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Abstract8

GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical and9

functional properties. In mouse visual cortex, they also differ in their modulation with an animal’s behavioural10

state, and this state modulation can be predicted from the first principal component (PC) of the gene expression11

matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalises across12

species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse,13

human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences14

between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimi-15

larities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell16

type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link17

transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse in-18

terneurons are differentially expressed between species. Circuit modelling and mathematical analyses delineate19

the conditions under which these expression differences could translate into functional differences.20
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Introduction21

GABAergic inhibitory interneurons are a highly diverse population consisting of multiple cell types [1, 2]. In22

recent years, single-cell RNA sequencing (scRNA-seq [3]) has revealed that these types can be further subdivided23

into tens of subtypes [4, 5, 6] that also differ in their morphological and electrophysiological properties [7, 8]. So24

far, it has been difficult to understand the functional relevance of this fine-grained diversity. Bugeon et al. [9]25

recently bridged this gap by revealing that interneurons show subtype-specific modulation with an animal’s26

behavioural state, at least in layers 1-3 of mouse primary visual cortex (VISp). Strikingly, this state modulation27

could be predicted from the first transcriptomic principal component (tPC1). An interneuron’s tPC1 score also28

correlated with other dimensions of interneuron diversity, such as electrophysiology and connectivity, hinting at29

an “approximate but general principle” of mouse cortical interneurons [9].30

Intrigued by these findings, we wondered how general the principle embodied by tPC1 actually is (Fig. 1).31

Are transcriptomic correlates of state modulation similar across different species, or at least across mouse32

cortical layers and areas? If yes, this similarity would suggest conserved principles; if no, the difference could33

reveal distinct solutions to shared computational problems [10, 11, 12]. The uniformity of interneurons in the34

mouse brain [6] suggests that their gene expression and state modulation patterns observed in VISp might apply35

generally. In fact, earlier work by the authors of ref. [9] found that hippocampal interneurons are also organized36

along a single latent factor [13]. Similarly, recent comparative transcriptomic analyses have emphasized the37

conservation of (cortical) inhibitory interneurons across mammals [14, 15, 16, 17], and more distantly related38

species [18, 19, 20]. But these and other studies [21, 22] have also discovered species-specific interneuron39

subtypes. Additionally, the relative proportions of interneuron types vary even across mouse cortex [23, 24], as40

does the modulation of interneurons with brain state [25, 26, 27, 28].41

We therefore investigated the transcriptomic correlates of state modulation in seven existing single-cell42

RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) datasets from the forebrains of mice [9, 6, 29],43

humans [14, 15], turtles [18], and songbirds [19]. These species each have homologous types of inhibitory44

interneurons, but their evolutionary history and brain organization vary in important ways. For example,45

humans are evolutionarily closest to mice, turtles also have a (three-layered) cortex with potentially different46

evolutionary origins [30, 31, 18], and songbirds lack a cortex altogether [32, 33, 34].47

We found that transcriptomic PCs show relatively minor differences across smaller evolutionary distances48

(e.g., between mice and humans) but diverge over longer evolutionary time scales (e.g., mice and turtles).49

Between-species differences dwarf within-species differences, likely due to biological rather than technical rea-50

sons. Specifically, we trace differences in tPCs to species-specific cell type abundances and within-type gene51

expression patterns. We also find a combination of conservation and divergence in the expression of the choliner-52

gic receptors correlated with state modulation in mice [9]. Circuit modelling predicts the connectivity patterns53

for which differences in receptor expression translate into species-specific state modulation of interneurons and54

cortical information flow.55

Conserved and divergent transcriptomic correlates of state modulation
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Figure 1: Schematic of our main question: could the same transcriptomic axis predict state modulation in
other layers and areas of the mouse cortex and in other species? We investigate this by comparing transcriptomic
principal components (tPCs) and cholinergic (ACh) receptor expression across RNA-seq datasets [9, 15, 19, 14,
6, 18, 29].

Results56

We first validated our analysis pipeline by replicating the relevant results from Bugeon et al. [9] on their data57

and conducting several additional analyses. Briefly, we reproduced the systematic variation of interneuron58

subtypes with behavioural state (roughly, running vs stationary) and its correlation with tPC1 (Fig. S1). This59
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correlation seems driven by differences within and across cell types [35] and is strongest within the Pvalb and60

Sst populations (Fig. S2). Whether interneurons form a continuum or cluster along tPC1 depends on the61

preprocessing of the transcriptomic data (Fig. S3). These caveats aside, our analyses are consistent with those62

from Bugeon et al. and might reveal similar patterns—or the lack thereof— in other brain areas and species. A63

detailed description of the replication can be found in the supplementary material (see Replication of Bugeon64

et al).65

Conserved and divergent transcriptomic axes across species66

Having validated our approach on mouse data, we next turn to the cross-species comparison using transcriptomic67

data from humans (Homo sapiens, [15]), turtles (Trachemys scripta elegans, [18]), and zebra finch (Taeniopygia68

guttata, [19]); see Table 1 for an overview of all analysed datasets. We compare these data with a large reference69

dataset from mouse VISp [6].70

We first visualized the data from different species. To this end, we preprocessed the datasets using the same71

analysis pipeline and applied PCA to the resulting RNA count matrices (see Methods). The projection onto the72

first 2 tPCs of the human, but not turtle or zebra finch data, was similar to that of the mouse data (Fig. 2a).73

Mouse and human interneurons clustered by developmental area [36], with medial ganglionic eminence (MGE)-74

born Pvalb and Sst cells occupying one side of tPC1, and caudal ganglionic eminence (CGE)-born Lamp5, Vip,75

and Sncg cells the other. An intermediate position was occupied by a small group of Meis2 neurons [6], located76

in the white matter [37]. In contrast to the mammalian datasets, the turtle and finch data were characterised77

by a large population of Meis2-positive neurons (Fig. 2a, Table 2). Transcriptomic and morphological evidence78

suggests that these cells are likely homologous to neurons in the mammalian striatum rather than the white79

matter [18, 19].80

We quantified these visual differences using the principal angles, which generalise the notion of angle between81

two lines in a plane (Fig. 2b; see Methods). Here, we computed the angles between subspaces spanned by each82

dataset’s top 30 PCs. Consistent with the impression from the first 2 PCs, the principal angles were the83

smallest between mouse and human subspaces (Fig. 2c). Turtle and zebra finch PCs were both dissimilar to84

mouse PCs. Principal angles do not require a one-to-one relationship between individual principal components85

but also do not consider the variance explained by these components. For instance, a pair of highly similar86

but low-variance dimensions will result in small principal angles—inadvertently suggesting high similarity. We87

therefore performed a complementary analysis by computing the variance in the mouse data explained by the88

PCs of other datasets (Fig. 2d). The first human PC accounted for 15% of the variance explained by the first89

mouse PC; the turtle and songbird tPC1 accounted for 1.2% and 4.5%, respectively (Fig. 2e). Each tPC190

explained more variance than a random direction (0.3%), consistent with some shared global structure.91

We confirmed that these results were not due to technical differences in the different datasets. We first92

controlled for sequencing depth using a subsampling procedure (Fig. S4, Methods). We also mapped each93

dataset onto the mouse data using anchor-based integration [38]. This method has been widely used in cross-94

species analyses (e.g., [14, 19, 39, 40]). As expected, computational integration increased the similarity among95

the datasets (Fig. S5), but the larger similarity between human and mouse data was preserved.96

How might the transcriptomic differences relate to state modulation? Because state modulation information97

was only available for the mouse [9], we projected this data onto the tPCs from other datasets to determine their98

predictive ability (Fig. 2f). We found that the human tPC1 predicts state modulation in the mouse (R2 = 0.18),99

but the turtle tPC1 did not (R2 = 0) (Fig. 2g; compare with Fig. S1). The zebra finch tPC1 showed a weak100

but significant ability to predict state modulation (R2 = 0.07). We conclude that human tPCs are similar to101

those of the mouse also on a functional level, in line with evolutionary history.102

What evolutionary changes underlie the differences between transcriptomic PCs? At least two non-mutually103

exclusive processes are possible. First, homologous subclasses could evolve in a species-dependent manner, as104

indicated by differences in gene expression. Second, evolution can also change the relative abundance of other-105

wise conserved classes [15, 41]. We wondered if the relative abundance of cell classes was sufficient to explain the106

species differences. To this end, we resampled cells to equal fractions, such that the 3 classes (Pvalb, Sst, Vip)107

present in all datasets each accounted for one-third of the cells (Fig. 2h). This increased the visual similarity108

between the first two tPCs of the mammalian and non-mammalian datasets due to the absence of Meis2 neurons109

(Fig. S6). Still, the matched-abundance datasets were as dissimilar as the original datasets (Figs. 2j, S7). This110

highlights the divergence of homologous cell types as a driver of evolutionary change in the global transcriptomic111

landscape.112

113

Similar transcriptomic axes across mouse datasets114

The previous cross-species comparison is based on data collected with different sequencing protocols and from115

different brain areas. To account for these factors, we calibrated the between-species differences against within-116
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Figure 2: Transcriptomic PCs capture conserved and divergent global gene expression patterns.
(a) Projections of gene expression data from forebrain interneurons onto each dataset’s first tPCs. Samples
correspond to cells; colours indicate cell types. Variance explained by tPC1&2: 23.3% (mouse), 22.7% (hu-
man), 13.7% (turtle), and 12.9% (zebra finch). (b) Schematic: principal angles measure dissimilarity between
subspaces spanned by two sets of tPCs (see Methods). Larger angles indicate larger differences. (c) Principal
angles between human and mouse subspaces are smaller than between mouse and zebra finch or turtle sub-
spaces. Chance level estimated by sampling random, normalized vectors. (d) Schematic: Variance explained
in the mouse data as a measure of tPC similarity. A tPC’s length is proportional to the variance it explains.
(e) Variance of mouse data explained by tPCs of different datasets, normalized to the variance explained by
mouse tPC1. The human, zebra finch, and turtle tPC1 explain 15.7%, 4.5%, and 1.2% of the variance explained
by mouse tPC1. A random direction (dashed line) explains 0.3%. (f) Schematic: Predicting mouse state
modulation from human tPC1. The colour gradient symbolizes the state modulation of mouse cells. (g) State
modulation of mouse interneurons can be predicted from the interneuron’s projection onto human tPC1 but not
onto turtle or zebra finch tPC1. R2: cross-validated fraction of variance explained, r: Pearson correlation. (h)
Subsampling procedure to control for the relative abundance of interneuron subclasses across datasets. Colours
code for cell types (see (a)). (i,j) Matching the relative abundance does not increase the similarity of datasets as
measured using principal angles. Numbers indicate order or PCs. Data from refs. [6] (mouse), [15] (human), [18]
(turtle), [19] (zebra finch).

species differences by comparing three mouse datasets (Fig. 3a): the in situ data from VISp layers (L) 1-3 [9], the117

plate-based (SMART-seq2) data from VISp L1-6 [6], and the droplet-based (10X) data from multiple cortical118

and hippocampal areas (Ctx & Hpc, [29])119

Visually, the projections onto the first tPCs were similar (Fig. 3b), with interneurons clustering by develop-120
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Figure 3: Similar transcriptomic PCs across mouse data sets. (a) Schematic of brain areas sequenced
for different mouse datasets. Ctx: cortex, Hpc: hippocampal formation, VISp: primary visual cortex. The
datasets were also collected using different technologies (Table 1). (b) Similar tPC1&2 across mouse datasets;
tPCs1&2 jointly explain 18.0%, 23.8%, and 29.8% of variance, from left to right. Arrows indicate a qualitative
difference: the relative position of Pvalb and Sst cells along tPC1. (c) Quantitative comparison with VISp
L1-6 dataset based on 2000 highly variable genes; tPC1 of the Ctx & Hc dataset explains 77.5% of the variance
explained by tPC1 of VISp L1-6. Grey lines: cross-species angles, taken from Fig. 2c. (d) As (c), but based on
the 72 genes shared by the three datasets. In this reduced space, tPC1 of the Ctx & Hc and VISp L1-3 explains
88.7% and 81.3%, respectively, of the variance explained by VISp L1-6. (e) Relatively small change in Pvalb
and Sst position after matching gene sets between L1-6 and L1-3 data. (f) Larger differences due to relative
cell type abundance. (g) Distribution of tPC1 projection of Pvalb (blue) and Sst (orange) cells for the L1-3
data and different versions of the L1-6 data. Match subtypes: select only the Sst subtypes present in the L1-3
dataset. Match genes: select only the genes present in the L1-3 dataset. Match abundance: subsample such
that Sst cells comprise only 8% of the samples, as in the L1-3 data. Projections were normalized such that the
mean and variance of the respective Pvalb population were zero and one, respectively. Expression data from
refs. [29] (Ctx & Hpc), [6] (VISp L1-6), and [9] (VISp L1-3).

mental area, as before. But subtle differences were also visible. For example, the L1-3 dataset lacked a Meis2121

population present in both L1-6 datasets (Fig. S8; [6, 29]). The tPC1 score of Sst cells also varied between122

datasets. In the L1-3 data, Sst cells occupied an intermediate position on tPC1 (and tPC2) compared to Pvalb123

cells, consistent with their weaker state modulation (Fig. S1b). In contrast, Sst and Pvalb cells occupied similar124

positions in the other datasets.125

The three datasets were also quantitatively similar. Principal angles between different mouse datasets were126

substantially smaller than angles between species (Fig. 3c). To compare the larger mouse datasets with the127

smaller dataset of Bugeon et al. [9], we performed the same analyses after selecting the 72 genes shared by all128

datasets. This revealed the Ctx & Hpc data to be more similar to the VISp L1-6 data than the VISp L1-3 data129

(Fig. 3d), consistent with the varying relative positions of the cell types in the space of the first two PCs.130

Several factors could explain the different positions of Pvalb and Sst cells along tPC1 and tPC2 (arrows131
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in Fig. 3b). We first tested if the difference was due to layer-specific subtypes known to be transcriptomically132

identifiable (see, e.g., [6, 42]). However, selecting L1-3 subtypes from the L1-6 data followed by PCA only moved133

the Sst cells further along tPC1 (Fig. 3g, ”match subtypes”). We next tested for the influence of gene set by134

performing PCA on the L1-6 data after selecting 72 genes describing the L1-3 dataset. This only modestly in-135

creased the similarity to the in situ data (Fig. 3e), reflecting the careful selection of the gene panel [43]. Finally,136

we reasoned that the intermediate position of Sst cells in the L1-3 data could be due to their relative sparsity137

(8% in the L1-3 data vs 28% in the L1-6 data). After all, a given pattern of covariability explains less variance138

when present in a smaller number of samples. Indeed, sampling the same number of cells from the entire Sst139

population moved the Sst population to an intermediate tPC1 position (Fig. 3f). Therefore, the intermediate140

position of Sst cells in the L1-3 dataset might be due to their relative sparsity.141

142

In summary, mouse datasets are highly similar to cross-species datasets despite differences in brain area [6]143

and sequencing technology [44]. Two human datasets [14, 15] showed equally high levels of similarity (Fig. S9).144

Between-species differences, therefore, likely reflect biologically meaningful signals rather than technical arte-145

facts.146

Evolution of cholinergic receptor expression147

So far, we have shown that interspecies expression differences are reflected in the first principal components.148

This rules out a conserved tPC1 that predicts state modulation—at least across evolutionarily distant species.149

However, it does not rule out that the species-specific tPCs predict state modulation. Unfortunately, this cannot150

be tested directly due to the lack of data on state modulation for the other species. As a proxy, we, therefore,151

analyzed the expression of cholinergic receptors that are known to contribute to the correlation between tPC1152

and state modulation in mice (Fig. 4a, [9]).153

According to our analysis (see Methods), five cholinergic receptors can predict state modulation of upper-154

layer subtypes in held-out data in mice (Fig. S10). These receptors also ranked among the top genes in their155

correlation with state modulation (Fig. 4b). The predictive nicotinic receptors (Chrna3,4,5) showed a rough156

gradient along tPC1 (see, Fig. 4c). The only predictive inhibitory receptor (Chrm4), on the other hand, was157

expressed by Pvalb neurons (Figs. 4d), consistent with their negative state modulation (Fig. S1b).158

Do the same receptors mediate state modulation in other species? If yes, one would expect differential159

expression across cell types, with a similar pattern as in mice. However, several receptors that predict state160

modulation in mice show qualitatively different patterns of expression in the other species (Fig. 4e,f,g). For161

example, Chrna4 and Chrna5 show much weaker expression in the human data than in mice (Fig. 4e). Chrm4162

is overexpressed in the turtle data relative to the other species (Fig. 4f).163

The general trend is that the predictive receptors are under-expressed in the other datasets. A possible164

explanation is a regression to the mean: predictive receptors are, by necessity, expressed in mice. But the relative165

expression in other datasets could also be due to technical reasons such as a lower sequencing depth (Table 1).166

Indeed, the typical mouse cell contained several orders of magnitude more RNA counts than the typical human167

cell (Fig. 4h). We controlled for this confound by downsampling the mouse data to the sequencing depths of168

the other datasets (Methods). To measure variability, we also applied this procedure to two datasets from the169

same species, which revealed typical log2-fold expression differences between -2 and 2 (Fig. S11)—downsampling170

retained larger differences between species that are qualitatively consistent with the analysis of the full datasets.171

In the human data, Chrm4, and to a lesser extent Chrna3 & 4, were still underexpressed after downsampling172

(Fig. 4i). Chrm3 and Chrna5 were underexpressed in the turtle data, whereas Chrm4 was overexpressed (Fig. 4j).173

In the songbird data, only Chrm4 was overexpressed (Fig. 4k).174

Thus, several cholinergic receptors that might mediate state modulation in mice show species-specific ex-175

pression. This suggests that homologous cell types in different species could show substantial differences in state176

modulation.177

Robustness of state modulation to cholinergic receptor expression178

How do species-specific cholinergic receptor expression patterns influence cortical information flow? Since this179

depends not just on the cell type-specific gene expression but also on the interplay of different interneurons,180

we investigated this question using a circuit model (Methods). We focused on the most salient differences in181

receptor expression between the three species with a cortex (mice, humans, and turtles).182

The model consists of the three most common interneuron types, Pvalb, Sst, and Vip cells, whose connectivity183

patterns have been mapped [45, 46] and are relatively conserved, at least in mice and humans [47]. Additionally,184

the computational repertoire of this “canonical circuit” has previously been investigated [48, 49, 50]. To explore185

the effect of cholinergic modulation on excitatory activity, we also included a two-compartmental pyramidal186

neuron. These two compartments receive different information streams: whereas the soma receives feedforward187
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Figure 4: Evolution of cholinergic receptor expression (a) Graphical model of the relationship between
tPC1, gene expression, and state modulation. The shaded variable tPC1 is not directly observable. Arrows
indicate direct dependence relationships; arrow thickness indicates the strength of the relationship. (b) Corre-
lation between gene expression and state modulation in the mouse data. Gene expression and state modulation
were not measured in the same cells and were therefore combined at the level of subtypes (Methods). Blue:
significant correlation (p < 0.05), grey: not significant. Annotated are the cholinergic receptors that predict
state modulation (Fig. S10). Chrm4 is ranked 327th (top 1.5%) with the strongest negative correlation. Chrm3
and Chrna3, 4 & 5 are among the top 1.7%, 2.4%, 7.1%, and 8.1% with the strongest positive correlation.
(c) tPC projection of mouse VISp L1-6, coloured by Chrna4 expression (log CP10K). Upper layer Sst types
were selected before PCA to retain the cell type arrangement of Bugeon et al. (Fig. 3f) (d-g) Dotplots of cell
type-specific cholinergic receptor expression, z-scored across all cells. (h) Schematic of RNA count subsampling
to control for differences in sequencing depth. Each RNA count from the deeper dataset was sampled with
a probability equal to the relative depth of the deep and the shallower dataset (Methods). (i-k) Log2-fold
difference in expression with mouse data after subsampling; negative and positive values indicate under- and
overexpression, respectively, compared to mouse data. Each violin plot shows the distribution of 100 subsampled
datasets. Differences outside of shaded areas are larger than the typical differences between different datasets
of the same species (Fig. S11). Without the subsampling procedure, a comparison of raw RNA counts would
suggest that every receptor is overexpressed in the mouse by a factor of 8 or more due to the larger sequencing
depth of the mouse data. Expression data from refs. [6] (mouse), [9] (VISp L1-3), and [6] (L1-6).

(sensory) input, the pyramidal dendrites receive top-down input [51, 52, 53]. For visualisation purposes, these188

input streams were represented by sinusoids of different frequencies (Fig. 5a).189

We model cholinergic modulation as an additive input to the interneurons with a strength that is based190

on cell type-specific receptor expression data (Methods, Table 3). Cholinergic modulation inhibits the Pvalb191

population via muscarinic ACh receptors (Chrm4) while activating Vip cells and — to a lesser extent — Sst192

cells via nicotinic ACh receptors. The activated Sst cells suppress inputs arriving at the dendrites [54, 55, 56],193
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Figure 5: Circuit model predicts functional consequences of cholinergic receptor expression di-
vergence (a) Schematic of mouse cortical circuit model. PC: pyramidal cell. Grey and red sinusoids rep-
resent inputs to pyramidal soma and dendrites, respectively; teal arrows represent cholinergic modulation of
interneurons. Excitatory and inhibitory ACh receptors are shown in red and blue, respectively. (b) Analytical
prediction of the Pvalb and Sst ACh receptor expression values for which Pvalb and Sst cells are inhibited by
ACh (see Methods). The star indicates parameter settings used for simulation in (c). At baseline, the PC rate
reflects both somatic and dendritic inputs. Cholinergic activation inhibits the dendritic contribution by acti-
vating Sst cells. (d) Human cortical circuit model, in which Pvalb cells lack inhibitory ACh receptors. (e) As
(b), but with the shaded area indicating expression values qualitatively consistent with the human data. Star:
parameter settings used for simulation in (f). Cholinergic modulation has a qualitatively similar effect due to
the indirect cholinergic inhibition of Pvalb neurons via the Sst neurons. (g) Turtle circuit model with inhibitory
ACh receptor expression in Sst cells. (h) As (b), but with the shaded area indicating turtle expression values.
Star: parameter settings used for simulation in (i). In contrast to the mammalian circuit models, cholinergic
modulation causes a disinhibition of dendritic inputs.

and increase the effective cholinergic inhibition of Pvalb cells. By recruiting dendritic inhibition, ACh therefore194

limits the influence of top-down inputs on PC rates ([57, 58]; Fig. 5c) while enhancing the influence of top-down195

inputs [59, 60].196

How might cholinergic modulation affect interneuron activity and information flow in other species? We197

modelled a human cortical circuit by deleting the inhibitory Chrm4 receptor from the Pvalb population, mim-198

icking the strongest difference with the mouse VISp data (Fig. 5d). Mathematical analyses indicate that Pvalb199

activity is still reduced in the presence of ACh due to inhibition from Sst cells (Fig. 5e,f; see Methods). The200

difference in direct cholinergic inhibition in Pvalb interneurons between humans and mice might therefore have201

a relatively weak functional consequence. This is consistent with experimental data [61] and the variable Chrm4202

expression across mouse datasets (Fig. S11). By contrast, we found a qualitatively different effect after changing203

the ACh receptor densities to mimic the turtle data (Fig. 5g): the over-expression of inhibitory Chrm4 receptors204

by Sst instead of Pvalb cells led to cholinergic disinhibition of dendritic inputs (Fig. 5h,i). This qualitative de-205

viation from the mammalian cortex could affect the state-dependent processing of bottom-up versus top-down206

inputs in reptiles (see Discussion).207
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These findings suggest that the computation performed by the circuit can be very sensitive to certain patterns208

of differential expression and robust to others [62, 63].209

Discussion210

We have shown that the global gene expression patterns of inhibitory interneurons, as assessed by PCA, show211

considerable similarity between mice and humans. However, such similarity is not observed between mice and212

turtles or songbirds. This suggests that the first transcriptomic PC (tPC1) obtained from the upper layers of the213

mouse cortex [9] may serve as an organizing principle for mammalian interneurons but not for reptilian and avian214

interneurons. Control analyses indicate that technical factors cannot explain cross-species differences. Instead,215

our results suggest that the evolutionary divergence of homologous interneurons is mainly explained by changes216

in gene expression rather than changes in the relative abundance of cell types. Alongside the differences in global217

expression patterns, we have also observed differences in the expression of cholinergic receptors, suggesting that218

interneurons undergo species-specific modulation in their functional states.219

Comparison to prior work220

The gross transcriptomic differences between species might be surprising given the evolutionary conservation221

of interneurons in the forebrain [18, 19, 15, 16] and other areas [20, 17]. However, these works also found222

many genes to have species-specific expression, suggesting cell types might be homologous across species but223

not preserved in their detailed properties. Moreover, fine interneuron subtypes are not necessarily conserved224

across larger evolutionary distances [64].225

Cholinergic modulation with arousal and other cognitive processes has been reported in many species (see,226

e.g., [65, 66, 67, 68, 69, 70]), and might even be mediated by similar midbrain cell types [71]. However,227

acetylcholine seems to achieve its conserved effects via species-specific pathways [72]. For example, most human228

but not rat PV neurons express the Chrm1 receptor [73]. Even within a single species, cholinergic projections229

and their effects vary across areas [74, 75, 27] and layers [76, 77]. Additionally, serotonergic receptors are230

among the most differentially expressed gene sets between humans and mice [14]. Therefore, our differential231

receptor expression findings are broadly consistent with earlier work. It should be noted, however, that technical232

differences between datasets naturally pose a more serious limitation for comparing the expression of individual233

genes than aggregate measures such as PCA. Future work will therefore need to confirm the present results234

using, e.g., immunohistochemistry.235

Interpretation of transcriptomic PCs236

Across all datasets, one feature consistently stands out: the clustering along tPC1&2 by developmental area.237

A similar pattern has been previously observed based on nonlinear dimensionality reduction and clustering238

methods (see, e.g., [6, 40]). The structuring of top PCs by developmental origin and cell type is expected since239

cell types are defined by developmentally-activated transcription factors that coregulate batteries of protein-240

coding genes [78, 79]. These low-dimensional patterns of gene expression are naturally picked up by a method241

like PCA.242

A clear difference between the mouse datasets is given by two layer-specific subtypes: the deep-layer Meis2243

cells [37, 6], and long-range projecting Sst Chodl cells [80, 6]. Their intermediate position along tPC1 (Fig. S8)244

but distinct connectivity suggests that the correlation of tPC1 with cellular properties [9] might not apply to245

these deep layer subtypes. This could be further tested using, for example, Patch-seq experiments [81, 82]. A246

caveat is the relative sensitivity of PCA to cell-type proportions: the intermediate tPC1 scores of Meis2 cells247

may be caused by their scarcity in the mouse data.248

Evolution of cholinergic modulation249

Many genes are at least as predictive of state modulation as cholinergic receptors (Fig. 4b). Some genes250

might be causally related to state modulation, but others are merely co-regulated with causal genes (Fig. 4a).251

Thus, strong correlations—the very property that allows the reliable identification of transcriptomic PCs—also252

preclude the identification of causal genes based on regression analyses. Whether genes predict state modulation253

also depends on factors only partially under genetic control, such as synaptic connectivity. For example, our254

network simulations show that connectivity patterns influence which cholinergic receptor expression differences255

affect state modulation (Fig. 5). Finally, species differences in state modulation may not necessarily imply256

differences in function. An interesting example is turtle Sst cells’ expression of the inhibitory Chrm4 receptor,257

which might lead to cholinergic disinhibition of pyramidal dendrites. Since sensory inputs to turtle cortex arrive258

in layer 1 instead of deeper layers [30, 83], we speculate that acetylcholine can thus disinhibit sensory inputs,259

as it potentially does in mouse cortex. Alternatively, cholinergic modulation could have qualitatively different260
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effects on the processing of bottom-up versus top-down inputs in turtle compared to mouse cortex. Future261

experiments could arbitrate between these alternatives.262

Conclusion263

The wide availability of transcriptomic data in different species offers new opportunities for comparative anal-264

yses. Transcriptomic data can not only predict behavioural features such as state modulation but also the265

electrophysiology and morphology of homologous cell types ([84, 7, 85], but see [24]) which are more acces-266

sible. It will be exciting to see whether these predictions generalize across species and if they correlate with267

high-variance transcriptomic dimensions. More generally, we expect that future cross-species experiments will268

complement work in genetically accessible mice to reveal general principles of brain function.269
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We thank Trygve Bakken, Michael Brainard, Stéphane Bugeon, Bradley Colquitt, Kenneth Harris, and Bosiljka271

Tasic for their feedback. We are also grateful to Sadra Sadeh for suggesting a modelling approach.272

Methods273

Code was written in Python and R and combined into a reproducible workflow using Snakemake [86]. The code274

will be made available at https://github.com/JoramKeijser/transcriptomic_axes upon publication.275

Datasets276

An overview of the analysed datasets is shown in Table 1, Table 2 lists the relative frequency of different cell277

types in each dataset.278

Name Species Area(s) Technology Cells Genes/cell Reads
Bugeon [9] Mus musculus VISp L1-3 CoppaFish (sc) 1,065 49 -
Tasic [6] Mus musculus VISp SS v4 (sc) 6,125 9,795 2,009,806
Yao [29] Mus musculus Ctx & Hpc 10x V2 (sc) 177,614 3,750 8,957

Bakken [15] Homo sapiens M1 SS v4 & 10X (sn) 23,992 4,719 14,337.5
Hodge [14] Homo sapiens MTG SS V4 (sn) 4,164 8,344.5 1,901,796.5
Colquitt [19] Taeniopygia guttata HVC & RA 10X v2 (sn) 3,786 161.5 3,150.5
Tosches [18] Trachemys scripta elegans Ctx Drop-Seq v3 (sc) 640 2,952 6,284

Table 1: Overview of analysed datasets. Sn: single nucleus, sc: single cell. SS: Smart-Seq. M1: primary
motor cortex, VISp: primary visual cortex, HVC: high vocal centre, MTG: middle temporal gyrus, Ctx: cortex,
Hpc: hippocampal formation. Genes/cell: median number of genes detected per cell. Reads: median number of
reads per cell. For the single nucleus data, reads aligned to exons and introns were used. The data from ref. [9]
comprised already normalized counts; the number of reads was therefore unavailable.

Bakken [15] Bugeon [9] Colquitt [19] Hodge [14] Tasic [6] Tosches [18] Yao [29]
Pvalb 32.4 27.9 31.9 17.5 21.8 13.8 17.2
Sst 25.0 8.5 21.0 30.6 28.4 19.5 26.7
Lamp5 18.6 35.8 4.7 27.8 18.3 0.0 23.7
Vip 20.2 24.4 11.2 24.1 28.7 24.2 24.6
Sncg 3.7 3.5 0.0 0.0 2.0 0.0 7.8
Meis2 0.0 0.0 31.3 0.0 0.7 42.5 0.0

Table 2: Percentage of cell types for each dataset, rounded to a single decimal place. The mammalian Meis2-
positive cells are likely not homologous to the turtle/finch Meis2-positive cells ([19], see text) but are grouped
for convenience.

Replication of Bugeon et al.279

The starting point of our replication was the in vivo calcium imaging data and in situ transcriptomic data280

previously described by Bugeon et al. [9]. We preprocessed and analysed these data following the original paper281

unless indicated otherwise. We selected interneurons with a high-confidence assignment to a particular subtype282
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(posterior probability [43] at least 0.5) that belonged to a subtype with at least 3 cells. We used the previous283

assignment into 35 upper-layer subtypes and grouped Serpinf1 cells into the Vip class. Consistent with the284

original publication, this resulted in 1065 cells, hierarchically distributed across 5 subclasses (e.g., Pvalb) and285

35 subtypes (e.g., Pvalb-Reln-Itm2a). The Npy gene count of 58 cells was missing (NaN); we assumed these286

values were missing at random and imputed them with the subtype-specific median value. Zero-imputation gave287

similar results. We computed each cell’s average activity per behavioural state. Whenever a cell was recorded288

during multiple sessions, we used the session with the longest period of “stationary synchronised” activity since289

this was the least frequent state. Since 193 cells were not recorded during the stationary synchronised state,290

state modulation was computed for the remaining 872 cells. The expression matrix contained continuously291

valued estimates of gene expression instead of integer counts. We normalized these values to 10,000 “counts”292

per cell for consistency with the other datasets, although this slightly decreased predictive performance. Finally,293

we log-transformed the normalized values after adding one pseudo-count, log(1 + x). The log transformation294

is a widely used preprocessing step in the analysis of count data [87, 88], although other transformations are295

also possible (see, e.g., [89, 90]). Linear least squares regression was used to predict state modulation from296

individual PCs or cholinergic receptors; cross-validated ridge regression was used to predict state modulation297

from multiple PCs, to mitigate overfitting.298

Other datasets299

The transcriptomic datasets each consisted of raw count matrices and metadata that included cell class and300

subtype/cluster. For the Tasic dataset, we only considered the VISp (not the ALM) cells to allow for a direct301

comparison with Bugeon et al. In the mouse datasets, we merged the small number of Serpinf1 cells into the302

Vip cluster for consistency with the analyses from ref. [9]. From the Colquitt and Tosches datasets, we only303

used the zebra finch and turtle cells, respectively, since the data from other species (Bengalese finch and lizard)304

contained only a small number of interneurons. For both datasets, we assigned cells to putative mammalian305

homologues according to the correlation-based matching in the original publications [18, 19]. For the Hodge306

dataset, we assigned each cell a cell type based on the original publication [14]. Genes were named according307

to the mouse convention (e.g., “Npy” instead of the human “NPY”). We selected the 11968 shared genes by308

intersecting the gene lists from all datasets (except the Bugeon data, which has 72 genes) to put the datasets309

in a shared space.310

Principal component analysis (PCA)311

We scaled gene expression values to 10,000 counts per cell (CP10K) to account for differences in sequencing312

depth across cells, and log-transformed the normalized data. We then identified the top 2000 highly variable313

genes based on their dispersion across cells (Scanpy’s highly variable genes; using 3000 genes gave similar314

results). We computed the top 30 PCs based on these highly variable genes. For visual comparison, we made315

an arbitrary but consistent choice for the signs of tPC1 and tPC2.316

We quantified the similarity of PCs from different datasets using principal angles ([91]; Scipy’s subspace angles).
More precisely, let WX be the gene-by-PC matrix whose columns are the PCs of dataset A. The principal angles
between the PC subspaces of datasets A and B are computed from the singular value decomposition (SVD) of
the PC-by-PC matrix WT

AWB , i.e.

WT
AWB = UΣV T .

The columns of U and V contain paired linear combinations of PCs from datasets A and B, respectively, ordered
by principal angles. The diagonal matrix Σ contains the singular values σi. The ith principal angle from the
corresponding singular value σi is computed as

ϑi = arccos (σi).

As a complementary measure of PC subspace similarity, we computed the variance explained in one dataset
by the top PCs of another dataset. Let wA,i be the ith PC of dataset A, and let CB be the covariance matrix
of dataset B. The ith PC of dataset A explains an amount of variance in dataset B equal to

wT
A,iC

BwA,i.

For each pairwise comparison, we computed the covariance and PCs only from genes that were highly variable
in both datasets. This was done to avoid the computation of large covariance matrices. For comparison, the
variance of each PC was normalized by the variance explained by the first PC of the original dataset:

normalized variance =
wT

B,iC
AwB,i

wT
A,1C

AwA,1
.
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Chance level was estimated by computing the variance explained by a random, normalized vector. To predict317

state modulation from the tPCs of other species, we first intersected their gene sets with the 72 genes from318

Bugeon et al. [9] We then separately preprocessed both datasets. Finally, we projected the Bugeon data onto319

tPC1 from the secondary dataset and used this to predict state modulation. Performance was quantified using320

leave-one-out R2 and the Pearson correlation coefficient.321

Subsampling gene counts322

The datasets vary in their sequencing depth (the number of RNA counts per cell, see Table 1), presumably due to
a combination of technical and biological differences. We aimed to control for these differences by downsampling
counts to the depth of the shallower dataset, as follows. Let Xd

cg be the number of counts from gene g in cell c
of dataset d. We defined the count depth of a dataset as the average counts per cell:

depth(d) =
1

C ·G
∑
c,g

Xd
c,g.

Here C is the number of cells, and G is the number of genes. If d1 is the shallowest dataset, and d2 is a
deeper-sequenced dataset, we define their relative sequencing depth as

p =
depth(d1)

depth(d2)
∈ (0, 1).

To match the sequencing depth of the shallower dataset, we keep each gene count with a probability p:

X̂d2
c,g ∼ Binomial(Xd2

c,g, p).

This subsampling procedure equalizes the sequencing depth of the down-sampled dataset to that of the shallower323

dataset. The Tasic and Hodge data served as the reference datasets for comparison with the mouse and human324

expression values, respectively, since these were the deepest datasets.325

Dataset integration326

We used Seurat’s anchor-based integration [38] to map datasets onto the Tasic data (Fig. S5). To this end,327

we converted the AnnData objects to Seurat objects. Next, we separately log normalized each dataset as328

described above (this time using the equivalent Seurat function NormalizeData), and found genes that were329

highly variable across datasets (FindVariableFeatures, followed by SelectIntegrationFeatures, with 2000330

features). Next, we found mutual nearest neighbours across datasets (”anchors”) after projecting each dataset331

onto the other’s PCA space (reciprocal PCA). A more flexible reduction method (canonical correlation analysis)332

gave similar results. We then used the anchors to identify and project out dataset-specific differences. After333

integration, PCA was performed separately on each transformed dataset.334

Network simulations335

We simulated a rate-based network of Pvalb, Sst, and Vip interneurons and excitatory pyramidal neurons.
A single equation represented each cell type except for the pyramidal neurons, represented by two equations,
modelling the somatic and dendritic compartments. The network state was defined by the rate vector r =
(re, rd, rp, rs, rv), of somatic, dendritic, Pvalb, Sst, and Vip activity. The rate of cell type/compartment x
evolved according to

τxu̇x = −ux +
∑
y ̸=x

wx,yry + Ix,0 + Ix +mx, x ∈ {e, d, p, s, v}, (1)

rx = f(ux). (2)

Here τx is the membrane time constant (2 ms for excitatory cells, 10 ms for inhibitory cells), f(u) = max(u, 0)
is the rectified linear activation function, and the wxy are recurrent weights. Ix,0 is a constant background input
that sets the baseline rate, Ix is a time-varying external input, and mx is an additive cholinergic modulation.
We will refer to mx as a cell’s cholinergic receptor density to distinguish it from the “effective” cholinergic
modulation, which also depends on the network dynamics (see Network analysis).
The recurrent connections were chosen based on experimental [45, 47] and theoretical work [50]. The only
difference is relatively weak mutual inhibition between Sst and Vip neurons; strong inhibition could prevent the
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simultaneous activation of these cell types observed in the data [9].

W =


wee wed wep wes wev

wde wdd wdp wds wdv

wpe wpd wpp wps wpv

wse wsd wsp wss wsv

wve wvd wvp wvs wvv

 =


0.42 1 −0.42 0 0
0.042 0 0 −0.49 0
0.45 0 −0.75 −0.78 0
0.35 0 0 0 −0.175
1 0 0 −0.175 0

 (3)

The background inputs Ix,0 were set to achieve the following baseline rates:

(re, rd, rp, rs, rv) = (1, 1, 8, 4, 3) (1/s).

The external inputs to pyramidal soma and dendrites were defined as:

Ix(t) = 1 + .5 sin(φxt), x ∈ {e, d}.

with φe = 1/300 ms (soma) or φd = 1/70 ms (dendrite).336

The interneurons received cholinergic modulation instead of external inputs, and their amplitudes were337

varied based on qualitative differences in cholinergic receptor expression (Table 3). These amplitudes were338

the only differences between species-specific networks. In the mouse network, Pvalb neurons were negatively339

modulated; Vip and — to a lesser extent — Sst neurons were positively modulated. This is consistent with both340

the activity and expression data from the mouse. For the other species, we only have expression data. In the341

human and turtle network, Pvalb neurons were not modulated consistent with their weak or absent expression342

of, e.g., Chrm4. In the turtle network, Sst neurons were negatively modulated; Vip neurons were positively343

modulated, but to a smaller extent, given the under-expression of Chrm3 and Chrna5 in the turtle data. For344

the turtle network, we added a positive external input (amplitude 5) to the Sst equation in the absence of345

cholinergic modulation. A similar result could be obtained by decreasing the dendritic drive during baseline.346

species \ cell type Pvalb Sst Vip
Mouse -2 6 8
Human 0 6 8
Turtle 0 -1 4

Table 3: Network parameters: species and cell type-specific additive cholinergic modulation

The network dynamics were numerically integrated using a forward Euler scheme with a time step of 0.1347

milliseconds. Each simulation consisted of 11000 time steps divided into a baseline period of 3300 steps, a348

cholinergic modulation time of 3400 steps, and another baseline period of 4300 steps. Not shown in Fig. 5 is an349

initial settling time of 300 timesteps. These values were chosen to let the figure highlight the effect of turning350

the modulation on and off.351
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Supporting Material627

Replication of Bugeon et al.628

We validated our analysis pipeline by replicating the relevant results from Bugeon et al. [9] on their data. These
data consist of in vivo neural activity and in situ gene expression of neurons from layers 1-3 of mouse primary
visual cortex (Mus musculus VISp). Expression data was limited to a panel of 72 genes previously selected
to identify interneuron subtypes [43]. The data also contain behavioural variables (e.g., running speed) that
assign each time point to a “behavioural state”. Bugeon et al. distinguished three possible states: running
(distinguished by a positive running speed), stationary desynchronized (zero running speed and little neural
oscillations), and stationary synchronised (zero running speed and prominent neural oscillations). A neuron’s
state modulation was defined as the normalised difference between its average activity during the most and
least active state:

running activity− synchronized activity

running activity + synchronized activity
(4)

Neurons that are more active during running compared to baseline will therefore have a positive state modula-629

tion. In contrast, neurons that are less active during running will have a negative state modulation.630

We selected high-quality cells following the criteria from Bugeon et al. ([9], see Methods), resulting in the631

same number of 1,065 inhibitory interneurons reported in their work. These interneurons are hierarchically632

distributed across 5 subclasses and 35 subtypes. State modulation could be computed for 872 neurons recorded633

during both running and synchronized states. As previously reported, visualising the neural activity during634

these states suggested differential state modulation between both cell classes and subtypes (Fig. S1a). We635

then computed each neuron’s state modulation based on its time-averaged activity (Equation (4)). Consistent636

with ref. [9], state modulation was negative for Pvalb (Pearson correlation -0.13), small and positive for Sst and637

Lamp5 (both 0.02), and strongly positive for Vip and Sncg interneurons (0.13 and 0.21, respectively) (Fig. S1b).638

Next, we aimed to replicate the correlation between the first transcriptomic principal component (tPC1) and639

the state modulation. To compute tPC1, we first normalised and log-transformed the cell-by-gene expression640

matrix to correct for differences in sequencing depth and to stabilise the gene-count variances. We then applied641

principal component analysis to the transformed matrix. State modulation could indeed be predicted from642

tPC1 projections, both for subtypes (Fig. S1c, leave-one-out R2 = 0.19) and for individual neurons (R2 = 0.17).643

The predictive power of tPC1 is to some extent driven by between-subclass differences in gene expression [35]644

since it is relatively modest within individual subclasses (Fig. S2). Additional tPCs contained less information645

regarding state modulation: the second-best tPC (tPC29) achieved an R2 of 0.10 and explained only 0.9% of646

the variance, and tPC2 did not predict state modulation at all (R2 = −0.01, Fig. S3). Together, the first 30647

tPCs improved upon tPC1 (R2 = 0.60, 76.2% of total variance).648

Finally, we verified the correlation between state modulation and cholinergic receptor expression that might649

reflect a mechanistic link between state modulation and transcriptome [9]. Since cholinergic receptor expression650

was not measured for the in vivo recorded neurons (the 72 gene panel did not include these receptors), its651

relationship with state modulation can only be tested using external expression values. Following ref. [9], we652

obtained these values from the publicly available data of Tasic et al. [6]. We preprocessed the raw count data653

like the Bugeon et al. expression matrix and selected the 35 upper-layer subtypes present in the in vivo data.654

We then computed the average receptor expression of each subtype and compared this with its average state655
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modulation. Linear regression showed that the expression of 5 out of 15 cholinergic receptors (or receptor656

subunits) could predict state modulation (Figs. S1d, S10). These consist of the 4 receptors shown by Bugeon657

et al. (Chrm3,4 and Chrna4,5, their Fig. 6b) and an additional nicotinic receptor (Chrna3).658

We found one qualitative difference with previous results (Fig. 5c in ref. [9]), namely a clustering of tPC1659

scores into two groups corresponding to developmental origin [36]. This was caused by the log transformation660

used here but not in the original analyses (Fig. S3). The log transformation is a widely used preprocessing step661

in the analysis of count data [87, 88]. However, other transformations are also possible (see, e.g., [89, 90]). Here,662

it had only a minor effect on the quantitative relationship between tPC1 and state modulation (Fig. S3).663

Network analysis664

The cholinergic receptor densities in our simulations were chosen consistently with the transcriptomic and activ-665

ity data, but other choices are also possible, of course. We therefore investigated the effect of varying receptor666

densities using mathematical analyses. In particular, we asked for which receptor densities the cholinergic ef-667

fect might be different from that in the mouse. For example: does the lack of inhibitory receptors in human668

Pvalb cells imply that these cells are not inhibited during cholinergic modulation? And does the expression of669

inhibitory receptors by turtle Sst cells imply that these cells are actually inhibited?670

In our simulations, all neurons receive net-positive inputs. Under these conditions, the network model
contains only one nonlinearity: the rectification of dendritic activity that reaches the soma. The rectification
is piecewise linear: if the dendrites are excited, the dendrites influence the soma (wed = 1); if the dendrites
are inhibited, the dendrite remains inactive and decouple from the soma (wed = 0). The network dynamics
are, therefore, governed by one of two connectivity matrices that only differ in the entry wed. Otherwise, the
dynamics are linear:

ṙ = −r+W (wed)r+ I0 +m. (5)

Here, m is the vector modelling cholinergic modulation, and I0 is the external input. For a given somato-
dendritic coupling wed and cholinergic modulation m, the steady state rates are found by solving ṙ = 0:

r(wed,m) = [I −W (wed)]
−1[I0 +m] = A(wed)[I0 +m], (6)

where we defined A(wed) = [I −W (wed)]
−1 as the matrix that maps inputs to steady-state rates:

A(wed) =


1− wee wed −wep 0 0
wde 1 0 −wds 0
wpe 0 1 + wpp −wps 0
wse 0 0 1 −wsv

wve 0 0 −wvs 1


−1

wab ≥ 0 ∀a, b. (7)

Below, we will compute the relevant entries of A(wed) up to its determinant, which is positive and therefore671

does not affect the entries’ signs.672

We use equation (6) to compute the modulatory effect on the network activity as the difference between the673

rates with and without modulation. We will consider the cases in which cholinergic modulation activates the674

dendrite that was silent without modulation (off→on) or inactivates the dendrite that was activated without675

ACh (on→off). The other two cases (on→on, off→on) can be derived analogously.676

First, consider the case that modulation switches the dendrites off, as for the mouse and human circuits.
The resulting change in network activity equals:

∆r = r(0,m)− r(1,0) (8)

= A(0)[I0 +m]−A(1)[I0 + 0] (9)

= A(0)m+ [A(0)−A(1)]I0. (10)

In case that modulation switches the dendrites on, as for the turtle circuit, the resulting change in network
activity equals:

∆r = A(1)m+ [A(1)−A(0)]I0. (11)

The first term in these equations is a linear combination of the receptor densities m = (me,md,mp,ms,mv),677

describing how the cholinergic modulation of individual populations propagates through the network. In our678

model, pyramidal cells do not express cholinergic receptors (me = md = 0), such that the cholinergic effect is679

a linear combination of only the interneuron receptor densities. The second term in Eq. (11) is independent of680

the precise modulation and describes how the background input I0 propagates through the network with and681
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without activated dendrites. Since this term is small, we ignore it in the following derivations, but it is shown682

in Fig. 5.683

First, consider the cholinergic effect on Pvalb cells, which equals:

∆rp = Appmp +Apsms +Apvmv. (12)

Substituting the entries of A(0) gives:

∆rp = Appmp −Aps(wsv ·mv −ms) (13)

= (1− wee) · (1− wsv · wvs) ·mp+ (14)

wsv · (1− wee)(wps ·mv −ms). (15)

An analogous equation describes ∆rs (see below). The lines in Figure 5 show ∆rp = 0 and ∆rs = 0 as a function684

of the Pvalb and Sst receptor densities mp and ms, for a fixed Vip density mv. These boundaries delineate685

domains of positive and negative modulation of Pvalb and Sst interneurons.686

So does the absence of inhibitory ACh receptors in human Pvalb cells (Fig. 4; mp = 0) imply that these
cells will not be inhibited? Equation Eq. (13) shows that these cells will still be inhibited indirectly under the
condition that:

∆rp = wsv · (1− wee)(wps ·mv −ms) < 0. (16)

The coefficient wsv · (1 − wee) is positive, assuming the recurrent connectivity is not very strong (wee ≤ 1).
Inhibition of Pvalb cells is then equivalent to

∆rp < 0 ⇐⇒ wps ·mv −ms < 0. (17)

According to the expression data, Sst and Vip cells are positively modulated (ms,mv > 0). Therefore, Pvalb687

cells will be inhibited by ACh as long as the inhibition from Ssts is stronger than the disinhibition from Vips.688

Under these conditions, the limited Chrm4 expression by human Pvalb cells is compatible with their inhibition.689

690

Let us next consider the differential expression of inhibitory ACh receptors in Sst interneurons in turtles
versus mammals. Intuitively, this is expected to cause a cholinergic suppression of Sst cells in the turtle, in
contrast to the mouse. In the model, the cholinergic effect on Sst cells equals:

∆rs = Aspmp +Assms +Asvmv. (18)

Subsituting the entries from A(1) gives:

∆rs = Aspmp +Ass(ms − wsv ·mv) (19)

= wep · (wsv · wve − wse) ·mp + (20)

[(1− wee − wde)(1 + wpp) + wep · wpe] (ms − wsvms). (21)

For the turtle circuit, mp ≤ 0, since Pvalb cells (weakly) express inhibitory ACh receptors. The first term will
therefore be negative if wsv · wve − wse > 0. Further, ms < 0 and mv > 0, such that ms − wsvmv < 0. The
contribution of the second term will therefore be negative if:

(1− wee − wde)(1 + wpp) + wep · wpe > 0.

This will be the case unless recurrent excitation is very strong or the feedback loop between PCs and Pvalb691

cells is very weak. In summary, the expression of inhibitory ACh receptors by turtle Sst cells will indeed lead692

to their cholinergic inhibition, provided that the excitation onto Sst cells and the recurrent excitation are not693

too strong.694

Software695

An Anaconda [92] environment with the appropriate software will be provided along with the code (Table 4).696
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Software version
AnnData [93] 0.8.0
Matplotlib [94] 3.6.2
Numpy [95] 1.23.5
Pandas [96] 1.5.2
Python [97] 3.10.10

R [98] 4.3.0
Scanpy [99] 1.9.1

Scikit-learn [100] 1.2.1
Scipy [101] 1.9.3

Seaborn [102] 0.12.2
Seurat [103] 4.0

Snakemake [86] 7.8.2
Statsmodels [104] 0.13.5

Table 4: Software versions.

Supplementary figures697

a b

d

State modulation of interneurons can be predicted by first transcriptomic PC  

Potential mechanism: cholinergic receptors 

c

Fig. S1: Replication of previous findings from Bugeon et al. [9] (a) Neural activity systematically
varies with behavioural state (measured by running speed and neural oscillations, see Methods) both between
and within interneuron classes of mouse primary visual cortex (VISp) L1-3. (b) State modulation across all
sessions for n = 872 interneurons. Stars indicate statistically significant differences between subclasses (p < 0.05,
Mann-Whitney U test). (c) The first transcriptomic principal component (tPC1) of the cell-by-gene matrix
predicts state modulation of subtypes (n = 35); Fig. S2a shows the relationship for individual cells. R2, leave-
one-out fraction of variance explained; r, Pearson correlation. Note the two clusters along tPC1, consisting
of MGE-derived (Pvalb & Sst) and CGE-derived (Lamp5, Vip, Sncg) interneurons. (d) Cholinergic receptors
potentially link a neuron’s transcriptome and state modulation. For example, interneurons that overexpress the
excitatory receptor Chrm3 are positively state-modulated (r = 0.54; p = 0.0008), those that overexpress the
inhibitory cholinergic receptor Chrm4 are negatively state-modulated (r = −0.44, p = 0.0075). CP10K, counts
per 10 thousand. Data and findings from Bugeon et al. [9]. Cholinergic receptor expression in (d) from Tasic
et al. [6].

22

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.04.569849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569849
http://creativecommons.org/licenses/by-nc/4.0/


a

d

b c

e f

g h

Data
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Fig. S2: Predicting state modulation from tPC1. Regression based on all cells (a) or cells from a single
subclass (b-f). Predictive performance is worse for individual classes and only better than chance for Pvalb
and Sst cells. The correlation between tPC1 and state modulation is therefore partially driven by between-
subclass differences. However, tPC1 is still predictive of state modulation across all cells while controlling for
subclass (p = 0.003, linear mixed model with subclass as random effect). R2: leave-one-cell-out fraction of
variance explained; R2 < 0 indicates a worse fit compared to predicting the same state modulation for each
cell independent of tPC1 score. (g,h) Poor performance for certain subclasses is not due to a smaller sample
size. (g) Sample size is not correlated with worse performance. (h) Size-matched subsets of all cells outperform
below-chance subclasses, except for Sst cells. Grey bars: R2 values for each subclass. Violin plots: distribution
of R2 values for 1000 random subsets of all cells with sample size matched to the subclass. Data from Bugeon
et al. [9].
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After log-transform

Without log-transform

a c

d f

b

e

Fig. S3: Log-transformation leads to clustering by developmental origin. (a) First 2 transcriptomic
principal components (tPCs) of the log-transformed count RNA data. (b) As (a), with colour indicating
state modulation. (c) The first transcriptomic PC (tPC1) of log-transformed data predicts state modulation,
replicated from Fig. S1c for comparison. R2: leave-one-out fraction of variance explained, r: Pearson correlation.
(d-f) As (a-c), but without log-transformation. Interneurons now form a continuum along tPC1, but the
quantitative relationship between tPC1 and state modulation is preserved (up to 2 digits). Data from Bugeon
et al. [9].

b c d e
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Fig. S4: Transcriptomic PCs robust to sequencing depth. (a) Projection of each dataset onto its first
2 transcriptomic PCs, after subsampling gene counts to the depth of the shallowest dataset (zebra finch, see
Table 1). (b) Principal angles between tPC subspaces of subsampled data. (c) Comparison between angles of
full-depth data and subsampled data. (d,e) As (b,c) but for variance explained. The human, turtle, and zebra
finch tPC1 explain 14.0%, 1.2%, and 4.2% of the variance explained by mouse tPC1, respectively. Data from
refs. [6] (mouse), [15] (human), [18] (turtle), [19] (zebra finch).
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Fig. S5: Computational integration increases similarity of mouse and human data. (a) Projection
of each dataset onto its first 2 transcriptomic PCs, after computational integration. Mouse and human datasets
show increased similarity, but turtle cells no longer cluster by cell type (colour). (b) Principal angles between
tPC subspaces computed after integration. (c) Comparison between angles computed without integration.
Integration increased the similarity of all datasets, especially of the human data. (d,e) As (b,c) but for variance
explained. The human, turtle, and zebra finch tPC1 explain 79.8%, 46.6%, and 24.4% of the variance explained
by mouse tPC1, respectively. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19] (zebra finch).
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Fig. S6: Differences in tPCs not due to Meis2 cells. (a) Projection of each dataset onto its first 2
transcriptomic PCs, after removing Meis2 cells. (b) Principal angles between tPC subspaces computed without
Meis2 cells. (c) Comparison between angles computed on all cells vs. cells without Meis2 population. (d,e) As
(b,c) but for variance explained. The human, turtle, and zebra finch tPC1 explain 15.7%, 5.1%, and 8.1% of the
variance explained by mouse tPC1, respectively. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19]
(zebra finch).
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Fig. S7: Differences in tPCs not only due to cell type abundance. (a) Projection of each dataset onto
its first 2 transcriptomic PCs, after matching cell type abundances (Fig. 2h). Principal angles between tPC
subspaces. (c) Comparison between angles computed on all cells vs. cells after matching frequencies. (d,e) As
(b,c) but for variance explained. The human, turtle, and zebra finch tPC1 explain 24.7%, 5.1%, and 9.2% of the
variance explained by mouse tPC1, respectively. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19]
(zebra finch).

Mouse VISp L1-6

Human M1 Human MTG

a

c

Sst Chodl
Meis2

Sst Chodl Sst Chodl

Mouse VISp L1-6b

d

Fig. S8: Intermediate tPC1 position of Chodl and Meis2 neurons. Long range projecting Sst-Chodl
(a) and white matter Meis2-Adamts19 cells (b) occupy an intermedate position along tPC1. (c,d) Sst Chodl
neurons also have intermediate tPC1 scores in the human data. The human datasets do not contain Meis2 cells.
Data from refs. [6] (a,b), [15] (c), and [14] (d).
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Fig. S9: Small differences in PCs of human datasets. (a) Projection of human datasets onto their first 2
tPCs. (b) Quantification of tPC similarity using principal angles between tPC subspaces of M1 and MTG data.
(c) Quantification by variance explained in MTG data. The M1 tPC1 explains 82.6% of the MTG variance
explained by the MTG tPC1. Data from refs. [15] and [14].
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Fig. S10: Predicting state modulation from cholinergic receptor expression. (a) Tracks plot of
cholinergic receptor (subunit) expression. The first 5 receptors predict state modulation; the remaining 10 do
not (see b-e). Predictive and unpredictable receptors are independently sorted by expression based on expression
levels. Shown are all receptors with an expression of at least 1 count per 10K. (b) Relationship between state
modulation and log expression of receptors that are predictive of state modulation (1000 permutations, p < 0.05).
(c) Grey: Null distribution of leave-one-out R2 estimated by linear regression after permuting expression levels.
Red: R2 without permutation. (d,e) As (b,c) but for the 5 unpredictive receptors with the highest expression.
Receptor expression from Tasic et al. [6]; state modulation from Bugeon et al. [9].
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Fig. S11: Mostly small within-species differences in ACh receptor expression. (a) Dot plots showing
the expression of the cholinergic receptors that predict state modulation in mouse VISp L1-3 (b) Log2-fold
differences in expression after downsampling the VISp dataset to equal sequencing depth as the Ctx & Hpc
data. Shaded area: log-fold difference of ±2, the range of most within-species differences. The exception is
Chrm4, which is underexpressed in the Ctx & Hpc data compared to the VISp data. (c,d) As (a,b), but
for human datasets. The MTG dataset was downsampled to match the M1 data. Data from refs. [6] (mouse
VISp), [29] (mouse Ctx & Hc), [14] (human MTG), and [15] (human M1).

29

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.04.569849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569849
http://creativecommons.org/licenses/by-nc/4.0/

