)), showing that DeepUrfold can detect the link between these folds, as posited in the
Urfold model. Indeed, comparison of the patterns of groupings in (A) to the CATH hierarchy in (B)
reveals that DeepUrfold is learning a rather different, non-hierarchical map of protein relationships.

Application of this DeepUrfold methodology to the 20 most highly-populated
CATH superfamilies leads us to identify many potential communities of domain struc-
tures and SFs (Fig. 4). Subjecting all domain representatives to all 20 SF-specific
models, in an exhaustive allSF-models×allSF-reps analysis, reveals the global commu-
nity structure shown in Fig. 4. We argue that two proteins drawn from vastly different
SFs (in the sense of their classification in databases such as CATH or SCOP) can
share other, more generalized (e.g., non-contiguous) regions of geometric/structural
and biophysical properties, beyond simple permutations of secondary structural ele-
ments. And, we believe that the minimally-heuristic manner in which the DeepUrfold
model is constructed allows it to capture such ‘distant’ linkages. In particular, these
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linkages can be identified and quantitatively described as patterns of similarity in the
DeepUrfold model’s latent space. Organizing protein domains and superfamilies based
on this new similarity metric provides a new view of protein interrelationships—a
view that extends beyond simple structural/geometric similarity, towards the realm
of integrated sequence ↔ structure ↔ function properties.

We find that domains that have similar –(ELBO) scores against various superfam-
ily models (differing from the SF against which they were trained) are more likely to
contain important biophysical properties at particular—and, presumably, functionally
important—locations in 3D space; these consensus regions/properties can be thought
of as ‘defining’ the domain.5 Furthermore, if two domains map into the same SBM
community, it is likely that both domains share the same scores when run through
each SF model (i.e., an inference calculation), so we hypothesize that that commu-
nity might contain an urfold that subsumes those two domains (again, agnostic of
whatever SFs they are labeled as belonging to in CATH or other databases). We also
expect that some domains (those which are particularly ‘gregarious’?) may be in mul-
tiple communities, which may reflect the phenomenon of a protein being constructed
of a multifarious ‘urfold’ or of several sub-domain elements. Because of the conceptual
difficulties and practical complexities of analyzing, visualizing and otherwise repre-
senting such high-dimensional data, in the present work we show only the single most
likely cluster that each protein domain belongs to, while emphasizing that multi-class
membership is a key property of DeepUrfold’s approach.

Given the stochastic nature of the SBM calculation, we ran six different replicates.
While each replica produced slightly different hierarchies and numbers of clustered
communities (ranging from 19-23), the communities at the lowest (coarsest) level
remained consistent, and exhibited varying degrees of intermixing. Notably, in each of
the replicates the SH3 and OB clustered into the same communities, and likewise the
Rossman-like and P-loop NTPases did too, instead of exclusively occupying their own
individual clusters; this finding is consistent with the Urfold view of these SFs, as pre-
dicted based on manual/visual analysis [12]. In Fig. 4, we chose to display the replica
with 20 SFs and highest overlap score compared to CATH in order to enable easy com-
parison to and reference to CATH. Most notably, each community contains domains
from different superfamilies (Fig. 4A), consistent with the Urfold model of protein
structure. In the particular subset of proteins treated here, the domains from ‘mainly
α’ and ‘α/β’ are preferentially associated, while domains from ‘mainly β’ and ‘α/β’
group together (Fig. 4B); members of the SH3 and OB superfolds cluster together in
the same communities (Fig. 4A), corresponding to the first proposed urfold, the SBB
[9].

In addition to coloring each domain (node) by its preexisting CATH superfamily
label in circle-packing diagrams, such as that of Fig. 4, we also explored coloring
domain nodes by other basic types of properties. These additional properties included:
(i) secondary structure type, (ii) average electrostatic potential, (iii) average partial
charge, and (iv) enriched gene ontology (GO) terms (Supp Figs S16-21); a navigable,
web-based interface for exploring these initial DeepUrfold results is freely available

5In some sense, these ‘defining regions’ may play analogous roles in protein domains as do tokens in
natural language modeling and generation via large language models such as the generative pre-trained
transformers (GPT-n series).
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at https://bournelab.org/research/DeepUrfold/. Interestingly, domains with similar
average electrostatic potentials (Supp Fig S16) and partial charges (Supp Fig S17)
can be found to associate into similar groups in DeepUrfold, whereas the CATH-based
circle-packing diagrams, when colored by those same features, have no discernible
order or structuring; whether or not this phenomenon stems from any underlying,
functionally-relevant ‘signal’ is a question of interest for further work.

In order to assess how ‘well’ our DeepUrfold model does, we compare and contrast
our clustering results with CATH. However, we emphasize that there is no reliable,
objective ground truth for a map of fold space, as there is no universally-accepted,
‘correct’ description of fold space (and, it can be argued, even ‘fold’). Therefore, we
cautiously compare our DeepUrfold results to a well-established system, like CATH,
with the awareness that these are two conceptually different approaches to repre-
senting and describing protein structure relationships and, thus, the protein universe.
Indeed, because our model uses a fundamentally different input representation of pro-
teins, intentionally ignoring all topological/connectivity information, we expect that
our model will deviate from CATH in terms of clustering-related measures such as
completeness, homogeneity, silhouette score, and partition overlap [51]. Given all this,
approaches that do differ from CATH—versus matching or recapitulating it—can be
considered as representing an alternative view of the protein universe. Somewhat coun-
terintuitively, we deem weaker values of our comparison metrics (e.g., less similarity
to CATH) as providing stronger support for the Urfold model of protein structure.
Simultaneously, we systematically compared how well other, independently-developed
sequence– and structure–based models can reconstruct CATH (Fig 5); in so doing, we
included a random baseline model as a sort of ‘negative control’ in gauging the per-
formance of the DeepUrfold framework (Fig. 5 and Supp Info §6.9). Among all these
methods, our DeepUrfold approach produces results that are the most divergent from
CATH, consistent with DeepUrfold’s approach of taking a wholly new view of the pro-
tein universe and the domain-level structural similarities that shape it. We also see that
many other algorithms, both sequence-based (Fig. 5, left) and structure-based (Fig. 5,
right), have difficulty reconstructing CATH (possibly due to extensive manual cura-
tion of CATH), but much more closely reproduce it than does our method. We suspect
that this largely occurs because of DeepUrfold’s intentional, low-level incorporation
and integration of more types of information than purely 3D structural geometry.

Discussion, Further Outlook

This work offers a new, structure-guided, community-based view of protein rela-
tionships. Using a deep learning-enabled framework that we term DeepUrfold, our
approach aims to (i) explore and assess the Urfold model of protein structure rela-
tionships [12], in a rigorous/quantitative manner, and (ii) develop a platform for
systematically identifying putative new urfolds. The following are key features of the
DeepUrfold framework: (i) It is sensitive to 3D structure and structural similarity
between pairs of proteins, but is minimally heuristic (e.g., it does not rely upon pre-set
RMSD thresholds or the like) and, crucially, it is topology-agnostic and alignment-
free (as it leverages latent space embeddings of featurized structures, versus direct 3D
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Fig. 5 Comparing DeepUrfold and other methods to CATH. We compare DeepUrfold to
other sequence-based (left-half) and structure-based (right-half) protein similarity approaches by
using each of them to attempt to reconstruct CATH’s organization of protein superfamilies. The
scores from each of the algorithms, applied to the same protein dataset as used for DeepUrfold in this
work, are used as edge weights to compute an SBM. In so doing, any score types that would increase
with decreasing similarity (i.e., correspond to a distance metric) were converted to a similarity metric
by negation (−x or −log x). We take the communities at the lowest hierarchical level as clusters
and use cluster comparison metrics to understand how well each algorithm/similarity metric can be
used to recapitulate CATH. For each of these metrics (silhouette value, overlap, homogeneity and
completeness), a value of unity is deemed best. DeepUrfold does ‘poorly’ with these metrics because
it does not produce the same clustering patterns—in other words, it is learning something entirely
different than are other algorithms, which more closely reproduce CATH. For TM-Align, ‘CP’ stands
for Circular Permutation. We also compared a uniform random grouping for 20 groups as a baseline.
For more detailed information, see Supp Info §6.9 and Supp Table S3.

coordinates, for comparison purposes). (ii) Beyond the residue-level geometric infor-
mation defining a 3D structure (i.e. coordinates), DeepUrfold is an extensible model
insofar as it can incorporate any types of properties of interest, so long as such data
can be encoded as part of the ‘featurization’ in a deep model—e.g. biophysical and
physicochemical characteristics (electrostatic charge, solvent exposure, etc.), site-by-
site phylogenetic conservation, and so on. (iii) The DeepUrfold method provides a
quantitative metric, in the form of the deep neural network’s loss function (at the
inference stage), that is amenable to approaches that are more generalized than brute-
force hierarchical clustering; for instance, this work shows that we can use loss function
scores in stochastic block modeling to construct mixed-membership communities of
proteins. In the above ways, DeepUrfold can be viewed as an integrative approach that,
while motivated by structural (dis)similarities across fold space, is also cognizant of
sequence↭structure↭function interrelationships—even those which are quite weak.
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This is intentional: molecular evolution acts on the sequence/structure/function triad
as its base ‘entity’, not on the purely geometric aspects of 3D structure alone. We sus-
pect that any purely geometric/structure-based approach will be limited in its ability
to accurately represent fold space (as also described in Supp Info §5.6).

Using the DeepUrfold methodology, we demonstrate (i) the general utility of a new
type of similarity metric for representing and comparing protein domain structures,
based on deep generative models and latent spaces, and (ii) that a mixed-membership
community detection algorithm can identify what we previously found, via manu-
al/visual analysis [12], to be putative urfolds. Finally, we emphasize that because
DeepUrfold is agnostic of precise protein topology (i.e., order of connectivity of SSEs
in 3D-space), it can readily detect levels of similarity ‘above’ the fold level (above
CATH’s ‘T’ level, below its ‘A’ level), including the potential of non-contiguous
fragments. We believe that such spatially-compact groups of frequently recurring sub-
domain fragments, sharing similar architectures (independent of topology) within a
given group—which, again, we term an ‘urfold’—could correspond to primitive ‘design
elements’ in the early evolution of protein domains [22]. We note that Kolodny [53]
has made similar points.

Overall, the DeepUrfold framework provides a sensitive approach to detect and
thus explore distant protein interrelationships, which we suspect correspond to weak
phylogenetic signals (perhaps as echoes of remote/deep homology). Also notable, the
embeddings produced by our VAE models and ELBO-based similarity scores provide
new methods to visualize and interpret protein interrelationships on the scale of a
full fold space. From these models, it is clear that there is a fair degree of continuity
between proteins in fold space, and intermixing between what has previously been
labeled as separate superfamilies; a corollary of this finding is that discretely clustering
proteins, or their embeddings, is ill-advised [54] from this perspective of a densely-
populated, smoother-than-expected fold space. An open question is the degree to
which the extent of overlap between individual proteins (or groups of domains, as an
urfold) in this fold space is reflective of underlying evolutionary processes, e.g. akin
to Edwards & Deane’s finding [21] that “evolutionary information is encoded along
these structural bridges [in fold space]”.

While the present work focused exclusively on developing DeepUrfold with CATH
as a backdrop, it also would be intriguing to assess other classification schemes as
contexts for DeepUrfold-based VAE models—specifically, SCOP, SCOP2 and ECOD.
SCOP2 is particularly interesting because it aims to represent sub-domain-level
similarities and evolutionarily-distant functional relationships by relaxing the strict
constraints of hierarchical trees in favor of a graph-based approach to relationships
[33]. A comparative analysis of DeepUrfold groupings (e.g., from the SBM) and SCOP2
groupings, in order to gauge any clear and easily identifiable points of concordance
between these approaches, would be of great interest.

Another informative next step would be to use DeepUrfold to identify struc-
tural fragments that contain similar patterns of geometry and biophysical properties
between proteins from quite different superfamilies. Notably, these fragments may be
continuous or discontinuous, and pursuing this goal might help unify the ‘primordial
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peptides’ [2] and ‘themes’ [27] concepts with the Urfold hypothesis, allowing connec-
tions between unexplored (or at least under-explored) regions of fold space. Also, we
suspect that ‘Explainable AI’ techniques, such as layer-wise relevance propagation
(LRP; [55, 56]), can be used to elucidate which atoms/residues, along with their 3D
locations and biophysical properties, are deemed most important in defining the var-
ious classification groups that are identified by DeepUrfold (i.e., the structural and
physicochemical determinants of why a given protein falls into urfold A versus urfold
B). This goal can be pursued within the DeepUrfold framework because we discretize
full domain structures into voxels as part of the 3D-CNN data encoding scheme (Supp
Info §2): thus, we can probe the neural network (i.e., trained model) to learn about
specific voxels, or groups of specific voxels (e.g., amino acid residues), that contribute
as sub-domain structural elements. Doing so would, in turn, be useful in finding com-
mon sub-domain segments from different superfamilies. We hypothesize that the most
‘relevant’ (in the sense of LRP) voxels would highlight important sub-structures; most
promisingly, that we know the position, biochemical and biophysical properties, and so
on about the residues would greatly illuminate the physical basis for the deep learning-
based classification. In addition, this would enable us to explore in more detail the
mechanistic/structural basis for the mixed-membership features of the SBM-based
protein communities. Beyond helping to detect and define new urfolds, for use in areas
like protein engineering or drug design, such communities of weakly-related proteins
may offer a powerful new lens on remote protein homology.

Online Methods

The following subsections describe the computational methodology that underlies the
DeepUrfold framework.

Datasets

Using ‘Prop3D’, a computational toolkit that we have developed for handling pro-
tein properties in machine learning and structural bioinformatics pipelines [44], we
created a ‘Prop3D-20sf’ dataset. This dataset employs 20 highly-populated, diverse
CATH superfamilies of interest (Fig 1C); these superfamilies are enumerated in Supp
Table S1, which includes annotated rationales for many of the SFs (in the table and
its accompanying text). Domain structures from each of the 20 SFs are ‘cleaned’
by adding missing residues with MODELLER [57], missing atoms with SCWRL4 [58],
and protonating and energy minimizing (simple debump) with PDB2PQR [59]. Next,
we compute a host of derived properties for each domain in CATH [44], includ-
ing (i) purely geometric/structural quantities, e.g. secondary structure labels [60]
and solvent accessibility, (ii) physicochemical properties, e.g. hydrophobicity, partial
charges, electrostatic potentials, (iii) basic chemical descriptors (atom and residue
types), and (iv) phylogenetic conservation. As detailed in [44], these computations
rely heavily on the Toil workflow engine [61], and data were stored using the Hier-
archical Data Format (version 5) in the Highly Scalable Data Service (HSDS). The
domains from each SF were split such that all members of an S35 35% sequence
identity cluster (pre-calculated by CATH) were on the same side of the split; as
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described in [44], we constructed data splits so as to mitigate evolutionary ‘data leak-
age’. We partition the protein data roughly as 80% training, 10% validation, and
10% test (https://doi.org/10.5281/zenodo.6873024; further technical details regarding
enactment of the computational workflows can be found in [44]).

In our Prop3D dataset, each atom is attributed with the following seven groups
of features, which are one-hot (Boolean) encoded: (i) Atom Type (C, CA, N, O, OH,
Unknown); (ii) Residue Type (ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU,
MET, ASN, PRO, GLN, ARG, SER, THR, VAL, TRP, TYR, Unknown); (iii) Secondary
Structure (Helix, Sheet, Loop/Unknown); (iv) Hydrophobic (or not); (v) Electronega-
tive (or not); (vi) Positively-charged (or not); and (vii) Solvent-exposed (or not). For
all of the DeepUrfold final production models reported here, the “residue type” fea-
ture was omitted because it was found to be uninformative, at least for this type of
representation (see Supp Info §3 and Supp Figs S3-4); interestingly, this finding about
the dispensability of a residue-type feature was presaged in early work on this project
(e.g., the receiver operating characteristic (ROC) curves in Fig 2 of ref [62]).

Protein 3D Structure Representation

We represent protein domains in DeepUrfold’s 3D-CNN by discretization into 3D
volumetric pixels, or voxels, as described in Supp Info §2. Briefly, our method centers
a protein domain in a 2563 Å3 cubic volume to allow for large domains, and each atom
is mapped to a 1Å3 voxel using a kD-tree data structure, with a query ball radius set
to the van der Waals radius of the atom from a lookup table. If two atoms occupy the
same given voxel—a possibility, as the solid diagonal of such a cube is

√
3 ≈1.732Å—

then the maximum (element-wise) between their feature vectors is used for that voxel
(justifiable because they are all binary-valued). Because a significant fraction of voxels
in our representation domain do not contain any atoms, protein domain structures can
be encoded in this way via a sparse representation; doing so, via an implementation
using MinkowskiEngine [63], substantially reduces the computational costs of our deep
learning workflow.

Because there is no unique or ‘correct’ canonical orientation of a protein structure
in R3, we applied random rotations to each protein domain structure as part of the
model training routine; these rotations were in the form of orthogonal transformation
matrices randomly drawn from the Haar distribution, which is the uniform distribution
on the 3D rotation group, i.e., SO(3) [64].

Stacked 3D-CNN/VAE Model Design and Training

A sparse 3D-CNN variational autoencoder was adapted from MinkowskiEngine [63,
65]. In DeepUrfold’s Encoder, there are seven blocks consisting of Convolution (n-
>2n), BatchNorm, Exponential Linear Unit (ELU) activation functions, Convolution
(2n->2n), BatchNorm, and ELU, where n=[16, 32, 64, 128, 256, 512, 1024], or a
doubling at each block. Finally, the tensors are pooled using a Global Pooling routine,
and the model outputs both a normal distribution’s mean and log variance. Next, the
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learned distribution is sampled from6 and used as input to the Decoder. The decoder
also consists of seven blocks, where each block consists of ConvolutionTranspose(2n-
>n), BatchNorm, ELU, Convolution(n->n), BatchNorm, and ELU. Finally, one more
convolution is used to output a reconstructed domain structure in a 2563 Å3 volume.
A detailed layout of DeepUrfold’s model architecture can be found in Supp Info §8.

In VAE training calculations, a well-established ‘reparameterization trick’ enable
gradients to be computed for backpropagation steps despite the VAE’s latent space
variables being sampled stochastically. This is achieved by making only the mean (µ)
and variance (σ) differentiable, with a random variable that is normally distributed
(N (0, I)). That is, the latent variable posterior z is given by z = µ + σ

⊙
N (0, I),

where
⊙

denotes the Hadamard (element-wise) matrix product and N is an ‘auxiliary
noise’ term [66].

We optimize against the negative Evidence Lower BOund (–(ELBO)) described in
Equation 1, which combines into a single quantity (i) the mean squared error (MSE) of
the reconstructed domain and (ii) the difference between the learned distribution and
the true distribution of the SF (i.e., the KL divergence, or relative entropy between
the true/underlying distribution of the data given a model, p, and our learned/inferred
posterior distribution of latent parameters given the data, q [66]).

We used stochastic gradient descent (SGD) as the optimization algorithm for
parameter updates during NN model training, with a momentum of 0.9 and 0.0001
weight decay. We began with a learning rate of 0.2 and decreased its value by 0.9 every
epoch using an exponential learning rate scheduler. Our final network has ≈110M
parameters in total and all the networks were trained for 30 epochs, using a batch size
of 255 (Supp Fig S2 provides an illustrative example of model training with Igs). We
utilized the open-source frameworks PyTorch [67] and PytorchLightning [68] to simplify
training and inference, and to make the models more reproducible.

To optimize/tune hyperparameters for DeepUrfold’s VAE, we used Weights &
Biases Sweeps [69] to parameter-scan across the batch size, learning rate, convolu-
tion kernel size, transpose convolution kernel size, and convolution stride in the Ig
model, while minimizing the –(ELBO). We used a Bayesian Optimization search strat-
egy and ‘hyperband’ method with three iterations for early termination. We found
no significant changes to parameters, and therefore used the following default values:
convolution kernel size of 3, transpose convolution kernel size of 2, and convolution
stride of 2.

Due to a large-scale class imbalance between the number of domains in each super-
family (e.g., over-representation of Igs), we follow the “one-class classifier” approach,
creating one VAE for each superfamily. As part of our ‘control experiments’, we also

6A VAE’s modeling/learning of this latent space distribution is what makes it a form of generative
modeling: were one so inclined, the learnt distribution could be used to generate new instances/samples of
the type of entity being modeled (a string of text, image data, etc.), in as optimal a manner as possible
(‘optimal’ in terms of the match between statistical distributions of the generated entities relative to the
observed data); more concretely, new entities could be created, for example, by interpolating between latent
space embeddings. The generative approach contrasts with, e.g., more traditional discriminative models,
wherein the likelihood of specific labels being associated with specific instances can be assessed and used
to classify/discriminate between the different types of instances (versus spawning new ones). A benefit of
generative models is that they develop a probabilistic framework that describes the statistics of the observed
instance↔label mappings, thus enabling new entities to be created. Such approaches are powerful, e.g., in
de novo protein design.
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train a joint SH3 and OB model and compare random over- and under-sampling from
ImbalancedLearn [42] on joint models of multiple superfamilies (Supp Info §4.2, Supp
Fig S8).

All 20 SF models used throughout this work (i.e., in Prop3D-20sf) were trained
using between one and four NVIDIA RTX A6000 GPUs on a Lambda Labs Deep
Learning workstation.

Evaluation of Model Performance

We calculated the area under the ROC curve (auROC) and the area under the
precision-recall curve (auPRC) for the 20 SFs. Representative domains, as defined
by CATH, for each superfamily were subjected to their SF-specific VAE models and
predicted values were micro-averaged to perform auROC and auPRC calculations.
Immunoglobulins were chosen for purposes of display in this work (Supp Info §3, Supp
Figs S2-6), and the results for all SFs can be found in the extended Supp Info. All SFs
resulted in roughly similar metrics for each of the seven different groups of encoded
features (Supp Figs S3-4).

Assessment of the Urfold Model’s Topological Sensitivity by
Systematically Scrambling Loops

To gauge the sensitivity of our DeepUrfold model to loop orderings (i.e., topology),
we subjected artificial protein structures, with systematically permuted secondary
structural elements, to superfamily-specific VAEs. To do this, we generated a series
of fictitious folds by implementing a multi-loop permutation algorithm [43], allowing
us to systematically ‘re-wire’ the SSEs found in representative SH3 and OB domains
in order to exhaustively sample all possible topological orderings (numbering 96, in
the case of the SBB’s 4-stranded β-sheet). We stitched together the SSEs in various
orders and relaxed the conformations/energetics of each new 3D structure using the
MODELLER suite [57].

Next, each novel permuted structure is subjected to a VAE model trained on all
other domains from the SH3 homologous superfamily. Fit to the model is approximated
by the log-likelihood score of the permuted and natural (wild-type) protein represented
–(ELBO) scores, which can be viewed as a similarity metric (goodness-of-fit of a
given structure to the VAE model). We also calculated a ‘background’ distribution
of each model by performing an all-vs-all TM-align calculation for all domains in our
representative CATH domain set; in this step, we recorded any domains that have a
TM-score ≤ 0.3, as that threshold quantity is thought to correspond to domains that
have random 3D structural similarity (see also the description in Supp Info §4).

Exploration of Latent-space Organization

We subjected all representative domains (numbering 3,674) from each individual SF
to an inference pass through each of the 20 SF-specific DeepUrfold models, and visual-
ized the 20 different latent space embeddings for all representatives from each separate
model. These results are further detailed in Supp Info §5: in particular, Supp Info §5.4

22

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2022.07.29.501943doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501943
http://creativecommons.org/licenses/by/4.0/


1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

describes the individual, SF-level feature embeddings that we analyzed as 20 inde-
pendent subspace projections (Supp Fig S12 shows each of these). More concretely, a
‘latent space’ for a given domain from one SF-specific VAE corresponds to a 1,024-
dimensional vector describing the representative domain in its most ‘compressed’ or
‘distilled’ form in the feature space learned by the VAE model, accounting for the posi-
tion of each atom, their biophysical properties (represented by the mean of the learned
distribution), and any other features that were included in the model (e.g., phyloge-
netic properties; see above). We then pooled the latent spaces for every domain from
each superfamily-specific VAE into a single dataset by concatenating on the feature
or column dimension, e.g. the shape of the dataset from a single superfamily model is
(3674, 1024) and the combined dataset becomes (3674, 20480) after concatenation.

The DeepUrfold-learned embeddings from two different, independently-trained SF-
specific VAE models may not be directly comparable, as they can in general occupy
different regions of the learned latent (hyper)space. This, in turn, makes it problem-
atic to simply concatenate such embeddings in the feature dimension. An alternative
approach could be to ‘shift’ the embedding vectors to a common region of latent space,
via a method known as Optimal Transport (OT) for domain adaptation. As shown
in Supp Fig S13 and detailed in its accompanying caption, we applied the OT algo-
rithm (using Sinkhorn-based transport with group LASSO L1L2 regularization) and
then concatenated on the feature dimension; reassuringly, this process achieved sim-
ilar results as our more naive concatenation approach, inasmuch as SFs exhibited a
clear dispersal in terms of SSE content (i.e., the non–OT-based approach [Fig 3] and
OT-based approach [Supp Fig S13] are roughly similar).

Finally, we reduced the number of latent space dimensions to two (giving a (3674,
2)-sized matrix across all domains) in order to aid visualization of the learned embed-
dings. We achieved this via three dimensionality-reduction approaches, including the
uniform manifold approximation and projection (UMAP) method. As a subspace pro-
jection method, the UMAP algorithm is more powerful than the principal component
analysis (PCA) method, the latter of which assumes linearity in the data (we also
applied PCA to the DeepUrfold embeddings [Supp Fig S11]). Also, UMAP more
robustly captures long-range structure/correlations in a dataset than does the common
t-distributed stochastic neighbor embedding (t-SNE) approach, which we also applied
to the DeepUrfold embeddings (Supp Fig S10). Given our naivety about DeepUrfold’s
latent spaces, we utilized UMAP as a de facto projection approach because it pro-
vides both (i) a well-formed metric notion of local distances (e.g., within-clusters) and
(ii) better preserval (versus t-SNE) of the topological structure/relationships amongst
more distant points in a dataset, e.g., more global-scale, between-cluster orderings.

Mixed-membership Community Detection via SBMs

We performed all-vs-all comparisons of domains and superfamilies by subjecting
representative protein domain structures from each of the 20 chosen SFs through
each SF-specific one-class VAE model. The –(ELBO) loss score for each (i, j) pair
(domainrepi ,SFmodel

j ) can be used to quantitatively evaluate pairwise ‘distances’
between SFs by treating the complete set of distances as a fully connected bipartite
graph between domains i (one side of the graph) and SF models j (other side of the
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graph), defined by adjacency matrix Aij , with edges weighted by the −log(−(ELBO))
scores from the covariate matrix, x . Stochastic Block Models (SBM; [48]) offer a gen-
erative, nonparametric Bayesian inference-based approach for community detection in
random graphs [49]. Therefore, we used SBM algorithms to partition the DeepUrfold-
derived bipartite graph into communities of domains that have similar distributions
of edge covariates between them. Using the SBM likelihood equation (Equation 2),
inference is done via the posterior:

P (b,G|A, x) =
P (A, x, γ,G, k, e, b)

P (A, x)
(3)

where b is the overlapping partition, e is the matrix of edge counts between groups,
k is the labelled degree sequence, and G is a tensor representing half-edges (each
edge end-point r, s) to account for mixed-membership, satisfying Aij =

∑
rs G

rs
ij .

Edge covariates x are sampled from a microcanonical distribution, P (x|G, γ), where
γ adds a hard constraint such that

∑
ij G

rs
ij xij = γrs (personal communication with

T. Peixoto and Sec. VIIC in [47]).
Using the same SBM approach as we did for post-processing the DeepUrfold-

derived data (i.e., ELBO-quantified fits between domain representatives and SF-
specific VAE models), we also compared our results to community analyses of data
that we performed by using state-of-the-art sequence– and structure–based meth-
ods for comparing proteins (e.g., HMMER, ESM, SeqDesign, etc. listed in Fig 5 and
Supp Table S3). All SBMs were created using fully-connected n×m bipartite graphs,
linking n CATH S35 domains to m SF models. In our current work, we used 3,674
representative CATH domains from 20 superfamilies, yielding a 3,674 × 20-element
similarity matrix for each of the various methods (UCLUST, HMMER, SeqDesign, etc.)
that we sought to compare. Each SBM was degree-corrected, overlapping, and nested
and fit to a real normal distribution of edge covariates. For those methods that give
decreasing scores with increasing similarity (i.e., closer to zero is greater similarity),
we −log–transformed each score, whereas values from methods with a non-inverse
relationship between the score metric and inferred similarity (i.e., higher values mean
greater similarity) were unaltered.

While only ‘superfamily-specific’ methodologies/models would be directly compa-
rable to the task performed by DeepUrfold (e.g., where n×m matrices are the original
output created by subjecting n CATH representative domains without labels to m
SF-specific models), for purposes of comparison we also included ‘pairwise’ and ‘single
model’ methods (Fig. 5). This was accomplished in the following way: For pairwise
approaches, an all-vs-all n×n similarity matrix was created and then converted to
n×m by taking the median distance of a single CATH domain to every other domain
in a given SF. What we are calling ‘single model’ approaches here are those wherein
a single model is trained on all known proteins and outputs a single embedding score
for each domain, creating an n×1 vector. To convert that data form into an n×m
matrix, we took the median distance of a single CATH domain embedding to every
other domain embedding from a given SF.
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Evaluating SBM Communities, and Comparing to CATH

Because we have no ground truth for the new Urfold view of protein structure simi-
larities (and the resultant protein universe), we applied cluster comparison metrics to
evaluate each SBM community both in a self-contained manner and as referred against
the original CATH clusterings. The specific measures we considered include the fol-
lowing silhouette score, partition overlap, homogeneity, and completeness, for each of
the various protein comparison approaches listed in Fig. 5:

• Silhouette Score: Provides a measure of how similar an object is to its own cluster
(cohesion) compared to next-closest cluster (separation), with values ranging from
−1 (poor grouping) to 1 (ideal).

• Overlap: Describes the maximum overlap between partitions, by solving an
instance of the maximum weighted bipartite matching problem [51].

• Homogeneity: The optimal value (1) occurs when each cluster contains only
members of a single class; this metric ranges from [0, 1].

• Completeness: Ranging from [0, 1], the optimal value (1) occurs when all members
of a given class are (presumably correctly) assigned to the same cluster.

All of our comparisons start by using the sequence and structure representatives
from CATH’s S35 cluster for each of the 20 superfamilies of interest. The code USE-
ARCH [70] was run twice with parameters -allpairs local and -allpairs global;
both runs included the -acceptall parameter. HMMER [71] models were built using
(1) MUSCLE [72] alignments from CATH’s S35 cluster; and (2) a deep MSA created
from EVcouplings [73] using jackhmmer [71] and UniRef90 of the first S35 representa-
tive for each superfamily. Each HMMER model was used to search all representatives,
reporting all sequences with bitscores ≥ −1012. SeqDesign [74] was run using the same
MSAs from EVcouplings. Finally, we also compared our DeepUrfold results against the
ESM pre-trained protein language model [75].

For other structure-based comparisons, we ran TM-Align [76] on all representa-
tive domains, with and without allowing for circular permutations, and saving the
RMSD and TM-score values. Struct2Seq [77] was executed with default parameters
after converting domain structure representatives into dictionaries in order to match
the required form of input.

Finally, as a baseline, we also compare random groupings to CATH. First, we
create a uniform random grouping with 20 groups using numpy’s random.choice

function. Next, we tried using the same SBM clustering above using random weights
with numpy’s random.rand function. The random SBM converged into a solution with
only two groups: one for all domains and another for all VAE models (Supp Fig S23).
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