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Abstract 

 

Hematopoietic stem and progenitor cells (HSPCs) are intended to deliver life-long, consistent 

output. However, with age, we observe changes in blood counts and clonal disorders. Better 

understanding of inter-individual variation in HSPC behavior is needed to understand the 

transition from health to age-related hematological disorders. Here we study 360K single 

circulating HSPCs (CD34+) from 99 healthy individuals together with clinical information and 

clonal hematopoiesis (CH) profiles to characterize population variability in hematopoiesis. 

Individuals with CH were linked with reduced frequencies of lymphocyte progenitors and higher 

RDW. We describe a Lamin-A transcriptional signature across the HSPC spectrum and show it is 

reduced in CH individuals. We define and estimate HSPC composition bias and an age-related 

increased S-phase gene signature and show how they form a heterogeneous and multifactorial 

aging trend in the blood. The new comprehensive model of normal HSPC variation will allow the 

study of stem cell-related disorders. As a proof of concept, we present methodologies for 

analyzing myeloid malignancies in comparison to our reference atlas. Together, our data and 

methodologies shed light on age-related changes in blood counts, CH and can be used to study 

stem cell-related disorders in the future. 

 

Introduction 

 

The basis for understanding and defining human pathophysiological states is a detailed 

description of inter-individual heterogeneity among healthy individuals. Variability between 

healthy humans is multifactorial and determined by the interaction between germline/somatic 

mutations and the environment. The identification of inter-individual changes in complete blood 

counts (CBC) in large cohorts of healthy individuals exposed different age-related deviations from 

the reference. Such studies uncovered age-related macrocytic anemia with increased RDW and a 

reduction in absolute lymphocyte counts1. The mechanisms responsible for both phenomena 

remain enigmatic. Another aspect of heterogeneity in the blood is the appearance of somatic 

mutations in hematopoietic stem and progenitor cells (HSPCs). All HSPCs acquire somatic 

mutations2, however, certain mutations in leukemia-related genes, namely pre-leukemic 

mutations - pLMs3,4, can lead to clonal expansion of HSPCs, a phenomenon termed clonal 

hematopoiesis (CH)5,6. While CH is quite common among the elderly7, it remains poorly 
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understood why pLMs lead to clonal expansion, and how CH and other age-related blood 

phenomena are related to each other.  

One of the major gaps for understanding these age-related phenomena in the blood is 

our insufficient knowledge of HSPC variability across healthy, age-diverse individuals. While the 

various HSPC subpopulations and their functions have been extensively studied, it remains poorly 

understood how these differ between individuals. Inter-individual heterogeneity in the frequency 

of CD34+ peripheral blood (PB) HSPCs has been reported in the past, and was linked to age, 

smoking, sex, and hereditary factors8, as well as different pathological states9. Some studies 

analyzed HSPC heterogeneity in higher resolution, but their sample size was limited10. No study 

specifically determined the inter-individual heterogeneity in HSPC transcriptional programs in a 

large cohort of healthy individuals, and how these correlated with CBC, CH and age.  

Such a reference map has not yet been described, as the tools to characterize 

transcriptional programs in HSPCs with minimal bias, and at single cell resolution, have just been 

recently developed. In addition, as most HSPCs reside within the bone marrow (BM), access to 

these cells, in particular from healthy donors, has been problematic. However, previous studies 

have demonstrated that most HSPC populations can be identified in the PB11, including some 

based on scRNAseq analysis12, and functional stem cells were identified in the PB of mice13 and 

humans12. As the PB connects the BM to other extramedullary stem cell sites, it can be enriched 

in unique stem cell populations9. All this suggests that PB HSPCs can be a good surrogate for 

studying inter-individual HSPC transcriptional heterogeneity. 

In the current study, we analyzed 99 healthy individuals across age (25-91 years), sex and 

somatic mutations by highly reproducible scRNAseq, and describe transcriptional programs of 

360,000 cells and how they correlate with clinical attributes (all data can be observed in 

https://tanaylab.weizmann.ac.il/MCV/blood_aging/). We discovered rare circulating HLF/AVP 

positive hematopoietic stem cells (HSCs) known to have extensive self-renewal capacity and 

previously reported in the BM. We identified a T and dendritic cell progenitor population which 

does not decline with age. Inter-individual heterogeneity in the frequency of specific HSPCs and 

in their transcriptional programs were highly correlated with blood indices. Specifically, both a 

gene signature that includes Lamin-A (LMNA) and the frequency of lymphoid progenitors were 

correlated with CH. We discovered a complex set of interacting factors in blood aging. Finally, as 

proof of concept, we introduce novel methodologies for the analysis of Myelodysplastic 

Syndrome (MDS) and Acute Myeloid Leukemia (AML) cases in comparison to the normal reference 
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map provided. This study portrays the map of circulating human HSPCs and lays the foundations 

for understanding HSPC aging and related disorders. 

 

Results 

 

Universal stem and progenitor states observed across humans in CD34+ peripheral blood 

To evaluate interpersonal diversity in the distributions and regulation of HSPCs from 

healthy humans, we combined multiplexed scRNAseq with genotyping, and integrated clinical 

data. We used multiplexing to reduce costs and batch bias, relying on common SNPs we identified 

in the 3’ UTR of HSPC RNA and their targeted genotyping, for precise matching of cells to 

individuals (Fig 1A). This design was also instrumental in reducing doublet effects. Altogether, we 

collected HSPCs from 47 males and 52 females between the ages of 25 and 91 years (median 66), 

sequencing single cells through a standardized pipeline using 10X and Illumina sequencing (EDF 

1A, Supplementary Table S1). We ran technical replicates on 11 individuals, and biological 

replicates on a follow-up cohort of 10 individuals, sampled one year following their original 

sampling date. Replicates were sequenced on an alternative platform (Ultima Genomics) to 

demonstrate the scalability of our approach. We collected longitudinal CBCs from all individuals 

up to 5 years prior to sampling, and performed deep targeted somatic mutation analysis on DNA 

produced from all blood samples, to identify cases of CH (Supplementary Tables S2, S3)14. 

Following quality control and filtering, we retained 360,000 single cell profiles with which we 

constructed a metacell manifold model15, annotated using known markers (EDF 1B,C). From the 

1435 metacells we derived, we filtered 251 as showing low CD34 expression and a strong 

association with known features of B, NK, T, Monocyte and Dendritic cells (EDF 1D). The remaining 

metacells were visualized in 2D (Fig 1B), showing a rich repertoire of states associated with 

circulating HSCs and their differentiation trajectories (EDF 1C-F). The derived model recapitulated 

and deepened previous observations from BM (EDF 2) and small samples of circulating HSPCs12. 

The model defines a distinct HSC state that is transcriptionally linked with two major 

differentiation gradients. The first one represents a continuum of common lymphoid progenitor 

(CLP) programs. The second, and more common differentiation branch, represents multipotent 

progenitor (MPP) states and their differentiation toward granulocyte-monocyte progenitors 

(GMP), erythrocyte progenitors (ERYP) and basophil/eosinophil/mast progenitors (BEMP). 
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Technical limitations of cell disassociation in scRNAseq prevented precise megakaryocyte 

program modeling (EDF 2F). We therefore annotated states at the base of this trajectory as 

megakaryocyte/erythrocyte/basophil/eosinophil/mast progenitors (MEBEM-P) as these are also 

presumed to be the cells of origin of megakaryocytes16. The depth of our HSPC sample allowed 

for detailed characterization of rare progenitor populations that were previously difficult to 

acquire and profile. 

High resolution circulating HSC map shows HLF, GATA3, HOXB5 and TLE4 as distinct HSC TFs 

Early HSCs are marked by high AVP and HLF expression and were shown by others to 

represent a rare cell population with self-renewal capacity in BM and cord blood17. Our model 

included data on ~4700 HLF/AVP HSCs that could be matched with cells from independent BM 

atlases18, suggesting that under steady-state, HSCs with the highest self-renewal capacity 

constantly leave the BM (EDF 3A). Together with HLF and AVP, we discovered 26 genes expressed 

at least 1.75-fold higher in HSCs compared to their two immediate differentiation branches (EDF 

3B, Supplementary Table S4). We specifically identified several transcription factors (TFs) 

enriched in HSCs, including the genes HOXB5, TLE4 and, importantly, GATA3 (Fig 1C). GATA3 was 

previously reported to regulate self-renewal in mice long-term HSCs19, yet its role in human HSCs 

has not been studied in depth thus far. We hypothesized that if GATA3 is indeed an important 

HSC TF, it could be mutated in AML. We therefore screened for GATA3 mutations in exome 

sequencing datasets of AML20, and discovered a mutation hotspot at position R353K, which is part 

of the DNA binding domain, in ~1% of AML patients (EDF 3C). 

We note that while the HSC state is defined by unique markers that are down-regulated 

in both the CLP and MEBEMP trajectories (symmetrically) upon exit from the HSC state (Fig 1C), it 

is also expressing a number of lineage-specific regulators at intermediate levels which are 

bifurcating anti-symmetrically to the CLP and MEBEMP lineages (Fig 1D, EDF 3B). These 

remarkable dynamics may suggest that the multipotent capacity of HSCs is correlated with 

intermediate expression of multiple regulators that is resolved with differentiation. 

NK-T-dendritic and basophil-eosinophil-mast progenitors are enriched in circulating HSPCs 

The circulating CD34+ atlas was enriched for basophil-eosinophil-mast progenitors 

(BEMP) that were mapped as one possible terminus of the HSC differentiation trajectories. While 

classical studies linked these cells with a granulocyte/monocyte progenitor (GMP) origin, more 
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recent studies suggested these to be emerging, at least in part, from erythroid progenitors in mice 

and humans12,21. Our analysis allowed us to zoom in on a small population of metacells linking 

BEMPs with their MEBEMP-L precursors (Fig 1E). This highlighted TFs (Fig 1F) and other factors 

(EDF 4A) that are regulated positively or negatively in this postulated early stage of BEMP 

specification. Another rare HSPC population we could zoom in on included lymphoid states with 

high ACY3 expression and intermediate-to-low DNTT levels, a combination that could only be 

rarely found in the human BM, but is present in peripheral blood (EDF 4B). Interestingly, we 

observed co-variation of key T cell regulators within this population, but also anti-correlation of 

these factors with some hallmarks of a dendritic cell (DC) program. This can be demonstrated by 

comparison of TCF7 and IRF8 expression (Fig 1G), and the matching TCF7-coupled dynamics of 

CD7, MAF, and IL7R, or IRF8-coupled dynamics of the myeloid TF SPI1 (PU.1) and multiple MHC-II 

genes (Fig 1H and EDF 4C). We therefore termed this subpopulation NK/T/DC progenitors 

(NKTDP). To summarize, our map of circulating HSPCs showed a rich spectrum of differentiation 

trajectories and progenitor states that refined previous analyses, and provided an opportunity for 

deciphering inter-individual hematopoietic variability. 

Inter-individual variation in HSPC stemness and in lymphoid/myeloid differentiation bias 

We found our circulating HSPC model to be consistent among individuals. The median 

number of individuals contributing cells to each metacell was 73, and all metacells included cells 

from at least 14 individuals. Individual-specific differential expression was limited after controlling 

for each sample’s cell distribution over the atlas states (EDF 5). To study inter-individual HSPC 

variation we combined characterization of compositional state variation, with quantification of 

within-state differential expression. The compositional analysis is approached by computing the 

relative frequencies of cell states in the single-cell ensemble acquired for each individual (Fig 2A). 

These frequencies are observed to vary extensively (Fig 2B). For example, HSCs are represented 

at 1.8% (SD 1.1%) of the CD34+ population, and CLP-Ms at 7.9% (SD 5.2%). The abundant MPP 

and MEBEMP states (mean frequency of 21.6% and 38%, respectively) showed smaller relative 

variation (SD 4.7% and 6.5%, respectively). Inter-individual correlation of cell state frequencies 

(Fig 2C) showed co-variation of lymphoid frequencies (CLP-M, CLP-L, NKTDP), and of advanced 

MEBEMP states (MEBEMP-L, ERYP, BEMP). Interestingly, the HSC state representation was 

positively correlated with the representation of the related (but already bifurcated) progenitor 
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states MPP and CLP-E, suggesting that for some individuals, the most potent HSPC states are over-

represented compared to the average.  

To analyze composition in higher resolution, we profiled each individual’s enrichment 

over the entire MEBEMP and CLP differentiation gradients divided into 15 bins, clustering the 

resultant profiles over all individuals to derive six archetypes of HSPC composition across normal 

individuals (denoted classes I – VI) (Fig 2D). This showed groups of individuals with relative 

lymphoid enrichment (class I-II) or depletion (class V-VI) and within them a gradient of stemness 

enrichment (classes II, IV and VI) or depletion (class I, III and V). We observed the Ultima-

sequenced data to be highly similar to the Illumina-sequenced data in our technical replicates 

(EDF 6A), and used it to validate the stability of cell type compositions in our follow-up cohort 

(EDF 6B). The discovery of systematic variation in the distribution of HSPC populations among 

healthy individuals, laid the grounds to study the impact of this variation on diverse clinical 

outcomes. 

Circulating HSPC frequencies correlate with CBCs and CH 

Analysis of CBC correlations with our single-cell map reinforced our previous finding of inter-

individual HSPC composition variation. We observed a correlation between PB mature 

lymphocyte percentages and CLP frequencies (Fig 2E), consistent with a possible contribution of 

CLP production to the level of B-cells in healthy individuals. Higher PB monocyte percentages were 

similarly associated with lower CLP levels (EDF 6C). We detected a significant correlation between 

HSPC cell type distribution and HCT and RDW among males (Fig 2E). Specifically, CLP frequencies 

were negatively correlated with RDW, such that high RDW individuals demonstrated lower CLP 

frequencies. Female CBC parameters did not show a significant association with HSPC 

composition, most likely due to perimenopause effects. All CBC correlation analyses were 

performed using median values for each blood count parameter over 5 years preceding scRNAseq. 

The mean and median number of blood counts per individual during this 5 year period were 8.8, 

and 7 respectively. 

Our previous work22 and the work of others23 correlated increased RDW values with high 

risk for CH and predisposition to AML. We demonstrate that low CLP frequencies are associated 

with CH (two-sided Mann-Whitney test; Fig. 2F, EDF 6D), and enhance our observation by 

performing Genotyping of Transcriptomes on one of our DNMT3A R882 cases24, identifying a 
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lower fraction of CLP cells in the mutant clone (Fisher’s exact test, Fig. 2G). To further explore this 

association, we studied a cohort of 18147 healthy individuals for whom we had both longitudinal 

CBCs and DNA available. We identified 602 individuals with a high RDW (>15%, not meeting 

minimal criteria for MDS) and 602 age and sex-matched normal RDW controls. We performed 

deep targeted sequencing to identify pLMs on both high-RDW individuals and controls, and found 

a significant enrichment of CH+ cases in the high RDW group (Fisher’s exact test P-value < 0.002, 

Fig. 2H, Supplementary Tables S5, S6). Altogether, the data demonstrate a 3-way linkage 

between decreased CLP frequencies, a high RDW, and CH. 

Inter-individual variation in HSPC Lamin-A signature is linked with CH. 

As shown above, an individual’s HSPC composition provides an initial blueprint of 

hematopoietic dynamics along the stemness and CLP/MEBEMP axes. Further analysis of 

transcriptional variation can now be performed while fully controlling for such compositional 

effects, aiming to characterize additional individualized gene expression signatures and associate 

them with clinical parameters (Fig 3A). We systematically screened for such signatures by testing 

the inter-individual correlation of normalized gene expressions over the HSC-MEBEMP (Fig 3B) 

and the HSC-CLP gradients (EDF 7A). The most prominent of these signatures were sex related 

signatures, an S-phase signature (discussed later) and a Lamin-A (LMNA) signature, which 

included ANXA1, AHNAK, MYADM, TSPAN2, and VIM, among others (EDF 7B, Supplementary 

Table S7). While exhibiting a highly variable expression in HSCs and early myeloid and lymphoid 

cell states, the LMNA signature showed a more homogeneously low expression in late MEBEMPs 

and CLPs (Fig 3C). Individual MEBEMP LMNA signature expression varied across a range of more 

than 4-fold (Fig 3D, EDF 7C), and was stable in the follow-up cohort (EDF 7D). Independent 

quantification of LMNA signatures in CLPs and MEBEMPs showed a strong correlation (Fig 3E). 

Interestingly, high average LMNA signatures in MEBEMPs correlated with a skewed MEBEMP/CLP 

composition (Fig 3F). Moreover, individuals with CH showed low MEBEMP LMNA signatures (two-

sided Mann-Whitney test, P-value < 0.05, Fig 3G). The association between CH and low LMNA 

signatures was also demonstrated within the single cell sample of individual #122, where 

DNMT3A-mutated cells (GoT24-based, n=78 out of 1031) showed lower LMNA signatures (two-

sided Mann-Whitney test, Fig 3H). The weak anti-correlation of LMNA signatures and CLP 

frequencies (Fig 3F), standing in contrast to the negative association of both factors with CH, 

highlights the complexity of the CH phenotype. Taken together, using the defined inter-individual 
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HSPC compositional variation as background, we quantified an individualized LMNA gene 

signature in HSPCs, whose expression was low in individuals with CH.   

Rapid repression of stemness signatures in MEBEMPs is linked with lower red cell counts and 

higher red cell volumes 

The differentiation of HSPCs toward MEBEMP and CLP fates involves coordinated 

activation of specific transcriptional programs that were generally universal among individuals. 

Yet, our screen for individual-specific gene signatures suggested that some individuals up- or 

down-regulated these differentiation programs, even when controlling for compositional 

differences. This variation in balancing stemness and differentiation signatures could thus 

characterize individuals. We developed a novel synchronization score based on comparison of 

AVP-correlated genes (stemness) and GATA1-correlated genes (MEBEMP differentiation, 

Supplementary Table S8). We classified each MPP/MEBEMP cell according to how highly it 

expresses these two signatures, using 20 bins for each score. As expected, these signatures were 

anti-correlated. However, different individuals synchronized this anti-correlation differently (Fig 

3I). While most individuals displayed dynamics close to the diagonal line (individuals #16, #86), 

some individuals deviated from it, indicating skewed synchronization between the AVP and 

GATA1 signatures. To quantify the level of synchronization we examined cells with high GATA1 

signature, and computed the fraction of these cells that still express the AVP signature to a 

moderate degree, a quantity we termed the synchronization-score (sync-score). We observed 

individuals with sync-scores as low as 0.12 (e.g., #122 and #172, Fig. 3I, left), indicating a delayed 

rise in GATA1 signature expression. Namely, while these individuals rapidly reduce their AVP 

expression, their increase in GATA1 and GATA1-related genes is delayed. In contrast, other 

individuals exhibited a high sync-score (e.g., #98 and #121, Fig. 3I, right), suggesting a rapid rise 

in GATA1 expression that precedes the decrease in AVP expression. We detected significant 

stability of the sync-score in our follow-up cohort (EDF 7E). Inter-individual sync score variability 

(Fig 3J) was positively correlated with RBC levels, and consistently anti-correlated with MCV in 

males (P-value for Spearman’s rho equality to zero < 0.01 for both RBC and MCV; Fig 3K). Analysis 

of the correlation between individual sync-scores and HSPC compositions demonstrated a 

positive correlation with HSC frequencies and a negative correlation with ERYPs and BEMPs (Fig 

3L).  
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To summarize, we demonstrated variation in the coordination of stemness and MEBEMP 

differentiation programs that is correlated with red blood cell counts and volumes. The possible 

impact of this signature on the regulation of efficient erythropoiesis should be further explored. 

Age-related perturbation of HSPC composition and transcriptional signatures 

Aging in the blood represents a complex and multi-factorial process that is likely driven 

by intrinsic hematopoietic effects (e.g., pre-malignant mutations) and extrinsic physiological 

effects (e.g., hormonal changes). We therefore anticipated multiple properties to define a multi-

layered age-HSPC correlation. We first tested the association between HSPC compositions and 

age and did not observe an apparent directional increase or decrease in HSPC sub-types with aging 

(EDF 8A). We did demonstrate an increase in the variance of cell state frequencies, with a 

significantly higher variance above the age of 65 (p < 0.01). To quantify each individual’s deviation 

from expected cell state frequencies, we computed an HSPC composition bias score, which 

significantly increased with age (Fig 4A, p < 0.02, test for Spearman’s rho). This supported the 

notion of multiple age-related processes that perturb the highly homogeneous and robust HSPC 

landscape seen in young adults. 

We used several HSPC signatures to further study inter-individual variation in aged 

hematopoiesis, including the LMNA and sync signatures described above, as well as an S-phase 

signature, quantifying expression of S-phase related cell-cycle genes (Supplementary Table S9), 

previously shown to have high inter-individual composition-normalized gene expression 

correlation (Fig 3B). The S-phase signature was robust in the follow-up cohort (EDF 8B), 

supporting its role in characterizing an individual quality rather than a transient effect. 

Circulating HSPCs did not generally express S-phase transcriptional signatures, in contrast to 

their bone-marrow counterparts (Fig 4B). However, weak, but significant, expression of DNA 

replication genes was observed in the late MEBEMP trajectory of some individuals, with a strong 

positive association with age (Fig 4C, p < 0.04, test for Spearman’s rho). Comparison of S-phase 

signatures to HSPC composition bias scores suggested the two increased independently with age 

(Fig 4D). In contrast, increased HSPC bias scores could be associated with lower LMNA 

signatures (Fig 4E), strengthening the association between CH and low LMNA expression. Sync 

scores were not directly correlated with age (Fig 4F), despite their associations with RBC and 

MCV as described above. All individual scores and signatures, including LMNA signatures, S-
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phase signatures, sync-scores, composition-bias scores, and CD34+ cell type distributions are 

summarized in Supplementary Table S10. 

Case studies of individuals with highly abnormal HSPC distributions, and integration of 

these with clinical markers and mutation profiling illustrate the multi-modal nature of 

hematopoietic aging. Individual #151, an 80yo MDS-diagnosed male, defined by a 

TET2/DNMT3A/CBL clone with high variant allele frequency (VAF; TET2 VAF=70%) and exhibiting 

high RDW anemia, shows extreme HSPC bias, a low LMNA signature and a high S-phase signature 

(Fig 4G). Individual #98, a 69yo male, represented another distinct behavior, with polycythemia, 

a high sync signature and high RDW. Taken together, the analysis of HSPC composition and 

transcriptional signatures (see additional screening for age-, CBC- and sex- associated gene 

expression in EDF 8C-E, Supplementary Tables S11, S12) provided insights to the various 

mechanisms that drive hematopoietic aging. In particular, our analysis separates the spectrum of 

effects associated with CH, from those associated with changes in HSPC regulation and 

differentiation. High resolution characterization of these effects enables the analysis of patients 

with blood malignancies at high molecular depth. 

Using the HSPC atlas for mapping, dissecting and annotating myeloid malignancies 

The current approach for diagnosing myeloid malignancies involves identifying clonal 

markers, such as mutations or structural variants, and characterizing blasts through microscopy 

and flow cytometry. We propose an alternative framework for analyzing leukemia cases using the 

normal reference HSPC atlas presented herein. In Fig 5A we describe a stepwise approach for 

leukemia analysis applied to two MDS and two AML cases. The first MDS case (#N249) carried an 

SF3B1 Y623H mutation with 25.7% VAF. The second MDS case (#N48.1) was sampled  twice during 

our study, initially showing an SRSF2 P95L mutation with 13% VAF and no cytopenia, and later 

presenting with deteriorating blood counts and several additional mutations, including a 

frameshift mutation in TET2 L1340 VAF=36.7%, IDH2 R140Q VAF=7.3%, and four other truncating 

mutations in TET2 with ~3% VAF (Supplementary Table S3). His SRSF2 mutation was quite stable 

at 8.4% VAF. scRNAseq karyotyping did not identify any major copy number variations (CNVs) nor 

any population substructure for these two MDS cases (EDF 9A). Analysis of each individual MDS 

sample's transcriptional states through construction of a metacell model and projection onto the 

healthy reference atlas (Fig 5B, middle) showed overall similarity to the normal atlas states (Fig 

5C). Projection of MDS cells to our 15 MEBEMP-CLP trajectory bins allowed us to identify 
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deviations from the normal differentiation route (Fig 5D). Both MDS-1 (#249) and MDS-2 (#48.1) 

belonged to the low-CLP high-stemness archetype. 

We next studied two secondary (post-MDS) AML cases with no somatic mutations based 

on targeted sequencing. Clinical cytogenetics was uninformative for both cases. Projection of AML 

cells onto the healthy reference atlas showed high transcriptional differences (Fig 5B, right), but 

suggested that the tumor cells were most similar to cells in the HSC-MPP-CLP area (Fig 5C, right). 

scRNAseq-based karyotyping (EDF 9B) identified two clones in AML-1: a smaller clone (AML-1-1) 

with normal karyotype and a larger clone (AML-1-2) with +9,+10,+22 and del20 (EDF 9C). 

scRNAseq-based karyotyping of AML-2 (EDF 9D) identified +8,+11,+13,+14 in all metacells, with 

no population substructure (EDF 9E). We used normal gene signatures to identify subpopulations 

of AML cells with CLP, HSC and MEBEMP characteristics (Fig 5E). AML-2 was characterized by an 

early CLP signature, with a subset of the cells showing MPP/MEBEMP characteristics. In contrast, 

AML-1-1’s transcriptional states were more balanced between cell types, including a 

subpopulation with a high HSC signature (Fig 5E, EDF 10A). AML-1-2's cells did not highly express 

any of the healthy signatures we tested, though few of his cells expressed MEBEMP or CLP 

signatures. While the AML cells showed variance in their expression of the atlas gene signatures, 

they differed greatly from healthy cells even in the expression of these genes (EDF 10B-C), 

including major differentiation regulators. The malignant state was characterized by multiple 

additional gene signatures described by de-novo identification of gene clusters over the AML-1 

and AML-2 metacell models (Fig 5F-G). As an example, this analysis revealed overexpression of 

BCL2 in the AML-1-2 clone compared to the AML-1-1 clone, suggesting a potential differential 

response to BCL2 inhibitor therapy. To conclude, the atlas of normal HSPC states presented herein 

enables characterization of AML cases, their subclonal structure and potential transcriptional 

dynamics, over skewed states that in some cases retain characteristics of normal HSPC 

differentiation programs. 

 

Discussion 

We used scRNAseq of samples from 99 healthy individuals to facilitate high resolution 

analysis of interindividual heterogeneity in circulating HSPCs. This led to characterization of 

widespread variation in the composition of HSPCs over a spectrum spanning myeloid and 
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lymphocyte differentiation gradients. This data is forming a new basis for understanding how age-

related hematological deterioration is transforming normal variation in HSPCs toward disease. It 

sheds light on three major questions underlying aging in the human blood system, including: a) 

the mechanistic basis for age-related macrocytic anemia and high RDW, b) the processes leading 

to decrease in lymphocyte counts with age, and c) the etiology of CH and its functional 

consequences on HSPC behavior. 

We discovered that low hematocrit levels correlated with lower HSC/MPP frequency (Fig 

2). Furthermore, MCV was correlated with synchronization in closing stem cell programs and 

opening erythroid programs (Fig 3I-L). Individuals which closed their stem cell program early and 

delayed erythroid programs (quantified using a novel transcriptional sync-score) had higher MCV 

and lower RBC. This suggests a role in age-related anemia. These findings should be further 

explored to better distinguish between inter-individual variation caused by genetic, epigenetic 

and external aging effects.  

With regard to age related decline in lymphocytes, we found that it correlated with the 

frequency of HSPCs differentiating toward CLPs (Fig 2E). We could not observe a reciprocal age-

related decline in HSPCs that further differentiate toward fates linked with T cells or DC-like 

programs (denoted NKTDP), as would be expected based on the paradigm of thymus involution. 

Our results stress the lymphoid-myeloid characteristics of NKTDP (Fig 1G,H), suggesting that they 

might be involved in dynamics of lymphocytic seeding in other tissues.  

We discovered that low CLP levels (Fig 2 F,G), low LMNA transcriptional signature (Fig 3 

G,H) and high RDW (Fig 2H) were all correlated with CH. Altogether the data exposed a novel 3-

way linkage between decreased CLP frequency, high RDW, and CH among healthy individuals. It 

remains unclear whether this correlation is due to cell-intrinsic effects of preleukemic mutations 

on differentiation, or cell-extrinsic factors which induce all three conditions. Importantly, this 

phenomenon is unrelated to age-related anemia, and these two age-related phenotypes can 

occur independently, stressing yet again the complexity of the aging phenotype. The mechanisms 

leading to variance in the LMNA gene signature expression within and between individuals, and 

how such variance may be involved in regulating HSPC functions, are still poorly understood. It is 

clear that levels of LMNA control nuclear shape and rigidity25. For example, reduction in LMNA is 

needed for nuclear segmentation of polymorphonuclear cells26. Changes in the nuclear lamina 

and its connections with chromatin have been described in aged HSCs from rodents27. It remains 
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unclear whether different pLMs all lead to changes in the LMNA gene signature, or that the LMNA 

gene signature is related to preleukemic stem cell expansion indirectly. Future studies will resolve 

this correlation.  

So far, our data exposed correlations with functional age (macrocytic anemia, 

lymphopenia and CH). We next searched for correlations with chronological age. We 

hypothesized that the ability to describe aging with the different attributes we discovered will 

better dissect aging to its various etiologies and quantify each one of them in each individual. The 

prominent age-related correlations we discovered were the cell frequency composition 

heterogeneity which increased with age and the appearance of S-phase gene signature in 

MEBEMP-L (Fig4 A, C).  When we considered these two attributes, together with the functional 

age-related signatures (LMNA, Sync-score and RDW), we were able to better dissect each 

individual’s aging etiologies and to expose different factors involved among different individuals 

(Fig 4 D-G). 

Due to their ease of access, circulating CD34+ cells could facilitate disease diagnosis and 

monitoring. However, the connection between circulating HSPCs and HSPCs residing in the bone 

marrow and secondary immune organs is still largely unknown. The associations we find between 

circulating CD34+ cells and clinical labels such as CBCs suggest that they provide an at least partial 

picture of BM HSPCs. But additional factors such as dynamics of BM ingress, egress, cell 

proliferation, cell death, and the interaction of these factors with different progenitor cell types, 

can all influence the snapshot provided by circulating CD34+. These factors should be studied to 

understand the advantages and limitations of PBMC profiling. 

As discussed above, the description of normal HSPC variation promotes the 

understanding of the mechanisms leading to age-related hematological deterioration. However, 

this new model can also be applied immediately as a novel platform for the analysis of PB CD34+ 

cells from patients with uncharacterized disease (Fig 5A). We give an example of how quantitative 

scRNAseq analysis of leukemia samples in reference to our normal map can facilitate and enhance 

various steps of leukemia diagnosis and classification. We suggest that this can be readily 

extended to a large cohort of stem cell-related diseases such as myeloid malignancies, but 

possibly also to other clinical scenarios. We hypothesize that this can become the method of 

choice for diagnosis and classification of MDS and AML, and that similar maps of other tissues 

from large cohorts will facilitate the next generation of molecular medicine.  
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Methods 

Sample procurement and handling  

During the period from Dec. 2020 to Apr. 2021, we collected fresh peripheral blood samples from 

99 healthy individuals (47 males, 52 females) aged 25-91. Their demographics and molecular data 

are presented in Supplementary Tables S1 and S3 [Basic participant demographics and CH status]. 

All sample donors were considered healthy, their CBCs were within normal range, and they were 

not known to have any CH defining mutations prior to sequencing. Written informed consent 

allowing access to longitudinal CBCs and sequencing data (CH and genotyping panels) was 

obtained from all participants in accordance with the Declaration of Helsinki. All relevant ethical 

regulations were followed, and all protocols were approved by the Weizmann Institute of Science 

ethics committee (under IRB protocol 283-1).  

50 ml of PB were drawn from each individual into lithium-heparin tubes. 1 ml of blood was used 

for DNA production, and the remaining volume was used for PBMC isolation via Ficoll, using 

Lymphoprep filled Sepmate tubes (StemCell technologies), followed by CD34 magnetic bead-

based enrichment using the EasySep human CD34 positive selection kit II (StemCell technologies). 

We found this enrichment strategy to be simple and reproducible and chose it for several reasons: 

1) RNAseq data was most reproducible when cells were not sorted, but rather enriched-for using 

beads (lower mitochondrial gene fraction). 2) CD34 purity could be highly regulated by this 

method, to achieve anywhere between 50-95% enrichment of CD34-positive cells, which could 

later be easily distinguished based on their single cell expression data. In terms of cell numbers - 

50 ml of blood would yield anywhere between 50 to 100 million PBMCs following Ficoll, 1/1000 

of which are expected to be CD34+, such that we increased this population’s representation from 

0.1% in the periphery to at least 50% of cells loaded for analysis. 

ScRNAseq of CD34+ PBMCs 

Single cell RNA libraries were generated using the 10x genomics scRNAseq platform (Chromium 

Next Gem single cell 3’ reagent kit V3.1). Chip loading was preceded by flow-cytometry to verify 

that enrichment was successful, and that enough CD34+CD45int live cells were gathered. All blood 

samples were freshly drawn at the Weizmann Institute of Science on the morning of each 

experiment day, and time from blood draw to 10x loading was restricted to 5 hours. The 
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motivation for working with fresh samples was based on our previous experience with PB CD34+ 

cells being vulnerable to freezing/thawing rounds and long manipulation times. 

All 10x libraries were pooled and sequenced on the NovaSeq6000 platform using a single S2100 

kit, and all data was analyzed using the Metacell2 R package 15.  

Genotype-based demultiplexing 

All cells were traced back to their sample of origin using genotype-based de-multiplexing. This 

method allowed pooling of blood samples immediately following extraction of the DNA aliquot, 

such that CD34-enrichment was performed on the entire pool of PBMCs produced. The use of 

SNP-based multiplexing has several advantages to alternative antibody-based cell hashing 

methods: 1) it is extremely cost effective, such that the cost of sequencing a single individual on 

a 2000 SNP Molecular Inversion Probe (MIP) panel at a depth of 1000X per SNP (adequate for de-

multiplexing purposes) is several folds cheaper than antibody staining, 2) genotyping eliminates 

the need to keep samples separated prior to loading, it entails shorter handling times and less cell 

manipulation, as it does not require antibody incubation periods and multiple wash centrifuges. 

This was very evident in cell viability prior to chip loading. As with other methods of sample 

multiplexing, genotype-based multiplexing allows for robust doublet detection during data 

analysis, which enabled loading of 30-40K cells from between 4-6 individuals on each Chromium 

Chip lane, yielding 15-25k cells per library.  

Molecular Inversion Probe (MIP) panels 

Both our CH and genotyping panels are Molecular inversion probes (MIP)-based panels described 

in detail previously14. Our CH panel contains 705 probes, covering pre-leukemic SNVs and Indels 

in 47 genes, and is complemented by 2 amplicon sequencing reactions to cover GC rich regions in 

SRSF2 and ASXL1. Our genotyping panel allows for the simultaneous detection of >2000 common 

genetic variants, all of which are extensively covered in all cell types in our data. It includes 

heterozygous sites with at least 5% minor allele frequency from the 1K genomes project, which 

were highly covered by RNA molecules in our data (at least 80 UMIs across all cells in a test 10x 

library), excluding sites in repetitive elements and in sex chromosomes. Both panels were 

designed using MIPgen28 to ensure capture uniformity and specificity. 

Variant calling and identification of ARCH mutations 
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As MIP sequencing is cost-effective yet noisy, we developed an in-house variant-calling method 

to identify low VAF CH events 14.  

ARCH sequencing of high RDW samples and controls 

In order to compare propensity for CH and high risk CH mutations22 in high RDW cases and normal 

RDW controls, we performed deep targeted sequencing of DNA samples from 602 high RDW 

(>15%) individuals, who did not show signs of anemia and whose blood count did not meet MDS 

criteria (11.5g/dL≤Hg≤15.5g/dL [F], 13g/dL ≤Hg≤17g/dL [M], 80fL≤MCV≤96fL, PLT≥100×109/L, Abs 

Neut≥1.8×109/L), and 602 normal RDW (11.5g/dL ≤Hg≤15.5g/dL [F], 13g/dL≤Hg≤17g/dL[M], 

80fL≤MCV≤96fL, PLT≥100×109/L, Abs Neut≥1.8×109/L), age and gender-matched controls. Case-

Control matching was performed using the R MatchIt package, balanced on age and gender, 

method = "nearest", ratio = 1, from a total of 18,147 individuals with longitudinal blood counts 

and available DNA. All DNA samples and corresponding blood counts were received de-identified 

from the Tel Aviv Sourasky Medical Center (TASMC) Integrative Cancer Prevention Clinic. All DNA 

samples were collected after obtaining written informed consent and in accordance with the 

Declaration of Helsinki. All relevant ethical regulations were followed, and all protocols were 

approved by the TASMC ethics committee (under IRB protocol 02-130). CBCs and sequencing 

results of all cases and controls are presented in Supplementary Tables S5, S6. 

scRNAseq processing 

We processed fastq files by executing cellranger-3.1.0 with an hg-38 reference genome. We 

filtered cells with at least 20% mitochondrial expression and ≤ 500 UMIs from unfiltered genes.  

Doublet calling 

We performed several steps to assign cells to their individuals and to detect doublets. The 

pipeline is made of several steps: 

1. Demultiplexing cells and calling doublets based on SNPs found in the scRNAseq data 

2. Detecting doublets based on cell expression profiles 

3. Building a metacell model using cells from all the libraries, including cells previously marked 

as doublets, and identifying metacells made of doublet cells. 

In the first step, we identify doublets and assign cells to individuals using Vireo and Souporcell, 

which cluster cells based on SNPs found in sequenced RNA molecules. We executed Vireo29 
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(preceded by running cellsnp) and Souporcell30 on each library separately. Both methods used 

SNPs from our genotyping panel14 which were covered by at least 20 UMIs in the library (in 

Souporcell – at least 10 from the major and minor allele each). We observed high agreement in 

doublet calling between the two methods.  

We next identified doublet cells based on gene expression. We executed Scrublet31 and 

DoubletFinder32 on each library separately. Both of these methods require a threshold on their 

output scores for doublet calling, and we set different thresholds for different libraries. We 

considered the Vireo doublet calls as ground truth, and set the doublet thresholds, as well as the 

need to be called as doublet by both Scrublet31 and DoubletFinder32, to achieve high precision 

and recall in doublet calling for each library. 

In the next step, we built a metacell model with cells from all libraries, including those identified 

as doublets by either their SNPs or expression. The model was built with metacell2, with a target 

metacell size of 500K UMIs. We then marked all metacells where at least 40% of the cells were 

already marked as doublets, and all metacells that expressed unique markers of distinct cell 

types, as doublet metacells. All cells that belonged to a doublet metacell were then marked as 

doublets. 

Assignment of cells to individuals 

Vireo29 and Souporcell30 both cluster cells based on SNPs found in the sequenced RNA, such that 

cells in the same cluster belong to the same individual. We observed very high agreement 

between the two methods in their assignment of cells into individuals. In two 10x libraries 

where the two methods did not agree (due to individuals with a very small number of cells), we 

reran the methods on a subset of the cells and a smaller target number of clusters. In all 

libraries we took Vireo’s clustering, except for one library where we took Souporcell’s, because 

of better matching to the genotype data (described below). We marked cells that were not 

clustered by Vireo as ‘unassigned’, even if they were assigned by Souporcell.  

In the next step we assigned clusters of cells to the individual they originated from. To this end, 

we correlated the genotypes of each cell cluster, as inferred by Vireo, to all genotypes we 

measured using the MIP panel (using sites with sufficient sequencing depth in the MIP panel). As 

a control, we performed matching against the MIP genotypes of all individuals in the cohort, and 

not just individuals from one library. We observed in all cases a clear matching to a single 
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individual from the expected library. The assignment also correctly identified related individuals, 

and the sex of the matched individual was confirmed by expression of XIST in the RNA data. 

Metacell model 

We next built a second metacell model with the cells that were not marked as doublets, 

excluding droplets with complete or partial megakaryocyte expression (those in a metacell with 

PF4 expression > 2^-11.5 in the previous model) due to their overall high doublet rate. The 

model was built with metacell2, with a target metacell size of 500K UMIs.  We marked forbidden 

genes such as histone genes, cell cycle related genes, ribosomal genes, stress response genes 

(e.g. FOS, JUN) and other genes that we found to have high technical variation. These genes 

were not used by metacell2 when calculating gene-gene similarities, but were included in 

downstream analysis. We annotated the metacells using known markers as illustrated in EDF 1C. 

We excluded from downstream analyses metacells from cell types with low CD34 expression 

(monocytes, B cells, T cells, NK cells, DCs), and one metacell expressing endothelial markers. 

BM projections 

We used two BM datasets: the Human Cell Atlas (HCA) dataset18 and a CD34+ bead-enriched BM 

datasets from33. We have previously processed and annotated the HCA datasets in metacell. We 

downloaded the Setty et al. sequencing data and processed it by running cellranger and creating 

a metacell model. To project both our PB data and the Setty dataset on the HCA dataset, we 

correlated between the HCA metacells and the Setty and PB metacells  over genes showing high 

variance over the HCA metacell model. We annotated each Setty metacell using the mode of the 

5 most correlated HCA metacells. To plot Setty and PB metacells on the HCA’s UMAP projection, 

we located each metacell on the mean x and y values of its 5 most correlated HCA metacells. To 

compare S-phase genes between the PB and BM (Fig 4B), we calculated for each PB metacell its 

S-phase signature (described in a separate section), and the mean S-phase signature for the 5 

HCA metacells most correlated to it.  

HSC differentiation gene programs 

To visualize transcriptional dynamics in HSC cells, we sorted MEBEMP and CLP metacells based 

on their AVP expression. To calculate differential expression between HSC and neighboring cell 

types (EDF 3B), we calculated the geometric mean of each gene across HSCs, CLP-E and MPP 

metacells, and took the difference between HSC and MPP, and between HSC and CLP-E. 
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Differential expression between individuals unexplained by the metacell model 

To create EDF 5, we compared each individual’s pooled expression profile to a matched 

expression profile based on the individual’s distribution across metacells. We performed the 

analysis separately for MPP / MEBEMPs (BEMP, EP, MEBEMP-E/L, GMP-E and MPP) and CLPs 

(CLP-E/M/L, NKTDP). In each group of cell types, we summed all the UMIs of each individual, 

normalized the sum to 1 and calculated log2, to obtain the observed expression. To compute 

matched expression, instead of summing over an individual’s cells’ expression profile, we 

summed all UMIs of the metacell each cell belongs to, and divided by the number of cells in that 

metacell. This way the UMIs in each metacell were equally divided between all the cells that 

belonged to that metacell. We normalized this matched expression to sum to 1, and took log2. 

For EDF 5 we plotted all genes that were expressed in either the observed or matched 

expression in any individual (log2 expression > 2^-14.5), that had at least 2-fold change between 

observed and matched in at least one individual, and that were not exhibiting strong batch 

effects (Kruskal-Wallis p-value < 1e-4, where individuals are grouped by their 10x library). 

HSPC compositional analysis 

To explore variance in cell type composition between individuals, we first calculated the 

distribution of each individual’s cells across the CD34+ cell types. To perform compositional 

analysis at higher resolution than cell types, we partitioned cells from CD34+ cell types into finer 

grained bins. We used one HSC bin, four CLP bins, and ten MEBEMP / MPP bins, for a total of 15 

bins. We assigned HSC cells to bin 0, CLP-E cells to CLP bin 1, and CLP-M/L cells to CLP bins 2-4 

based on decreasing AVP expression of their metacells, such that bins 2-4 had the same number 

of cells. We similarly assigned MPP and MEBEMP-E/L cells into 10 bins based on AVP such that 

these bins had an equal number of cells.  

For Figure 2D, we calculated the enrichment of each individual’s cells in each bin (log2 of the 

ratio compared to the median across individuals). We partitioned individuals into three group 

with different CLP numbers based on each individual’s mean enrichment across CLP bins 2-4 – 

those with mean enrichment > 0.5 are high CLP, those with < -0.5 are low, and the rest are 

intermediate. We next defined the stemness score as the ratio between the number of cells in 

MPP / MEBEMP bins 1-5 and the total MPP / MEBEMP number (cells in bins 1-10). Individuals 

with stemness score > 0.5 had enriched stemness. The combinations of CLP enrichment and 
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stemness define the six classes shown in the figure. For visualization we further sorted 

inidividuals within each cluster based on their stemness score. 

Test for association between cell type distribution and a numerical label 

We used permutation tests to test the relation between cell type distribution and a label (age, 

CBC, sync-score or LMNA signature). We sorted 11 CD34+ cell types from late MEBEMP 

differentiation through HSC and to late CLP differentiation (cell types are displayed by this order 

in Fig 2B). We looked at triplets of adjacent cell types in this ordering, and calculated for each 

triplet the total frequency each individual has from these cell types, obtaining a vector of length 

9 per individual. We then correlated each of these 9 sums to the label, and took the maximal 

absolute value from all these correlation values as a test statistic. We repeated this process after 

permuting the label 10000 times, and used the test statistics from the permutations to derive a 

p-value. 

Variant gene modules 

We detected genes modules with high variance across individuals in MPP / MEBEMP and CLP 

cells separately. For MPP / MEBEMP, we performed the following steps: 

A. we pooled all cells for each individual from the HSCs, MPP and MEBEMP-E/L metacells, 

normalized to sum to 1 and took log2. This gave us the observed expression profile of each 

individual across the MEBEMPs.  

B. We created an expected expression profile for each individual as follows. We partitioned the 

MEBEMP metacells into 30 bins based on their AVP expression, and calculated for all genes the 

geometric mean expression across all metacells in each bin. This defined an expression profile 

for each of the 30 bins. To obtain an individual’s expected expression, we calculated a weighted 

mean of the 30 bins’ expression profiles, where the weight of each bin is proportional to the 

fraction of the individual’s cells from that bin. We then calculated the difference between the 

observed and expected expression profiles.  

C. We screened for genes with high variance. We removed genes with high batch effects 

(Kruskal-wallis p-value < 1e-3 when using an individual’s 10x batch as a covariate), and genes 

with high AVP correlation (absolute value Pearson correlation > 0.65). We then calculated each 

gene’s variance in the difference between the observed and expected expression across 
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individuals. As some of the variance can be explained due to sampling noise, we plotted each 

gene’s variance across individuals compared to its mean geometric expression across all 

metacells from which the individual’s cells were taken. We sorted genes by this expression 

value, and subtracted from the variance of each gene a rolling mean of the variances of 100 

neighboring genes in that ordering. We chose genes with variance at least 0.08 higher than the 

rolling mean variance. 

D. We calculated a gene-gene Spearman correlation matrix for high variance genes, and 

clustered the correlation profiles using hierarchical clustering. We removed gene clusters with 

low mean correlation between their genes (< 0.2 mean correlation of all gene pairs), and genes 

with low mean correlation (< 0.2) to their cluster’s genes.  We additionally removed one gene 

module involving PCDH9 and CHRM3, as it represented residual MEBEMP transcription program 

that could not be fully normalized by our binning and pooling approach. This resulted in Fig 3B. 

We performed a similar analysis for CLPs, with a few differences. The analysis included cells 

from CLP-E/M/L metacells. The cells were partitioned into 6 bins, and the partitioning was based 

on the average of their DNTT and VPREB1 expression. Genes with high absolute correlation to 

the average of DNTT and VPREB1 were excluded. After clustering the gene-gene correlation 

profiles, gene clusters with mean correlation < 0.3 were removed, and gene clusters with 

remaining correlation to CLP differentiation were removed. 

LMNA and S-phase signatures 

We partitioned the MPP / MEBEMP cells into 10 bins based on the AVP expression of their 

metacells as described previously. We then pooled for each individual the UMIs from all its cells 

in each of the 10 bin and obtained a gene by individual matrix per bin. We normalized the sum 

of UMIs from each individual to 1, took log2, and calculated the mean of the following genes in 

each bin:  LMNA, AHNAK, MYADM, TSPAN2, ANXA1 and ANXA2. This gave a LMNA signature per 

individual per bin, as visualized in EDF 7C. An individual’s LMNA signature is the mean of the 

individual’s signature across the 10 bins. The CLP LMNA score (Fig 3E) was calculated in the 

same manner, but using CLP-M cells and only one bin.  

We similarly defined the S-phase signature. We used the following genes: CLSPN, PCLAF, TYMS, 

H2AFZ, PCNA, TUBA1B, MCM4, HELLS to calculate an S-phase signature per individual in each 
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bin, and took the individual S-phase score to be the mean score across bins 6-10 (later stages of 

MEBEMP differentiation). 

GoT Analysis 

GoT24 performed on sample #122 allowed us to mark this individual's cells as wild-type or 

mutated. Due to the low VAF of #122’s DNMT3A mutation, and in order to increase power, we 

marked cells whose DNMT3A mutation status could not be determined by GoT as wild-type 

cells. For Figure 2G, we examined #122’s cells’ distribution across cell types. 

We compared the LMNA signature between mutant and wild-type cells, while normalizing for 

the distribution across MEBEMP differentiation stages as follows. We sorted MPP and MEBEMP-

E/L metacells based on their AVP expression, and reduced from each gene in each metacell the 

gene’s rolling mean expression across the 30 nearest metacells in the ordering. These 

calculations were performed in log2 scale. The mean of the LMNA signature genes was then 

defined as the metacell’s LMNA signature, and a cell’s signature is the signature of the metacell 

it belongs to.  

Sync-score 

We defined the AVP signature to include genes with high correlation (> 0.6) to AVP across HSC, 

MPP and MEBEMP metacells, and the GATA1 signature to include those with correlation > 0.7 to 

GATA1. We filtered genes with mean relative expression > 2 ^ -10 in these metacells, to 

preclude a small number of genes from dominating the signatures. We then scored each cell by 

the fraction of its UMIs from the AVP and GATA1 signatures, and partitioned all cells into 20 bins 

of AVP signature expression and 20 bins of GATA1 signature expression, such that all AVP bins 

and all GATA1 bins had the same number of cells. The sync-score is then defined as the fraction 

of cells in GATA1 bin 13 and above (upper two quintiles of GATA1) that are in AVP bin 9 and 

above (upper three quintiles of AVP expression).  

To visualize the sync scores, we normalized the 20 bins x 20 bins matrix to sum to 1, smoothed 

the obtained matrix by averaging cells using a running window of length 3, and taking log2. 

Ultima data processing for technical and biological replication 

We processed the ultima data using cellranger as we previously described for the Illumina 

sequenced data. We used the technical replicates to assess the gene expression technical 

variation, and found minor differences (EDF 6A). We marked a total of 210 genes with at least 2-
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fold difference between Illumina and Ultima, or whose log2(Ultima / Illumina) expression had a 

range higher than 0.5 across the six technical replicates, as technology-dependent. We note that 

98% of the genes showing high variance in the PBMC model were consistent between the 

sequencing platforms. 

We assigned cells to individuals and detected doublets as described previously, but detected 

expression-based doublets only by building a metacell model and finding doublet metacells. We 

then built an integrated model with cells from both Illumina and Ultima libraries. The integrated 

model contained only cells from individuals for which both Illumina and Ultima data was 

available, and included both technical and biological replicates. When building the integrated 

model, we did not include technology-dependent genes as features, in addition to the genes we 

excluded previously while building the 360K cells’ model. 

We validated that in the integrated model, metacells included cells from both sequencing 

technologies. We then annotated each metacell using our reference 360K metacell model, by 

annotating each metacell with the annotation of its most highly correlated reference metacell, 

where the correlation is across the metacell’s model highly variant genes. We used the 

annotations to calculate the cell type frequencies for all individuals in the integrated model, and 

binned cells from the integrated model into 15 bins as described previously for the 360K cells’ 

model. We then calculated each individual’s LMNA and S-phase signatures as described for the 

360K metacell model. 

The sync-score, unlike other scores, is based on calculation at the single cell level and without 

cell pooling. It is therefore more difficult to correct for technological variance. We calculated the 

sync-score as described previously for the 360K cells model, but with several modifications. 

First, we excluded technology-dependent genes from the AVP and GATA1 gene signatures. 

Second, we partitioned Illumina and Ultima cells separately into 20 bins based on the AVP and 

GATA1 signatures. Third, for the cells sequenced by Ultima, before we summed the UMIs from 

genes in the AVP and GATA1 signatures, we first multiplied each gene by a technology 

correction factor we derived from the technical replicate 10x library.  

Cell type variance and composition bias 

To test for increased cell types variance in aging, we downsampled the number of cells from 

CD34+ cell types per individual to 500, and calculated each individual’s distribution across cell 
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types. We then transformed the values into z-scores by subtracting the mean frequency of each 

cell type and dividing by the frequency’s standard deviation. The obtained z-score matrix of 

individuals by cell types was then given as input to a permutation test. Individuals were 

partitioned to those at age 65 and above, or below 65. In each age group, the mean z-score per 

cell type was subtracted from the z-score vector of each individual. These values were squared, 

summed across all cell type in an individual, averaged across individuals, and the root of the 

average was taken. The difference between the root in the old and young groups was taken as a 

test statistic, and was used to derive a p-value across 10000 permutations of the ages of the 

individuals. 

The composition bias of an individual was defined as the sum of the absolute values of the 

individual’s z-scores across all CD34+ cell types. 

Differential gene expression with respect to age and CBC 

Differential expression was performed separately for MPP / MEBEMP cells, and for CLPs. The 

MEBEMP and CLP matrices that were normalized for the differentiation distribution, and which 

were used to detect variant gene modules, were here used for differential expression. 

Differential expression was performed separately for males and females. Each gene’s expression 

value was correlated with age and CBC using Spearman correlation, and the correlation was 

tested for significance. p-values were FDR-corrected (Benjamini-Hochberg) for each label 

separately. Differential expression between sexes was done using Wilcoxon test on the same 

expression matrices. 

MDS and AML scRNA-seq initial processing 

We processed additional 10x libraries, some of which were sequenced by Illumina and some by 

Ultima, using cellranger as described previously. We detected doublets using only Vireo and 

Souporcell30, and assigned cells into individuals as we described above. We then created a 

metacell model for each of 6 individuals separately: 2 healthy individuals, 2 MDS patients and 2 

AML patients. As before, we excluded cells with less than 500 UMIs, with more than 20% 

expression of mitochondrial genes, or with high expression of megakaryocyte genes. We ignored 

ribosomal genes and genes that are high in megakaryocytes while building the metacell model, 

and in two individuals removed megakaryocyte genes altogether from the expression matrix 

due to high ambience levels of these genes. We used a target metacell size of 75K UMIs.  
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Projection of disease data on the HSPC model 

To project each individual’s metacells on the healthy reference, we correlated the query 

metacells with the reference’s metacells, using 366 highly variable genes in the CD34+ metacells 

of the reference, and after excluding genes upregulated in MK cells and technology-dependent 

genes. The correlation was performed in log2 scale, and when projecting an ultima dataset, a 

normalizing factor was added to each gene based on its differential expression in the technical 

replicates. Metacells that mapped to CD34- reference metacells were then discarded for the 

following analyses.  

 

Fig 5B shows the distribution of the number of differentially expressed genes between query 

metacells and their most highly correlated reference metacell. The genes included in the count 

are only those with expression at least 2 ^ -13 in either the query or atlas metacell, and with at 

least 2-fold difference. We further ignore genes high in MK cells, ribosomal genes, sex-related 

genes, and genes that we found to have high batch effects between 10x libraries in the 

reference metacell model.  

 

Fig 5C measures the mean correlation between each query metacell and its 5 most correlated 

reference metacells, where the correlation is across the genes used for the projection. For Fig 

5D we projected single cells, rather than metacells, from the query. We projected each cell to its 

most correlated reference metacell, where the correlation used the raw UMI counts (and was 

not in log2 scale), and used genes with high variance in the reference. Each query cell was 

classified to the bin that was most common among cells in the metacell to which it mapped. 

Karyotype analysis 

To perform karyotype analysis, we calculated the log2 total expression (sum of UMIs) from each 

autosomal chromosome in each query metacell, and subtracted from it the log2 of the 

geometric mean of the total expression from each chromosome across the 5 most correlated 

reference metacells. The total expression didn’t include expression UMIs from genes high in 

MKs, sex-related genes, genes with high batch effects in the reference, ribosomal genes and 

technology-dependent genes. A similar calculation was performed for the EDF 9 right side 

figures, but the expression of each gene was measured across all query metacells, and all the 
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reference metacells to which they were projected. Only genes that were expressed in either the 

query or reference metacells the query was mapped to (expression > 2 ^ -15.5) were plotted.  

 

Profiling signatures in disease cases 

We separated AML-1 metacells into AML-1-1 and AML-1-2 by their expression of BCL2 and 

ROCK1, which were both higher in AML-1-2. To search for variance in the AML samples in gene 

programs from the healthy reference, we created gene lists as follows: 

- NKTDP program  – genes with least 1.5 higher expression (in log2 scale) in NKTDP metacells 

compared to both CLP-M and CLP-L.  

- CLP program – genes with at least 1.5 higher expression (in log2 scale) in CLP-M metacells, 

compared to all the following populations: NKTDP, HSC, MPP, MEBEMP-E/L, BEMP and ERYP. 

- HSC program – genes with at least 1 higher expression (in log2 scale, that is 2-fold difference) 

in HSCs compared to: NKTDP, CLP-M, MEBEMP-E/L, BEMP and ERYP.  

- MEBEMP program – genes highly correlated to GATA1 (the same genes that were used in the 

sync-score calculation). 

 

For the gene list selection, the expression of a gene in a cell type is the geometric mean of its 

expression in all metacells that belong to that type. We scored each AML metacell by the 

geometric mean of all genes in each gene list. We set thresholds for a metacell to express a 

particular gene program as the 25th percentile across reference metacells in the relevant cell 

population (e.g. NKTDP metacells for the NKTDP gene program, see dashed lines in Fig 5E). 

For the heatmap in EDF 10B, we selected genes from the above gene programs, as well as genes 

high in AML-1, high in AML-2, and high in AML-1-2 compared to AML-1-1. 

 

To select genes high in AML-1, we looked at the annotation each AML-1 metacell received from 

its projection on the healthy reference. We calculated the mean expression of each gene across 

all metacells that were projected to the same cell type, and the mean expression using the 

reference metacells that the AML metacells were projected onto. We then selected genes 
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higher in AML-1 (at least 1.5 higher in log2) than in the reference across all cell types. A similar 

gene selection was performed for AML2.  

 

To select AML-1-2 specific genes, we compared gene expression between metacells from AML-

1-1 and AML-1-2 that were mapped to the same reference cell type. We selected only genes 

with higher AML-1-2 expression compared to AML-1-1 expression (1.5 in log2) in all of the 

following three cell types: CLP-E, MPP and MEBEMP-E. 

To discover de-novo gene programs in the AML samples, we selected genes that the metacell 

algorithm identified as having high variance in the AML metacell models, calculated their 

correlation across metacells, and clustered their correlation profiles. 

 

Data Availability 

All data can be explored in: https://tanaylab.weizmann.ac.il/MCV/blood_aging/. 

 

Code Availability  

Detailed code for the figures will be provided prior to publication. 

The Metacell R package is available at https://github.com/tanaylab/metacell 
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Supplementary Information 

Supplementary Table S1 – Basic participant demographics. This table contains data on sex and 

age of all studied participants at sampling time, along with their allocated study IDs. 

Supplementary Table S2 – Longitudinal CBC's. This table contains median values for each CBC 

parameter for 5 years prior to sampling. 

Supplementary Table S3 – ARCH sequencing. This table contains variant calling data on all ARCH 

positive individuals, including chromosome number, position, reference and alternate 

nucleotides, the gene involved, whether or not this alternation is considered a leukemic 

hotspot, and the reported average VAF from single (Amplicon) or duplicate (MIP) sequencing 

instances. 

Supplementary Table S4 – HSC expression differences. This table contains each gene’s mean 

expression across metacells in HSCs, MPPs, CLP-Es, and the differences in expression between 

HSCs and the latter two cell types.  

Supplementary Table S5 – high RDW case-control longitudinal CBC's. This table contains all 

blood count instances of high RDW individuals and controls performed at the TASMC Integrative 

Cancer Prevention Center. 

Supplementary Table S6 – high RDW case-control ARCH sequencing. This table contains variant 

calling data on all ARCH positive high-RDW cases and controls, including chromosome number, 

position, reference and alternate nucleotides, the gene involved, whether or not this alternation 
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is considered a leukemic hotspot, and the reported average VAF from single (Amplicon) or 

duplicate (MIP) sequencing instances. 

Supplementary Table S7 – LMNA gene correlations. This table contains the Spearman 

correlation of each gene to the LMNA signature across metacells (using MPP metacells), and 

across individuals (using pools of cells in MEBEMP bins 1-3). 

Supplementary Table S8 – sync genes. This table contains data for how the genes used to 

calculate the sync-scores were selected. It lists each gene’s correlation to AVP and GATA1 across 

the HSC-MPP-MEBEMP trajectory, each gene’s mean expression across metacells in these cell 

types, and whether the gene is part of the AVP and GATA1 gene signatures.  

Supplementary Table S9 – s-phase gene correlations. This table contains the Spearman 

correlation of each gene to the S-phase signature across metacells (using MEBEMP-L metacells), 

and across individuals (using pools of cells in MEBEMP bins 8-10). 

Supplementary Table S10 – MEBEMP differential expression screen. This table contains 

correlations between gene expression and different clinical labels across individuals. 

Correlations are between expression values normalized for distribution across the MPP-

MEBEMP population, and age, maximal mutant VAF, and CBCs. For each gene and label, the 

Spearman correlation is reported, as well as the p-value and BH corrected q-value for the 

correlation’s equality to 0 (two-sided test). Additionally, each gene’s association with CH 

(treating it as a binary trait) and sex is listed. Association is tested using a Mann-Whitney two-

sided test, and the test’s p-value and BH corrected q-value are listed. Only genes whose 

expression levels exceeded a minimal threshold, and who displayed small technical variation, 

are listed. 

Supplementary Table S11 – CLP differential expression screen. Similar to Table 8, using the CLP 

cell types. 

Supplementary Table S12 – Individual scores and signatures. Key scores and signatures are 

listed for each individual: LMNA signature, S-phase signature, sync-score, composition-bias 

score, as well as CD34+ cell type distribution. 
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Figure 1a – experimental design, 1b – annotated 2D UMAP projection 
of our metacell manifold following filtration of metacells with low 
CD34 expression. Symmetric (1c) and asymmetric (1d) regulation of 
specific HSC markers upon bifurcation to the CLP (right) and MEBEMP 
(left) lineages. Each panel shows the expression of one gene (Y axis). 
Metacells in all panels are ordered (left to right) by increasing AVP 
expression in the MEBEMP lineage, and decreasing AVP expression in 
the CLP lineage. Units for gene expression in all the figure panels are 
log2 of each gene’s fractional expression. 1e – the BEMP-E metacell
population of interest (dotted line) linking BEMPs to their MEBEMP-L 
precursors. 1f – positively and negatively regulated TFs involved in 
early BEMP differentiation. 1g – gene-gene plot of IRF8 against TCF7
expression as hallmark markers of DC and T cell differentiation 
respectively. The high ACY3 NKTDP metacell population of interest is 
depicted (dotted line). This population exhibits high expression of 
both T and dendritic cell regulators, forming a gradient consisting of 
NK/T cell-like progenitors exhibiting a high TCF7/IRF8 expression 
ratio along with high expression of other T cell hallmarks such as CD7, 
MAF, IL7R, TRBC2, and DC-like progenitors exhibiting a low TCF7/IRF8
expression ratio, along with high expression of other DC hallmarks, 
such as the myeloid TF PU.1 and the MHC class II gene CD74 (1h).
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Figure 2a - characterization of inter-individual HSPC compositional 
state variation (scheme). 2b – boxplots of cell state frequency 
distributions across individuals (logarithmic scale). Percents 
calculated out of CD34+ population. Boxplot centers, hinges and 
whiskers represent median, first and third quartiles and 1.5×
interquartile range, respectively. Numbers represent mean +/- SD for 
each distribution. 2c - correlation of cell state frequencies across 
individuals. 2d (top) - individual cell state frequency profiles over the 
HSC-MEBEMP and HSC-CLP differentiation gradients of 6 subjects 
(colored lines), each representing one of six archetypes (classes) of 
HSPC composition in healthy individuals. Dashed lines represent the 
median (black) and 5th and 95th percentiles (grey) of the studied 
population. 2d (bottom) cell state enrichment map over 15 
differentiation bins (rows), for all studied individuals (columns) 
clustered into 6 classes. Classes I & II represent individuals relatively 
enriched in lymphoid progenitors, whereas classes V & VI represent 
individuals with relative depletion of lymphoid progenitors. 
Individuals are sorted by stemness in each class. Age and sex bins are 
denoted for each individual (top). 2e – CBC correlations to cell type 
frequencies: %Lym (from WBC, calculated for entire cohort, left), HCT 
(males, center), RDW (males, right). Missing individuals lacked 
sufficient cells for analysis. Permutation test p values are displayed 
for each correlation. 2f – boxplots of CLP frequency distributions in 
individuals with (right) and without (left) clonal hematopoiesis. 2g –
Relative cell state frequencies in mutant (right) and non-mutant (left) 
cells following GoT of sample #122 (DNMT3A mutated, VAF = 0.07). 
2h – CH frequency (by gene) in age- and sex-matched high (red) and 
low (black) RDW individuals.
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Figure 3a - Compositional-controlled characterization of differentially 
expressed gene signatures and their association with clinical 
parameters (scheme). 3b – gene-gene correlation heatmap, 
calculated over individual-level HSC-MEBEMP gene expression 
normalized for HSC-MEBEMP composition. 3c – LMNA signature in 
HSCs (denoted by high AVP) and throughout MPP / MEBEMP (left) 
and lymphoid (right) differentiation. 3d – density curve of individual 
MEBEMP LMNA signatures. 3e - intra-individual correlation of LMNA
signatures in CLPs and MEBEMPs. Male samples are in green, female 
samples in orange. 3f – correlation between an individual's average 
MEBEMP LMNA signature and his/her HSPC composition. 
Permutation test p value denoted on top. 3g – LMNA signatures of 
CH+ individuals across MEBEMP differentiation. Each red line denotes 
an individual, black line denotes median LMNA signature across the 
CH- sampled population. 3h - boxplots comparing LMNA signatures 
between WT and mutated cells within the single cell sample of 
individual #122 (DNMT3A mutated, VAF = 0.07). Y axis measures 
LMNA signature compared to matched cells from the MEBEMP 
trajectory. 3i – individual heatmaps of single cell counts over 20 bins 
of stemness (AVP signature, y axis) and MEBEMP differentiation 
(GATA1 signature, x axis). Individual identifier, RBC, and MCV are 
denoted on top. 3j - density curve of individual sync scores. 3k –
comparison between individual sync scores and clinical parameters 
(RBC/MCV) across males. High and low sync scores define clinically 
distinct populations. 3l – correlation between individual sync scores 
and cell type composition. Permutation test p value denoted on top.
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Figure 4a – composition bias score variation with age. 4b - cell type-
specific comparison of S-phase signatures in circulating (left) vs. BM 
(right) HSPCs. 4c - S-phase signature variation with age in the late 
MEBEMP trajectory. 4d – corresponding individual S-phase signatures 
(X axis) and composition bias scores (Y) for individuals younger (left) 
and older (right) than 65 years. 4e-g – like 4d, but showing the LMNA
signature, sync scores, and RDW instead of S-phase, respectively. 
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Figure 5a - diagnostic approach to leukemia analysis using our HSPC 
reference atlas (scheme): 1. scRNAseq on CD34-enriched PB and 
construction of a patient-specific metacell model, 2. Projection of 
patient derived metacells on the healthy reference atlas -
compositional variance and differential gene expression analysis, 3. 
Mutational and CNV analysis using targeted DNA sequencing and 
RNA-based karyotyping, 4. RNA-based clonal hierarchy and 
population substructure analysis using: 4.1 individual cell state 
frequency profiles over the HSC-MEBEMP and HSC-CLP 
differentiation gradients, 4.2 sub-population identification of AML 
cells with CLP, HSC and MEBEMP characteristics 4.3 de-novo 
identification of clonal specific gene clusters and signatures. 5b –
density plot of the number of differentially-expressed genes (≥2-fold) 
per metacell as compared to its projection counterpart on our 
healthy HSPC atlas, for 2 healthy (left), 2 MDS (middle), and 2 AML 
(right) patients. 5c – projection of metacells derived from 2 MDS 
(left) and 2 AML (right) patients on our healthy HSPC reference 
metacell model. 5d – individual cell state frequency profiles over the 
HSC-MEBEMP and HSC-CLP differentiation gradients for 2 MDS cases 
(red lines). Dashed lines represent the median (black) and 5th and 
95th percentiles (grey) of the healthy population, and MDS-2's initial 
profile (red, right panel, 8 month prior to current profiling). 5e – each 
of the 4 panels refers to a different cell state gene signature as noted 
on the x-axis. Top - boxplots of gene module expression distributions 
for different cell states in our reference atlas. Bottom - Gene 
signature expression density plots for each of the AML subclones. 
Reference gene signature distributions (top) were used to identify 
subpopulations of AML cells with CLP, HSC and MEBEMP 
characteristics (bottom). Dashed lines represent the threshold for 
expressing a gene signature, and the fraction of cells expressing a 
signature per AML clone is listed. 5f - left – correlation heatmap of 
differentially expressed gene signatures for AML-1. The malignant 
state is characterized by multiple novel gene expression signatures in 
addition to aberrant expression of "healthy" differentiation-related 
modules, right – UMAP projection of the metacell model of AML-1, 
colored by relative expression of differentially expressed genes. 
Overexpression of BCL2 in AML-1-2 compared to AML-1-1 can be 
seen on the top left panel. 5g – same as 5f for AML-2.
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EDF 1 – Cell state annotation, major markers and regulators of HSC 

differentiation and sub-population branching

1a – age distribution (decimals) of studied population by sex. 1b – 2D 

UMAP projection of our metacell model prior to CD34- metacell

filtering. 1c - relative expression heatmap of cell states (columns) and 

markers used for cell state annotation (rows). 1d – Filtering metacells

with low CD34 expression. 1e - gene-gene expression plot of DNTT

and RUNX3, showing early CLP differentiation and their bifurcation 

into late CLPs and NKTDPs. 1f –expression plot of MPO and 

GATA1/VPREB1 expression showing all 3 differentiation routes 

(GMPs, CLPs, MEBEMPs) from HSCs, and highlighting the GMP’s 

bifurcation from MPP / MEBEMP. All gene expression values are 

obtained by normalizing gene expression to sum to 1 and taking log2.
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EDF 2 – BM comparisons

2a – 2D UMAP projection of a non-CD34-enriched BM metacell

model from the Human Cell Atlas18, colored by a BM-specific cell type 

annotation. 2b - projection of our PB CD34+ derived metacells on the 

non-CD34 enriched BM metacell model. 2c – projection of BM CD34+ 

derived metacells [Setty et al.] on the non-CD34 enriched BM 

metacell model. 2d - gene-gene expression plots comparing PB 

CD34+ derived metacells with their BM CD34+ counterparts for all 

differentiation trajectories. Panels (left to right, top to bottom) 

represent CLP differentiation, MEBEMP differentiation, GMP 

differentiation, BEMP differentiation, DC differentiation, and 

MPO/CLP/MEBEMP trifurcation from HSCs. The first 4 differentiation 

panels represent similar PB and BM behaviors, while the last 2 show 

dissimilarities between them. PB / BM metacells are colored by PB / 

BM annotations, respectively. 2e – gene-gene expression plots 

comparing PB CD34+ derived metacells with their BM CD34+ 

counterparts for markers and regulators of CLP differentiation and 

bifurcation. 2f – relative expression heatmap of the megakaryocytic 

markers PF4 and PPBP and cell type specific markers, across 

metacells with high megakaryocytic signature. The figure shows an 

abnormally high doublet rate involving megakaryocytes.
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EDF 3 – High HLF/AVP HSCs

3a - gene-gene expression plots comparing our high AVP/HLF HSC 

population (left) with that found in two BM metacell models 

(right18,33). PB and BM metacells are colored by PB and BM 

annotations, respectively. 3b – map of transcriptionally activated 

genes upon exit from the HSC state and differentiation toward 

lymphoid (CLP) and non-lymphoid (MEBEMP) fates. Dots represent 

genes. HSC/CLP and HSC/MEBEMP gene expression ratios are 

depicted on the y and x axis respectively. Class I genes are 

representative of the HSC state; Class II genes exhibit symmetric 

transcriptional activation upon exit from the HSC state towards CLP 

and MEBEMP fates, whereas Class III, IV, V, VI exhibit asymmetrical 

transcriptional activation upon exit from the HSC state towards CLP 

(class III, V) and MEBEMP (Class IV, VI) fates. n is the number of genes 

in each class, 3c – GATA3 mutation screening on the Beat-AML WES 

data detected 5 positive cases for a hotspot in GATA3 R353K, out of 

826 sequenced cases (~1%). These had co-occurring mutations in 

DNMT3A, TET2, and SRSF2.
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EDF 4 – Factors involved in BEMP and NKTDP differentiation 

4a - factors positively and negatively regulated in the early stages of 

BEMP specification. 4b – gene-gene expression plots of DNTT and 

ACY3 comparing CD34-enriched and non-enriched BM (top18,33), as 

well as non-enriched and partially enriched PB (bottom3435] to our 

CD34+ PB model. Metacells are color-coded by SYT2 expression (log2 

transformed). The SYT2 high, ACY3 high, DNTT intermediate 

population clearly seen in our data is completely lacking from the BM 

datasets. 4c – anti-correlation of the DC IRF8-MHC-II coupled 

dynamics and the T cell regulator TCF7, involved in the bifurcation of 

the NKTDP cell state to its sub-populations. 
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EDF 5 – Individual-specific composition-controlled differential gene 

expression

5a,b – Individual-specific differential gene expression after 

controlling for each individual’s distribution across the CD34+ PB 

manifold in MEBEMPs (top) and CLPs (bottom).
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EDF 6 – Stability of cell state frequencies across technical and 

biological replicates

6a – comparison of Illumina-sequenced and Ultima-sequenced data. 

Each panel represents one library that was sequenced by both 

technologies. Points represent genes, and each gene’s expression 

level across all cells in the library as determined by Illumina (X) and 

by Ultima (Y) is shown. 6b – cell state frequency correlations 

between 11 technical & 10 biological replicates and their original 

samples. Specific cell states are denoted on top of each panel. All 

biological replicates were sampled ~1 year following original blood 

draw. 6c –correlations between CBC %Mono (from WBC) and cell 

type frequencies. Permutation test p value denoted on top. Missing 

individuals did not have sufficient cells for analysis. 6d – CLP 

frequency against maximal VAF for individuals with CH.
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EDF 7 – Composition-controlled transcriptional variation: the LMNA

signature and sync score

7a - gene-gene correlation heatmap, calculated over individual-level 

CLP gene expression normalized for CLP composition. 7b – the LMNA

signature – co-variation of LMNA expression with ANXA1/2, AHNAK, 

MYADM, TSPAN2 and VIM. 7c – heatmap of individual LMNA

signatures across the MEBEMP trajectory. Individual age and sex are 

color-coded on top. 7d – LMNA signature correlations between 11 

technical & 10 biological replicates and their original samples. 7e -

sync score correlations between replicates and their original samples. 

All biological replicates were sampled ~1 year following original blood 

draw.
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EDF 8 - Age related perturbation of HSPC compositions and 

transcriptional signatures

8a – Age compared to HSPC cell type frequency. Each panel 

represents a different cell state. Each dot represents an individual. 

Individuals are colored by their CH status. 8b – S-phase signature 

correlations between 11 technical & 10 biological replicates and their 

original samples. All biological replicates were sampled ~1 year 

following original blood draw. 8c – genes with CBC correlated and 

anti-correlated expression across males (using Spearman 

correlations). All genes displayed had an FDR-corrected p-value < 0.1 

(two-sided test for Spearman’s rho) for at least 1 CBC parameter. 8d –

Age correlated and anti-correlated genes (Spearman), FDR < 0.1. Each 

dot represents an individual. Correlation applies only to males. 8e –

anti-correlation of total Y chromosome expression with age.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.30.569167doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569167


EDF9
A

AML-1-1

1.5-1.5
Log2 expression fold change

D

MDS-1

B C

Chr

Metacells

2
0

-2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Chromsomal coordinate

Lo
g2

 (M
D

S 
/ 

he
al

th
y)

 e
xp

re
ss

io
n 

  2
0

-2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

MDS-2

Chr

Metacells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

AML-1

AML-2

Metacells

Metacells

AML-1-2

Chromsomal coordinate

Chromsomal coordinate

Chromsomal coordinate

2
0

-2
2

0
-2

2
0

-2

E

Lo
g2

 (M
D

S 
/ 

he
al

th
y)

 e
xp

re
ss

io
n 

  
Lo

g2
 (A

M
L 

/ 
he

al
th

y)
 e

xp
re

ss
io

n 
  

Lo
g2

 (A
M

L 
/ 

he
al

th
y)

 e
xp

re
ss

io
n 

  
Lo

g2
 (A

M
L 

/ 
he

al
th

y)
 e

xp
re

ss
io

n 
  

Chr
Chr

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.30.569167doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569167


EDF 9 – scRNAseq karyotyping

9a – scRNAseq karyotyping for MDS-1 (top) and MDS-2 (bottom). 

Metacell models were created for each MDS/AML patient and 

projected over our healthy reference map. Coupled reference and 

projected (patient) metacells were then used for calculating 

expression ratios over all expressed genes in all chromosomes. Left –

heatmap of log2 expression fold-change (patient/reference) per 

metacell over all genes expressed in each chromosome. Expression is 

first summed over all genes expressed in a certain chromosome by 

either metacell and ratios (patient sum/reference sum) are then 

calculated for each metacell couple. Right – log2 fold-change 

expression (healthy/patient) for all genes expressed by either 

metacell across all chromosomes. Red lines represent the median of 

each chromosomal fold-change distribution. 9b,c - same as 9a for 

AML-1 cases. scRNAseq karyotyping identified two clones: a smaller 

clone (AML-1-1, c top) with normal karyotype, and a larger clone 

(AML-1-2, c bottom) with +9,+10,+22 and Del20. 9d,e - same as 9a 

for AML-2. scRNAseq karyotyping identified a single clone with 

+8,+11,+13,+14 in all metacells (no population substructure).
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EDF 10 – The transcriptional landscape of AML: aberrant expression 

of reference genes and multiple novel gene signatures

10a – same as Fig 5e for LMNA expression across AML-1 and AML-2

clones. Top - boxplots of LMNA signature distributions for different

cell states in our reference atlas. Bottom – LMNA signature density

plots for each of the AML clones showing high variability in LMNA

expression. 10b – Expression heatmap of several gene signatures

across reference cell states and AML subclones. The malignant state

differs greatly from the healthy state both in the expression of

reference genes and by multiple additional gene expression

signatures. 10c – panels compare gene expression of major

differentiation regulators associated with lymphoid (top) and MPP /

MEBEMP (bottom) differentiation, in reference (healthy) (left), AML-

1 (middle, color coded by subclones) and AML-2 (right) metacells.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.30.569167doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569167

