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Abstract8

Neuronal anatomy is central to the organization and function of brain cell types.9

However, anatomical variability within apparently homogeneous populations of cells can10

obscure such insights. Here, we report large-scale automation of neuronal morphology11

reconstruction and analysis on a dataset of 813 inhibitory neurons characterized using12

the Patch-seq method, which enables measurement of multiple properties from individual13

neurons, including local morphology and transcriptional signature. We demonstrate that14

these automated reconstructions can be used in the same manner as manual reconstructions15

to understand the relationship between some, but not all, cellular properties used to define16

cell types. We uncover gene expression correlates of laminar innervation on multiple17

transcriptomically defined neuronal subclasses and types. In particular, our results reveal18

correlates of the variability in Layer 1 (L1) axonal innervation in a transcriptomically19

defined subpopulation of Martinotti cells in the adult mouse neocortex.20
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Introduction21

The shape of dendrites and axons, their distribution within the neuropil, and patterns of their22

long-range projections can reveal fundamental principles of nervous system organization and23

function. In the cortex, much of our understanding depends on the anatomical and functional24

descriptions of cortical layers. Yet, the origin and role of morphological and molecular diversity25

of individual neurons within cortical layers beyond broad subclass identities is poorly understood,26

in part due to low sample numbers. While molecular profiling techniques have recently improved27

by orders of magnitude, anatomical characterization remains time consuming due to continued28

reliance on (semi-)manual reconstruction.29

Improvements in the throughput of the Patch-seq technique1–8 have enabled measurement of30

electrophysiological features, transcriptomic signatures, and local morphology in slice prepa-31

rations for thousands of neurons in recent studies.5,6 In these repetitive experiments where32

maintaining a high throughput is a primary goal,9 the brightfield microscope’s speed, ease of33

use, and ubiquity make it an attractive choice to image local neuronal morphology despite34

its limitation in imaging resolution. Therefore, while the experimental steps are streamlined,35

morphological reconstruction remains a major bottleneck of overall throughput, even with36

state-of-the-art semi-manual tools.537

A rich literature exists on automated segmentation in sparse imaging scenarios. However, these38

methods typically focus on high-contrast, high-resolution images obtained by optical sectioning39

microscopy (i.e., confocal, two-photon, and light-sheet),10–18 and are not immediately applicable40

to brightfield images because of the significantly worse depth resolution and the complicated41

point spread function of the brightfield microscope. Moreover, segmentation of full local42

morphology together with identification of the axon, dendrites, and soma has remained elusive43

for methods tested on image stacks obtained by the brightfield microscope.19–22 Therefore,44

we first introduce an end-to-end automated neuron reconstruction pipeline (Figure 1a) to45

improve scalability of brightfield 3D image-based reconstructions in Patch-seq experiments46

by a few orders of magnitude. We note that our primary goal is not to report on a more47

accurate reconstruction method per se. Rather, we aim to demonstrate how automated tracing,48

with its potential mistakes, can be leveraged to rigorously address certain scientific questions49

by increasing the throughput. To this end, we select a set of brightfield images and use the50

corresponding manually reconstructed neuron traces to assign voxel-wise ground truth labels51

(axon, dendrite, soma, background). Next, we design a custom deep learning model and train52
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it on this curated ground truth dataset to perform 3D image segmentation using volumetric53

patches of the raw image as input. We implement fully automated post-processing steps,54

including basal vs apical dendrite separation for pyramidal cells, for the resulting segmentations55

to obtain annotated traces for each neuron. We compare the accuracy of these automated56

traces with a held out set of manual reconstructions, based on geometrical precision, a suite of57

morphometric features, and arbor density representations derived from the traces.58

We utilize this pipeline to reconstruct a large set of neurons from Patch-seq experiments,59

and use the transcriptomic profiles captured from the same cells to systematically search60

for gene subsets that can predict certain aspects of neuronal anatomy. The existence of a61

hierarchical transcriptomic taxonomy23 enables studying subsets of neurons at different levels62

of the transcriptomic hierarchy. At the finest scale of the hierarchy (transcriptomic types63

or “t-types”5), we study seven interneuron types and focus on a transcriptomically defined64

sub-population of L1-projecting, Sst gene expressing neurons (Sst cells) that correspond to65

Martinotti cells (e.g., 24). While previous studies have elucidated the role of Martinotti cells66

in gating top-down input to pyramidal neurons via their L1-innervating axons,25,26 the wide67

variability in the extent of L1 innervation behind it is not well understood. Our results suggest68

transcriptomic correlates of the innervating axonal mass, which may control the amount of69

top-down input to canonical cortical circuits. Our approach represents a general program70

to systematically connect gene expression with neuronal anatomy in a high-throughput and71

data-driven manner.72

Results73

As the first step to automate the reconstruction of in-slice brightfield images of biocytin-filled74

neurons, we curate a representative set of 51 manually traced neurons. We develop a topology-75

preserving variant of the fast marching algorithm13 to generate volumetric labels from manual76

traces (Figure 1b). We train a convolutional neural network (U-Net)16,27–29 using image stacks77

and labels as the training set and employing standard data augmentation strategies to produce78

initial segmentations of neuronal morphologies (Figure 1b,c). While knowledge of axonal79

vs. dendritic branches informs most existing insight, their automated identification poses a80

challenge due to the limited field-of-view of artificial neural networks. We find that image and81

trace context that is in the vicinity of the initial segmentation is sufficient to correct many axon82

vs dendrite labeling mistakes in an efficient way because this effectively reduces the problem to83
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Figure 1: Neuron reconstruction pipeline for in-slice bright-field images of biocytin-filled
neurons. a, Processing pipeline. Convolutional neural network (CNN) segmentations of 3D image
stacks are post-processed by custom machine learning tools to produce digital representations of
neuronal morphologies. b, Topology preserving fast marching algorithm generates the volumetric label
from raw image stack and manual skeletonization. Dendrites (blue), axons (red), soma (green) are
separately labeled to train a supervised CNN model. Scale bar, 100 µm. c, Semantic segmentation
provides accurate soma location and boundary. d, Axon/dendrite relabeling. A neural network model
predicts node labels from multiple image brightness and trace tortuosity features based on local contexts
of different size along the initial trace. (left, example image of dendrite and axon segments; middle,
corresponding feature plots; right, automated traces of test neuron with/without relabeling vs manual
trace). Arrow indicates nodes mislabeled by segmentation and corrected during post-processing.
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a single dimension, i.e., features calculated along the 1D initial trace (Figure 1d). We further84

algorithmically post-process the segmentations to correct connectivity mistakes introduced85

by the neural network and obtain the final reconstruction of axons and dendrites (Figure 1d,86

Figure 2a, Figures S1-S11, Methods). The overall pipeline produces neuron reconstructions87

in the commonly-used swc format30 from raw image stacks at a rate of ∼100 cells/day using88

16 GPU cards (Methods). Importantly, this represents two orders of magnitude improvement89

in speed over semi-manual segmentation5 with one anatomist. We have so far processed the90

cells reported in Ref.,5 which mapped neurons to an existing taxonomy of transcriptomic cell91

types23 and introduced a transcription-centric, multimodal analysis of inhibitory neurons. We92

have also processed a set of ∼700 excitatory neurons which are analyzed in Ref.31 After quality93

control steps (Methods), we focus on a set of 813 interneurons for further study in this paper.94

The proposed pipeline produces end-to-end automated reconstructions in single-cell imaging95

scenarios. However, in practice, neurons are patched near each other to increase the throughput96

of physiological and transcriptomic characterization. The resulting image, which typically97

centers on the neuron of interest, can therefore contain neurites from other neurons. Neurites98

from off-target neurons within the image stack cannot be properly characterized because they99

rarely remain in the field of view. As part of algorithmic post-processing and quality control,100

disconnected segments are removed automatically when they remain relatively far from the cell101

of interest (Methods). When multiple neurons are patched in close proximity, quality control102

by a human is needed to check for and remove nearby extraneous branches. To ensure integrity103

of presented results with minimal manual effort, if quality control suggests the existence of104

nearby branches, the cell is not used if it was not manually traced before. If manual trace105

already exists, we simulate manual branch removal based on a mask obtained from the manual106

trace (Methods). We report quantification results separately for reconstructions obtained107

with/without nearby branch removal.108

We evaluate the quality of automated traces by comparing them to the manual traces which we109

regard as the ground truth. To compare a pair of automated and manual traces, we perform110

a bi-directional nearest-neighbor search to find correspondence nodes in both traces within a111

certain distance.13 A node in the automated trace that has (does not have) a corresponding112

node in the manual trace is referred to as a true (false) positive node, and a node in the113

manual trace that does not have a corresponding node in the automated trace is referred to114

as a false negative node. We calculate this metric separately for axonal and dendritic nodes,115

as well as for all nodes regardless of the type, and compute corresponding precision, recall,116

and f1-score (harmonic mean of the precision and recall) values. These metrics indicate how117
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Figure 2: Assessing quality of automated reconstructions. a, Automated and manual traces of
example test neurons (left, inhibitory neurons; right, excitatory neurons – apical and basal dendrites
are assigned for excitatory cells.) b, Neuron reconstruction accuracy. Precision, recall, and f1-score
values are calculated by comparing automated and manual trace nodes within a given distance (2,
5 and 10 µm). Mean values over 347 cells (error bars: standard deviation) are shown for axonal,
dendritic and neurite (combined axonal and dendritic) nodes. c, Generation of 2D axonal and dendritic
ADRs. Scale bar, 100 µm. d, R2 values (left) and average root-mean-squared error (right) between
automatically vs. manually generated features (left) and ADRs for each t-type (right). ADRs are
normalized to have unit norm. 6
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well the automated trace captures the layout of the axon/dendrites/neurites in a reconstructed118

neuron. Figure 2b and Table S4 display that, at a search radius of 10µm, the mean f1-score is119

above 0.8 for both axonal and dendritic morphologies. Therefore, we expect these automatically120

generated traces to perform comparably to their manually generated counterparts in analyses121

that do not require a resolution better than 10µm, as we demonstrate below.122

To further assess the similarity in the arbor layout and other aspects of morphology that are123

not captured by the node correspondence study, we use standard morphometric features. We124

find that while many features summarizing the overall morphology can be accurately predicted,125

features related to the topology of arbor shapes, such as maximum branch order, are prone to126

mistakes (Figure 2d).127

While the quantitative analyses described above both suggest that automated reconstruction128

succeeds in broadly capturing neuronal morphology, including separation of axonal vs dendritic129

branches, they also demonstrate that important differences nevertheless remain between au-130

tomated and manual traces. Therefore, to robustly analyze anatomical innervation patterns131

against potential topological mistakes introduced by the automated routine, we develop a 2D132

arbor density representation (ADR)12,32–35 of axons and dendrites registered to a common133

laminar axis defined by cortical pia and white matter boundaries. Here, the vertical axis134

represents the distance from pia and the horizontal axis represents the radial distance from135

the soma node (Figure 2c). Note that this 2D representation still requires 3D imaging because136

many branches become undetectable in 2D projected images due to noise (e.g., Figure 1b).137

Moreover, standardizing the orientations of the brain and the tissue slice is challenging in138

high-throughput experiments so that the rotation around the laminar axis would be hard to139

control in 3D representations.140

At the level of transcriptomic types, the ADRs calculated from automated reconstructions141

appear similar to those calculated from manual segmentations based on the root-mean-squared142

difference between them (Figure 2d). To better quantify this similarity, we compare the143

performance of the ADR against that of morphometric features36 by training classifiers to144

predict t-types and subclasses (Sst, Pvalb, Vip, Sncg, Lamp5).5 We find that the ADR is not145

statistically significantly worse than the morphometric features in terms of classification accuracy146

(Boschloo’s exact test, asymptotically exact harmonic mean of p-values over multiple runs:37147

p = 0.81 for t-types, p = 0.26 for subclasses, Methods), consistent with Ref.38 (Figure 3a,b).148

We also test robustness against imperfections due to fully automated tracing by comparing the149
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classification accuracy obtained from automated tracing versus manual tracing on the same set150

of cells. End-to-end automation appears to perform similarly as manual tracing in cell type151

prediction based on ADRs (Figure 3c,d) and morphometric features (Figure S12). Here, an152

ultimate comparison might be between automatically generated ADRs vs manually generated153

morphometric features. Boschloo’s test finds no significant difference between the two in t-type154

classification (harmonic mean p = 0.72) but the ∼ 5% advantage of manual morphometric155

features in subclass classification is significant with harmonic mean p = 0.01.156

Beyond the comparative aspect, these results demonstrate a correspondence between gene157

expression and the anatomy of local arbors as represented by the proposed registered 2D ADRs,158

which agrees with previous findings with morphometric features for these cells.5 (subclass159

accuracy of ∼ 79% vs random at 20%, most abundant label at 47%; t-type accuracy of ∼ 45%160

vs random at ∼ 2%, most abundant label at ∼ 8%.) Even when the assignment is incorrect,161

the dominance of the entries around the main diagonal in Figure 3 demonstrates that cells are162

rarely assigned to transcriptomically far-away clusters based on the ADR or morphometric163

features. Note that the rows and columns of these confusion matrices are organized based on164

the reference taxonomy to reflect transcriptomic proximity (Figures S13 and S14). Therefore,165

the relative inaccuracy at the t-type level could be attributed to aspects of morphology not166

captured by the ADR or morphometric features (e.g., synapse locations), or other observation167

modalities (e.g., physiological, epigenetic) being key separators between closely related t-types.168

Having established that registered 2D ADRs are as successful as a standardized, rich set of169

morphometric features in predicting transcriptomic identity and that ADRs can be generated170

in a fully automated manner from raw images with only mild loss in performance, we aim171

to uncover more explicit connections between gene expression and anatomy as captured by172

the ADR. Since layer-specific axon and dendrite innervations are prominently and reliably173

captured by the ADR, we study their transcriptomic correlates. We treat the search for genes174

that are predictive of laminar innervation strength (neurite length innervating a given layer)175

as a sparse regression problem39,40 (Methods), and focus on 7 t-types whose morphologies176

are well sampled in our dataset with the help of automated reconstruction (3 Sst, 2 Pvalb, 2177

Lamp5 types). That is, we aim to uncover minimal gene sets whose expression can predict the178

amount of axonal and dendritic innervation of individual laminae as well as the locations of179

the soma and centroids of the axonal and dendritic trees along the laminar axis. Throughout,180

we control the false discovery rate (FDR) by applying multiple testing correction (Methods).181

Tables 1 and S1-S3 summarize these results. We observe that no single anatomical feature182

is significantly predictable from gene expression for all inhibitory t-types and every studied183
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Figure 3: Comparison of cell type classification accuracy based on the ADR vs a set of
classical morphometric features. Confusion matrix for the classification of 42 t-types based on
ADRs (a) and morphometric features (b), using a combination of 246 automatically and 501 manually
reconstructed cells. Confusion matrix for the classification of 38 t-types based on ADRs, using 488
manually (c) and automatically (d) reconstructed cells. Accuracy values reported in the headers refer
to mean ± s.d. of the overall t-type and t-subclass classifiers, respectively, across cross-validation folds.
Rightmost columns list the number of cells in each t-type (n).
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t-type has at least one significantly predictable anatomical feature. (Only the L4 dendritic184

innervation strength is significantly correlated with gene expression for cells of type Sst Chodl.)185

Perhaps more interestingly, we find that the sets of laminae innervation-predicting genes within186

transcriptomically defined subclasses and t-types are highly reproducible (Table S3) and almost187

mutually exclusive(Figure 4g). These observations support a connectivity-related and discrete188

organization of cortical cells.41 They also put forth a related question: can gene expression189

further predict innervation strength of a single layer in a continuum?190

Sst Calb2 Pdlim5 Sst Hpse Cbln4 Sst Chodl Pvalb Reln Itm2a
L1 axon 0 / 0.40 1.000 0.637 0.023 / 0.13
L2/3 axon 0.013 / 0.30 1.000 1.000 0 / 0.35
L4 axon 0.689 0.332 0.607 0 / 0.35
L5 axon 0.033 / 0.15 0.013 / 0.25 1.000 0.102
L1 dendrite 0.042 / 0.17 1.000 0.689 0.088
L2/3 dendrite 0.033 / 0.15 1.000 0.332 0.013 / 0.27
L4 dendrite 0.697 0 / 0.40 0.013 / 0.40 0.058
L5 dendrite 0 / 0.19 0.102 0.393 0 / 0.25
soma depth 0 / 0.26 0.023 / 0.21 0.246 0 / 0.34
axon centroid 0.023 / 0.16 0.210 0.058 0 / 0.34
dendrite centroid 0.150 0.023 / 0.26 0.096 0 / 0.39

Pvalb Tpbg Lamp5 Lsp1 Lamp5 Plch2 Dock5
L1 axon 0.033 / 0.21 0.013 / 0.56 0.042 / 0.40
L2/3 axon 0.023 / 0.27 0.042 / 0.52 0.323
L4 axon 0.216 1.000 0.351
L5 axon 0.058 0.135 0.081
L1 dendrite 0 / 0.42 0.283 0 / 0.40
L2/3 dendrite 0.042 / 0.21 1.000 1.000
L4 dendrite 0.074 0.393 1.000
L5 dendrite 0.013 / 0.26 1.000 1.000
soma depth 0.013 / 0.29 0.023 / 0.48 0.067
axon centroid 0.058 0.013 / 0.44 0.074
dendrite centroid 0.013 / 0.38 0.023 / 0.46 0.074

Table 1: Statistical significance and effect size values for predicting anatomical features from gene
expression via sparse linear regression for five different cell types. For each entry, the FDR-corrected
p-value as calculated by a non-parametric shuffle test is listed. If the value is considered statistically
significant at p ≤ 0.05, the R2 value is also displayed (p / R2). p-values less than or equal to 0.05 and
R2 values larger than or equal to 0.25 are shown in bold. A p value of 0 indicates that the calculated p
value is less than 0.001, the sensitivity of the shuffle test, and less than 0.013 after FDR correction.

To elucidate this question, we choose a transcriptomically defined subpopulation that is well-191

sampled in our dataset with the help of automated reconstruction, produces a large effect size192

in the gene regression study (Table 1), and has been a source of confusion due to its anatomical193

variability: Sst Calb2 Pdlim5 neurons23 represent a transcriptomically homogeneous subset of194

Martinotti cells, which are inhibitory neurons with L1-innervating axons that gate top-down195
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input to pyramidal neurons.25,26 However, the amount of axon reaching L1 varies widely across196

cells.5 Tables 1 and S3 show that a small set of genes, including genes implicated in synapse197

formation, cell-cell recognition and adhesion, and neurite outgrowth and arborization,42–44 can198

nevertheless predict the L1-innervating skeletal mass of neurons belonging to this homogeneous199

population (R2 = 0.40, p < 0.001, non-parametric shuffle test). Since the somata of this200

population are distributed across L2/3, L4, and L5 (Figure 4b), one potential explanation201

for this result is that gene expression is correlated with the overall depth location of the202

cells rather than L1 innervation strength in particular (Figure 4c). Therefore, we repeat the203

sparse regression study after removing the piecewise linear contribution of soma depth to L1204

innervation (linear fit and subtraction for only the L1 innervating subpopulation because the205

relationship is trivially nonexistent for the non-innervating subpopulation, Methods). We find206

that the expression levels of a small set of genes are still statistically significantly predictive of207

L1 innervation: R2 = 0.31, p < 0.001, non-parametric shuffle test. (Repeating with a linear fit208

and subtraction for the whole population does not change the qualitative result: R2 = 0.30,209

p < 0.001.)210

Next, we obtain a comparative perspective on the L1 innervation result for the Sst Calb2211

Pdlim5 subset of Martinotti cells by juxtaposing this result with that for the cells of the212

Lamp5 Lsp1 type. Somata of these cells are also distributed across multiple cortical layers213

and their axons have highly variable levels of L1 innervation. Sparse regression again succeeds214

in finding a small set of genes whose expression level can predict L1 innervation (R2 = 0.56,215

p = 0.01, non-parametric shuffle test, Table 1). However, it fails to uncover a statistically216

significant gene set after removing the piecewise linear contribution of soma depth: R2 = 0.06,217

p = 0.26, non-parametric shuffle test. (Repeating with a linear fit and subtraction for the whole218

population does not change the qualitative result: R2 = 0.08, p = 0.39.) That is, in contrast219

to the Sst Calb2 Pdlim5 cells, soma depth almost completely explains the variability in L1220

innervation for cells in the Lamp5 Lsp1 population (Figure 4e,f).221

Lastly, we consider the possibility that the cells whose axons do not reach L1 are simply222

irrelevant for this study and bias the statistics. (Axons of 3 out of 52 cells in the Sst Calb2223

Pdlim5 population, and 7 out of 22 cells in the Lamp5 Lsp1 population do not reach L1.) We224

repeat the above comparison after removing the cells whose axons don’t reach L1 altogether225

from this study. Sparse regression still uncovers a statistically significant relationship between226

L1 innervation strength and a set of genes for the Sst Calb2 Pdlim5 population after removing227

the linear contribution of soma depth (R2 = 0.28, p < 0.001). In contrast, it again fails to find228

a statistically significant relationship for the Lamp5 Lsp1 population (R2 = 0.05, p = 0.39).229
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Figure 4: L1 axonal innervation correlates with expression of subset of genes in Martinotti
cells. Example neurons of Sst Calb2 Pdlim5 and Lamp5 Lsp1 t-types (a). 1D axonal arbor density for
the 52 cells in the Sst Calb2 Pdlim5 t-type (b) and the 22 cells in the Lamp5 Lsp1 t-type (e). (Yellow
horizontal dashed lines and red dots indicate cortical layer boundaries and soma depth, respectively).
Normalized L1-axon skeletal mass vs. soma depth for the Sst Calb2 Pdlim5 cells (c) and the Lamp5
Lsp1 cells (f). Lines fitted to cells with nonzero L1 innervation. Cells whose axons don’t reach L1
are shown in gray. d, Gene expression vs. L1-axon skeletal mass for the genes selected by the sparse
regression analysis. (L1-axon mass decreases from left to right.) g, Similarity matrix for the sets
of laminae-predicting genes within transcriptomic types and subclasses. (See Table S3.) Each entry
denotes the number of genes in the intersection between the corresponding row and column.
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To summarize, while axons of Lamp5 Lsp1 cells appear to shift along the laminar axis according230

to their soma location within the cortical depth, soma location does not seem to dictate231

the axonal L1 innervation of Sst Calb2 Pdlim5 neurons, whose strength can nevertheless be232

predicted by gene expression. For both of these t-types, the automated reconstruction pipeline233

increased the sample size by more than 60% (Sst Calb2 Pdlim5: 63%, Lamp5 Lsp1: 69%),234

empowering the statistical analysis pursued here. Similarly, the sample counts for the t-types235

studied in Table 1 increased between 48% and 138%. (The increase over the whole dataset is236

50%, from 543 to 813 cells.) Since t-types correspond to leaf nodes of the cell type hierarchy,237

their sample sizes are much smaller than the subclass-level counts. Therefore, automated238

reconstruction can be beneficial both by capturing more of the biological variability in single239

cell morphologies of populations at the finest level of transcriptomically defined taxonomies240

and by enabling cross-validation schemes similar to the ones pursued here.241

Discussion242

While classification of neuronal cell types is increasingly based on single cell and nucleus243

genomic technologies, characterization of neuron morphology – a classical approach – captures244

an aspect of neuronal identity that is stable over long time scales, is intimately related to245

connectivity and function, and can now be connected with genomic attributes through the use246

of simultaneous profiling techniques such as Patch-seq. Nevertheless, light microscopy based247

methods of neuronal reconstruction often inadequately reproduce the determinant attributes of248

morphological signature, especially in high-throughput settings. Here, we have presented an249

end-to-end automated neuronal morphology reconstruction pipeline for brightfield microscopy,250

whose simple setup supports flexible, single or multimodal, characterization protocols. We have251

also proposed an arbor density representation as a descriptor of cortical neuronal anatomy that252

is robust against noise in high-throughput imaging scenarios as well as mistakes of automated253

reconstruction.254

Through the use of sparsity arguments and statistical testing, we demonstrated that this255

pipeline can help reveal relationships between gene expression and neuronal anatomy, where256

a large number of anatomical reconstructions enables accurate inference in the presence of257

a large gene set. As an application, we studied the correlation between gene expression258

and laminar innervation on a Patch-seq dataset of cortical neurons5 and showed that the259

gene correlates of different innervation patterns have little overlap across transcriptomically260
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defined subpopulations. While the same program can potentially also address the relationship261

between morphological and electrophysiological properties of neurons, the accuracy of automated262

reconstructions should further improve for use in detailed compartmental models.45263

Finally, we focused on axonal innervation of L1 by a transcriptomically defined subpopulation264

of Somatostatin-expressing Martinotti cells. We found that the innervation strength is relatively265

weakly correlated with soma depth for this cell type, but not all types. Moreover, a subset of266

genes can predict the remaining variability in the innervation strength after the effect of soma267

depth is removed, suggesting a control mechanism beyond simple shifting of the morphology268

within the cortical depth for this cell type. Considering that neurons in this population are269

thought to gate top-down input to cortical pyramidal neurons,25,26 this result suggests tuning270

of innervation strength in a continuum within the discrete laminar organization of the mouse271

cortex,46–49 potentially to improve task performance of the underlying neuronal network.272

From a segmentation perspective, we believe our work represents a significant step forward273

as the first study to produce hundreds of automatically reconstructed morphologies obtained274

from the brightfield microscope (Fig. S1-S11). As demonstrated in the main text, these275

cortical neuron morphologies are statistically indistinguishable from their manually generated276

counterparts in certain aspects (e.g., cell type identification), but not in many others (e.g.,277

arbor topology). Indeed, much further improvement is needed to achieve complete and accurate278

tracing of neurons, and the human should remain in the loop, at least for quality control.279

Nevertheless, advances in computer vision algorithms and computing infrastructure that can280

support complicated models and large datasets suggest that qualitative improvements may be281

within reach in the next few years.282
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neurons was generated as part of the Patch-seq recordings described in Ref.5 This dataset497
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63× objective lens (Zeiss Plan-Apochromat 63×/1.4 NA or Zeiss LD LCI Plan-Apochromat501

63×/1.2 NA) at an interval of 0.28 µm or 0.44 µm along the Z axis. Individual cells were502

manually placed in the appropriate cortical region and layer within the Allen Mouse Common503

Coordinate Framework (CCF)50,51 by matching the 20X image of the slice with a “virtual” slice504

at an appropriate location and orientation within the CCF. 1,259 cells were removed from505

the dataset either because they were mapped to nearby regions (instead of visual cortex) or506

because their images had incomplete axons. 543 of the remaining 1,082 bright-field image507

stacks of biocytin-filled neurons were reconstructed both manually and automatically, and this508

set is used for training and testing of the t-type classification algorithms and for error/R2-509

value quantification. The remaining 539 cells were reconstructed only automatically. To510

ensure the quality of scientific results presented in Table 1 and Figure 4, we excluded 118511

images with multiple neurons in the field of view and 151 images that failed at different512

stages of the pipeline (missing pia/white matter annotations, annotation-related failed upright513

transformation, reconstruction failing visual inspection) from those analyses. Finally, 16 cells in514

the manually and automatically reconstructed population and 20 cells in the automatically-only515

reconstructed population were not used for analyses involving t-types because these cells were516

deemed to not have “highly consistent” t-type mappings in Ref.5517

Volumetric training data generation from skeletonized morphologies518

Segmentation of neuronal morphologies from 3D image stack requires voxel-wise labels while519

manual reconstructions specified by traces only provide a set of vertices and edges corresponding520

to the layout of the underlying morphology. We developed a topology-preserving fast marching521

algorithm to generate volumetric ground truth using raw image stacks and manual traces by522

adapting a fast-marching based segmentation algorithm13,52 initialized with trace vertices to523

segment image voxels. This segmentation should be consistent with the layout of morphology524

traces, without introducing topological errors (e.g., splits, merges, holes). We ensured this by525

incorporating simple point methods in digital topology53 into the segmentation algorithm. (i.e.,526

the proposal generated by fast marching is disallowed if the proposed voxel value flip changes527

the underlying topology.) We noticed that the soma can be incompletely filled by the fast528

marching algorithm. Therefore, we treated the soma region separately and used a sequence of529

erosion and dilation operations followed by manual thresholding to achieve complete labeling.530

Each voxel was labeled as axon, dendrite, soma, background.531
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Neural network architecture and training532

We used a 3D U-Net convolutional neural network28 to perform multi-class segmentation (i.e.533

each voxel is assigned a probability of belonging to classes specified in the label set). We534

trained two separate models using raw images and volumetric ground truth; one with 51535

inhibitory neurons, and another with 75 excitatory neurons from mouse cortex. The U-Net536

architecture consists of a contracting path to capture context and a symmetric expanding path537

that enables precise localization and has been shown to achieve state-of-the-art performance in538

many segmentation tasks.27,28 Building on previous work,16 we developed an efficient Pytorch539

implementation that runs on graphical processing units (GPUs). To address GPU memory540

constraints, during each training epoch the training set was divided randomly into subsets541

of 3 stacks. Training proceeded sequentially using all subsets in an epoch, and data loading542

time did not exceed 10% of the total training time. We trained the model on batches of 3D543

patches (128× 128× 32 px3, XYZ), which were randomly sampled from the subset of 3 stacks544

loaded into memory. All the models were trained using the Adam optimizer54 with a learning545

rate of 0.1. Training with a GeForce GTX 1080 GPU for ∼ 50 epochs took ∼ 3 weeks. Since546

the neuron occupies a small fraction of the image volume, we chose patches that contained at547

least one voxel belonging to the neuron. To add salient, negative examples to the training set,548

we also included a number of patches with bright backgrounds produced by staining artifacts549

and pial surface. To enable the model to generalize from relatively small number of training550

examples and improve the segmentation accuracy, we augmented training data by 90◦ rotations551

and vertical/horizontal flips in the image (XY) plane.552

End-to-end neuron reconstruction pipeline553

An end-to-end automated pipeline combined segmentation of raw image stacks into soma, axon,554

and dendrite structures with post-processing routines to produce a swc file. Segmentation555

with trained models using a single high-end GPU takes ∼5.8 min per Gvoxel, or ∼186 min556

for average 32 Gvoxel image stack. Our pipeline had access to 16 GPU (NVIDIA Titan557

X) cards. Even though the model trained using inhibitory neurons generalized well on all558

types of neurons, we found that the model trained using excitatory neurons improved the559

axon/dendrite assignment accuracy on excitatory neurons. Segmentation was post-processed560

by thresholding the background, followed by connected component analysis to remove short561

segments, skeletonization, and converting to a digital reconstruction in the swc format.562
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Axon/dendrite relabeling563

Since the initial segmentation by the UNet-based neural network assigns every foreground voxel564

one of {soma, axon, dendrite} based on local context defined by the patch size, it is prone565

to occasional errors, particularly in distinguishing between axon and dendrite. These errors566

propagate to the labeling of nodes in the tree representation. In order to improve this initial567

node labeling, we developed an error correction approach which utilizes the initial segmentation568

to make a decision based on a larger spatial context.569

We trained a secondary neural network model to predict the labels based on features calculated570

using the raw image stack and the initial trace. First, for each connected component in the571

skeleton of the initial segmentation, we identified the longest path from the node closest to572

soma and calculated features on the node set defining that path: (i) The first 6 features are 1D573

arrays of image brightness values calculated for every node in the set at different spatial scales574

using spherical kernels of varying radii (1, 2, 4, 8, 16, 32). (ii) A second set of 6 features are 1D575

arrays of neurite tortuosity values calculated for every node in the set as ratios of path and576

Euclidean distances between each node and its n-th neighbor away from the soma (n = 4, 8, 16,577

32, 64, 128). (iii) Two additional features are 1D arrays of node type of every node in the set578

and a single number representing distance of the closest node to the soma. For each 1D array,579

we used the first 2048 nodes and zero-padded shorter arrays to have a uniform array size.580

The neural network architecture consists of three arms, two arms have two convolutional layers581

with 4 and 8 7x3 filters followed by 4x1 max pooling, a fully connected layer and a dropout582

layer each. These arms process feature sets (i) and (ii) above by stacking the sets of 6 1D arrays583

along a second dimension. The third arm processes feature set (iii) and has two convolutional584

layers with 4 and 8 7x1 filters followed by 4x1 max pooling, a fully connected layer and a585

dropout layer. The outputs of these three arms are concatenated with the ‘distance to soma586

feature’. Finally, the concatenated hidden feature map is processed by two fully connected587

layers to produce a single scalar softmax output indicating the inferred label type. The network588

model was trained using examples from the training dataset of the semantic segmentation589

model, and is used to relabel the neuron traces during postprocessing. Averaging predicted590

label type over the 9 longest paths improved relabeling accuracy for connected components591

longer than 2048 nodes.592
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Connecting disconnected segments593

Due to a combination of staining artifacts and limitations of brightfield imaging, the initial594

reconstruction is often characterized by multiple disconnected subtrees. We introduced artificial595

breaks to manual traces to train a random forest classifier to predict whether nearby pairs of596

connected components should be merged. First, we find all pairs of segment (subtree) end points597

that are located within a certain distance. Next, for each pair of end points, we calculate the598

Euclidean distance and four collinearity values which measure the segments’ orientation relative599

to each other. Specifically, for each end point, we calculate two vectors representing segment600

end orientation at two different spatial scales (i.e., the orientation of the branch terminating at601

that end point). The collinearity values are the dot products of each of these vectors with the602

vector between end points of the pair. Finally, for each end point in the pair we also calculate603

the above features for the closest four other end points. As a result, for every pair of end604

nodes we have a total of 45 features. Only segments of the same type, axon or dendrite, are605

considered for merging.606

Additional postprocessing607

We passed the reconstructions through a series of additional post-processing for extraneous608

cell/artefact removal, down sampling, node sorting and pruning. We used quality control by a609

human to check for the presence of disconnected branches of extraneous cells that were not610

removed during postprocessing. We excluded samples that did not pass this quality control if611

they did not have a manual trace. For samples with a manual trace, we used a neighborhood612

of the manual trace to simulate manual removal of extraneous cells by masking with that613

neighborhood. We excluded these samples from reconstruction accuracy quantification and614

used them only for cell type classification. For excitatory neurons (Fig. 2a, and Ref.31), we615

trained a random forest classifier to identify apical dendrite segments in excitatory auto-trace616

reconstructions. The classifier was trained on geometric features that distinguish apical dendrite617

segments from the basal dendrite (e.g. upright distance from soma). This classifier achieved a618

mean accuracy of 85% percent across 10-fold cross validation.619
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Morphometric feature calculation620

Reconstructions were transformed to an upright position that is perpendicular with respect to621

pia and white matter surfaces. Morphometric features as described in36 were calculated using622

the skeleton_keys python package. Following Ref.,36 z-dimension features were not included.623

Arbor density generation of axons and dendrites624

We represented axonal and dendritic morphologies as 2D density maps registered to a common625

local coordinate axis using the pia/white matter boundaries. First, we applied upright transform626

to the reconstructed neuron followed by the correction of z-shrinkage and the variable tilt angle627

of the acute slice.36 Next, adapting our previous work12,35 we conformally mapped pia and628

white matter boundaries to flat surfaces, calculated a nonlinear transformation on the whole629

tissue by a least-square fit to pia/white matter mappings, and applied this transformation to the630

morphology trace. Finally, we used the registered trace to generate a 2D density representation.631

The polar axes representing the cortical depth and the lateral distance from the soma (Figure 2c)632

make this representation invariant to rotations around the laminar axis. We calculated these633

maps separately for axons and dendrites. We downsampled these maps to 120px× 4px images634

with a pixel size of 8µm× 125µm to be robust to minor changes in morphology. We normalized635

the intensity by the lateral area corresponding to each pixel so that each pixel value represents636

local arbor density.637

Assessing neuron reconstruction accuracy638

To assess the quality of automated neuron reconstructions, we used manual reconstructions as639

the ground truth. We quantified the correspondence of trace nodes, as described in the main640

text, to evaluate the accuracy of the trace layout. We calculated precision, recall and f1-score641

metrics at three distances (2, 5, and 10 µm), and reported mean and standard deviation values642

for the test set of 347 neurons (all samples that have manual traces excluding the ones used643

for training models or required masking). In addition, we evaluated the accuracy of neuron644

morphology representations, morphometric features and ADRs, for the same set. We reported645

the coefficient of determination R2 for each morphometric feature. We calculated the average646

root-mean-squared error per t-type between normalized axon/dendrite ADRs derived from647
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automated and manual reconstructions.648

Supervised classification649

Supervised classification using morphometric features was performed by training a random650

forest classifier implemented in the scikit-learn Python package55 using 5-fold cross-validation.651

This was repeated 20 times. Supervised classification using ADRs was done by training a feed-652

forward neural network classifier using our Pytorch implementation. The network architecture653

consists of a convolutional layer with 7x3x1 filters, a 4x1x1 max pooling layer, a convolutional654

layer with 7x3x1 filters, a 3x1x1 max pooling layer, a layer that concatenates the hidden features655

with the soma depth value, and a fully connected layer with the number of units corresponding656

to the number of classes. Each convolutional layer uses the rectified linear function as the657

non-linear transformation.658

Since the depth locations of neurons vary within the cortex, we introduced a novel type of659

data augmentation based on simulation of cell type-dependent neuronal shift along the laminar660

axis. Namely, for each t-type we calculated the range of soma depth variations, and applied a661

random shift within that range to the input soma depth value, as well as the corresponding662

shift to the ADR intensity in the laminar direction. This cell type-dependent random shift of663

the ADR and the soma depth together with a modulation of the intensity values of the ADR664

improved the accuracy of classification.665

The networks were trained using the cross-entropy loss function and the Adam optimizer with a666

learning rate of 0.001. Training using 10-fold cross-validation with GeForce GTX 1080 GPU for667

50,000 epochs took ∼ 24 h. A set of 246 automatically and 501 manually reconstructed cells was668

used for training classifiers shown in Figure 3a and b, and a set of the same 488 automatically669

and manually reconstructed cells were used for Figure 3c,d and Figure S12. Both sets included670

only cells from t-types with at least 5 cells. Confusion matrices, mean and standard deviation671

of accuracy across cross-validation folds were reported.672

We performed Boschloo’s exact test on 2x2 contingency tables where columns/rows store673

total numbers of correct and incorrect predictions for two given classifiers. When comparing674

ADR-based to morphometric feature-based classifiers, we calculated the contingency table for675

each of the 20 repetitions used in the feature-based classifier study. We calculated the p-value676

of one-sided Boschloo’s test to evaluate the null hypothesis of ADR-based accuracy being less677
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than feature-based accuracy. To aggregate the 20 p-values, we used Ref.37 and the Python678

implementation at https://github.com/benjaminpatrickevans/harmonicmeanp to report679

the p-value of the asymptotically exact harmonic mean p-value test for t-type and subclass680

predictions.681

Cophenetic agreement: To take the hierarchical organization of transcriptomically defined682

mouse cortical cell types23 into account when evaluating the accuracies of the different classifi-683

cation tasks, we defined resolution index per cell as the scaled height of the closest common684

ancestor of assigned and predicted labels in the t-type hierarchical tree56 (Figures S13 and S14).685

Accordingly, the resolution index for a correctly classified t-type (“leaf node” label) is 1. In the686

worst case, the closest ancestor for an assigned and predicted label can be the root node of the687

taxonomy, which corresponds to a resolution index of 0. We report the mean and s.e.m. values688

for this measure of cophenetic agreement between true and predicted assignments for each cell689

type in Figures S13 and S14.690

Sparse feature selection analysis691

Following Ref.,57 a set of 1,252 genes were used for this analysis. This set was obtained by692

excluding genes if they satisfy any of the following criteria: (1) they are highly expressed in693

non-neuronal cells, (2) they have previously reported sex or mitochondrial associations, and (3)694

they are much more highly expressed in Patch-seq data vs. Fluorescence Activated Cell Sorting695

(FACS) data (or vice versa) and therefore may be associated with the experimental platform5.696

Further, we removed gene models and some other families of unannotated genes that may be697

difficult to interpret. We also used the β score, a published measure to evaluate the degree698

to which gene expression is exclusive to t-types,58 to exclude genes expressed broadly across699

t-types. Gene expression values were CPM normalized, and then loge(•+ 1) transformed for700

all the downstream analyses.701

A set of 777 neurons was used for the feature selection analysis where automated reconstructions702

comprise ∼ 32% of this set (∼ 44% of the subset of 7 t-types studied in Figure 4). Every neuron703

in the dataset was characterized by the expression levels of the set of 1252 genes, and their704

axonal and dendritic 1D arbor density representations were organized into two 120× 1 vectors.705

For each neuron, axon/dendrite layer-specific skeletal masses normalized by total skeletal mass706

were calculated to quantify layer-specific innervation for axonal and dendritic morphologies,707

and axon/dendrite centroids were calculated to characterize laminar position of the morphology.708
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To select a small subset of genes that are responsible for the variability in individual anatomical709

features within each transcriptomic type or subclass, we solved the Lasso regression problem59
710

(LassoCV command in the scikit-learn library55) for each anatomical feature using the cells in711

that transcriptomic set. We analyzed only the sets corresponding to the types and subclasses712

with at least 20 cells. Briefly, let Kt denote the number of cells of type or subclass t for which713

we have both anatomical features yt (a Kt× 1 vector) and gene expression values Xt (a Kt×N714

matrix). We solve715

minimize
1

2Kt

‖yt – Xtwt‖22 + α‖wt‖1

by performing nested 5-fold cross-validation. For each cross-validation fold, we passed the716

training set into LassoCV which performed another splitting of the data to determine the717

hyperparameter α and the set of selected genes. We selected the 10 genes with maximum718

absolute weight values and calculated the coefficient of determination, R2, for the test set.719

Finally, we selected the 10 most frequent genes across the 5 folds and calculated the mean test720

R2 value. To evaluate statistical significance, we shuffled the rows of the gene expression matrix721

Xt 1000 times and used the same procedure to calculate mean test R2 value for each shuffled722

run. We calculated the one-sided p-value as the fraction of shuffled runs with R2 values greater723

than or equal to the true R2. Finally, we performed multiple testing correction of p-values724

using Benjamini-Yekutieli method60 to control the false discovery rate (multipletests command725

in the statsmodels library61). We report resulting p-values and test R2 values for t-types in726

Table 1 and for t-types and subclasses in Tables S1 and S2.727

Data availability728

Transcriptomic and morphological data supporting the findings of this study is available on-729

line at https://portal.brain-map.org/explore/classes/multimodal-characterization730

(“Neurons in Mouse Primary Visual Cortex”). Additional dataset of automated morphological731

reconstructions is available at https://github.com/ogliko/patchseq-autorecon.732

Code availability733

Code pertaining to this study as well as the trained neural network model for automated734

segmentation are available at https://github.com/ogliko/patchseq-autorecon and https:735

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2023. ; https://doi.org/10.1101/2022.03.07.482900doi: bioRxiv preprint 

https://portal.brain-map.org/explore/classes/multimodal-characterization
https://github.com/ogliko/patchseq-autorecon
https://github.com/ogliko/patchseq-autorecon
https://github.com/rhngla/topo-preserve-fastmarching
https://github.com/rhngla/topo-preserve-fastmarching
https://github.com/rhngla/topo-preserve-fastmarching
https://doi.org/10.1101/2022.03.07.482900
http://creativecommons.org/licenses/by-nc-nd/4.0/


//github.com/rhngla/topo-preserve-fastmarching. Morphometric features are calculated736

using the skeleton_keys package at https://skeleton-keys.readthedocs.io.737
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Supplementary Material747

Sst Calb2 Pdlim5 Sst Hpse Cbln4 Sst Chodl Pvalb Reln Itm2a Pvalb Tpbg Lamp5 Lsp1
L1 axon 0 / 0.40 1.000 0.637 0.023 / 0.13 0.033 / 0.21 0.013 / 0.56
L2/3 axon 0.013 / 0.30 1.000 1.000 0 / 0.35 0.023 / 0.27 0.042 / 0.52
L4 axon 0.689 0.332 0.607 0 / 0.35 0.216 1.000
L5 axon 0.033 / 0.15 0.013 / 0.25 1.000 0.102 0.058 0.135
L6 axon 1.000 0.081 0.288 0.182 1.000 0.058
L1 dendrite 0.042 / 0.17 1.000 0.689 0.088 0 / 0.42 0.283
L2/3 dendrite 0.033 / 0.15 1.000 0.332 0.013 / 0.27 0.042 / 0.21 1.000
L4 dendrite 0.697 0 / 0.40 0.013 / 0.40 0.058 0.074 0.393
L5 dendrite 0 / 0.19 0.102 0.393 0 / 0.25 0.013 / 0.26 1.000
L6 dendrite 1.000 0.088 0.866 0.051 0.363 1.000
soma depth 0 / 0.26 0.023 / 0.21 0.246 0 / 0.34 0.013 / 0.29 0.023 / 0.48
axon centroid 0.023 / 0.16 0.210 0.058 0 / 0.34 0.058 0.013 / 0.44
dendrite centroid 0.150 0.023 / 0.26 0.096 0 / 0.39 0.013 / 0.38 0.023 / 0.46

Lamp5 Plch2 Dock5 Sst Pvalb Lamp5 Vip
L1 axon 0.042 / 0.40 0 / 0.29 0 / 0.29 0 / 0.47 0 / 0.24
L2/3 axon 0.322 0 / 0.41 0 / 0.66 0.813 0 / 0.27
L4 axon 0.351 0 / 0.44 0 / 0.40 0.210 0 / 0.18
L5 axon 0.081 0 / 0.33 0 / 0.21 1.000 0 / 0.18
L6 axon 0.540 0 / 0.37 0 / 0.52 1.000 0.813
L1 dendrite 0 / 0.40 0.023 / 0.01 0 / 0.42 0 / 0.25 1.000
L2/3 dendrite 1.000 0 / 0.37 0 / 0.66 1.000 0 / 0.48
L4 dendrite 1.000 0 / 0.42 0 / 0.28 1.000 0 / 0.16
L5 dendrite 1.000 0 / 0.19 0 / 0.24 1.000 0 / 0.34
L6 dendrite 1.000 0 / 0.44 0 / 0.59 1.000 0.689
soma depth 0.067 0 / 0.48 0 / 0.70 0 / 0.24 0 / 0.33
axon centroid 0.074 0 / 0.53 0 / 0.72 0 / 0.25 0 / 0.29
dendrite centroid 0.074 0 / 0.45 0 / 0.68 0 / 0.26 0 / 0.21

Table S1: Statistical significance and effect size values for predicting anatomical features
from gene expression via sparse linear regression for seven different cell types and four
subclasses. For each entry, the FDR-corrected p-value as calculated by a non-parametric shuffle test
is listed. (See Sparse feature selection analysis under Methods.) If the value is considered statistically
significant at p ≤ 0.05, the R2 value is also displayed (p / R2). p-values less than or equal to 0.05 and
R2 values larger than or equal to 0.25 are shown in bold.
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Sst Calb2 Pdlim5 Sst Hpse Cbln4 Sst Chodl Pvalb Reln Itm2a Pvalb Tpbg Lamp5 Lsp1
L1 axon 0 / 0.40 0.481 0.090 0.002 / 0.13 0.003 / 0.21 0.001 / 0.56
L2/3 axon 0.001 / 0.30 0.232 0.306 0 / 0.35 0.002 / 0.27 0.004 / 0.52
L4 axon 0.100 0.044 / 0.01 0.085 0 / 0.35 0.027 / 0.06 0.312
L5 axon 0.003 / 0.15 0.001 / 0.25 0.347 0.012 / 0.07 0.006 / 0.14 0.016 / -0.45
L6 axon 0.251 0.009 / 0.10 0.037 / 0.11 0.022 / -0.05 0.227 0.006 / 0.32
L1 dendrite 0.004 / 0.17 0.895 0.100 0.010 / -0.26 0 / 0.42 0.036 / -0.03
L2/3 dendrite 0.003 / 0.15 0.234 0.044 / 0.05 0.001 / 0.27 0.004 / 0.21 0.189
L4 dendrite 0.102 0 / 0.40 0.001 / 0.40 0.006 / 0.09 0.008 / 0.15 0.054
L5 dendrite 0 / 0.19 0.012 / 0.13 0.054 0 / 0.25 0.001 / 0.26 0.174
L6 dendrite 0.230 0.010 / 0.15 0.130 0.005 / 0.08 0.049 / 0.01 0.177
soma depth 0 / 0.26 0.002 / 0.21 0.031 / 0.06 0 / 0.34 0.001 / 0.29 0.002 / 0.48
axon centroid 0.002 / 0.16 0.026 / 0.04 0.006 / 0.26 0 / 0.34 0.006 / 0.21 0.001 / 0.44
dendrite centroid 0.018 / 0.18 0.002 / 0.26 0.011 / 0.22 0 / 0.39 0.001 / 0.38 0.002 / 0.46

Lamp5 Plch2 Dock5 Sst Pvalb Lamp5 Vip
L1 axon 0.004 / 0.40 0 / 0.29 0 / 0.29 0 / 0.47 0 / 0.24
L2/3 axon 0.042 / 0.08 0 / 0.41 0 / 0.66 0.120 0 / 0.27
L4 axon 0.047 / 0.01 0 / 0.44 0 / 0.40 0.026 / 0.01 0 / 0.18
L5 axon 0.009 / 0.07 0 / 0.33 0 / 0.21 0.186 0 / 0.18
L6 axon 0.075 0 / 0.37 0 / 0.52 0.177 0.121
L1 dendrite 0 / 0.40 0.002 / 0.01 0 / 0.42 0 / 0.25 0.208
L2/3 dendrite 0.218 0 / 0.37 0 / 0.66 0.510 0 / 0.48
L4 dendrite 0.285 0 / 0.42 0 / 0.28 0.214 0 / 0.16
L5 dendrite 0.217 0 / 0.19 0 / 0.24 0.217 0 / 0.34
L6 dendrite 0.292 0 / 0.44 0 / 0.59 0.160 0.099
soma depth 0.007 / 0.20 0 / 0.48 0 / 0.70 0 / 0.24 0 / 0.33
axon centroid 0.008 / 0.23 0 / 0.53 0 / 0.72 0 / 0.25 0 / 0.29
dendrite centroid 0.008 / 0.16 0 / 0.45 0 / 0.68 0 / 0.26 0 / 0.21

Table S2: Statistical significance and effect size values for predicting anatomical features
from gene expression via sparse linear regression for seven different cell types and four
subclasses – before FDR correction. For each entry, original p-value as calculated by a non-
parametric shuffle test is listed. If the value is considered statistically significant at p ≤ 0.05, the R2

value is also displayed (p / R2). p-values less than or equal to 0.05 and R2 values larger than or equal
to 0.25 are shown in bold.
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Table S3: Gene sets selected via sparse linear regression for different cell types/subclasses
and anatomical features. Only statistically significant sets with R2 ≥ 0.25 are shown (See Sup-
plementary Table 1). Numbers in parentheses denote the number of times the preceding gene was
selected out of 5 cross-validation runs. 3
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Precision Axon Dendrite Neurite

Distance, µm raw masked raw masked raw masked

2 0.81 ± 0.09 0.83 ± 0.08 0.72 ± 0.16 0.72 ± 0.16 0.89 ± 0.06 0.90 ± 0.06

5 0.89 ± 0.09 0.91 ± 0.07 0.76 ± 0.15 0.77 ± 0.15 0.95 ± 0.06 0.97 ± 0.04

10 0.93 ± 0.07 0.95 ± 0.05 0.81 ± 0.13 0.82 ± 0.13 0.97 ± 0.05 0.99 ± 0.02

Recall Axon Dendrite Neurite

Distance, µm raw masked raw masked raw masked

2 0.58 ± 0.16 0.58 ± 0.16 0.80 ± 0.20 0.80 ± 0.20 0.73 ± 0.12 0.73 ± 0.12

5 0.66 ± 0.17 0.66 ± 0.17 0.83 ± 0.20 0.83 ± 0.20 0.80 ± 0.12 0.80 ± 0.12

10 0.75 ± 0.16 0.75 ± 0.16 0.87 ± 0.18 0.87 ± 0.18 0.87 ± 0.10 0.87 ± 0.10

F1-score Axon Dendrite Neurite

Distance, µm raw masked raw masked raw masked

2 0.66 ± 0.13 0.67 ± 0.13 0.74 ± 0.16 0.74 ± 0.16 0.79 ± 0.09 0.80 ± 0.09

5 0.75 ± 0.13 0.75 ± 0.13 0.78 ± 0.15 0.78 ± 0.16 0.87 ± 0.08 0.87 ± 0.08

10 0.82 ± 0.12 0.83 ± 0.12 0.82 ± 0.14 0.83 ± 0.14 0.91 ± 0.07 0.92 ± 0.07

Table S4: Neuron reconstruction accuracy. Precision, recall, and F1-score values are calculated
by comparing automated and manual trace nodes within a given distance (2, 5, and 10 µm). Mean ±
s.d. of the values over 347 cells are reported for axonal, dendritic, and neurite (combined axonal and
dendritic) nodes of raw and masked automated traces.
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Figure S1: Morphological reconstructions of inhibitory neurons ordered by t-type – 1 of
11. 543 neurons have both automated and manual reconstructions, 270 - only automated ones. For
each t-type, cells with both automated and manual reconstructions are shown first, separated by faint
dashed lines, followed by cells that are reconstructed only automatically. Dendrites and axon are
in darker and lighter colors, respectively. Best viewed digitally. PQT: poor quality transcriptomic
characterization – not used for t-type related analyses. T: cells used in segmentation model training.
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Figure S2: Morphological reconstructions of inhibitory neurons ordered by t-type – 2 of
11. Please refer to the caption of Figure S1.
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Figure S3: Morphological reconstructions of inhibitory neurons ordered by t-type – 3 of
11. Please refer to the caption of Figure S1.
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Figure S4: Morphological reconstructions of inhibitory neurons ordered by t-type – 4 of
11. Please refer to the caption of Figure S1.
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Figure S5: Morphological reconstructions of inhibitory neurons ordered by t-type – 5 of
11. Please refer to the caption of Figure S1.
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Figure S6: Morphological reconstructions of inhibitory neurons ordered by t-type – 6 of
11. Please refer to the caption of Figure S1.
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Figure S7: Morphological reconstructions of inhibitory neurons ordered by t-type – 7 of
11. Please refer to the caption of Figure S1.
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Figure S8: Morphological reconstructions of inhibitory neurons ordered by t-type – 8 of
11. Please refer to the caption of Figure S1.
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Figure S9: Morphological reconstructions of inhibitory neurons ordered by t-type – 9 of
11. Please refer to the caption of Figure S1.
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Figure S10: Morphological reconstructions of inhibitory neurons ordered by t-type – 10
of 11. Please refer to the caption of Figure S1.
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Figure S11: Morphological reconstructions of inhibitory neurons ordered by t-type – 11 of
11. Please refer to the caption of Figure S1.
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Figure S12: Comparison of cell type classification accuracy based on a set of classical
morphometric features using manually vs automatically reconstructed cells. Confusion
matrix for the classification of 38 t-types based on features, using 488 manually (a) and automatically
(b) reconstructed cells. Accuracy values reported in the headers refer to mean ± s.d. of the overall
t-type and t-subclass classifiers, respectively, across cross-validation folds. Rightmost column lists the
number of cells in each t-type (n).

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2023. ; https://doi.org/10.1101/2022.03.07.482900doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.482900
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S13: Arbor density-based cell type classification performance using resolution index.
The depth of the Tasic et al. GABAergic neuron hierarchical tree is normalized to the 0-1 range,
and resolution index for each cell is defined as the value of the closest common ancestor of the true
and predicted leaf node labels. Perfect classification corresponds to resolution index of 1. Error bars
indicate resolution index (mean ± SE over 10-fold stratified cross validation sets) for each cell type.
The overall mean across cell types is indicated by blue on the y-axis. Cell types absent from the
dataset are indicated by grayed out labels on the x-axis. Classification was performed with multi-layer
perceptron classifiers using arbor density representation of all (a), manually (b) and automatically
(c) reconstructed neurons as input. Resolution index values are not strictly comparable across panels
because the numbers of cells and types are not identical. Left panel: 747 cells, 42 types; middle and
right panels: 488 cells, 38 types. (See Figure 3.)
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Figure S14: Feature-based cell type classification performance using resolution index. As
before, error bars indicate resolution index (mean ± SE over 5-fold stratified cross validation sets
repeated 20 times) for each cell type. The overall mean across cell types is indicated by blue on
the y-axis. Cell types absent from the dataset are indicated by grayed out labels on the x-axis.
Classification was performed with random forest classifiers using morphometric features of all (a),
manually (b) and automatically reconstructed cells (c) as input. Resolution index values are not
strictly comparable across panels because the numbers of cells and types are not identical. Left panel:
747 cells, 42 types; middle and right panels: 488 cells, 38 types. (See Figure 3.)
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