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Dogs and laboratory mice are commonly trained to perform complex tasks by guiding them
through a curriculum of simpler tasks (‘shaping’). What are the principles behind effective shaping
strategies? Here, we propose a machine learning framework for shaping animal behavior, where an
autonomous teacher agent decides its student’s task based on the student’s transcript of successes
and failures on previously assigned tasks. Using autonomous teachers that plan a curriculum in a
common sequence learning task, we show that near-optimal shaping algorithms adaptively alternate
between simpler and harder tasks to carefully balance reinforcement and extinction. Based on
this intuition, we derive an adaptive shaping heuristic with minimal parameters, which we show is
near-optimal on the sequence learning task and robustly trains deep reinforcement learning agents
on navigation tasks that involve sparse, delayed rewards. Extensions to continuous curricula are
explored. Our work provides a starting point towards a general computational framework for shaping
animal behavior.

I. INTRODUCTION

Animal trainers “shape” an animal’s behavior towards
a specific sequence of actions [1–4], for example, train-
ing a dog to roll, fetch and sit. An untrained animal
is unlikely to execute this sequence in the right order,
even if it can perform each action separately. One intu-
itive teaching strategy is to first reinforce the animal for
rolling. Once the animal rolls consistently, rolling is no
longer reinforced (or becomes variable) and the animal
is instead reinforced for successfully fetching after a roll.
This iterative process is repeated until the animal learns
the right sequence. In some cases, the trainer further
breaks down the task or “lures” the animal to carry out
the desired action.

Here, a shaping process is essential as the animal
will rarely execute the right sequence during innate be-
havior. This simple intuition highlights a fundamen-
tal constraint: learning a particular behavioral sequence
through random, unguided exploration is inefficient when
the dimensionality of behavior is large, regardless of the
learning rule the animal employs. Shaping tackles this
issue by iteratively approximating longer bits of the se-
quence, limiting the search space at every stage of train-
ing.
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Laboratory animals solving a perceptual discrimina-
tion task spend a significant fraction of their training
time learning the rules of the task. For example, a free-
moving two-action-forced-choice paradigm often involves
an animal triggering a stimulus through a nose poke at a
particular location, which leads to reward delivery at two
possible distal locations in the arena. The spatiotempo-
ral relationship between the nose poke and reward, that
paying attention to the stimulus matters for obtaining re-
ward and that there is a temporal cost for a wrong choice
are non-trivial rules of the environment that the animal
has to learn before learning the perceptual features that
distinguish the stimulus sets. Significant attention has
been paid to active learning [5–8], which addresses the
latter problem of choosing a perceptual stimulus set to
efficiently teach the stimulus-outcome relationship. Be-
havioral shaping, on the other hand, is used to teach the
rules of the task and closely reflects the curriculum design
process used in education.

A shaping protocol typically involves hand-designing
a series of simpler tasks leading to the full task during
training. The animal is rewarded for successfully com-
pleting an assigned sub-task, and the curriculum pro-
gresses once the animal is sufficiently good at complet-
ing this sub-task [9–13]. However, it is unclear whether
such heuristics are close to optimal even in simple sce-
narios, or when these strategies might fail. Understand-
ing the principles that drive effective shaping, coupled
with closed-loop training strategies, could considerably
reduce the training time for both laboratory animals and
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FIG. 1: (a) Teaching using our OCL framework can be visualized using a difficulty landscape (here, parameterized by two skill axes),
which quantifies the student’s success probability for each difficulty level. A student assigned an extremely difficult task will not learn,
since they are unlikely to succeed and thus do not receive significant reinforcement. The teacher’s purpose is to adaptively assign tasks
(shown in red) while simultaneously inferring the difficulty landscape to flatten it as quickly as possible. (b) Tasks from a pre-defined set
are ordered based on their difficulty, as measured by the success probability of a naive agent. An autonomous teacher decides the
student’s task (T1, T2, T3 . . . ) based on the student’s transcript of successes and failures (represented here as 0s and 1s respectively) on
previously assigned tasks. (c) We apply our OCL framework to three biologically relevant goal-oriented tasks involving delayed rewards:
a generic sequence learning task, an odor-guided trail tracking task and a plume-tracking task involving localization to a target based on
sparse cues.

artificial agents, while providing insight into factors that
contribute to slow or fast learning [14, 15]. Our goal is
to develop a general computational framework for shap-
ing animal behavior, paying particular attention to the
constraints that trainers face.

In machine learning, the importance of shaping-
inspired approaches for training agents was recognized
early on [16–22]. More recently, numerous automatic cur-
riculum learning (ACL) techniques have been developed
for training deep reinforcement learning (RL) agents (re-
viewed in [23]). Within the ACL framework, an au-
tonomous teacher agent determines the distribution of
the student’s tasks based on the student’s past behav-
ior. However, these approaches rely on arbitrary con-
trol over the agent’s states [24–26], exploration [27–34]
or the reward structure [35–37]. For example, a well-
known strategy known as potential-based reward shap-
ing [35] modifies the reward function to expedite learn-
ing while preserving the optimal policy. Such a procedure
is infeasible in experimental situations where the animal
has to interrupt its behavior in order to acquire reward.
In other cases, these methods assume that the agent’s
performance can be measured on a range of arbitrary
test tasks [38] or require access to expert demonstrations
[26, 39, 40].

Although these assumptions are reasonable for training
artificial RL agents and have demonstrated success in nu-
merous tasks, they are not suitable for training animals.
When training animals, we typically have 1) limited flexi-

bility in controlling rewards and exploration statistics, 2)
partial observability, as animals can often be evaluated
based only on whether they have succeeded or failed on
the task (their true “state” remains unknown), and 3) no
delineation between training and test trials. In addition,
animals often have an innate repertoire of responses and
behaviors they may resort to by default, and a training
procedure which recognizes and takes advantage of this
feature may be more successful.

II. FRAMEWORK

To address these issues, we propose an ACL frame-
work, which we term outcome-based curriculum learning
(OCL). In OCL, a teacher agent decides the student’s
next task based solely on the student’s outcomes, i.e.,
its history of successes or failures on past tasks, with
the long-term goal of minimizing the time to reach a de-
sired level of performance on the final task. By observ-
ing and delivering rewards based on binary outcomes,
teacher algorithms are task-agnostic and can be applied
for training both artificial agents and animals. Closest to
our framework is the teacher-student curriculum learning
framework [41, 42], which relies on observed scores. In-
spired by the concept of learning progress [43] in develop-
mental psychology, Matiisen et al [41] propose heuristic
strategies where the teacher selects the task on which the
student shows the greatest improvement on scores. How-
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ever, we find below that these heuristics perform poorly
compared to our simpler alternatives.

To gain intuition, it is helpful to visualize teaching
with OCL as ‘navigation’ through an (unknown) diffi-
culty landscape that is shaped by the student’s innate bi-
ases towards performing behaviors pertinent to the task.
Such a difficulty landscape is illustrated in Figure 1a for
a task whose difficulty increases along two independent
axes. We define difficulty as the negative log probability
of success on a task (here parameterized by the two skill
axes) given the student’s current policy. The difficulty
landscape thus depends on the task as well as the stu-
dent’s innate biases and learned behavior. The goal of
OCL is to progressively flatten regions of the landscape
to solve the full task as quickly as possible.

In this manuscript, we consider tasks that can be de-
composed into a single difficulty scale. Such tasks lend
themselves naturally to a curriculum. A student be-
gins with the simplest version of the task and progresses
through difficulty levels (as set by the curriculum) un-
til they succeed at the entire task. In the discrete ver-
sion of OCL, the experimenter designs tasks and rates
them based on their difficulty in discrete levels from 1
to N (Figure 1b). A desired threshold level of perfor-
mance is specified for the Nth task (the full task). Given
this input, the teacher algorithms that we consider be-
low choose the appropriate difficulty level for the stu-
dent based on their past transcripts. At the start of ev-
ery interaction, the teacher receives as input a transcript
and proposes the difficulty level k. The student attempts
the task for T (fixed) rounds, adding to the performance
transcript. This two-way interaction continues until the
student attains a satisfactory level of success on the final
task.

We first investigate in detail a sequence learning task,
where an RL-based student is required to learn the cor-
rect sequence of N actions (Figure 1c). The sequence
learning task encompasses a large variety of behavioral
tasks, including tricks such as the roll → fetch → sit se-
quence described above, numerous Skinnerian tasks, as
well as common laboratory behavioral experiments which
have a self-initiated trial structure. The difficulty land-
scape of such tasks is determined by the complexity of
the sequence (N) and the innate probability that the stu-
dent will execute the correct action at each step of the
sequence. Since the probability of success decreases ex-
ponentially with N , the agent is unlikely to learn the full
task without shaping when N is sufficiently large.

The simplicity of the task structure allows us to exam-
ine normative teacher strategies using modified Monte
Carlo planning algorithms for decision-making under un-
certainty. Using insights from these normative strate-
gies, we use differential evolution to design near-optimal
heuristics that are agnostic to the task, learning rule, and
learning parameters. Next, we apply our method on two
novel, naturalistic, sequential decision-making tasks that
involve delayed rewards: odor-guided trail tracking and
plume-based odor localization (Figure 1c). We show that

deep reinforcement learning agents can be trained using
our adaptive teacher algorithms to solve these tasks us-
ing only a single reward delivered at the end of the task.
Finally, we extend this framework to continuous param-
eterizations of the task, where the teacher has the option
of breaking down the task into simpler components.

III. RESULTS

A. Sequence learning

In the sequence learning task, a student RL agent be-
gins each trial at a fixed start state and receives a reward
r if they perform the correct sequence of N actions (Fig-
ure 2a, see Appendix A for full details). If the student
fails to take the correct action at any step in the se-
quence, the student receives no reward and the episode
terminates. The probability that the student takes the
correct action at step i is given by σ(qi + εi), where εi
is the (fixed) innate bias that determines the probabil-
ity the student will take the correct action before any
learning occurs. σ is the logistic function. For example,
if the agent prior to learning takes K possible actions
at step i with equal probability and only one of them is
correct, we have εi = − log(K − 1). The action value
qi is initially set to zero and updated using a standard
temporal-difference (TD) learning rule with learning rate
α.
The sequence learning task naturally splits into dis-

crete difficulty levels: the teacher modulates difficulty by
increasing, decreasing or maintaining the step k at which
the student is rewarded. The innate biases εi’s play a key
role in the dynamics since they determine the probabil-
ity of success (and thus the rate of reinforcement) when
the difficulty level is increased. We assume for simplicity
that all εi’s are equal to ε; the general case is consid-
ered later. We seek OCL algorithms that minimize the
time the student takes to succeed at a rate greater than
a threshold τ on the full task without prior knowledge of
the student’s innate biases and learning parameters.

B. An incremental teacher strategy is not robust

An intuitive baseline strategy when designing a cur-
riculum is an incremental (INC) approach: the teacher
increments the difficulty by one when the student’s esti-
mated success rate ŝ exceeds τ at the current level. Note
that since the success rate changes due to learning, a rea-
sonable estimator ŝ should consider recent transcripts yet
a sufficient number of them to minimize sampling noise.
We consider different estimation procedures for comput-
ing ŝ and find that an exponential moving average estima-
tor is computationally inexpensive and achieves compa-
rable performance as other more sophisticated methods
(Appendix E, Figure S2).
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FIG. 2: (a) The sequence learning setup. In the full task, the student is required to take a sequence of N correct actions to get reward.
In intermediate levels of the task, the reward is delivered if the student takes n ≤ N correct actions. εi is the innate bias of the student
to take the correct action at the ith step, prior to training. We assume εi = ε for all i unless otherwise specified. (b) The incremental
teacher (INC) fails once ε ≲ −1.7. (c) The q values (in grayscale) for the correct action at each step shown for ε = −1.5 (top) and
ε = −1.8 (bottom). The red line shows the assigned task level. Note the striped dynamics in the top row caused due to alternating
reinforcement and extinction. In the bottom row, ε is too small, forcing learning to stall. (d) Time series of q values for actions at the
first (solid black) and third (dashed gray) steps for the two examples shown in panel (c).

INC is stable for large ε (Figure 2b). However, INC
abruptly and consistently fails when ε is below a thresh-
old (ε ≲ −1.7 in Figure 2b). Examining the dynamics of
the q values provides insight into why this catastrophic
failure occurs.

Let us first examine q value dynamics when the stu-
dent is required to directly solve the case k = 5, where
ε is chosen such that the student is capable of learning
without a curriculum. The dynamics of q values exhibit
a ‘reinforcement wave’, where actions are sequentially
reinforced backwards from the final state to the start
[44]. This backward propagation is a generic feature of
RL, since the goal acts as the sole source of reward and
reinforcement propagates through RL rules that act lo-
cally. Now, suppose the difficulty is incremented by one
(k = 6). Immediately after this change, the student exe-
cutes the correct sequence of actions until the fifth step,
but will likely fail to receive reward as the final step has
not been reinforced. These (possibly brief) series of fail-
ures produce a long-lasting extinction wave that propa-
gates backwards to earlier steps with dynamics that par-
allel those of the reinforcement wave. In short, transient
failures after every difficulty increment have long-term
effects on learning dynamics and success rate.

When visualized over the course of a curriculum,
q values assume characteristic “striped”-dynamics that

emerge due to alternating waves of extinction and rein-
forcement (top panel in Figure 2c). These striped dynam-
ics reflect the transient failures and eventual successes
that follow an increment to higher difficulty when ε is
larger than the failure threshold. Extinction dominates
reinforcement when ε is below a critical value, leading
to catastrophic unlearning of previous actions and sub-
sequent lack of learning progress. Since extinction is un-
avoidable after significant increases in difficulty (eε ≪ 1),
optimal strategies that are robust in this regime will have
to ameliorate this effect while completing the curriculum
as quickly as possible. That is, effective curriculum de-
sign strategies should achieve an optimal balance between
extinction and reinforcement.

C. Near-optimal teacher algorithms alternate
between difficulty levels

To gain insight into near-optimal strategies, we for-
mulate the teacher’s task for the sequence learning task
as optimal decision-making under uncertainty using the
framework of Partially Observable Markov Decision Pro-
cesses (POMDPs) [45–47] . Specifically, the teacher de-
cides whether to increase, decrease or keep the same dif-
ficulty level based on the student’s past history, and re-
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FIG. 3: (a) An overview of the POMCP teacher, which cycles between inferring the student’s q values, innate bias and learning rate
based on the transcript and planning using a Monte Carlo tree search. (b) The adaptive heuristic (ADP), which employs a simple
decision rule to stay, increment or decrement the current difficulty based on the estimated success rate ŝ (computed using an exponential
moving average over past transcripts). (c) POMCP and ADP are comparable and significantly outperform other algorithms [41] when
the task is non-trivial (low ε), including when INC fails (ε ≲ −1.7). Here N = 10. Note that planning using POMCP is intractable when
ε = −3. (d,e) POMCP and ADP adaptively alternate between difficulty levels, thereby preventing catastrophic extinction. Note the drop
in difficulty levels after significant extinction in both cases. Here ε = −2.

ceives a unit reward when the student crosses the thresh-
old success rate on the full task. A discount factor in-
centivizes the teacher to minimize the time to reach this
goal. As when training animals, one challenge is that the
student’s true learning state (encoded by the q values) are
hidden as the teacher receives only a finite transcript of
successes and failures on previously assigned tasks. An-
other challenge is that the teacher is not a priori aware
of the student’s innate biases and learning rate. More-
over, the long horizon and sparse reward makes planning
computationally prohibitive.

To solve this task, we employ an online POMDP solver
(called POMCP [48]) that relies on Monte Carlo planning
and inference (Figure 3a). This solver plans based on the
inferred joint distribution of q’s, ε and α, which is repre-
sented as a collection of particles with different parameter
values. A planning algorithm based on Monte Carlo Tree
Search (MCTS) [49] balances exploration and exploita-
tion to decide the next action. The student’s transcript
on the following round is then used to update the joint
distribution using Bayes’ rule implemented as a parti-
cle filter, after which this cycle is repeated. With suffi-
cient sampling of particles and planning paths, the solver
provides a near-optimal adaptive teacher algorithm for
the sequence learning task. Due to the large size of our
POMDP, the implementation of POMCP is nontrivial,
with details in Appendix E and F.

The POMCP teacher exhibits a non-monotonic cur-
riculum, repeatedly reverting back to easier tasks before
ramping up the difficulty. The q values for earlier steps in

the sequence are relatively stable and lack the alternating
reinforcement and extinction dynamics that we observe
for the INC teacher (Figure 3d). This robustness extends
to ε values lower than the critical value at which INC fails
(ε = −2 in Figure 3c). Indeed, as shown in the example
in Figure 3d, the POMCP teacher recognizes and com-
pensates for significant extinction by rapidly decreasing
the difficulty, increasing difficulty only after sufficient re-
learning occurs.

D. A heuristic adaptive algorithm achieves
near-optimal curriculum design

The POMCP teacher’s strategy suggests simple prin-
ciples to overcome extinction while making learning
progress. Specifically, a robust teacher algorithm has
to 1) increase difficulty when the estimated success rate
(ŝ) is sufficiently large (similar to INC), 2) continue at
the same difficulty level when the success rate is below
this threshold value as long as the student continues to
learn (∆ŝ > µ), and 3) decrease difficulty if the student
begins to show signs of significant extinction (∆ŝ < µ)
for some µ. These three principles motivate our choice
of a decision-tree-based teacher algorithm that uses ŝ
and ∆ŝ as features. The precise splits and leaves of the
trees can be optimized using various search procedures.
More complex trees can be constructed by taking into
account second or higher-order differences of the success
rate. For the sequence learning task, we find that the fea-
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tures (ŝ(t),∆ŝ(t)) are adequate to produce a successful
teacher, which we term Adaptive (ADP). We optimize
the decision tree using differential evolution (Figure 3b,
see Appendix B 3 for details). Note that this optimized
ADP is used for all benchmarks below with no additional
tuning.

The ADP teacher shows dynamics similar to POMCP,
mitigating extinction waves by alternating between dif-
ficulty levels (Figure 3e). We benchmark ADP against
INC, POMCP and four algorithms proposed by Matiisen
et al [41] (Figure 3c). These latter four algorithms are
based on the principle of maximizing learning progress
[43]: a student should attempt the difficulty level at
which they make the fastest progress (as measured by
the slope of the learning curve on a particular task). The
algorithms differ in how progress is measured and how
tasks are sampled based on their relative progress.

ADP is competitive with POMCP (for the range of
parameter values that POMCP can be feasibly evaluated)
and significantly outperforms the other algorithms for
small values of ε, which is the regime where curriculum
design is non-trivial and baseline algorithms such as INC
fail. Moreover, ADP is robust when the innate biases
for not equal (Figure S1). Since our OCL framework is
task-agnostic and model-agnostic, ADP can be directly
applied to other tasks and artificial agents provided that
sub-tasks are arranged on a discrete, monotonic difficulty
scale.

E. Performance of ADP on deep RL tasks with
delayed rewards

To examine whether ADP can design curricula for com-
plex behaviorally relevant tasks and learning models, we
train deep RL agents to solve two navigation tasks with
delayed rewards: odor-guided trail tracking and plume-
source localization.

Dogs are routinely trained to track odor trails, and
various heuristics have been developed by trainers to ef-
ficiently teach dogs [50]. In a successful trail tracking
episode, the student begins with a random orientation
from one end of the trail and receives a reward only when
they get to the other end of the trail. Trails are long,
meandering and broken so that the agent is highly un-
likely to get to the end through random exploration and
should thus learn a non-trivial strategy to actively follow
the trail and receive reward.

The trail tracking paradigm (Figure 4a-d) provides a
natural split of tasks onto a difficulty scale. We design a
parametric generative model for trails where the parame-
ters control the length, average curvature and brokenness
of the trails (Appendix C 5). Samples of trails along tasks
of increasing difficulty are shown in Figure 4b. We de-
velop a deep RL framework for trail tracking, where the
tracking student uses its sensorimotor history of sensed
odor and self-motion to modulate their orientation in the
subsequent step (see Appendix C 5 for full details). Sen-

sorimotor history is encoded using a visuospatial, ego-
centric representation (Figure 4a), so that the student
has a memory determined by the size of the visuospatial
observation window. The student uses a convolutional
neural network architecture which is trained using Prox-
imal Policy Optimization (PPO) [51].
The student does not learn without a curriculum. ADP

outperforms both INC and a curriculum (RAND) that
randomly chooses from the task set (Figure 4c). Their
curricula show that ADP alternates as in the sequence
learning task, presumably mitigating extinction effects
associated with the transition to more difficult tasks.
INC is comparable to ADP but experiences a greater
degree of forgetting as seen in the longer time it spends
at the highest difficulty level (Figure 4d). The path of
an agent tracking the trail is shown in Figure 4a. The
agent exhibits a preference for localizing at the edge of
the gradient. When it encounters a break, the student
performs repeated loops of increasing radius until it re-
establishes contact with the trail. A detailed analysis of
the student’s tracking behavior during trail tracking is
postponed to future work.
Next, we extended this framework to a localization

task (Figure 4e-g) inspired by naturalistic plume track-
ing [52, 53] and sound localization tasks. In each episode,
the student begins at a random location a certain dis-
tance from a target whose (fixed) location is unknown. A
unit reward is delivered when the student localizes at the
target. The student receives sparse, Poisson-distributed
cues from the target with probability that depends on
the relative location to the target. These cues provide
information about the location of the target, which can
be used by the student to solve the task (see Appendix
C 6 for full details). The delayed reward and sparse cues
provide a challenge for training agents without a shaping
protocol. We consider a curriculum where the difficulty
scale is determined by the rate of detecting a cue at the
student’s initial position, as well as the student’s distance
from the target (Figure 4f). Similar to the trail track-
ing setting, results recapitulate the better performance
of ADP compared to INC and RAND (Figure 4g,h).

F. Continuous curricula

Our analysis up to this point assumes discrete curric-
ula. A consequence of discrete curricula is that an un-
expectedly large jump in difficulty from one level to the
next can stall learning. In such situations, an animal
trainer has the option of decomposing the task further
and proceed with an INC approach. However, if the jump
from one level to the next is too small, the student will
progress in small steps while the teacher incurs a tem-
poral cost on unnecessary evaluations. On a continuous
curriculum, an optimal teacher has to adjust difficulty
increments such that they reflect the student’s innate bi-
ases. Here, we explore preliminary ideas for designing
continuous curricula using a continuous extension of the
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FIG. 4: Deep reinforcement learning agents trained using a curriculum solve navigation tasks with delayed rewards. (a) The trail
tracking paradigm. A sample trajectory of a trained agent navigating a randomly sampled odor trail. The colors show odor
concentration. The inset shows the egocentric visuospatial input received by the network. (b) Sample trails from the six difficulty levels.
(c) ADP outperforms INC and RAND (each teacher-student interaction is a step). Note that the agent does not learn the task without a
curriculum. (d) The success rate of the agent in finding the target over training (black dashed line) for INC and ADP. The curriculum is
shown in red. Note the significant forgetting shown by the student trained using INC approach compared to ADP. (e-g) As in panels a-d
for a localization task. The agent is required to navigate towards a source which emits Poisson-distributed cues whose detection
probability decreases with distance from the source (colored in green on a log scale).

sequence learning task and a concomitant modification
of the student’s learning algorithm (see Appendix D for
more details).

We consider a continuous ADP teacher modified to ac-
commodate the particulars of a continuous curriculum.
At the start of an interaction, the experimenter proposes
an initial “rough guess” for the difficulty increment used
by the teacher. As the ADP teacher progresses, it tweaks
the size of this increment based on the student’s perfor-
mance. In addition to the three actions (increase, de-
crease and maintain difficulty), we introduce a second
set of three actions: increase, decrease and retain the
increment interval (the teacher selects from nine actions
at each step). As in the discrete case, we use differen-
tial evolution to find the best decision tree (Figure 5a).
Figure 5c,d shows trajectories for the continuous ADP
teacher, which compares favorably with INC in bench-
marks (Figure 5b).

IV. DISCUSSION

From Skinner’s missile guidance pigeons [54] to lab-
oratory rodent experiments to state of the art artificial
RL agents, curriculum design plays a foundational role in
training agents to solve complex tasks. Here, inspired by
behavioral shaping, we propose an outcome-based cur-
riculum learning (OCL) framework and develop adap-
tive algorithms aimed primarily for training laboratory
animals. In a sequence learning task, dual waves of re-
inforcement and extinction modulate the student’s per-
formance, necessitating a careful shaping strategy that
balances reinforcement and extinction. A näıve teacher,
INC, fails to prevent extinction when students encounter
large jumps in difficulty. A near-optimal teacher strat-
egy (POMCP), discovered by formulating teaching as op-
timal planning under uncertainty, relies on frequent al-
ternations between the current and previous task diffi-
culty levels, which ameliorates extinction. Inspired by
this observation, we use differential evolution to design
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FIG. 5: Algorithms for designing continuous curricula (a) Decision tree showing the continuous version of ADP which includes actions
that “grow” and “shrink” the increments between continuously parameterized difficulty levels. See the text for more details of the task in
the continuous setting. (b) ADP significantly outperforms INC when the task is difficult (low ε). (c,d) The q values plotted as in Figure
3d,e. Similar to the discrete setting, INC shows catastrophic extinction and never learns the task for sufficiently small ε. Continuous
ADP first decreases increment size and smoothly increases the difficulty level while balancing reinforcement and extinction.

a decision-tree-based heuristic algorithm, ADP. ADP is
much more efficient and achieves performance compara-
ble to that of POMCP, significantly outperforms other
algorithms on the sequence learning task and requires no
fine-tuning for the task or student. ADP outperforms
other curriculum strategies when applied to train deep
RL agents on complex, naturalistic navigational tasks.

We focus primarily on cases where the curriculum can
be decomposed into rigid, discrete difficulty levels. Real-
world tasks can often be further broken down when stu-
dent’s encounter a bottleneck. We explore one continu-
ous generalization of ADP that relies on finite approxi-
mations to continuous intervals, coupled with a K-step
TD learning rule. The continuous setting poses a dis-
tinct challenge: since the teacher a priori does not know
whether the student can solve an incrementally harder
version of the task, estimating this through a transcript
takes additional samples and thus incurs a temporal cost.
Infintesimal increases in difficulty are not optimal. On
the other hand, large jumps in difficulty will stall learn-
ing. We expect competitive algorithms to appropriately
balance these two factors; a more exhaustive exploration
of continuous OCL algorithms will be considered in fu-
ture work.

The curricula we explore here have all involved a sin-
gle axis of difficulty. For many real-world tasks, there are
multiple axes that must all be optimized simultaneously.
For example, a tennis player has to learn and compose
multiple elements – footwork, various racquet motions,
tactics – in order to improve general playing skill. In the
trail tracking setting, we have simplified all such factors
(length, average curvature, brokenness of the trails) into
a single difficulty scale, when ideally, the teacher should
choose how to modulate the difficulty along each factor.

One avenue for future work is to generalize our teacher
algorithms to settings where there are multiple indepen-
dent skills that need to be learned to solve the full task.

Finally, shaping is a crucial aspect of training animals.
Concepts like task difficulty levels, innate bias ε, and
behavioral extinction have natural analogs in biological
agents. The teacher algorithms developed in this work
can be readily deployed on real animals, and their effi-
cacy measured. Many laboratory tasks in model systems
such as mice involve extensive training lasting for weeks
or more [13]. It is often unclear whether this lengthy
training is due to the innate difficulty in animals learn-
ing the tasks at hand, or inefficient curriculum design
[15]. Developing better teacher algorithms for animal
training may result in significant savings in time and cost
to produce well-trained subjects. In addition to practi-
cal benefits for laboratory research, any demonstration
of more rapid training of animals will also shed light on
their capabilities and limits of learning. Gradual shap-
ing we discuss here may also be related to gradual in-
troduction of more intuitive coincidences that exploit an
animal’s priors to allow more rapid learning [15]. Such
hand-crafted shaping is common in laboratory experi-
ments [9–13], but more precise quantitative descriptions
of behavioral learning algorithms such as ours opens the
possibility of designing near-optimal teaching strategies
in more general scenarios, similar to the POMCP for-
mulation that we have developed here for a RL-based
student. Optimistically, such formulations might even
impact curriculum design for human students.
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Appendix A: Sequence learning

We describe in detail the specifics of the sequence
learning task, and our model of a student. The task con-
sists of a series of discrete choices, inspired by the setup
in [44]. At each timestep, the student must select the
correct action to advance. Selecting the wrong action at
any timestep terminates the episode without reward. If
the student advances N times in a row, where N is the
pre-determined length of the environment, the episode
terminates with fixed reward R.
Selecting the correct action is determined by the stu-

dent’s Q-values, which are updated using a simple TD
learning rule described below (Section A1). Though the
model is constructed with binary actions (correct / in-
correct), it describes any situation where actions can be
partitioned into correct and incorrect groups. The prob-
ability of selecting a correct action is modified using an
additional parameter ε, which we describe further below.
In this way, the task models any setting where a student
must execute a consecutive sequence of correct actions,
capturing a large portion of tasks classically suitable for
curriculum learning.

See Figure 2a for a graphical depiction of the task. An
MDP that summarizes this task can be given as

• State space: integers 1, 2, . . . N

• Action space: move forward, halt

• Transitions: For states s, s′ and action a, we have
the following transition probabilities:

Pr(s′ = i+ 1 | s = i, a = move forward) = 1, for i < N

Pr(s′ = ∅ | s = N, a = move forward) = 1

Pr(s′ = ∅ | s, a = halt) = 1, for any s

• Reward: the reward function is simply R(s =
N, a = move forward) = R and 0 otherwise. For all
sequence learning tasks, reward is fixed at R = 10.
Note, for sufficiently large R, the specific choice of
R will not qualitatively change the learning dynam-
ics of the student. The student will learn quicker,
but the learning curves will have the same shape.
If R is chosen too small, the student experiences a
bottleneck and its Q-values never saturate.

This setup lends itself naturally to a curriculum, where
larger values of N correspond with more difficult tasks.
The goal of the teacher is to propose a number of inter-
mediate tasks indexed by their lengths n1, n2, n3, . . . such
that the student succeeds at the final task of length N .
Note, we assume here that the task has already been

broken down into N discrete steps. For a generalization
to the continuous setting where N can vary along the
real numbers, see Appendix D.

1. Model of the student

A student in the sequence learning setting is modeled
as an Expected SARSA RL agent [55, 56]. For each state
i, the student has two Q-values: qforward

i and qhalti , which
correspond to the correct and incorrect actions, respec-
tively. Because the incorrect halt action is never rein-
forced, we always have that qhalti = 0. For simplicity, we
omit specifying qhalti explicitly, and refer to qforward

i as
simply qi.
In a standard softmax policy, the probability of moving

forward from state i is given by

π(forward | i) = σ(qi) (S1)

where σ is the sigmoid function, σ(x) = 1
1+e−x .

In the real world, different students have different
propensities for learning a task. One lab mouse may be
easier to train than another. One dog may have a better
sense of smell, and track a trail more efficiently than an-
other. One student may learn quicker than another, and
follow a correspondingly accelerated curriculum. Mod-
eling a student’s propensity for a task is therefore an
essential consideration when designing curricula.
In our sequence learning setting, we incorporate this

property by introducing a bias term ε. This term serves
two related purposes:

1. Model the student’s innate propensity for
success: every student has a different set of in-
nate talents and preferences. Modulating ε allows
us to simulate students with abilities that are more
or less aligned with the task.

2. Model the student’s extrinsic chance of suc-
cess: for more complex tasks, a student often has
to choose one correct option among many incorrect
choices. Modulating ε controls the student’s initial
probability of success, capturing extrinsic factors
that may aid or hinder the student’s progress.

To model these effects, we adjust the student’s policy
to be

π(forward | i) = σ(qi + εi), (S2)

where qi is updated through learning, but εi remains
fixed. The value of εi can be different for different steps
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i, but in our experiments we typically set εi to be the
same across all i and simply write it as ε.

The value of qi is updated using the Expected SARSA
update rule. Upon taking the correct action from state
i, the value of qi becomes

qi ← qi + α(r + γ⟨qi+1⟩π − qi) (S3)

Note, the expectation ⟨qi+1⟩π is computed including bias
ε, so

⟨qi+1⟩π = σ(qi+1 + ε)qi+1 (S4)

To simplify the analysis, we assume the student has an
infinite horizon, i.e., the discount factor γ = 1.

Appendix B: Teacher algorithms

We describe in greater detail our three primary teacher
algorithms: Incremental (INC), POMCP, and Adaptive
(ADP). Specific hyperparameter settings for all algo-
rithms are attached at the end of this supplement.

1. Incremental teacher

An intuitive strategy for building a curriculum is to
assume an incremental approach: the teacher proposes
tasks of incrementally increasing difficulty as the student
masters each successive level. For the sequence learning
task, if the goal is to learn a task of length N , the teacher
would start with a task of length 1. Once the student
masters length 1, the teacher proposes length 2. Once
the student masters length 2, the teacher proposes length
3. And so on until the student masters length N . See
Algorithm 1 for a concrete description of this process. See
Appendix E for details on how student’s are evaluated.

Algorithm 1 Incremental teacher for discrete
curriculum

Require: target difficulty N , threshold success rate τ
n← 1
while n ≤ N do

sn ← Evaluate(Student)
if sn > τ then

n← n+ 1
else

Train Student on task level n
end if

end while

2. POMCP teacher

Just as the student is a reinforcement learning agent,
the teacher can also be considered a reinforcement learn-
ing agent attempting to discover an optimal policy for a

partially-observable Markov decision process (POMDP)
[57]. Informally, the teacher’s observation space con-
sists of the student’s outcome history up to the current
time. After observing the student perform for a time,
the teacher must take an action: namely selecting the
next level of task to present. The process is partially ob-
servable because the teacher lacks full knowledge of the
student’s state, and must infer the student’s true level of
performance from the outcome history. Discovering an
optimal policy for the resulting POMDP would shed in-
sight on how an optimal curriculum should look for any
particular student.
Formally, we define the following POMDP underlying

the teacher’s decision process:

• State space: states consist of a 3-tuple (q, ε, α)
where q represents all of the student’s learnable
Q-values, ε represents the student’s innate ability
bias, and α represents the student’s learning rate.
In effect, the state is the set of values that fully de-
fine the student’s ability to perform the sequence
learning task.

• Action space: integers 1, 2, . . . N , which corre-
spond to the next task level that the student will
see. To ensure that solving the POMDP remains
tractable, we limit the action space to 3 values: 1)
increment the task difficulty, 2) decrement the task
difficulty, 3) keep the same task difficulty

• Transitions: transitions from (q, ε, α) to
(qnew, ε, α) can be sampled given a transcript
by applying the SARSA update rule in Equation
S3. For POMCP, we do not need an explicit
probability distribution across transitions, only
the ability to sample from it.

• Reward function: for a pre-determined success
threshold τ , if a student’s rate of success at the
final task exceeds τ , the teacher receives a fixed
unit reward R. Concretely, the student’s rate of
success at a sequence of length k is

µk =
k∏

i=1

σ(qi + ε) (S1)

Let s∗ = (q∗, ε, α) be a 3-tuple for which µN > τ .
Then any transition that terminates in s∗ receives
reward R, and the episode terminates. No other
transition is rewarded, or terminates the episode
(unless a pre-determined max number of iterations
is exceeded).

• Observation space: the teacher observes the stu-
dent’s transcript h = (ht, ht−1, . . . , ht−T+1) since
the last interaction, where hi = 1 if the student
succeeded, and 0 otherwise. Because the transcript
prior to the last interaction is encoded in the es-
timated parameters (q, ε, α), we do not need the
entire history back to t = 0, and can keep just the
last T episodes.
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Further implementation details for POMCP are in Ap-
pendix F.

We use the Partially Observable Monte-Carlo Plan-
ning (POMCP) algorithm [48] to approximately solve
this POMDP. The resulting teacher proposes curricula
that differ from INC in several striking ways (Figure 3).
Most importantly, rather than monotonically increment
the curriculum by steady intervals, the POMCP teacher
backtracks to earlier levels in an oscillatory movement.
By alternating between two or more levels, the POMCP
teacher pre-empts an extinction wave before it propa-
gates all the way back to the start, erasing the student’s
progress. In this way, the teacher encourages new rein-
forcement waves to form at higher levels while mitigating
the impact of extinction, and successfully trains a student
even for severely low ε.

3. Adaptive teacher

A key insight from the success of the POMCP teacher
is that “backtracking” is essential to the success of a cur-
riculum. Rather than increment in gradual, monotonic
steps as the student learns, it is important to interleave
easier levels periodically so as to counter extinction ef-
fects. Whereas POMCP decides the the points at which
to backtrack through a blackbox search procedure, the
Adaptive teacher explicitly optimizes for points to back-
track.

ADP works by learning a decision tree that decides
whether to increment or decrement the current task level.
As input, the teacher receives a history of success rates
s(1), s(2), . . . s(t) estimated from the student at each step
up to the current time t. A first-order Adaptive teacher
will additionally compute ∆s(1),∆s(2), . . .∆s(t) where
∆s(i) = s(i) − s(i−1) (and s(j) = 0 for j < 1). When
making a decision, the Adaptive teacher then compares
the current success measures (s(t),∆s(t)) against a de-
cision tree whose leaf nodes correspond to one of three
possible actions: 1) increment task level, 2) decrement
task level, and 3) stay at current task level. See Figure
3 for an example of what this decision tree looks like.

The precise splits and leaves of the trees can be op-
timized using any number of popular search procedures
[58–61]. The Adaptive teacher can be further customized
with additional “features.” For example, we could also
implement a second-order teacher, which includes fea-
tures ∆2s(i) = ∆s(i) − ∆s(i−1), or arbitrary features
Φ(s(i)) = f(s(1), s(2), . . . s(i)) for some arbitrary function
f . For this simple sequence-learning task, we find that
the features (s(t),∆s(t)) are adequate to produce a suc-
cessful teacher.

Optimizing the Adaptive teacher proceeds as a coor-
dinated ascent. The procedure begins with an initial,
reasonable set of actions selected by the experimenter.
Differential evolution [58] is used to evolve the precise
splits in the tree, followed by a comprehensive search
through the entire space of possible actions. These two

steps, evolution followed by action search, alternate until
converging on a final tree.

Appendix C: Odor tracking

During olfactory navigation, an animal encounters a
series of discrete odor measurements in pursuit of a tar-
get. Odors can be terrestrial or airborne, that is, concen-
trated along a single thin trail or diffused along turbulent
air currents, respectively. Examples include a dog track-
ing the scent of deer, a moth following pheromones to find
a mate, or a mouse pursuing fragrant hints of last night’s
leftovers. This behavior is prevalent and essential across
species, necessary for navigation, foraging, and mating
[62–64].
Below, we detail two related deep reinforcement learn-

ing tasks that simulate odor-guided navigation: 1)
surface-borne odor trail tracking and 2) airborne odor
plume tracking. For both settings, we employ the same
deep RL framework to recreate naturalistic tracking en-
vironments.

1. RL framework

Given the successes of various deep RL algorithms on
video game tasks [65], we encode sensory-motor history
using a visuospatial pixel representation. This represen-
tation allows the agent to learn both a sensory stack for
interpreting the image inputs as well as a navigational
policy for finding the target.

a. Observation space

For both trail and plume tracking, the agent is cen-
tered on a flat, 2D surface without landmarks or obstruc-
tions. Odor is either distributed along a thin trail (for
trail tracking) or diffused in simulated plume (for plume
tracking). As the agent navigates this landscape, it en-
codes its position history together with the last few odor
detections within each individual image observation.
The observation space consists of a 50×50 grid of pix-

els and 3 color channels per pixel, which produces a full
RGB image. Although the agent’s position is recorded
continuously during each episode, when producing the
pixel observations, it is discretized to the pixel grid. The
three color channels of the image encode different infor-
mation. The first channel (i.e. the “red” channel) en-
codes the agent’s position history. The second channel
(i.e. the “green” channel) encodes the agent’s odor mea-
surements. The last channel (i.e. the “blue” channel) is
left unused.
At each timestep, the agent moves to a different loca-

tion and performs an odor measurement. Position his-
tory is recorded as a thin continuous line in the image
observation’s red channel, linearly interpolating between
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a

b

c

FIG. S1: (a,b) q value dynamics for INC (panel a) and ADP (panel b) when εi values for each difficulty level are heterogeneous.
Specifically, εi = ε+ ση, where η is a standard normal random variable. These examples are run with ε = −1 and σ = 1. (c)
Performance comparison between ADP, INC and a random strategy for σ = 1 and σ = 3.

discontinuous points. Odor history remains discrete, and
is depicted as colored patches at each location where the
agent performed an odor measurement. This difference
reflects the fact that motion through a space is continu-
ous, but odor measurements occur only when the agent
“sniffs” the environment. Hence, odor measurements in
history must be discrete. The strength of the odor is
proportional to the pixel value in the green channel. The
image overall remains centered on the agent, that is, it
is egocentric with respect to the agent’s position and
heading. As the agent moves in a particular direction,
the whole “viewport” moves and rotates with the agent,
leaving a track that spreads out away from the center
recording the agent’s past. See Figure 4a for an example
observation that the agent receives.

2. Action space

At each timestep, the agent can take one of three ac-
tions: 1) move left, 2) move right, 3) move forward.
Choosing the move left (or right) action will shift the
agent’s heading by 45◦ in the corresponding direction.
After any heading updates, the agent’s position is then
incremented by three units along its new direction.

3. Reward

If the agent lands within 3 units of the target (either
the end of a trail or source of a plume), the episode ter-
minates with a large, fixed reward. Otherwise, if the
agent fails to reach the target within a predetermined
maximum number of iterations, the episode terminates
without reward. No other actions are reinforced, nor are
any negative rewards ever applied.

Note, the reward scheme is intentionally sparse. If an

agent were to attempt a long trail without additional aid,
it will fail to converge towards a successful strategy due to
the lack of sufficient reinforcement signals. A traditional
approach to addressing this sparsity is through reward
shaping [66, 67], a process whereby the designer supplies
supplementary rewards that guides the agent towards
successful behavior. However, reward shaping is difficult
to implement in practice, may require significant assump-
tions about the student, and different shaping strategies
may have unpredictable impacts on the agent’s overall
behavior [55, 68]. Instead, we use curriculum learning
to overcome the sparsity issue. By starting the agent
on short, easy trails for which the reward scheme is not
sparse, then gradually lengthening the distance to the
target, the agent naturally learns a successful tracking
strategy without the heavy-handed tuning required for
reward shaping.

4. Model

We use Proximal Policy Optimization (PPO) [69, 70],
a popular deep RL algorithm that achieves state of the
art on a wide variety of discrete and continuous tasks.
The agent uses a deep convolutional neural network to
extract operable features from each image observation,
followed by several fully-connected layers to infer state
values and output actions. For specific implementation
details and hyperparameter settings, please see Appendix
F.

5. Trail tracking

Surface-bound odor trails are long, thin segments of
concentrated odor with minimal diffusion through the
air. To sense these trails, an animal must be relatively
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close, and may not always sustain contact. Further,
these trails often have breaks: significant stretches dur-
ing which odor is absent, and the animal must execute
a search strategy to regain contact. Terrestrial trail-
tracking is therefore a highly nontrivial behavior.

To construct naturalistic trail geometries, we use the
procedure described in Reddy et al. [71]. Trail charac-
teristics are modulated with the following parameters:

• Length: the distance between the agent’s starting
position and the target.

• Width: the scale at which odor diminishes along
the axis perpendicular to the trail. With width
parameter σ2 and a distance x from the trail, the
concentration of odor o is proportional to

o ∝ exp

(
−x2

σ2

)
• Heading: the angle between the agent’s initial
heading, and the direction of the target.

• Shape: the shape of the trail is governed by two
parameters: curvature and diffusion rate. Cur-
vature governs how the high-level shape of the
trail evolves over time. Diffusion rate governs how
“kinky” the trail is on short intervals.

• Breaks: a trail can have one or more breaks of
variable length, along which there is no odor.

The agent perceives the exact magnitude of odor at its
current location, which is represented in the magnitude of
the green color channel in each image observation. This
is in contrast to Reddy et al. [71], which uses a Poisson-
based odor detection model. See Figure 4a for a plot of
an example trail, including the trajectory of a successful
agent.

For the purpose of building curricula, the difficulty of
a trail is rated by a combination of its length, width,
and breaks. The heading of the trail is allowed to vary
across the entire compass rose, and the shape parame-
ters are held constant across all episodes. Curricula are
discretized by hand, with predetermined difficulty lev-
els that specify particular parameter combinations. The
specific difficulty levels are described in Appendix F. Be-
cause our teachers rely on discrete curricula, this extra
manual intervention is necessary to apply these algo-
rithms. In an ideal case, teacher algorithms should gen-
eralize to continuous curricula, which we explore further
in Appendix D. At the start of every episode, a new trail
is sampled using the parameter combination specified by
the curriculum, and the agent must track an unseen trail
from the beginning.

6. Plume-source localization

Often times, odor diffuses through the air in turbu-
lent plumes. For humans, this mode of olfaction is per-
haps more commonly experienced than terrestrial odor

trails: the smell of baked goods at the local pastry shop,
fragrance from a spring garden, or the comforting scent
of your home are all plume-based odors. Like terres-
trial trails, odor plumes are essential for survival and re-
production across animal species. However, tracking the
source of an odor plume presents its own unique difficul-
ties. Plumes tend to be rarefied and clumpy, where air
turbulence partitions regions of odor concentration into
random, disconnected patches. An animal attempting to
locate the source of a plume must infer its location based
on sporadic contacts and indirect cues.
To simulate naturalistic plumes, we use the model de-

scribed in Vergassola et al. [72]. Odor plumes are shaped
through the following parameters:

• Wind speed: a high wind speed produces long,
elongated plumes. A low wind speed produces
squat, round plumes. Zero wind produces a spher-
ical plume.

• Start rate: the initial rate of detections at the
agent’s starting position. A low start rate implies
that the agent will start further away from the
source of the plume, and have a correspondingly
harder task.

• Particle properties: additional parameters like
diffusivity, lifetime, and emission rate are related to
the properties of individual particles, and influence
the overall shape of the plume.

In contrast to the terrestrial trails, where the agent de-
terministically perceives the exact magnitude of odor at
its current location, the odor detection model in the
plume setting is probabilistic and discrete, accounting
for the random influence of turbulence. Odor detection
is Poisson-distributed, with the rate given by the plume
model. See Figure 4e for an example plume, including
the trajectory of a successful agent.
For the purpose of building curricula, the difficulty of a

plume is rated by its start rate, with lower start rates cor-
responding to more difficult trails. To ensure the agent
is always downwind of the source, the agent’s location is
initialized within a fixed sector of a particular start rate.
As in the terrestrial trail setting, because our teacher
algorithms can only accommodate discrete curricula, we
discretize the start rate into discrete levels for curriculum
learning, with the specific levels given in Appendix F. A
framework for handling continuous curricula is explored
further in Appendix D. The agent’s starting location is
re-sampled at the start of every new episode, though the
starting rate remains the same for a particular task level.
Particle properties and wind speed remain fixed for the
entire duration of training.

Appendix D: Continuous curricula

Introducing continuous curricula is a complex and nu-
anced topic. In this Appendix, we introduce a set of
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preliminary ideas for addressing the issue, but defer a
more complete study to a future paper.

1. Continuous sequence learning

It is not immediately obvious how to generalize the se-
quence learning task to a continuous curriculum. Here,
we propose one approximate scheme that preserves many
(but not all) of the intuitions from discrete sequence
learning, though it is by no means the only possible
scheme.

We begin with the following notion. In the discrete
sequence setting, for an untrained student with fixed bias
ε, the probability that the student advances from step n
to step n + 1 is given by π(n + 1|n) = σ(ε). Suppose
the student is allowed to move continuously. Then the
probability that the student first moves to n + 1

2 , then

from n + 1
2 to n + 1 must also be σ(ε) overall. Hence,

we must maintain that π(n+1/2|n) · π(n+1|n+1/2) =
σ(ε). In other words, there exists a value ε1/2 such that
π(n+ 1/2|n) · π(n+ 1|n+ 1/2) = σ(ε1/2)σ(ε1/2) = σ(ε).
In this example, we can see quite clearly that

ε1/2 = σ−1
(√

σ(ε)
)

In the general case, if a student with effective bias ε
moves an interval ∆x ≪ 1, then we can identify a value
ε∆x such that π(n+∆x|n) = σ(ε∆x), where

ε∆x = σ−1
(
σ(ε)

1
∆x

)
(S1)

If we allow ∆x → 0, then we approach a continuous
curriculum. In the results that follow, we set ∆x = 0.01.
In this way, we transfer much of the same intuition

from the discrete sequence learning task. For an effec-
tive task length N and bias ϵ, which matches N and
ε from a discrete curriculum, the student operates on a
“continuous” environment with N∆x = N

∆x and ε∆x. Ide-
ally, a student operating on (N∆x, ε∆x) should perform
identically to a student operating on (N, ε), as long as
each curriculum increment is 1/∆x. However, if we ap-
ply Equation S3 directly to update the student, we run
into an important issue: only the previous Q-value is
updated. For the continuous student, each Q-value rep-
resents an infinitesimal slice of ability. Applying the old
rules as-is means we update only singular, infinitesimal
slices at a time on the student. Intuitively, improving
at a particular level should improve multiple Q-values si-
multaneously, and in a fashion that remains consistent
with the discrete case. We model this effect by making a
small change to the student’s update rule.

2. K-step student

For a student on our continuous approximation of the
simple sequence learning task, the number of Q-values

grows as the unit of discretization ∆x decreases. Indeed,
for a curriculum of effective length N , the number of
Q-values becomes N∆x = N

∆x . Without changes to the
update rule described in Equation S3, the student is lim-
ited to updating one Q-value at a time. As ∆x → 0,
the number of Q-values to-be-updated approaches infin-
ity, requiring infinite time for any reinforcement wave to
propagate to the start.
Intuitively, as a student develops one particular Q-

value, neighboring Q-values should also be updated. Af-
ter all, because N ≈ N − ∆x, if qN changes, qN−∆x

should also change by approximately the same amount.
Note, progress may be symmetric such that qN+∆x also
change by a similar amount. Such an approach implies
some form of a smoothing strategy for the update rule.
However, for simplicity and consistency with the discrete
case, we assume asymmetric updates where onlyQ-values
less than the current task level N have an opportunity
to be updated. A natural way to incorporate this intu-
ition is to change from a single-step update rule as de-
scribed previously to K-step expected SARSA.[55] That
is, rather than update each Q-value using its immediate
next neighbor, the update rule now becomes

qi ← qi + α

 K∑
j=1

γj−1rj + γK⟨qi+K − qi⟩


where rj is the reward observed j steps ahead of the
current step i. Because reward is only dispensed at the
very end of a successful run, we have that rj = 0 for
j < N∆x. Using a discount γ = 1 as before, the update
simplifies to

qi ← qi + α(rK + ⟨qi+K − qi⟩π) (S2)

In effect, rather than updating from the immediate
next-neighbor Q-value, the K-step student now updates
using the Q-value K steps ahead. Hence, upon encoun-
tering a reward, all previous K Q-values are updated
rather than just the immediately preceding one. On a
later pass, as the student approaches this block of up-
dated Q-values, the preceding block of K values also
receives updates as the intervals overlap. If we allow
K = 1/∆x, the range of updated values correspond pre-
cisely with the updated values in the discrete sequence
learning task.
For sufficiently high ε, the continuous K-step student

corresponds precisely in learning speed with the discrete
student. However, one important difference is the prop-
agation of mistakes. In the discrete case, if the student
halts, the error is not backpropagated. Rather, the (un-
written) Q-value associated with choosing the halt action
is “updated,” and remains 0. However, in the K-step
scenario, because all previous K Q-values are updated, if
the student halts, the last K − 1 Q-values are depressed
slightly with a zero update, initiating a secondary ex-
tinction wave distinct from the ones generated through
curriculum changes. Hence, learning is slower and more
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difficult for continuous students, and the potential for
extinction waves to erase all progress correspondingly
higher. The situation is exacerbated by low ε, in which
the probability of halting is higher. An easy way to fix
this situation is to simply alter the learning rules such
that halting actions do not propagate depressedQ-values.
However, it remains unclear whether this effect is a fea-
ture or bug — perhaps it is more realistic for repeated
failures to depress the performance of the student, rather
than leave performance unimpacted. Perhaps the correct
action is to modify the discrete student such that errors
also propagate. Ultimately, we leave this distinction as
an additional layer of complexity for the continuous stu-
dent, and an additional obstacle an optimal teacher must
overcome.

3. Teacher algorithms

We explore generalizations of both the Incremental
and Adaptive teachers. Unfortunately, POMCP does not
scale to the massive size of the POMDP in the continuous
case. We rely on the behavior of the Adaptive teacher
to give a sense for what optimality looks like in this set-
ting. Note, none of the algorithms from Matiisen et al.
[41] generalize at all to continuous curricula, so we do not
investigate them further in this setting.

Incremental generalizes directly to this setting. We
allow the curriculum to increment in fixed intervals of
1/∆x, monotonically increasing the task difficulty as the
student progressively attains mastery. The procedure
otherwise remains identical to the one described in Algo-
rithm 1. Figure 5 shows trajectories for the Incremental
teacher adapted for the continuous setting.

a. Continuous Adaptive teacher

The Adaptive teacher is similar in spirit to its dis-
crete counterpart but extended to accommodate the
particulars of a continuous curriculum. At the start
of an interaction, the experimenter proposes an initial
“rough guess” at an appropriate increment interval for
the teacher to use. Such an increment can be considered
a prior that the experimenter assumes about the difficulty
of a task. For the continuous sequence task, we use an
initial increment of 1/∆x. As the Adaptive teacher pro-
gresses, it tweaks the size of the increment according to
the student’s performance. Hence, rather than just three
actions (increment, decrement, stay), we introduce a sec-
ond set of three actions: increase the increment interval,
decrease the increment interval, retain the same interval.
Adjustments to the interval are made multiplicatively by
a predetermined percentile.

With this adjustment, at every iteration, the Adaptive
teacher must now select from one of nine possible actions:
an increment, decrement, stay, paired with a grow
interval, shrink interval, and keep interval. To

select the correct action, one can use the same optimiza-
tion procedure described in Section B 3 to learn the best
actions for each situation. Figure 5 shows trajectories for
the Adaptive teacher adapted for the continuous setting
(compare to Figure 3e).

b. Benchmarks

See Figure 5 for a comparison of Incremental and
Adaptive teachers on the continuous sequence learning
task. Adaptive has a decisive edge over Incremental,
particularly for high N and low ε. Random and final-
task-only curricula are not plotted, as learning fails to
occur even for the easiest tasks pictured.

Overall, intuitions from the discrete case translate nat-
urally to the continuous case, though learning overall
tends to be more difficult in the latter. We presented here
only an initial exploration of one particular continuous
generalization. Future work will need to examine more
deeply nuances particular to the continuous case, what
optimal teachers may look like in this setting, and vali-
date these results on a naturalistic task like trail tracking.

Appendix E: Estimation methods

A central aspect of outcome-based curriculum learning
is that the teacher does not have access to the student’s
internal parameters. Rather, the teacher must estimate
intrinsic qualities of the student through extrinsic observ-
ables alone. In our context, the critical internal param-
eter of the student we estimate is its true success rate
sn for a task of difficulty n. For example, in the case of
the Incremental teacher, if sn exceeds some threshold τ ,
the student advances. Otherwise, the student remains on
the current task level. In the case of Adaptive, sn and
∆sn are used as inputs to a decision tree that decides the
student’s next task.

In all these cases, the teacher has access only to
the student’s transcript of successes and failures: h =
(h1, h2, . . . , ht), where hi = 1 if the student succeeded
on round i, and 0 otherwise. Given this transcript, the
teacher must construct an estimate ŝn(h) ≈ sn. In the
main text, we consider only a simple exponential mov-
ing average (EMA) approach to computing ŝn. In this
appendix, we describe the EMA in further detail, and
explore two alternative estimation procedures motivated
by a Bayesian approach.

1. Overview

Under the student model described in Section A1, the
true success rate of the student on a task of length n is
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given by

sn =
n∏

i=1

σ(qi) =
n∏

i=1

σ(qi + ε) (S1)

However, because the underlying parameters qi and ε
are unknown to the teacher, the quantity sn must be
estimated from the student’s transcript of successes and
failures. Below, we compare three estimation procedures
for sn:

1. Exponential moving average: we apply an
EMA to the student’s transcript to estimate sn.
This estimate functions as a baseline with which
to compare our other two, Bayesian motivated ap-
proaches

2. Beta posterior inference: we assume the suc-
cesses and failures in a student’s transcript are
drawn iid from a Bernoulli distribution. Because
the student’s success rate evolves as it learns, sn is
a nonstationary quantity, and so this assumption
cannot hold over long periods of time. However, to
simplify posterior inference, we assume that negli-
gible training occurs over short time periods, and
that sn is locally stationary.

3. Particle filtering: we relax the local stationarity
assumption from Method 2 and develop a parti-
cle filtering algorithm to estimate sn. Particles are
sampled from priors over qi and ε, then forward-
simulated to yield posterior samples over sn.

In the following sections, we develop each method
in detail, and compare their ability to estimate sn.
To remove the confounding influence from complex
teacher strategies, we use only the Incremental teacher
as a framework for comparing these estimation proce-
dures, and later compare Incremental (with sophisticated
estimation techniques) to the gold-standard POMCP
teacher.

2. Exponential moving average

Recall that at time t, the teacher observes a transcript
of the student’s performance h = (h1, h2, . . . ht), where
hi = 1 if the student succeeded on episode i, and 0 oth-
erwise. The EMA algorithm constructs an estimate ŝn
through the following recursive update rule as new ob-
servations ht are made:

ŝn ←

{
0 t = 0

(1− γ)ht + γŝn t > 0
(S2)

which corresponds to the unrolled equation

ŝn(ht) =
t∑

k=0

γk(1− γ)ht−k

The parameter γ ∈ [0, 1] is chosen by the experimenter
prior to computing the EMA, and controls the degree to
which past observations are discounted.
The exponential moving average is a simple, non-

parametric approach to estimating a nonstationary quan-
tity. See Figure S2a for a plot of EMA estimates com-
pared to the true underlying success rate on a task with
length N = 10, using the teacher model described above.
We compare EMA across different discounts γ and across
students with different bias parameters ε. Higher val-
ues of γ resulted in smoother estimates, though with
a greater lag behind the true value. Lower values of
γ resulted in noisier estimates, though with less lag.
For γ < 0.5, the estimates became meaningless as they
tended to alternate between extremes. Overall, a dis-
count of γ = 0.8 seems to be the most appropriate, and
tracks the true success rate with reasonable consistency.

3. Beta posterior inference

We next consider a simple Bayesian approach to this
estimation problem. One challenge of estimating sn is
that this quantity is nonstationary. As the student learns
the task, sn changes over time. However, to make the
analysis simpler, we can make the (big) assumption that
over short intervals, sn is essentially stationary. In this
case, suppose sn is approximately stationary over the
time interval [t − k, t], for some small integer k. Then
for a transcript h = (h1, h2, . . . ht), we have

ht, ht−1, . . . ht−k
iid∼ Bernoulli(sn)

Hence, if we impose the prior sn ∼ Beta(α, β), the pos-
terior on sn becomes

sn|h(t−k):t ∼ Beta
(
α+ n1(h(t−k):t), β + n0(h(t−k):t)

)
where n1 and n0 count the number of ones and zeros
respectively. This form suggests an estimator based on
the posterior mean ŝn = E[sn|h(t−k):t] =

α+n1

α+β+k In this

setting, we assume a uniform prior sn ∼ Beta(1, 1). Se-
lecting the value k is somewhat trickier. We would ide-
ally like to select a k that is as small as possible, so as
to ensure sn does not change too much over the interval
[t−k, t]. At the same time, if k is too small, our posterior
has a higher variance, and the confidence in our estimate
is correspondingly lower.
To address the latter issue, let us first consider the

lowest value of k we can tolerate. Suppose we use a
threshold τ such that if sn > τ , then the student ad-
vances to the next level. Suppose we would like to
be confident at the level c such that sn exceeds τ be-
fore allowing the student to advance. Then we stipu-
late that p(sn|h(t−k):t > τ) > c. In the best case sce-
nario, all observations in h are ones. The minimum
k we can tolerate is therefore the smallest k such that
p(sn|h(t−k):t > τ) > c is true when h = 1, 1, . . . 1. To
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FIG. S2: The following plots compare the performance of each estimation method under an INC teacher. (a,b,c) The true and estimated
success rate when an exponential moving average (a) beta posterior inference (b) and a particle-filter-based approach (c) is used for
estimation. In panels b,c the 50% and 95% confidence intervals are also shown. (d) The q values estimated by POMCP, with 95%
intervals. (e) Performance comparison between ADP using the three different estimation methods. We use EMA in the main text due to
its simplicity and efficiency.

compute this k, we observe that

p(sn|h(t−k):t < τ) < 1− c

and

p(sn|h(t−k):t < τ) = Iτ (k + 1, 1)

where Iτ (α, β) is the incomplete Beta function with up-
per limit τ . From here, we see that Iτ (k+1, 1) = τk+1 <
1− c. Solving for k yields the final result

k >
log(1− c)

log τ
− 1

so we can establish a lower bound on k as klow =

⌊ log(1−c)
log τ − 1⌋. In practice, we use a confidence c = 0.5,

which corresponds to when the median of the posterior
exceeds the threshold τ , and yields reasonable results.
Note, because sn changes for different difficulty levels n,
k should not be so large that it dips into episodes where n

was smaller. Hence, after the student advances, we must
wait at least klow rounds before evaluating the student.
For the EMA algorithm, this was a non-issue because
EMA would adapt its estimate of the success rate to the
current statistics. In contrast the Beta posterior proce-
dure relies on an underlying stationary quantity, and so
would be obviously invalid if it uses samples from sn−1

in its estimation of sn.

To determine what the upper bound on k should be,
it is unclear how to select a reasonable upper-bound an-
alytically. However, because sn is presumably increas-
ing over long timescales, the further back we look, the
lower our estimate ŝn will become. Hence, we estab-
lish a coarse upper bound khigh = 3klow, and evaluate
p(sn|h(t−k):t > τ) > c for every k in between klow and
khigh. If at any point this expression evaluates to true,
we advance the student to the next level. Because ŝn
decreases for larger values of k, there should ideally be
a single k between klow and khigh that balances a large
enough sample that produces a high-confidence estimate,
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and a small enough sample that does not yield an under-
estimate on sn. As before, khigh should not be so large
as to contaminate the data with samples from sn−1. The
prefactor 3 was chosen as a hyperparameter setting that
seems to work well in practice, though other factors may
be used.

See Figure S2b for a plot of the Beta posterior esti-
mate, along with the true estimates of the student’s per-
formance. In general, the Beta posterior estimate tracks
the trajectory of the student’s true success rate, but un-
derestimates it systematically. This may be in large part
because our assumption of local stationarity on the scale
of k is invalid. Significant learning likely occurs even
within just klow steps, motivating the need to develop an
approach that does not rely on this tenuous assumption.

4. Particle filtering

Our final estimation approach does not assume any
stationarity in sn; rather, it estimates sn by simulating
the underlying learning dynamics using a particle filter-
ing algorithm. Specifically, we estimate posteriors on the
student’s Q-values qi and innate bias parameter ε, then
construct an estimate of sn based on Equation S1.

The particle filtering algorithm proceeds as follows:

1. Sample initial particles from the prior. We
apply a uniform prior on ε over the interval [−5, 5],
which encompasses the range of reasonable values ε
can take. We apply a point-mass prior centered on
0 for all qi, because each qi is initialized to 0 for ev-

ery student. An initial set of particles (q
(0)
j , ε

(0)
j )Mj=1

are sampled from these priors. In the simulations,
we find that M = 1000 is sufficient.

2. Simulate forward dynamics. For each particle,
we simulate T trials of the student using the learn-
ing rules described in Equation S3, obtaining a set

of updated parameters (q
(1)
j , ε

(1)
j ) along with a set

of corresponding simulated transcripts (h
(1)
j )

3. Filter particles consistent with observation.
After receiving an observed transcript h from the

student, we keep all particles j such that h
(1)
j = h.

Note, contrary to previous descriptions where we
assume h corresponds to the entire history of the
student’s performance, here we assume h corre-
sponds only to the student’s trials since the last
interaction, and |h| = T . If T is small, checking
direct equality works well. However if T is large,
the probability that an observation will match a
simulated transcript diminishes accordingly (even
if the underlying parameters match), in which case
we might compare a summary statistic on h like
the mean. In our case, T = 3, which is sufficiently
small to check for equality directly.

4. Resample remaining particles. For our remain-
ing particles, to remove any outliers, we perform a
resampling weighted by each particle’s likelihood.

For a particle (q
(1)
j , ε

(1)
j ) and observation h, if the

student’s learning rate α is sufficiently small, the
likelihood of the particle can be given as

p(h|q(1)
j , ε

(1)
j ) = ŝn1(h)

n (1− ŝn)
n0(h)

where ŝn is the particle filtering estimate of the true
success rate at level n, and follows from equation
S1

ŝn(q, ε) =
n∏

i=1

σ(qi + ε) (S3)

With these weights, all particles are resampled until
we have a set of the original size M particles.

5. Particle reinvigoration. Particularly for long
runs, ε will tend to drift over time as unexpected
observations are encountered (the Q-value param-
eters tend to remain fairly close, as we will see
below). To forestall any posterior collapse, it is
essential to reinvigorate ε. We use a simple rein-
vigoration strategy where a small random jitter is
applied to every ε parameter. Specifically, we use a
normally-distributed jitter centered at 0 with vari-
ance 0.25.

6. Repeat. Encountering one observation yields a

set of particles (q
(1)
j , ε

(1)
j ), which represents sam-

ples from the posterior q, ε |h(1). Upon encounter-
ing a second observation, we repeat our calculations
from step 2 using the current posterior sample to

obtain a new set of particles (q
(2)
j , ε

(2)
j ), which rep-

resents samples from the posterior q, ε |h(2),h(1).
This process is repeated for all new observations as
they arrive.

Using this particle filtering algorithm, we generate poste-
riors on the parameters qi and ε. At step i, the posterior

samples (q
(i)
j , ε

(i)
j )Mj=1 can be used to construct posterior

samples on estimated success rate ŝn using Equation S3.
From here, we can adopt the same approach as before,
and if more than c proportion of the posterior samples
are greater than a predetermined threshold τ , we advance
the student to the next level. As for the Beta posterior
inference approach, we use c = 0.5.

See Figure S2c for a plot of the estimated success rate
during runs using the particle filtering algorithm. In gen-
eral, the estimates fall quite close to the true success rate,
outperforming both of the previous methods. Figure S2d
plots 95 percent intervals on the posterior samples of the
underlying parameters, compared to the true values for
each parameter. The particle filtering approach tends to
capture the true values well, confirming that its inference
is accurate.
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5. Comparison of estimation procedures

Figure S2e shows a comparison across all teacher algo-
rithms, including the POMCP teacher. The POMCP
teacher represents the approximately optimal teacher,
and shows the lower bound that all other teachers ap-
proach. In general, our simple incremental teacher model
approaches the optimal, though of course does not quite
attain it, particularly for lower ε and higher difficulty
levels N . Somewhat surprisingly, it also appears that
the accuracy of an estimation method does not matter
critically, as all three estimation methods produce stu-
dents with more-or-less the same efficiency, though the
particle-filtering method retains a slight edge.

In application, the particle filtering approach is no
longer tractable as a success estimation method in more
complex settings like our naturalistic tracking tasks. Be-
tween the remaining two options (EMA and Beta pos-
terior inference), EMA is faster and simpler, with fewer
tunable hyperparameters, while retaining good perfor-
mance. Hence, we select EMA as our estimation method
of choice in the main text.

Appendix F: Implementation details

All code is available on GitHub: https://github.
com/wtong98/automated-curriculum-learning

1. Sequence learning

In the sequence learning setting, the student is an ex-
pected SARSA agent with the following parameters:

Parameter Value

Reward 10
Learning rate 0.1
Discount 1
Episodes per interaction 3

2. Success estimation

INC and ADP use an exponential moving average
(EMA) to measure the success rate of the student, with
discount factor γ = 0.8. (Alternative approaches are dis-
cussed in Appendix E.)

In the sequence learning setting, the EMA averages
over the student’s history of successes and failures. In
the deep RL setting, multiple students are run simulta-
neously to parallelize sample generation during rollout.
The transcript across all parallel students are averaged
in time to produce a single mean transcript for EMA.

3. Incremental teacher

The Incremental teacher has a single parameter: the
success rate τ beyond which the student should advance
to the next level. We use τ = 0.95 for the sequence
learning task, and τ = 0.7 for the deep RL tasks.

4. POMCP teacher

The POMCP teacher uses the following parameter set-
tings:

Parameter Value

Particles 5000
Discount 0.9 - 0.95
MCTS stop threshold 0.01
MCTS explore factor 1
Reinvigoration probability 1
Reinvigoration scale 0.5

We implement POMCP using the particle filtering al-
gorithm described in Appendix E, with an additional
state variable α that represents the student’s learning
rate. Particle reinvigoration applies only to the estima-
tion of the student’s innate bias parameter ε. For a par-
ticle estimate pϵ, reinvigoration proceeds as pε ← pε + η,
where η ∼ N (0, σ). Estimation of the student’s learned
Q-values tend to be highly accurate, and hence do not
require reinvigoration.
A random rollout policy does not scale well to low ε for

our problem. Instead, rollouts are computed following an
“Incremental policy” – the decisions that an Incremental
teacher would make. In other words, if the success rate
of the student based on the sampled parameters exceeds
τ = 0.95, the increment action is chosen. Otherwise, the
stay action is chosen. An Incremental policy proved to
work sufficiently well even for low ε tasks, though given
the sensitivity of Incremental teachers to very low ε, a
more intricate policy may perform more efficiently in this
regime.

5. Adaptive teacher

Figure 3 shows the decision tree used by the Adaptive
teacher on the sequence learning task (for both homoge-
neous and heterogeneous ε). The decision tree learned by
the Adaptive teacher for the continuous case is shown in
Figure 5. For the sequence learning task, optimizing the
Adaptive teacher proceeds as a coordinated ascent. The
procedure begins with an initial set of actions guessed
by the experimenter. Differential evolution [58] is used
to evolve the precise splits in the tree, followed by an
exhaustive search through the space of possible actions.
These two steps, evolution followed by action search, al-
ternate until converging on a final tree.
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The decision tree used by ADP on the deep RL tasks
was tuned by hand, and proceeds as follows. For an es-
timated success rate ŝ and change in success rate ∆ŝ

• If ŝ > 0.7 and ∆ŝ ≥ 0: increment

• If ŝ < 0.65 and ∆ŝ < 0: decrement

• Otherwise: stay

6. Matiisen teachers

We use a grid search to identify optimal hyperparame-
ters for the teacher algorithms described in Matiisen et al.
[41]. The final parameters we used are:

• Online: α = 0.05, β = 0.34

• Naive: α = 0.16, β = 3.8

• Window: α = 0.26, β = 4.83, k = 10

• Sampling: α = 0.1, k = 3

7. Trail tracking

Trails are generated using generalized worm-like chain
ensembles, using the procedure described in Reddy et al.
[71]. The parameters used to sample each trail are

Parameter Value

Width 5
Diffusion rate 0.02
Curvature radius 70
Heading 0 - 2π
Break point 0.5 - 0.6

The break point parameter specifies the segment of
trail over which there is no odor, and is expressed as a
proportion of the trail’s total length. The schedule used
to produce Figure 4 varies based on the trail’s length.
The specific lengths used are:

(
10 30 50 70 90 100

)
The agent is a PPO [69] deep reinforcement learning

model with the following hyperparameters

Parameter Value

Samples per rollout 8192
Batch size 256
Epochs 5
Learning rate 1e-4
Feature model Nature CNN[73]
Action model MLP
Value model MLP
Entropy coefficient 0.1
Discount 0.98
GAE weight 0.9
Gradient clip range 0.2
Max gradient norm 1
Value function clip range 0.36

“MLP” refers to a multi-layer perceptron with 2 layers,
128 units per layer, and ReLU activations.
The agent receives as input a pixel observation of the

world with a square view distance of up to 40 units in the
horizontal or vertical directions, scaled up by a factor of
2 to produce the direct pixel observations. At each step,
the agent advances three units in the forward direction,
or 45 degrees to the left or right. The agent’s heading
rotates left/right by the same angle. The agent is allowed
up to 200 steps before the episode terminates.

8. Plume tracking

Plumes are generated using the plume model in Ver-
gassola et al. [72]. The parameters used to generate each
plume are

Parameter Value

Length scale 20
Diffusivity 1
Emission rate 1
Particle lifetime 150
Wind speed 5
Sensor size 1

The schedule used to produce Figure 4 varies based on
the starting odor detection rate. The specific rates used
are computed as 1/rk, where rk = 0.5 + 0.1k and k in-
creases from 0 to 23, for a total of 24 difficulty levels.
As before, the agent is a PPO [69] deep reinforcement

learning model, with the following hyperparameters

Parameter Value

Samples per rollout 8192
Batch size 256
Epochs 5
Learning rate 1e-4
Feature model Nature CNN[73]
Action model MLP
Value model MLP
Entropy coefficient 0.25
Discount 0.98
GAE weight 0.9
Gradient clip range 0.2
Max gradient norm 1
Value function clip range 0.36

“MLP” refers to a multi-layer perceptron with 2 layers,
128 units per layer, and ReLU activations.
The agent’s mechanics are identical to those of the trail

case. The max steps the agent can take in the environ-
ment scales as 3 times the starting distance to the odor
source.
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