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Summary  
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment 

targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network 

in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). 

Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic 

risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional 

regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants 

identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to 

prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human 

forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA 

binding sites and altered development of deep cortical layer neurons in forebrain organoids. This 

work offers new insights into molecular mechanisms underlying ASD and describes a powerful 

platform to develop and test therapeutic strategies for many genetically-defined conditions. 
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Introduction 
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental syndrome 

characterized by diverse etiology, marked inter-individual variability in symptom presentation, and 

a wide range of associated features apart from the defining impairments in social communication 

and highly restricted interests and/or repetitive behaviors1,2. Over the past decade and a half, 

whole-exome and whole-genome based approaches have resulted in the systematic and highly 

reliable identification of large effect risk genes based on the study of rare, often de novo, 

variations. The most recent large scale WES studies have identified more than 200 genes robustly 

associated with ASD33–7. However, translating the increasingly large lists of high confidence ASD 

(hcASD) genes generated by these approaches into a comprehensive understanding of the 

biological mechanisms underlying ASD - and potential therapeutic targets - has been hampered 

by extensive pleiotropy and locus heterogeneity coupled with the complexity of human brain 

development and a relative lack of understanding of the molecular interactions among the proteins 

these risk genes encode7–10. Adopting a convergent framework, rooted in the premise that 

identifying shared characteristics among hcASD genes will pinpoint core mechanisms underlying 

pathobiology, we have extended the molecular characterization of rare large-effect risk genes to 

address the proteins they encode, identify their direct interactors, and evaluate the consequences 

of syndrome associated mutations on this ASD proteomics landscape.  

As the list of hcASD risk genes has expanded, strategies for determining the convergence of gene 

expression patterns or biological functions across various ASD risk genes have repeatedly 

highlighted neurogenesis in the human mid-gestational prefrontal cortex as an important nexus 

of pathobiology7,11–17. At the same time, gene ontology enrichment analyses have implicated 

broad functional categories of these genes, such as chromatin modification, transcriptional 

regulation,, cell signaling, and synaptic function6,18–21. However, gene ontology-based approaches 

may be incomplete as they are limited by a priori knowledge. For example, recent work by our 

group has suggested that many chromatin modifiers may also regulate tubulin and that disruption 

of microtubule dynamics may be another point of convergent biology underlying ASD22. 

Nonetheless, comprehensive molecular and functional data for ASD risk genes remain scarce7. 
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To employ convergent approaches for identifying core biological features of ASD, it is essential 

to generate large-scale biological datasets, particularly those derived from direct experimental 

evidence. Systematically mapping the physical interaction networks of ASD risk genes and their 

likely damaging missense variants provides opportunities to identify how these genes functionally 

converge at a molecular level and allows for identifying shifts in interactions or structural changes 

in key protein complexes in the presence of patient-derived variants. Recent studies that have 

profiled protein-protein interaction (PPI) networks of ASD genes have highlighted evidence of 

molecular convergence23–25. However, these studies focused on a narrow selection of genes, with 

varying degrees of association to ASD, and did not explore at scale how specific molecular 

pathways may be affected by missense variants derived from individuals with ASD.  

In this study, we have generated the largest PPI networks of wildtype (WT) and mutant (mut) 

hcASD risk genes to date, using affinity purification-mass spectrometry (AP-MS) in HEK293T 

cells, a widely used in vitro system for proteomics studies. We have successfully applied similar 

approaches to cancer26–29, heart disease30–33, neurodegeneration34 and infectious diseases35–45. 

Our ASD networks here consist of 100 hcASD risk genes (ASD-PPI network) and 54 patient-

derived variants6 affecting 30 hcASD genes (ASDmut-PPI network) (Figure 1A). This foundational 

ASD-PPI network, characterized in a non-neuronal cell line, contains over 1,000 ASD-PPI 

interactors and more than 1,800 interactions which we show to be highly relevant to the human 

brain and to ASD. Our networks highlight molecular convergence of ASD risk genes and their 

interactors and reveal interactions that change in the presence of patient-derived missense 

variants, thus highlighting a range of potentially targetable pathways. Using AlphaFold (AF) 

pairwise predictions to identify direct PPI interactions, we prioritize a subset for functional 

interrogation in Xenopus tropicalis, human induced pluripotent stem cells (iPSCs), and forebrain 

organoids. We identified DCAF7 as a central hub interacting with multiple hcASD proteins, with 

disruption of DCAF7 leading to impaired neurogenesis and changes in telencephalon size in 

Xenopus. We utilize human iPSC-derived forebrain organoids to demonstrate that a missense 

mutation in FOXP1 (R513H) disrupts binding to FOXP4 as predicted by our HEK293T cell-derived 

data as well as AF modeling, disrupts neurogenesis, leads to re-wiring of transcription factor 

binding sites, and alters the differentiation trajectories of deep layer cortical glutamatergic 

neurons. Overall, this work and the resulting PPI resource offer valuable novel insights into the 

molecular mechanisms of ASD genetic risk and constitute a foundational platform for future 

therapeutics development. 
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Results 
Protein-protein interaction mapping of hcASD risk genes reveals novel interactors 
A recent large scale exome sequencing study identified 102 high-confidence ASD risk genes 

(hcASD102) with a false discovery rate (FDR) of 0.1 or less6. We generated a protein-protein 

interaction (PPI) network for 100 wildtype (WT) hcASD102 proteins (hereafter referred to as 

‘hcASD’), selecting the highest brain expressed isoform where possible (Table S1). To generate 

this network, Strep-tagged proteins were individually overexpressed (as “bait” proteins) in 

HEK293T cells in biological triplicates and “interactor” proteins (preys) were identified by affinity 

purification followed by mass spectrometry (AP-MS) 48 hours after transfection (Figure 1B). We 

used two scoring algorithms to identify high-confidence interactors: SAINTexpress46 and 

CompPASS47,48, selecting score cutoffs based on recovery of “gold-standard” interactions48–51 

(Figures S1A-C, Table S1, see Methods). This WT PPI network, termed ‘ASD-PPI’, consists of 

1,074 unique interactors connecting 100 hcASD proteins (baits) via 1,881 interactions, of which 

87% were novel, with a median of 11 interactors per hcASD (Figures 1C-E). The ASD-PPI 

network showed significant overlap with previously published ASD protein networks23,24. For 

example, interactors from our dataset overlapped significantly with those from a network 

generated via immunoprecipitation of 13 endogenous hcASD proteins from human iPSC-derived 

excitatory neurons (‘Pintacuda 2023 PPI’)23 (Figure S1D, Table S1; matching 13 baits in ASD-

PPI: OR = 1.77, p.adj = 0.0011; all ASD-PPI interactors: OR = 1.79, p.adj = 3.8 x 10-7). Interactors 

from Pintacuda 2023 PPI and from the matching 13 baits in ASD-PPI were both significantly 

enriched for ASD-associated de novo damaging variants (Figure S1E, Table S1; Pintacuda 2023 

PPI: OR 1.44, p.adj = 0.04; ASD-PPI subset: OR = 1.94, p.adj = 0.0012;). We similarly found 

significant overlap between interactors from ASD-PPI and those from protein networks generated 

from proximity labeling of seven ASD risk proteins (including three hcASD) in HEK293T cells 

(‘HEK-PPI’) and of 41 ASD risk proteins (including 17 hcASD) in mouse cortical neuron and glia 

cocultures (‘Mouse-PPI’)24 (Figures S1F,G, Table S1; HEK-PPI OR = 3.15, p = 8.95 x 10-23; 

Mouse-PPI OR = 1.61, p = 1.56 x 10-5). Mouse-PPI interactors, but not HEK-PPI interactors, were 

significantly enriched for ASD-associated de novo damaging variants (Figures S1H,I, Table S1; 
HEK-PPI OR 1.33, p = 0.144; Mouse-PPI OR 1.62, p = 0.0053). Additionally, ASD-PPI interactors 

trended towards capturing more ASD-associated genetic risk (Figure S1E,H,I, Table S1; 

Breslow-Day test comparing differences in OR between external PPI dataset and ASD-PPI: 

Pintacuda 2023 PPI, p = 0.90; HEK-PPI, p = 0.96; Mouse-PPI p = 0.15). Notably, the total number 

of hcASD and associated interactors in ASD-PPI was significantly larger than those in existing 

human protein interactomes such as CORUM50, BioGRID49,50, InWeb51, Hein et al. 201551,52 and 
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BioPlex48,51,52 (Figure 1E) or recently published ASD-relevant protein interactomes23,24, making 

this the most comprehensive PPI dataset for ASD to date. 

 

ASD-PPI interactors are expressed in the human brain and enriched for ASD genetic risk 
We next sought to evaluate the relationship of ASD-PPI interactors identified in HEK293T cells to 

cells in the human brain and assessed their relevance to genetic risk for ASD. We first examined 

RNA-sequencing (‘RNAseq’) datasets of the developing (BrainSpan53) and adult human brain 

(Genotype-Tissue Expression; GTEx54,55). ASD-PPI interactors showed significantly higher 

expression in both prenatal and adult brain tissue compared to other HEK293T-expressed 

proteins (Figures 2A, S2A, Table S2), suggesting that the ASD-PPI network is enriched for brain-

relevant genes. We next compared hcASD proteins and their interactors (excluding interactors 

that are encoded by hcASD genes) with respect to their relative expression levels in BrainSpan 

and observed highly significant spatiotemporal correlation (Figures 2B-C, Table S2, Pearson R2 

= 0.81, p < 1 x 10-15 by comparison to 100,000 permuted genesets with similar HEK293T protein 

expression levels). Furthermore, both hcASD proteins and their interactors exhibited higher 

expression in prenatal compared to postnatal samples (Figures 2C, S2B, Table S2; T-test, p.adj 

< 4.4 x 10-16), consistent with prior observations for hcASD genes14–16. Finally, in adult brain 

samples from GTEx, interactor expression was significantly higher in the cerebellum and cortex 

(compared to 100,000 permuted genesets) (Figure S2C, Table S2), in line with previous analyses 

of hcASD genes6. Altogether, these data indicate a highly similar pattern of expression between 

hcASD proteins and their interactors, suggesting that the ASD-PPI network is highly relevant to 

human brain tissue. 

We next evaluated whether the genes encoding interactor proteins tend to be highly evolutionarily 

constrained, like hcASD genes3,5,6,19,20,56, by comparing pLI (probability of being intolerant of a 

single loss-of-function variant), misZ (missense Z score, measures gene intolerance to missense 

variation), synZ (synonymous Z score, measures gene intolerance to synonymous variation, used 

as a negative control), and s_het (selective effect for heterozygous PTVs)57,58. The pLI and misZ 

scores of interactors (excluding interactors that are also hcASD) were in between those of hcASD 

and other HEK293T-expressed proteins, indicating that on average damaging mutations in 

interactors carry intermediate effect sizes (Figure S2D, Table S2). Consistent with this idea, the 

median s_het score of genes encoding interactors suggests they may act in an autosomal 

recessive or polygenic manner, in contrast to the majority of hcASD genes, which are thought to 

impart their major effects via haploinsufficiency or dominant-negative effects58 (Figure S2D). 
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Next, we examined interactors for enrichment of ASD genetic risk using data from the Simons 

Simplex Collection6,59. We observed a significantly greater burden of de novo damaging variants 

in genes encoding interactors (OR = 2.34, p.adj = 3.48 x 10-7, Fisher’s exact test comparing ASD 

probands to unaffected siblings) but not in the rest of the HEK293T proteome (OR = 1.08, p.adj 

= 0.30) (Figure 2D, Table S2). Moreover, interactors were enriched for ASD but not SCZ risk 

genes identified from recent whole exome (‘WES’) or whole genome sequencing (‘WGS’) 

studies3–5,60 as well as the highest confidence sets of ASD risk genes curated by SFARI Gene61 

(Figures 2E, S2E, Table S2).  

Finally, we evaluated the ASD-PPI network potential to identify additional ASD risk genes by 

creating networks with random sets of hcASD baits (varying from size 1 to 100, 1,000 iterations 

per size) and their associated interactors. We then assessed the genes encoding interactors in 

these networks (excluding interactors that are also hcASD) for enrichment of de novo damaging 

variants and for enrichment of an updated set of 255 high-confidence ASD genes (hcASD255)3. 

As the number of hcASD baits increased, the ASD-associated genetic risk captured by interactors 

also increased (Figure 2F, teal line), while the genetic risk attributable to the remainder of the 

exosome (excluding interactors and hcASD) from de novo damaging variants decreased (Figure 
2F, red line). With n = 52 baits, genes encoding interactors were more significantly enriched for 

ASD-associated genetic risk than the remaining genes in the exome, and by n = 100 baits the 

interactors contained the majority of enrichment (Figure 2F, Table S2). Enlarging the ASD-PPI 

dataset also consistently increased the number of captured hcASD255 genes among the 

interactors (Figure 2G, Table S2 brown line), even for those not previously identified in 

hcASD102 (Figure 2G, blue line). Thus, increasing the number of hcASD proteins used to 

construct the ASD-PPI appears to enrich for ASD rare variant genetic risk as well as increase the 

capture of novel ASD risk genes. Additionally, this effect does not appear to be plateauing, 

suggesting that continuing to build out ASD-PPI will be highly fruitful.  

 

ASD-PPI co-expression is greatest in dividing neural progenitor cells 
Next, we assessed co-expression of the ASD-PPI network across cell types of the developing 

prenatal cortex (6-22 post-conceptual weeks, PCW; ‘Nowakowski 2017’)62 (see Methods). We 

observed that ASD-PPI bait-interactor interactions were highly co-expressed in excitatory 

neurons (Figure 2H, Table S2), consistent with prior findings3,6,7,53,63,64,65. Notably, after 

incorporating physical interactions from STRING66 to include interactor-interactor connections, 

co-expression became highly significant in neural progenitor cells and, to a lesser extent, 
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excitatory neurons (Figure 2H, Table S2). Similar findings were obtained when analyzing two 

additional prenatal scRNAseq atlases from cortical samples aged 15-16 PCW (‘Pouliodakis 

2019’)63 and 12-22 PCW (‘Bhaduri 2021’)67, or when assessing network co-expression of the 

Pintacuda et al. 2023 PPI network (‘Pintacuda 2023’)23, which consists of interaction data for 13 

hcASD proteins from human iPSC-derived excitatory neurons (Figure 2H, Table S2).  
 

ASD-PPI reveals molecular convergence 
Convergence of molecular and functional pathways has been previously observed among hcASD 

genes7,68. To determine whether this convergence is reflected in our data, we first arranged the 

proteins in the ASD-PPI network based on connectivity (using our derived PPIs) as well as 

similarity of Gene Ontology (GO) annotations69,70 (Figure 3A, Table S3) (see Methods). We then 

compared the ASD-PPI network to other PPI networks for baits with unified biological themes that 

have been previously generated using similar approaches (n = 90 tyrosine kinases71 or n = 39 

breast cancer risk genes26,27). ASD-PPI baits were more likely to share interactors (Figure 3B), 

suggesting higher levels of molecular convergence compared to the other two PPI maps. 

Furthermore, 359 of the 1,043 (34.4%) interactors (that are not encoded by hcASD genes) 

interacted with more than one hcASD bait (Figure S3A, Table S3), and many baits converged on 

common complexes (Figures 3C-F). ASD and neurodevelopmental delay (NDD) share many risk 

genes7, and Satterstrom et al. 2020 stratified the hcASD102 genes into those more frequently 

mutated in ASD (ASD-predominant or ASDP, n = 53) and those more frequently mutated in NDD 

(ASD with NDD or ASDNDD, n = 49)6. Interestingly, the level of interactor overlap did not differ 

among all ASD-PPI bait pairs, ASDP bait pairs, ASDNDD bait pairs, or ASDP-ASDNDD bait pairs 

(Figures S3B, C, Table S3, Kruskal-Wallis p = 0.15), suggesting that ASDP and ASDNDD baits 

have similar network properties in these data.  

Notably, we identified several complexes that included multiple interactors with additional 

evidence for ASD. For example, several hcASD proteins, most of which have previously been 

connected to transcription or chromatin modification (TCF20, KMT2E, PHF12, MKX, MYT1L, 

PHF21A, BCL11A), interacted with the Sin3 complex (Figure 3C). Sin3-containing complexes act 

as transcriptional co-repressors, play a role in progenitor cell proliferation and differentiation72,73, 

processes that may be disrupted in ASD7,1774. We also found evidence that multiple hcASD 

proteins may functionally converge upon the mediator complex (Figure 3D), a multiprotein 

complex that functions as both a transcriptional activator and repressor, and plays a role in 

establishing neuronal identities by defining neuronal gene expression75,76. While we detected 
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hcASD proteins (MYT1L, NCOA1) that are known to interact with the mediator complex, we also 

detected novel hcASD protein interactors such as PHF2, RORB and IRF2BPL (Figure 3D). The 

PAF1 complex also plays a role in chromatin modification and transcription regulation, and CTR9 

(FDR = 0.073) and LEO1 (FDR = 0.11) subunits are below or at the threshold for high confidence 

association (FDR < 0.1) in a recent omnibus WES study of ASD3 (Figures S3D, E). Along with 

known interactors of the PAF1 complex such as SETD577, we identified interactions with other 

hcASD proteins such as DYRK1A, ANKRD11, TRIP12, PHF2 and KIAA0232 (Figure 3E). 

Besides complexes involved in gene expression regulation, we also identified the AP2-associated 

clathrin-mediated endocytosis complex as an interactor with a large number of hcASD proteins. 

Notably, subunits of the clathrin-mediated endocytosis complex interacted with multiple 

transcription factors such as TCF7L2, CHD8, TBR1, and RAI1, indicating a complex interplay 

between transcription factors, which may have pleiotropic functions outside of gene regulation22 

and protein transport (Figure 3F). Additional work will help determine how these complexes are 

connected to the underlying biology of ASD. 

 

AlphaFold predicts direct PPIs 
Recent developments in machine learning approaches have enabled accurate predictions of 3D 

structures of interacting proteins from amino acid sequences78–80, providing insights into the direct 

interactions between proteins81,82. ASD-PPI allowed for a unique opportunity to apply sequence-

based PPI prediction algorithms to a constrained, relevant molecular search space that is 

enriched for molecular complexes (see Figure 3) with the goals of identifying and prioritizing direct 

PPIs for follow-up studies and identifying relevant 3D structural interaction interfaces. We 

therefore used AlphaFold-Multimer78 (referred to below as AF) to predict pairwise interactions of 

either hcASD-interactor (bait-int) or interactor-interactor (int-int) pairs (Figure 4A, Table S4). As 

a control, pairwise predictions of a random set were included, where each interactor in the bait-

int set was replaced with a similarly sized protein (bait-random; see Methods). We examined the 

typical use of scores, either maximum ipTM (a predicted measure of topological accuracy in the 

interface78) or confidence (a measure which includes interface and overall topological accuracy) 

across nine generated models per pair and found only weak separation between observed and 

random sets (Figure S4A). In contrast, we found that mean ipTM, a statistic that summarizes the 

whole distribution of AF scores and favors protein pairs with consistently high scores across 

models, performed well to separate the observed from random sets, with an approximate 5 to 10-

fold enrichment for score thresholds above a mean ipTM of 0.5 (Figures 4B, S4B). Of the 1,651 

bait-int predictions completed by AF, 113 hcASD-int pairs had a score of mean ipTM > 0.5 (blue 
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bars, Figure 4C), and 466 additional interactors connected to a hcASD protein indirectly via one 

or more int-int pairs with mean ipTM > 0.5 (purple bars, Figure 4C), accounting for 579 of 1,094 

total AP-MS interactions where a hcASD-interactor is predicted by AF to have any interactions 

with mean ipTM > 0.5 (Figure S4D, Table S4). We observed that the portion of interactor pairs 

with high ipTM score was lower in the int-int set than bait-int regardless of applied threshold, which 

likely reflects the different portions of direct connections between bait-int versus int-int in the AP-

MS datasets. We found that the ASD-PPI network showed higher rates of AF-predicted direct 

physical interactions between hcASD and interactor proteins as compared to a PPI network 

generated in human iPSC-derived excitatory neurons described above (‘Pintacuda 2023 PPI’23), 

with nearly twice the rate at mean ipTM > 0.5 (purple curve, Figure 4B). This demonstrates once 

again, in addition to the gene expression and genetic risk analysis described above, that AP-MS 

in HEK293T cells identifies ASD-relevant hcASD interactors and suggests that ASD-PPI may be 

relatively enriched for direct interactions.  

The interaction of DYRK1A with DCAF7, well documented previously83–85, including a recognized 

DCAF7 binding motif, but with no available structure, provides an example of a high-confidence 

interface prediction by AF. The interaction received a high overall score (ipTM = 0.931, Table S4), 

the interface matches the recognized binding motif84,85 (Figure 4D), is modeled with high per-

residue confidence (Figure 4E), and the residues involved directly in the interface are among the 

most conserved (Figure 4F). We overexpressed WT DYRK1A and DYRK1AΔ80-100 in HEK293T 

cells and confirmed that DYRK1AΔ80-100 lost interaction with DCAF7 but not with FAM54C, a 

protein that has been shown to bind the DYRK1A catalytic kinase domain (residues 156-479)86 

(Figure S4E, Table S4) Together, these findings demonstrate that AF can identify a direct PPI 

between DYRK1A-DCAF7 and highlight a specific interface that mediates this interaction. 

The interaction of hcASD NUP155 with SMPD4 represents an example of a direct interface 

prediction by AF (mean ipTM = 0.765, Figure 4G) that has not been previously described. 

Previous studies, though underpowered, have shown that loss-of-function variants of SMPD4, a 

sphingomyelinase, are associated with congenital microcephaly and developmental 

disorders87,88, underlining the power of this approach in identifying direct interactions potentially 

relevant to a broader range of neurodevelopmental disorders that warrant further research.  

To determine if AF-supported direct interactions within ASD-PPI are enriched in specific cell 

types, we evaluated network co-expression in the three prenatal brain scRNAseq cell 

atlases62,63,67 as described above (see Figure 2H). We found that AF-supported direct bait-int 
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connections trended towards higher co-expression in excitatory neurons (Figure 4G, Table S4). 

However, when AF int-int connections were considered, network co-expression was significantly 

higher in neural progenitor cells, similar to our observation with networks that incorporated int-int 

connections from STRING66 (Figure 4G, Table S4).  
 
DCAF7 physically interacts with DYRK1A and KIAA0232 

As previously noted, the interaction between DCAF7 and the hcASD gene DYRK1A is well 

established85,89–91 and AF predicted it to be a direct interaction with a high ipTM score (Figure 4B). 

Of the seven interactors associated with eight or more hcASD proteins (Figure 5A, S3A), only 

DCAF7 had interactions in the public interactome BioGRID (the only considered interactome with 

entries for all seven interactors) that were enriched for the ASD risk genes identified from a recent 

ASD omnibus study (hcASD255)3,92 (Figure 5B, Table S5, Fisher’s exact test with Bonferroni 

correction: OR = 5.79, p = 0.018, p.adj = 0.126). These collective data suggest that proteins 

encoded by hcASD genes converge upon DCAF7 at a molecular level.  

DCAF7 interaction with DYRK1A modulates its nuclear translocation and regulates interaction 

with other proteins such as Huntingtin-associated-protein 1 (HAP1), a protein implicated in 

delayed growth in Down syndrome90,93. Furthermore, a DCAF7 complex with AUTS2 and SKI 

regulates neuronal lineage specification in vivo94,95, pointing to a key role for DCAF7 in 

neurodevelopment. To prioritize the eight hcASD baits that interact with DCAF7 in the ASD-PPI 

(Figure 5C), we performed enrichment tests using the DCAF7 interactors defined in BioGRID and 

found significant overlap between the DCAF7 interactors and the ASD-PPI interactomes of 

DYRK1A and KIAA0232 (Figure 5D, Table S5, Fisher’s exact test with Bonferroni correction: 

DYRK1A interactome OR = 37.74, p.adj = 3.27x10-8; KIAA0232 interactome OR = 23.69, 

p.adj = 0.032). To further study the interactions shared between DCAF7 and DYRK1A, we co-

expressed FLAG-tagged DCAF7 and Strep-tagged DYRK1A in HEK293T cells and performed 

single-tag as well as sequential (double) AP-MS, identifying 126 shared interactors between 

DYRK1A and DCAF7. These shared interactors were significantly enriched for hcASD255 

(Figures S5A,B, 9 hcASD, OR = 4.19, p = 0.000565). Given the role of DCAF7 as a WD40 repeat 

containing scaffold protein96,97, these results present the intriguing possibility that DCAF7 

functions as a scaffold, facilitating interactions with other hcASD proteins. In addition to capturing 

some well documented interactions, such as CREBBP98, TRAF298,99 and TSC198–100, we also 

found KIAA0232, a hcASD gene with unknown function, to interact with DCAF7 and DYRK1A. By 

performing sequential AP-MS of FLAG-tagged DYRK1A and Strep-tagged KIAA0232, we 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

12 

identified DCAF7 as a shared interactor, confirming that DYRK1A, DCAF7 and KIAA0232 interact 

with each other (Figures 5E, F). 

 

DCAF7, DYRK1A and KIAA0232 functionally overlap 

We next evaluated whether DCAF7, DYRK1A, and KIAA0232 colocalize in human cells. We 

overexpressed DYRK1A, DCAF7 and KIAA0232 in HEK293T cells and found that all three 

proteins colocalize to the mitotic spindle (Figure S5D). Prior work has demonstrated that multiple 

hcASD proteins localize to the spindle during mitosis including in Xenopus and human iPSC-

derived neural progenitor cells (NPCs)22,101,102. Consistent with these findings, we observed that 

ASD-PPI interactors are enriched for proteins associated with structures important for spindle 

organization (centriolar satellites103 and centrosomes104; Figure S5C, Table S5; two-sided 

Fisher’s exact tests with Bonferroni correction: HEK293T centriolar satellite, OR = 2.78, p.adj = 

1 x 10-19; NPC centrosome, OR = 2.6, p.adj = 9.9 x 10-19; neuron centrosome, OR = 2.7, p.adj = 

6 x 10-21). Together, these results provide further support for the potential involvement of tubulin 

biology in ASD pathogenesis. 

Next, we targeted these three genes during brain development using CRISPR-Cas9 mutagenesis 

in X. tropicalis by injecting single guide RNAs (sgRNAs) unilaterally, which allowed for matched 

internal controls. We observed that knockout of DCAF7, DYRK1A, or KIAA0232 resulted in 

significantly smaller telencephalon size, further confirming the role of DYRK1A, DCAF, and 

KIAA0232 in neurogenesis (Figure 5G, Table S5; paired T-test with Bonferroni correction: 

DYRK1A, p.adj = 4.14 x 10-6; DCAF7, p.adj = 2.09 x 10-16; KIAA0232, p.adj = 1.11 x 10-12).  

To further evaluate functional outcomes of DYRK1A, DCAF7 or KIAA0232 perturbations, we 

performed CRISPRi mediated knockdown (KD) of each gene individually in human iPSC-derived 

NPCs with single guide RNAs (sgRNAs: sgDYRK1A, sgDCAF7, sgKIAA0232). We first confirmed 

the gene KD for each cell line by qPCR, showing a reduction in expression of DYRK1A, DCAF7 

or KIAA0232 by 50-60%, respectively (Figure 5H). DCAF7 has been shown to be essential for 

survival89,105–108, with loss of DCAF7 leading to cell loss over time89,106,108, possibly due to cell 

death109. Consistent with this, we observed increased cell death of sgDCAF7 cells using the 

genetically-encoded death indicator (GEDI)110 during neuronal differentiation (Figures S5E,F, 
Table S5). DYRK1A has been shown to be involved in cell cycle regulation in a dose dependent 

manner, with moderate KD promoting neurogenesis and complete inhibition of DYRK1A inhibiting 

neurogenesis111,112. We observed a reduction in the proliferation marker Ki67 in both sgDCAF7 

and sgKIAA0232 NPCs while a modest increase was observed in sgDYRK1A cells (Figures 
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S5G,H, Table S5). DYRK1A further regulates PAX6113, which in turn maintains the balance 

between proliferation and neural specification114,115. Notably, mRNA expression of PAX6 as well 

as FOXG1 and SOX2, markers which are expressed in NPCs and whose deficits lead to 

proliferation defects and changes in neuronal differentiation patterns116,117, were significantly 

reduced in all three KD NPCs (Figure 5I, Table S5; One Way ANOVA with Dunnett correction: 

PAX6, all, p.adj <0.0001; FOXG1, sgDYRK1A, sgDCAF7, p.adj < 0.0001, sgKIAA0232 p.adj = 

0.0012; SOX2 sgDYRK1A, p.adj = 0.0012; sgDCAF7, p.adj = 0.0003; sgKIAA0232, p.adj = 0.0009 

).  

 

ASD missense mutations affect protein-protein interactions 
We next assessed how ASD-associated de novo missense mutations impact the ASD-PPI 

network. ASD patient-derived de novo missense mutations that were predicted to be highly 

deleterious (Missense badness, Polyphen-2, and Constraint (MPC) score ≥ 2)118 were selected, 

resulting in a list of 87 damaging de novo missense mutations across 43 hcASD genes6. Using 

the same methods as for ASD-PPI, we mapped PPIs for 54 of these missense mutations across 

30 hcASD proteins (ASDmut-PPI), including 13 hcASD proteins encoded by genes with more than 

one patient-derived mutation, and identified 1,070 interactions (Figure 6A, Table S6). To 

investigate differential interactions between mutant and WT hcASD proteins, i.e., strengthened or 

weakened interactions, we normalized interactor intensities by bait intensity (accounting for 

changes in interactor intensity derived from differences in bait expression) and calculated the fold 

change in interactor intensity between mutant and WT baits. We defined significant interaction 

changes as those with a log2(fold-change) ≥ 1 and p ≤ 0.05. Of the 1,070 interactions identified 

from WT or mutant baits, we found that the majority were preserved (817 interactions, 324 unique 

interactors), while a subset were strengthened (117 interactions, 69 unique interactors) or 

weakened (136 interactions, 95 unique interactors) for at least one mutant hcASD bait (Figures 
6B,C, Table S6). We observed significant enrichment of hcASD255 genes among the 95 lost 

interactors but not the 69 gained interactors (lost: OR = 3.63, p.adj = 0.0171; gained: OR = 1.58, 

p.adj = 0.738; two-sided Fisher’s exact test with Bonferroni correction) (Figure S6A, Table S6). 
 
Patient-derived mutations result in convergent interaction changes 
We next aimed to determine if multiple different missense mutations in the same hcASD gene 

demonstrated similar effects on PPIs, and whether missense mutations in different hcASD genes 

converged on similar changes in the PPI network. For the 13 hcASD genes with PPI data for more 

than one mutant bait, 52 of the 115 altered interactions were replicated in two or more mutant 
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baits for the same hcASD protein. For example, all five mutant SLC6A1 baits lost interactions with 

NPTN, all four KCNQ3 mutant baits lost interactions with GBA, and all three FOXP1 mutant baits 

lost interactions with FOXP4 and PRKDC (Figures 6D, S6B, Table S6). We additionally found 

that 15 interactors showed consistent changes for two different mutant hcASD baits; for example, 

the interactor FOXP4 lost interaction with all three FOXP1 mutant baits as well as one FOXP2 

mutant bait, which was validated by Western blot (Figures 6D, S6B,C, Table S6). Notably, we 

identified changes in patient-derived mutation driven interactions that converged on key 

complexes or biological processes mentioned above (Figures 3C-F, Table S6). Among the 

differential interactors, we observed enhanced interaction of transcription factor MKX mutants 

(MKXR93G and MKXL89F) with the transcriptional repressor Sin3 complex. Similarly, MYT1L 

mutations H522Q and C504R showed decreased interaction with the mediator complex, another 

transcriptional regulator. We also observed an increase in gained interactions with vesicle 

mediated transport and clathrin-mediated endocytic complex in STXBP1 mutants (STXBP1R551C, 

STXBP1A215T) and AP2S1 mutants (AP2S1R10W, AP2S1G64D) (Figure 6D). Given the key roles that 

Sin3 and mediator complex play in gene expression regulation, the ASDmut-PPI network provides 

key insights into convergent mechanisms that may be dysregulated in the context of patient-

derived mutations. 

To gain a higher-level understanding of biological processes most affected by ASD-related 

mutations, we generated a multi-scale map of protein systems by integrating ASD-PPI with other 

PPI networks23,48,52,92,119,120, and analyzed network reorganization upon including vs. excluding 

differential interactions from ASDmut-PPI (for details, see Methods). This multi-scale map consists 

of 422 protein systems, with network reorganization highlighted by 22 and 36 protein systems 

showing stronger evidence in ASDmut-PPI or ASD-PPI, respectively. We also identified 61 systems 

with an enrichment of functionally disrupting mutations described in Satterstrom et al.6 that were 

not part of ASDmut-PPI (i.e. variants not limited to hcASD; see Methods for details) (Figure 6E, 
Table S6). For example, the protein system “Cellular Membrane Synthesis and Maintenance”, 

which consisted of 36 proteins including three hcASD (SLC6A1, SCN2A, and SCN1A), had 

differential interactions from ASDmut-PPI (i.e. contained interactions gained or strengthened 

compared to ASD-PPI; see also Figure 6D) and contained two additional genes (ER membrane 

protein complex subunit 3 & 4; EMC3 and EMC4) that were described as de novo damaging 

variants in ASD probands6. Conversely, the protein system “Transcription Regulation and 

Elongation Complex” was not affected by ASDmut-PPI. This system consisted of 13 proteins, 
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including two hcASD (TRIP12 and CHD2), the PAF1 complex (see also Figure 3E), and RTF1121, 

another gene with de novo damaging variants6 not included in ASDmut-PPI. 

We next leveraged the ability of AF to predict direct PPIs and prioritized mutations predicted to 

be located at the interaction interface (Figure 7A). Using the differential PPIs from our ASDmut-

PPI network, we mapped mutations onto the AF predicted structures for ASD-PPI. We found 34 

mutations across 22 hcASD proteins that mapped to the interfaces (< 10 Å) with 198 different 

interactors, corresponding to 216 pairwise interactions. Out of these, 73 interactions were 

impacted in ASDmut-PPI, showing differential interactions in the presence of mutations (Table 
S7). The interactions that decreased in the mutant state were enriched for hcASD mutants in 

interfaces (46% located in interface); in contrast, only 18% of hcASD mutations that led to an 

increase in interactions were located in the interface, indicating that the position of mutations 

in the interaction interface tended to correlate with the direction of differential interactions 

(Figure S7A, Table S7). For example, the interaction between PPP2R5D and PPP4C was lost 

in the presence of the PPP2R5D mutation E198K, which directly contacts the interaction interface 

(1.6 Å) (Figures 7B,C, S7B). In contrast, a mutation in GNAI1 (I319T) more distant to its interface 

with its known interactor RIC8A122 (6.1 Å) strengthened the PPI (Figures 7D,E, S7C).  

 

FOXP1 R513H mutation alters the differentiation of deep layer cortical neurons in a human 
forebrain organoid model 
We prioritized for further study the interaction changes of variants with the highest predicted 

pathogenicity based on Evolutionary model of Variant Effect (EVE), a deep learning model that 

predicts the likelihood that a human missense variant is pathogenic based on patterns of 

sequence variation across evolution123 (Figure S7E). All three FOXP1 mutants in ASDmut-PPI 

(FOXP1L327P, FOXP1R513C and FOXP1R513H) had an EVE score of 1, indicating high likelihood of 

pathogenicity.  

FOXP1 is a forkhead-box (FOX) family transcription factor that is important in the early 

development of multiple organ systems, including the brain124–133. The transcriptional activity of 

FOXP1 is regulated by homo- and heterodimerization with other FOX proteins134,135. Our ASDmut-

PPI interaction study showed that all three FOXP1 mutants had significantly lower binding affinity 

to FOXP4 (Figures 6D, 7F). An AF-predicted structure showed that the FOXP1 R513 residue is 

located in the Forkhead domain that interacts with DNA, while the L327 residue is located at the 

interface with FOXP4 (Figures 7G, S7D). Using immunoprecipitation followed by Western blot, 
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we confirmed that all three FOXP1 mutations lost interaction with FOXP4 (Figures 7 H,I, Table 
S7).  

To evaluate the effects of mutant FOXP1 in a model of human brain development, we generated 

clonally derived isogenic iPSC lines with either wildtype or heterozygous FOXP1R513H/WT 

(Figures 8A,B, S8A). Consistent with data shown above, immunoprecipitation of FOXP1 from 

FOXP1R513H/WT iPSC-derived neural progenitor cells showed decreased interaction with FOXP4, 

(Figures 8C,D, S8B, Table S8). We sought to determine whether the differential interactions of 

FOXP1R513H affect neuronal development. We differentiated iPSCs into forebrain organoids 

(Figure 8A) and, to determine if the mutation impacts DNA binding of FOXP1, we performed 

CUT&Tag136 in FOXP1R513H/WT and FOXP1WT/WT forebrain organoids (Figure S8C). Of 11,527 

binding sites found in FOXP1WT/WT organoids, only 6,939 were detected in FOXP1R513H/WT 

organoids, suggesting that the heterozygous mutation leads to the loss of approximately 40% of 

binding events. Interestingly, organoids carrying the FOXP1R513H mutant allele also exhibited 

1,266 new binding sites not found in FOXP1WT/WT organoids (Figure 8E,F). 

Given that the presence of a mutant allele of FOXP1 led to the loss of binding between FOXP1 

and FOXP4, we also examined the landscape of FOXP4 DNA binding. Consistent with the 

heterodimerization model between FOXP1 and FOXP4, almost all FOXP4 binding sites (2,805 

out of 2,817) overlapped with FOXP1 sites in the FOXP1WT/WT organoids. By contrast, we found 

over 4,705 new binding sites for FOXP4 in FOXP1R513H/WT not found in FOXP1WT/WT organoids 

(Figures 8E,F). This suggests that changes in DNA binding of FOXP1 and FOXP4 occur in 

FOXP1R513H/WT forebrain organoids, consistent with the proposed model of PPI disruption caused 

by the presence of the FOXP1R513H allele. 

To examine if the apparent reconfiguration of FOXP1 and FOXP4 binding underlies transcriptional 

differences in the developing forebrain, we performed single cell RNAseq (scRNA-seq) analysis 

on organoids and identified cell type-specific differentially expressed genes (Figures 8G,H, S8D-

F, Table S8). Glutamatergic cortical neurons (EN-3) showed the most striking transcriptomic 

differences, with FOXP1R513H/WT cells demonstrating relative upregulation of genes related to deep 

cortical layer neuron (TBR1) and subplate neuron identities (SOX5, NFIB, NFIA), and 

downregulation of genes associated with layer V glutamatergic neurons (TENM2, BCL11B, 

FOXP1) (Figures 8I-L, S8G,H, Table S8). Of note, genes with decreased FOXP1 binding in 

FOXP1R513H/WT organoids and genes that were transcriptionally upregulated in FOXP1R513H/WT EN-

3 were both significantly enriched for hcASD255 (Figure S8I, Table S8; two-sided Fisher’s 
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enrichment tests with Bonferroni correction: decreased FOXP1 binding, OR = 4.99, p.adj = 

0.0038; EN-3 upregulated transcripts, OR = 4.93, p.adj = 0.012).  

We observed that genes that were nominally differentially expressed in FOXP1R513H/WT versus 

FOXP1WT/WT EN-3 cells positively correlated with genes that were nominally differentially bound 

by FOXP1R513H/WT versus FOXP1WT/WT organoids (Figure S8J, Pearson R = 0.42, p = 0.18). While 

this correlation is not statistically significant, it suggests that genes with increased FOXP1 binding 

in FOXP1R513H/WT organoids are relatively more highly expressed and vice versa. Of all 

differentially expressed genes in the EN-3 cluster (n = 239), 43% had unique FOXP1 binding sites 

that were gained in FOXP1R513H/WT organoids, and not seen in FOXP1WT. Additionally, 32% of the 

differentially expressed genes had a gained FOXP4 binding site unique to FOXP1R513H/WT 

organoids. 21% of the genes differentially expressed exhibited both loss of FOXP1 binding and 

gain of FOXP4 binding in FOXP1R513H/WT, suggesting a partial gain-of-function of FOXP4 in the 

FOXP1R513H/WT organoids to compensate for loss of FOXP1 binding at these genes (Table S8). 

Together, our results suggest that expression of the FOXP1R513H allele during human forebrain 

differentiation alters gene regulatory relationships involving FOXP1 and FOXP4 transcription 

factors. While our scRNA-seq data did not suggest major differences in progenitor cell 

abundance, we detected a modest, but statistically significant decrease in the abundance of PAX6 

positive cells, consistent with the proposed role for FOXP1 in human radial glia development130 

and with findings from FOXP1 knockout organoids133. In addition, our findings implicate the 

FOXP1R513H allele in altered differentiation of deep cortical layer and subplate neurons, which we 

confirmed by immunostaining for TBR1 (Figures 8J,K, S8K).  

 

Discussion 

While the understanding of ASD genetic architecture and the identification of large-effect ASD 

risk genes has advanced in the past decade, the translation of this knowledge into molecular 

mechanisms underlying ASD, and the attendant identification of tractable treatment targets, has 

been challenging7,10,137. To date, efforts at identifying convergent biology from the growing list of 

hcASD risk genes have relied predominantly on gene expression analyses and traditional model 

systems studies. Resources characterizing the proteomic landscape of ASD have been strikingly 

limited. Prior to the present analyses, only approximately 30% of hcASD genes have been the 

subject of empirically generated, systemic PPIs investigation, including in resources such as 

BioPlex48,51,52. Compilation datasets like BioGRID49,50 and InWeb51 provide interaction data for a 
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larger number of hcASD but suffer from challenges inherent in the aggregation of data from 

various experimental and analytic approaches. Here we confirm that the creation of large-scale 

empirically derived systematic data on PPI interactions related to large-effect ASD risk genes, 

and ASD-associated coding mutations therein, offer important insights into the biological 

mechanisms underlying ASD and offer new potential to generate and test highly specific 

mechanistic therapeutic hypotheses. 

In this study, we adopted an integrated approach that combines human genetics, protein-protein 

interaction mapping and artificial intelligence (using AlphaFold-Multimer) to characterize the 

convergence of hcASD genes at the molecular and cellular level. We employed AP-MS in 

HEK293T cells to map PPIs for the vast majority of hcASD risk genes identified in the study by 

Satterstrom et al. 20206, revealing 1,043 unique proteins connected to 100 hcASD through 1,881 

interactions, of which 87% were not previously reported. Using AF for pairwise predictions of 

direct PPIs, we found that 113 of the 1,881 interactions (or 84 of 1,043 interactors) were predicted 

as direct physical interactions. Furthermore, AF additionally connected 377 interactors to hcASD 

via one or more intervening direct interactors. 

We describe this dataset as “foundational” due to the scale of the investigation, the systematic 

approach to data generation, and the fact that it was derived in non-neuronal cells. We anticipate 

that additional studies currently underway in neural progenitor cells and iPSC-derived excitatory 

neurons will augment and further refine the understanding of ASD related PPIs as well as the 

consequences of ASD-associated mutations, capturing important context dependent data. We 

relied on HEK293T cells for this initial exploration as they have been very widely used to 

characterize the proteomic landscape of other human disorders28,36,38,39,42, facilitating multiple 

technical aspects of this study and allowing for key comparisons across datasets. Importantly, 

multiple lines of evidence point to the relevance of the PPI data generated in these cells for the 

human brain and for ASD. For example, genes encoding interactors are tightly co-expressed with 

hcASD genes, and the indicators identified here are highly enriched for independent sets of bona 

fide ASD risk genes, but not for a set of schizophrenia (SCZ) risk genes carrying similar rare, 

protein-disrupting coding mutations. Moreover, we demonstrate, via the in-depth study of FOXP1, 

that the consequences of disorder-associated mutation on binding to FOXP4, identified in 

HEK293T cells, are recapitulated in human forebrain organoids and result in a developmental 

phenotype consistent with a decade of analyses of convergence of human brain gene expression 

data14,17. 
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Notably, as the number of baits used to construct the ASD-PPI network increased, enrichment of 

ASD-associated genetic risk, including de novo variants and newly identified high-confidence 

ASD risk genes3, steadily increased, highlighting the potential of ASD-PPI in identifying and 

prioritizing additional ASD genes. Furthermore, we observed that ASD-PPI interactors tended to 

be more tolerant to damaging variants and to have lower selection coefficients than hcASD genes, 

potentially indicating that they contribute to ASD through recessive or polygenic inheritance. This 

suggests that PPI network-based gene discovery may be valuable for identifying additional ASD 

genes that may be missed by contemporary studies emphasizing haploinsufficient genes and rare 

heterozygous variants carrying large effect sizes. Furthermore, analyzing proteins in the context 

of their complexes can help interpret genomic data more effectively. For example, individual 

components of the PAF1 complex were not originally considered hcASD; however, our ASD-PPI 

map identified it as a central hub, and many of its components were just below the threshold used 

to define hcASD. Therefore, re-analysis of genomic data using modules or complexes will provide 

better insights into the underlying biology.  

Significant overlap in interactors was found between ASD-PPI baits, suggesting that despite 

significant phenotypic and genetic heterogeneity across individuals with ASD, a smaller number 

of underlying molecular pathways may be driving pathology and that patients can be stratified 

accordingly, enabling more approaches for targeted treatment. Large-scale studies have 

repeatedly demonstrated that deleterious genetic variants in the same gene can contribute to 

different conditions, including ASD, SCZ, epilepsy, and other forms of neurodevelopmental delay 

(NDD) including intellectual disability (ID)7. Thus, there is an ongoing debate about the specificity 

of rare variant risk, especially with respect to ASD and NDD138,1397. In our study, we observed 

enrichment of NDD risk genes within the ASD-PPI network as well as no distinction between ASD-

predominant and NDD-predominant hcASDs in the PPI network space, which could change as 

our power to distinguish ASD-specific versus shared genetic risk increases. Importantly, we do 

not observe enrichment of rare damaging variants identified in SCZ. 

The ASD-PPI network also revealed substantial convergence at both the cellular and molecular 

pathway levels. Specifically, we found that co-expression of both ASD-PPI-AF and ASD-PPI-

STRING networks were significantly increased in dividing neural progenitors, consistent with 

previous work in ASD7. We focused on DCAF7, which interacted with seven hcASD in the ASD-

PPI network, including DYRK1A and KIAA0232. Knocking down Dcaf7, Dyrk1a or Kiaa0232 in 

Xenopus tropicalis resulted in reduced telencephalon size, corroborating previous findings for 

DYRK1A while unveiling a novel function for DCAF7 and KIAA023217,101. Our data suggest that 
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all three genes may influence neurogenesis - consistent with longstanding observations in ASD - 

and underscore the potential functional overlap of DYRK1A/DCAF7 and other hcASD genes. 

Our data also revealed that among the 1,070 high-confidence interactions identified in the mutant 

ASD PPI network (ASDmut-PPI), which encompassed 54 patient-derived de novo damaging 

missense mutations across 30 hcASD risk genes, 117 interactions had higher affinity for mutant 

proteins, while 136 had higher affinity for wildtype proteins. This mutant network suggests that 

damaging hcASD variants share common changes in molecular function, with some protein 

interactors being commonly gained or lost across multiple mutant hcASD. Using AF, we provide 

molecular-level details of the interaction interfaces of PPIs, enabling mechanistic hypotheses on 

gain- and loss-of-functions by ASD-related mutations. As we observed that mutations in the 

interface are more likely to result in loss rather than gain of interaction, even for low-scoring AF 

predictions, this structural knowledge from AF appears to extend beyond the 113 pairs that pass 

the high-confidence score threshold. AF was not initially built as a tool to detect PPIs but has been 

used as such effectively81,82,140. In our study, based on the increased performance of mean AF 

score (instead of the common practice of using the maximum from several models), we 

determined that consistency in AF results is important for identifying true interactors, in line with 

previous findings suggesting that aggregate conclusions from models with similar predictions 

were more likely to be accurate141. Our data suggest that directly incorporating model variance 

into a score may help identify true direct interactors, but there is some indication that low variance 

among models may be partly due to AF modeling an already solved structure. While our approach 

did not make use of template structures, we did find low variance among model scores more often 

when there are homologous structures in the training set for AF. The association of low-variance 

with good AF models may be the result of training data availability and not a highly confident de 

novo elucidation of structure, and warrants further investigation. Even so, AF remains a valuable 

tool for applying all available structural knowledge (via its training set) to the problem of predicting 

presence of interaction interfaces and their make-up. 

Notably, our ASDmut-PPI highlighted the loss of interaction with FOXP4 for patient-derived 

mutations in the hcASD proteins FOXP1 and FOXP2. Given the central role for FOXP1 and 

FOXP2 in neurodevelopment, we hypothesized that these changes could impact neuronal 

differentiation. Prior studies have suggested that mutations in the forkhead box domain of FOXP1 

result in loss of transcription factor activity142,143. We and others have found that overexpression 

of mutant FOXP1 R513H in HEK293T cells (data not shown) resulted in the formation of protein 

condensates containing FOXP1, FOXP2, or FOXP4, potentially changing DNA-binding ability and 
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resulting in transcriptional dysregulation during neural development143. Interestingly, contrary to 

the anticipated loss-of-function144, the FOXP1 R513H mutation not only lost but also gained a 

large number of new DNA interactions, which correlated with changes in gene expression. 

Additionally, FOXP4, which failed to interact with FOXP1 R513H on a protein level, gained 

numerous DNA interactions in heterozygous FOXP1R513H/WT organoids. Our findings suggest that 

the presence of a mutant form of FOXP1 leads to rewiring of DNA binding for several transcription 

factors, including FOXP2 and FOXP4. These findings emphasize the importance of investigating 

the functions of patient mutations. 

Examining the impact of FOXP1R513H/WT in forebrain organoids revealed several phenotypic 

characteristics, including reduced abundance of radial glia, mirroring the effects of null alleles133. 

Interestingly, no major differences in deep cortical layer neuron differentiation were observed in 

organoids with homozygous null mutations in FOXP1, while heterozygous FOXP1R513H/WT 

organoids exhibited specific transcriptional dysregulation related to the differentiation of deep 

cortical layer neurons. This finding further underscores that patient-derived mutations do not 

merely replicate the effects of null mutations. The specific impact on the differentiation of 

glutamatergic neurons, with increased specification of TBR1+ deep cortical layer / subplate-like 

neurons, raises intriguing possibilities for the role of these mutations. The differential expression 

patterns of FOXP1, FOXP2 (broad expression) and FOXP4 (highly enriched in NPCs and early 

postmitotic neurons during deep cortical layer neurogenesis)62,145 in the developing forebrain and 

their potential impact on deep layer-like cell differentiation due to changes in DNA binding could 

be significant, but will require further confirmation using orthogonal models. Notably, similar 

alterations in deep cortical layer and subplate neuron differentiation have been reported in the 

study of idiopathic ASD patient-derived brain organoids146. It is important to note, however, that 

studies of ASD mutations using organoids are inherently limited by the virtue of their in vitro 

nature. While access to post mortem tissue from patients with FOXP1 R513H mutation is currently 

impractical and hampers direct validation of our findings, our results are consistent with previous 

systems biology work14,17 as well as observations in post mortem tissue from ASD patients that 

identified supernumerary neurons in deep cortical layers and the subplate146,147. 

Previously, we have used PPI mapping to gain insight into a variety of different disease areas, 

including cancer26,27, infectious diseases35,36,38–40, neurodegeneration34,148,149 and heart 

disease30,32. In this study, we built a PPI map to study ASD, the largest such dataset focused on 

a neuropsychiatric disorder, which can be used as a resource for the identification of ASD 

biomarkers and therapeutic targets. Importantly, in this study, we describe a pipeline that 
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combines the PPI data (wildtype and mutant) with AF, which allowed us to narrow in on specific 

interaction interfaces regulated by individual mutations that we analyzed in greater detail using a 

suite of tools including CRISPR-based genetics, stem cell differentiation and generation of 

organoids. This strategy (Figure 7A) represents a blue-print that can be used to interpret the 

genomic information from any genetically-defined disease or disorder, efforts that will rapidly 

uncover not only novel targets but inform specific therapeutic strategies.  
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Figure Legends 
 
Figure 1. Protein interaction mapping of hcASD reveals novel interactors. 

(A) Overview of the ASD-PPI and patient derived mutant networks. 

(B) Workflow to generate PPI data for 100 hcASD6 via AP-MS in HEK293T cells. 

(C) ASD-PPI contains a total of 1,881 interactions of which 235 are known and 1,646 are 

novel. 

(D) The distribution of the number of interactors per hcASD bait. The median number of 

interactors for the baits is 11. 

(E) Comparison of the number of hcASD proteins reported as a bait and the number of 

hcASD-associated interactions in various large-scale PPI datasets, including BioGRID, 

BioPlex, CORUM, InWeb, and Hein et al. 201548–52. Point size represents the number of 

unique hcASD interactors for each dataset. 

 

Figure 2. ASD-PPI interactors are expressed in the human brain and enriched for ASD 
genetic risk.  

(A) Differences in the median geneset expression percentile across n = 237 BrainSpan 

RNAseq prenatal brain samples150 for baits, interactors (-hcASD) and all other proteins 

expressed in HEK293T cells (‘Other’).  

(B) The relative expression levels of hcASD compared to interactors (-hcASD) within each of 

n = 524 BrainSpan RNAseq samples are significantly correlated (Pearson R2 = 0.81, 

p < 1 x 10-15). The relative expression within each brain sample was quantified by the 

difference between the median geneset rank of observed versus the median of 100,000 

permuted genesets.  

(C) BrainSpan RNAseq samples were grouped by developmental period150, where periods 1-

7 reflect prenatal stages of development and periods 8-15 reflect infancy through late 

adulthood. The relative expression levels of hcASD compared to interactors (-hcASD) 

across different periods are shown with an overlying Loess regression line, where gray 

shading reflects 1 standard error. The Spearman’s rho of the median rank difference of 

hcASD versus interactors (-hcASD) across periods was 0.946.  

(D) Geneset level burden test for de novo damaging variants in ASD probands compared with 

unaffected siblings from the Simons Simplex Collection6. 

(E) Enrichment of ASD-PPI interactors for three sets of ASD-associated risk genes and one 

set of SCZ-associated risk genes obtained from recent WES/WGS studies3–5,60.  
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(F-G)The effect of increasing the number of baits used to construct the ASD-PPI network on 

the ability to capture interactors associated with ASD genetic risk (F) or identify interactors 

that are high-confidence ASD risk genes (‘hcASD255’) as defined by the latest ASD WES 

omnibus study3 (G). We downsampled the ASD-PPI network by selecting random sets of 

n = 1 to 100 baits and trimming the ASD-PPI network to include only the selected baits 

and associated interactors. In (F), for each downsampled network, we calculated the 

geneset-level burden of de novo damaging variants in ASD probands compared with 

unaffected siblings for interactors (teal) and all remaining genes in the exome (red); 

excluding hcASD from the analysis. Solid lines depict the median p-values across 1000 

iterations; shaded regions indicate the median p-value +/- 1 standard error; the threshold 

for significance (p = 0.05) is labeled with a dashed black line. The median ORs for the 

genesets are labeled for ASD-PPI networks constructed using one bait (left) or 100 baits 

(right). Gray dashed lines indicate the ASD-PPI size at which the interactors captured a 

significant amount of ASD genetic risk (n = 16 baits) and when the interactors captured 

more ASD genetic risk than the remaining genes in the human exome (n = 52 baits). In 

(G), we defined ‘hcASD255’, brown, to be the n = 255 ASD risk genes with FDR < 0.1 and 

‘hcASD255 (-hcASD)’, blue, to be the n = 174 hcASD255 genes that are not among the 

previously identified set of hcASD genes6. For each downsampled network, we calculated 

the median number of hcASD255 genes among the interactors, with shaded regions 

reflecting median number of hcASD255) +/- 1 standard error. We additionally calculated 

the the odds of interactors being enriched for hcASD255 genes and indicated the 

threshold for significance (median p < 0.05) with a dashed line (n = 4 baits for hcASD255, 

n = 11 baits for hcASD255 (-hcASD)).  

(H) Relative co-expression of ASD-PPI (generated in HEK cells) and a previously published  

ASD-relevant PPI network (‘Pintacuda 2023’23, generated in iENs) across cell types from 

three prenatal brain atlases (‘Nowakowski 2017’62, ‘Polioudakis 2019’63 and 

‘Bhaduri 2021’67). hcASD-interactor (int) edges were defined by the indicated PPI network 

and int-int edges were extracted from STRING66 (see Methods). For each network, co-

expression of two genes was measured by the proportion of cells in a given cell type with 

detected expression of both genes. To account for global differences in gene co-

expression across cell types and differences in protein expression in the cell types that 

each PPI network was generated in, co-expression values were normalized by the cell 

type-specific average co-expression of all possible gene pairs. For each cell type, we 

evaluated whether the distribution of observed co-expression was significantly different 
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from that of all cell types. Color reflects relative network co-expression, size reflects p-

value, and edge color reflects significance. Abbreviations: div (dividing), EN (excitatory 

neuron), iENs (iPSC-derived EN), IN (inhibitory neuron), OPC (oligodendrocyte precursor 

cell), OR (odds ratio), prog (neural progenitor). 

Statistical tests: (A) T-test, (D, F, G) Fisher’s exact test (one sided, greater), (H) two-sample 

Wilcoxon rank sum. P-values corrected for multiple hypothesis testing (Bonferonni correction for: 

(A) three, (D) two, (E) four, (H) number of cell types in prenatal brain atlas x 2 tests). Boxplots in 

(A): boxes indicate first and third quartiles, line indicates the median and whiskers extend from 

the box to the highest or lowest value that is within the 1.5 × interquartile range of the box. Box 

and whisker plots in (D) (E): whiskers indicate 95% confidence interval.  

 
Figure 3. The ASD-PPI network demonstrates molecular convergence among hcASD.  

(A) Interactors and baits are arranged in two dimensions to best characterize their relative 

distances based on connectivity in our AP-MS data and shared GO annotations. Coloring 

of interactors is based on a selection of a small subset of the GO terms that are enriched 

in the full 1043 interactor set. GO terms are chosen to best cover the full set while 

balancing redundancy. See Methods for further details. 

(B) Interactor overlap with different baits in ASD-PPI, Breast cancer PPI and Kinome PPI as 

measured as proportion of significant overlap between the interactor-sets for all pairs of 

baits. Significant overlap is measured by p-values from hypergeometric tests, and the 

portion with p < 0.05 (CD < 0.05) is plotted. Each dataset was compared to 1000 random 

bait-int sub-networks of BioPlex, selected to have similar network size and degree, to 

establish a baseline. 

(C-F): PPI network for hcASD interaction with Mediator complex (C), Sin3 complex (D), PAF1 

complex (E), and AP2-mediated clathrin-coated pit complex (F). Dark lines show AP-MS 

edges, thin gray lines indicate CORUM or STRING edges, and gray shading indicates 

CORUM complexes. 

 

Figure 4. AlphaFold predicts PPI interaction interfaces.  
(A) Workflow of AF (Multimer) interface predictions for hcASD bait-int subnetworks. AF was 

run on every bait-int pair, and every int-int pair within a bait-int subnetwork. This resulted 

in two sets of completed predictions labeled bait-int (1763 runs) and int-int (29,850 runs). 

After filtering AF scores for direct interactions, the 113 bait-int pairs and 1168 int-int pairs 

provide a network of direct interactors overlaid on ASD-PPI (example subnetwork shown).  
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(B) Cumulative distributions of mean ipTM scores in four different sets of AF runs allows for 

comparison of enrichment of high scores between sets. Higher lines show greater 

proportions of high scores, with separation between wider horizontal lines equal to a 10-

fold increase in high scoring AF runs at a given threshold. Bait-int is enriched over bait-

random approximately 10-fold at mean ipTM > 0.75 and is enriched ~5-fold at mean ipTM 

> 0.50, the threshold we established (dotted vertical line). PPI found by Pintacuda et al. 

2023 are included for comparison. Distribution of individual scores shown at bottom, 

except for int-int which is too numerous, with NUP155-SMPD4 and DCAF7-DYRK1A 

indicated.  

(C) Number of AP-MS bait-int pairs (gray) or AF-supported bait-int pairs (blue) for each hcASD 

protein. Horizontal bars within each gray column show the number of interactors joined 

via direct and indirect interactions (a “complex” if all pairwise interactions are 

simultaneous) either to the bait (purple) or in the largest interactor-only “complex” (red) for 

interactor sets with no AF bait-int connection. 

(D) AF predicted structure for DYRK1A-DCAF7. Regions with very low AF confidence are 

hidden for surfaces (pLDDT < 25) and ribbons (pLDDT < 20). 

(E) AF modeling confidence (pLDDT) per residue plotted for DYRK1A-DCAF7 interaction with 

pLDDT scores ranging from 80 (moderate confidence, yellow) to 100 (maximum 

confidence, blue). DCAF7 is drawn as a surface and residues 80-110 on DYRK1A are 

drawn as ribbons. 

(F) Same view as (E), but colored by ConSurf score, a measure of sequence conservation 

per residue. Scores range from 1 (low conservation, green) to 9 (high conservation, 

purple). 

(G) AF predicted structure for NUP155-SMPD4. Regions with very low AF confidence are 

hidden for surfaces (pLDDT < 25) and ribbons (pLDDT < 20). 

(H) Relative co-expression of ASD-PPI-AF network for hcASD-int (top) and for a denser 

network including predicted int-int connections (bottom) across cell types from three 

prenatal brain atlases (‘Nowakowski 2017’62, ‘Polioudakis 2019’63 and ‘Bhaduri 2021’67). 

Relative co-expression across cell types was evaluated as in Figure 2H.  

 

Figure 5. DCAF7 is a nexus for multiple hcASD.  
(A) The top 7 ASD-PPI interactors, ranked by the number of hcASD interactions. 

(B) Enrichment tests evaluating whether BioGRID92 interactors of the seven indicated proteins 

are enriched for hcASD2553. Fisher’s exact test (one sided, greater), p-values not adjusted 
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for multiple hypothesis testing; whiskers indicate the 95% confidence interval, with upper 

interval cutoff set at OR = 15.  

(C) DCAF7 network showing interaction with hcASD genes. 

(D) Enrichment tests evaluating the overlap between DCAF7 BioGRID interactors and the 

ASD-PPI interactors for each of the 8 hcASD baits that bind DCAF7 in ASD-PPI. Fisher’s 

exact test (two-sided) gene universe was restricted to genes in the HEK293T proteome, 

p-values adjusted for 8 tests (Bonferroni). Whiskers indicate the 95% confidence interval, 

with upper interval cutoff set at OR = 100.  

(E) Workflow for sequential IP for DYRK1A (Flag-tag) and KIAA0232 (Strep-tag).  

(F) Sequence coverage by MS of significant interactors following sequential IP in (E) of 

DYRK1A and KIAA0232 highlighting DYRK1A, DCAF7 and KIAA0232. 

(G) Telencephalon sizes of Xenopus injected unilaterally with either guide RNAs against a 

non-targeted control or DCAF7, DYRK1A or KIAA0232. Data shows significant reduction 

in sizes plotted against the contralateral (noninjected) hemisphere for DYRK1A 

knockdown, DCAF7 knockdown or KIAA0232 knockdown. Scale bar: 50 μM. 

(H) CRISPR mediated knockdown shows reduced levels of DYRK1A, DCAF7 and KIAA0232 

respectively. 

(I) Quantitative RT-PCR in NPCs with DCAF7, DYRK1A or KIAA0232 knockdown shows 

significant decrease in PAX6, SOX2 or FOXG1 expression as compared to non-targeted 

control (NTC). Data is shown as mean + SEM, n = 3. 

n.s. nonsignificant, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 

 
Figure 6. Patient-derived hcASD missense mutations alter protein interactions.  

(A) Overview of the generation of the ASD mutant interactome (ASD-ASDmut-PPI). We 

prioritized damaging de novo missense mutations in hcASD with (MPC ≥ 2) that were 

observed in ASD individuals6. Strep-tagged WT and mutant variants were overexpressed 

in parallel in HEK293T cells and subjected to AP-MS. High confidence interactions were 

identified using SAINT and CompPASS, and log2(fold-change) of the interactor intensity 

between mutant and wildtype baits was calculated using MSstats.  

(B) Dot-plot visualization of the loss and gain of interactors in hcASD mutant variants, grouped 

by parent hcASD. Each dot represents a high-confident interactor in either the wildtype or 

the mutant baits. 

(C) Quantification of the differential protein interactors identified 117 interactors (red) to have 

higher affinity for the mutant hcASD and 136 interactors (blue) for the wildtype hcASD. 
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(D) Differential interactions identified from the ASDmut-PPI interactome. Diamond shapes 

denote the mutant baits and circles denote their respective interactors. The color scale of 

the edges corresponds to the specificity of the interactions, where blue edges have 

stronger affinity for the wildtype hcASD and red edges have higher affinity to the mutant 

hcASD. CORUM protein complexes among interactors are highlighted in yellow.  

(E) Multi-scale hierarchical layout of protein systems annotated based on whether the system 

has stronger evidence in ASDmut-PPI (green border) or ASD-PPI (pink border) as well as 

with mutant enrichment status (yellow fill: systems enriched for functionally disrupting 

mutated genes). Circle size corresponds to the number of proteins included in the 

respective system. Examples of systems that were either not affected by ASDmut-PPI 

(lower left) or had differential interactions from ASDmut-PPI (lower right) are shown below. 

Diamond shapes denote the mutant baits and circles denote their respective interactors 

in ASDmut-PPI; squares represent protein interactors not found in this study. Green 

highlights on nodes indicate ASD-related genes from Satterstrom et al. 20206 not included 

in our hcASD list (see Methods). Edge color corresponds to the source and specificity of 

interactions (black = no change between ASD-PPI and ASDmut-PPI, blue = stronger affinity 

for WT hcASD, red = higher affinity for mutant hcASD, gray = from other PPI databases).  

 
Figure 7. Mapping mutations using AlphaFold. 

(A) Workflow for prioritizing disease-relevant mutations based on AP-MS and AF structure 

predictions. 

(B,D,F) Differential ASDmut-PPI networks for PPP2R5DE198K (B), GNAI1I319T (D), and 

FOXP1R513H, FOXP1R513C, FOXP1L327P (F); blue and red lines indicate loss and gain of 

interaction with mutants, respectively [abs (Log2FC > 1)]. 

(C,E,G) AF structures for PPP2R5D interaction with PPP2CA with the E198 at the interaction 

interface (C), for GNAI1 interaction with Ric8A with the I319 at the interaction interface, 

and (G) for FOXP1 showing interaction with DNA and FOXP4. 

(H)IP-Western blot of either non-transfected control (NTC), Strep-tagged FOXP1WT, 

FOXP1R513C, FOXP1R513H or FOXP1L327P in HEK293T cells show loss of FOXP4 interaction 

in cells transfected with FOXP1 mutants. 

(I) Quantification of IP-Western. Data is shown as mean + SEM [n = 3, One way ANOVA, 

F = 16.34, p = 0.0009; Dunnett correction, adj. p = 0.0.0011 (vs. FOXP1R513C), adj p = 

0.0018 (vs. FOXP1R513H), adj p = 0.0141 (vs. FOXP1L327P). 
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Figure 8. Impact of FOXP1 mutation on neuronal development and differentiation.  
(A) Genome editing timeline for generation of FOXP1 R513H/WT. A correctly targeted clone 

and WT control were expanded and used for forebrain organoid differentiation. 

(B) Sanger sequencing of clonal iPSC lines with wildtype (FOXP1WT) or heterozygous FOXP1 

R513H mutation (FOXP1 R513H/WT). Mutated bases have two peaks, one for the WT alleles 

(CGC) and one for the mutant alleles (ACA). 

(C) Co-immunoprecipitation of FOXP1 for WT and FOXP1R513H/+ NPCs. Representative 

western blot is shown for FOXP1, FOXP4, and GAPDH as a loading control. 

(D) Quantification of (C). Interaction of FOXP4 and FOXP1 is significantly reduced 

(p = 0.0065, t = 5.205, df = 4). 

(E) Overlap of FOXP1 and FOXP4 DNA binding regions in WT (Left panel) and FOXP1R513H/WT 

(right panel). 

(F) Overlap of FOXP1 binding regions in WT and FOXP1R513H/+ (left) and FOXP4 binding 

regions in WT and FOXP1R513H/+ (right) 

(G) scRNA-seq UMAP from day 111 forebrain organoids. n = 2 technical replicates for both 

WT and FOXP1 R513H/+. IN: inhibitory neurons; EN: excitatory neurons. 

(H) Feature plots of deep layer/subplate markers TBR1 and HS3ST4. 

(I) UMAP showing distribution of cells from either WT or FOXP1R513H/WT forebrain organoids. 

FOXP1 R513H/WT cells are enriched in the EN-3 cluster, outlined in red.  

(J) Immunohistochemistry of day 39 forebrain organoids. TBR1 is expressed in subplate/deep 

layer neurons, and PAX6 is expressed in radial glia progenitors. VZ- and CP-like regions 

surrounding organoid rosette are shown. 

(K) Quantification of (J). n = 12 rosettes (WT), n = 15 rosettes (FOXP1 R513H/WT). 

Significance determined by Mann Whitney U tests with adjusted p-value calculated by 

Bonferroni correction for multiple comparisons. * = p < 0.05; **** = p < 0.0001. 

(L) Volcano plot of differentially expressed genes (DEGs) between WT and FOXP1 

R513H/WT in the EN-3 cluster. Genes with positive log2fc value are enriched in FOXP1 

R514H/WT cells, genes with negative log2fc value are enriched in WT cells. Significance 

determined by Wilcoxon Rank Sum test. Significant genes satisfy both log2FC cutoff = 0.2 

and p-value cutoff = 1 x 10-6. 

(M) IGV browser tracks of CUT&Tag data for FOXP1 and FOXP4, in both WT and FOXP1 

R513H/WT forebrain organoids. Two genes downregulated in FOXP1 R513H/+ (BCL11B 

and TENM2), and two genes upregulated in FOXP1 R513H/WT (SOX5, NEUROD2) are 

shown. These examples are shown to demonstrate the four patterns observed for changes 
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in binding in the FOXP1 R513H/WT mutant: loss of FOXP1 binding (shown in BCL11B); 

loss of FOXP4 binding (shown in TENM2); gain of FOXP1 binding (shown in SOX5); and 

gain of FOXP4 binding (shown in NEUROD2). H3K27ac marks putative enhancers. 

(N) Schematic representation of mechanism by which FOXP1R513H/WT alters differentiation by 

changing DNA binding of FOXP1 and FOXP4.  
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Supplemental Figures and Tables 
 
Supplemental Figure 1. Defining ASD-PPI high-confidence interactions, related to Figure 
1.  

(A) Workflow to determine SAINTexpress46 and CompPASS151 scoring cutoffs by maximizing 

sensitivity and specificity metrics for recovery of gold standard interactions from public 

databases48–52. 

(B) Precision (red) and recall (blue) analysis of known interactions using different 

combinations of SAINTexpress and CompPASS cutoffs. The dotted lines show the 

precision and recall values at the selected scoring cutoffs for ASD-PPI.  

(C) The kernel density plot displaying the scoring distribution of known interactions observed 

in the unfiltered PPI dataset. The dotted lines show the scoring cutoffs selected for ASD-

PPI and highlight the high density of known interactions at these cutoffs. 

(D) Overlap between the interactors identified for 13 hcASD proteins using endogenous IP-

MS in iPSC-derived excitatory neurons (iENs)23 and the combined interactors for the 

matched set of 13 hcASD baits (ASD-PPI subset) or all ASD-PPI. Odds ratios were 

calculated using Fisher’s exact test, with p-values adjusted for 2 tests (Bonferroni); the 

gene universe was restricted to the n = 2,552 proteins that are expressed in both 

HEK293T and iNs.  

(E) Geneset-level burden tests for enrichment of de novo damaging variants in ASD probands 

compared with unaffected siblings from the Simons Simplex Collection6. Genesets include 

the combined network generated for 13 hcASD proteins using endogenous IP-MS in iPSC-

derived excitatory neurons (iNs)23 and the matching network for 13 hcASD baits from ASD-

PPI (ASD-PPI subnetwork). Statistical significance was calculated using Fisher’s exact 

test (one sided, greater), and p-values were adjusted for 2 tests (Bonferroni).  

(F) Overlap between the interactors identified for 7 ASD risk proteins (3 of which were hcASD) 

using proximity labeling with baits overexpressed in HEK293T cells (‘HEK-PPI’)24 and the 

ASD-PPI interactors. The p-value was calculated using Fisher’s exact test (one sided, 

greater). 

(G) Overlap between the interactors identified for 41 ASD risk proteins (17 of which were 

hcASD) using proximity labeling with baits overexpressed in mouse cortical neurons 

(‘Mouse-PPI’)24 and the ASD-PPI interactors. The p-value was calculated using Fisher’s 

exact test (one sided, greater). 

(H) Geneset level burden tests for (F) HEK-PPI 
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(I) Geneset level burden tests for (G) Mouse-PPI.  

n.s. not significant, ∗p < 0.05, ∗∗∗p < 0.001 

 

Supplemental Figure 2. Interactors are expressed in contexts associated with ASD and 
enriched for ASD genetic risk, related to Figure 2. 

(A) The median geneset expression percentile for adult brain tissue samples from 13 brain 

regions in GTEx54 for three genesets - baits, interactors (excluding hcASD, ‘Interactors – 

hcASD)’), and all other proteins expressed in HEK293T cells (‘Other’). Differences in the 

median expression percentile between genesets was assessed by T-test; p-values were 

adjusted for multiple hypothesis testing (Bonferroni, 3 tests).  

(B) The relative expression levels of hcASD compared to interactors (-hcASD) in prenatal 

versus postnatal brain samples from BrainSpan150. The relative expression within each 

brain sample was quantified by the difference between the median geneset rank of 

observed versus median of 100,000 permuted genesets. Differences in relative 

expression between prenatal and postnatal samples were assessed by T-tests.  

(C) The relative expression levels of interactors (-hcASD) in GTEx brain samples across 13 

brain regions54 compared to that of permuted genesets selected from the HEK293T 

proteome. The relative expression within each brain region was quantified by the 

difference between the median geneset rank of observed versus median of 100,000 

permuted genesets. Red dashed line shows nominally significant p-value of 0.05, and 

orange dashed line shows significance adjusted for 13 tests (Bonferroni).  

(D) The distribution of evolutionary constraint metrics (pLI, misZ, shet, and synZ) for baits, 

interactors (-hcASD), and all other proteins expressed in HEK293T cells, The difference 

in score distribution between different genesets was assessed by T-test, with p-values 

corrected for 3 tests (Bonferroni).  

(E) ASD-PPI interactors are enriched for ASD and DD risk genes but not SCZ risk genes. The 

8 sets of ASD-associated risk genes were obtained from two recent WES studies (Fu et 

al. 20223: n = 255 genes; Zhou et al. 20225: n = 72 genes; and SFARI152: n = 230 

syndromic genes, n = 92 syndromic & category 1 genes, n = 206 category 1, n = 219 

category 2, n = 514 category 3, and n = 1020 SFARI genes (‘SFARI all’)). SCZ-associated 

risk genes were obtained from Singh et al. 202260: n = 34 genes. Risk genes associated 

with developmental disorders (DD) were obtained from Kaplanis et al. 2020153: n = 285 

genes. Enrichment was calculated using Fisher’s exact test (one sided, greater), with p-
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values adjusted for 10 tests (Bonferroni); the gene universe was restricted to the HEK293T 

proteome. 

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 

 

Supplemental Figure 3. ASD-PPI convergence metrics and comparison with other PPI data, 
related to Figure 3. 

(A) Distribution of the number of hcASD interactions for ASD-PPI interactors.  

(B) The distribution of number of interactors in ASD-PPI for all baits (green), baits that were 

more frequently mutated in ASD (orange, ASD-predominant; ASDP) and baits that were 

more frequently mutated in NDD (blue, ASDNDD)6. Shaded gray regions indicate baits with 

extremely large numbers of interactors (> 45). 

(C) Interactor overlap for all ASD-PPI bait pairs, ASDP bait pairs, ASDNDD bait pairs, and ASDP 

– ASDNDD bait pairs as measured as proportion of significant overlap between the 

interactor sets for all pairs of baits. Significant overlap is measured by p-values from 

hypergeometric tests, and the portion with p < 0.05 is shown.  

(D) Genome-wide rank and FDR for the five proteins of the PAF complex scored for their 

genetic association with ASD by Fu et al. 2022 (green) or Satterstrom et al. 2020 (orange). 

Ranks are based on FDR, with lowest FDR receiving the lowest rank, so points in the top 

right corner are the most associated with ASD. Curved lines are the FDR and rank 

association for all genes measured in each study. Dashed horizontal line is at FDR = 0.1, 

the threshold applied by Satterstrom et al. 2020. 

(E) Genome-wide rank for ASD-int (blue) scored for their genetic association with ASD by Fu 

et al. 2022 (y-axis) and Satterstrom et al. 2020 (x-axis). Members of the PAF complex are 

highlighted in red. Gray dots are for non-ASD-int genes. Dots are shown for proteins that 

rank in the top 8000 for both studies. Outside of this range, the linear relationship between 

gene ranks in the two genetics studies decreases. The blue horizontal and vertical violin 

plots and line segments show the distribution of all ASD-int, even those with rank less than 

8000 in one or both studies. 

 
Supplemental Figure 4. Comparison of different metrics for thresholding AF structure 
predictions, related to Figure 4. 

(A) Evaluation of three scoring metrics, confidence (red), ipTM (green) and pDOCkQ (blue), 

for AF dimer models for their ability to discriminate the bait-int from bait-random sets of 

proteins. Confidence is 0.8⋅ipTM + 0.2⋅pTM. Scores were evaluated by the ratio that 
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passed threshold in bait-int versus bait-random sets (y-axis) across a sliding threshold 

and compared based on the portion of bait-int they recall (x-axis). Greater areas under the 

curve reflect better performance. For thresholds that exclude all bait-random pairs, no 

value is shown as the ratio is undefined. The upper panel shows the use of the maximum 

score across all AF models and the lower panel shows the use of the arithmetic mean.  

(B) A comparison of different summary statistics for ipTM scores and their ability to 

discriminate the bait-int from bait-random sets. Summary statistics are evaluated by the 

ratio that passes threshold in the bait-int versus bait-random (y-axis) across a sliding 

threshold and compared based on the number of bait-int dimers they recall (x-axis). Mean 

and max are as in (A). Min is minimum, assigning the lowest score of any AF to the dimer, 

and adjMean is the arithmetic mean adjusted by subtracting two standard deviations for 

the model. At stringent thresholds, where bait-int counts are below 100, min and adjMean 

perform similarly and better than mean, but they become more equivalent at bait-int counts 

greater than 100. Dotted vertical line at count = 113 corresponds to the mean ipTM 

threshold of 0.5. 

(C) Estimates of false discovery rate (FDR) of direct interactors in the bait-int set when using 

different thresholds of mean ipTM as the classifier. Estimates are made by assuming that 

all bait-random pairs are true non-interactors or non-direct interactors, and thus the bait-

random pass rate is an estimate of false positive rate (1-specificity). We estimate the FDR, 

defined as (non-direct-interactors above threshold)/(all pairs above threshold), separately 

assuming that different portions (10, 25, 50%) of the bait-int sets are true direct interactors. 

The model used is that the bait-int dimers passing any threshold are composed of:  

(total number false in bait-int) x (bait-random pass rate at threshold) + (true positives). 

FDR rates are shown (colored horizontal lines and numbers) corresponding to the mean 

ipTM threshold of 0.5 (black vertical line). 

(D) Scatterplots showing relation between mean ipTM and standard deviation ipTM for all 

dimer pairs compared by availability of prior knowledge. A dimer pair gets classified as 

known instead of novel based on presence in a CORUM complex, a STRING-DB 

combined score greater than 0.5, presence in HumanNet gold standard set, or having a 

HumanNet score greater than 2.0. A dimer pair is classified as “homologous pdb” based 

on exhaustive sequence searches of PDB sequence records by BLAST. If both proteins 

in a dimer pair have detectable similarity (BLAST expect < 0.001) to different chains in a 

single PDB record, the pair is labeled “in pdb”. Numbers in each plot region are the number 

of AF models above and below the threshold of mean ipTM = 0.5. 
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(E) Amount of DYRK1A, FAM53C, and DCAF7 detected in AP-MS with Strep-tagged 

DYRK1A or DYRK1AΔ80-100. Significant interactions (SAINT 1-BFDR ≳ 0.95) are colored 

in red. 

 

Supplemental Figure 5. DCAF7, DYRK1A and KIAA0232 overlap functionally, related to 
Figure 5. 

(A) Interactors shared between DCAF7 AP-MS, DYRK1A AP-MS and sequential AP-MS for 

DCAF7 and DYRK1A. Red bars denote hcASD2553 while gray bars denote interactors 

other than hcASD255. 

(B) Overlap between hcASD255 genes and interactors of DCAF7-DYRK1A sequential IP 

reveal 9 shared hcASD genes. 

(C) ASD-PPI interactor enrichment for three sets of proteins associated with structures 

important for spindle organization (centriolar satellites103 and centrosomes104, two-

sided Fisher’s exact tests with Bonferroni correction). 
(D) Representative images showing immunostaining of DYRK1A (green), DCAF7 (blue), 

KIAA0232 (magenta) show co-localization of the three proteins with alpha tubulin on 

HEK293T cell mitotic spindles. Scale bar = 5 μM. 

(E) Representative images showing increased cell death in cortical neurons with DCAF7 

knockdown transduced with the red GEDI (RGEDI) biosensor at differentiation day 13. 

Images show morphology (GFP, left), cell death (RFP, middle) and overlay (right). Arrows 

point to a dying or dead cell (scale bar = 100 µm). 

(F) Fraction of dead cells (RFP+GFP+/GFP+) in NPCs with DCAF7 knockdown versus control 

on differentiation days 7 to 11. (n = 3, p < 0.00001). 

(G) Representative image of Ki67 staining in NPCs containing control (top) or DCAF7 gRNAs 

(n = 4 per condition) (scale bar = 100 µm). Images show nuclei (Hoechst, left), dividing 

cells (Ki-67, middle) and overlay (right).  

(H) Differences in Ki67 staining in NPCs with sgRNAs targeting DYRK1A, DCAF7, or 

KIAA0232.  

 

Supplemental Figure 6. Validation and metrics of convergence for ASDmut-PPI differential 
interactions, related to Figure 6. 

(A) hcASD255 enrichment in interactors with decreased (‘Down’) or increased (‘Up’) binding 

to mutant versus WT hcASD baits in ASDmut-PPI was assessed by two-sided Fisher’s 

exact tests with Bonferroni correction.  
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(B) Convergent changes in ASDmut-PPI. X-axis labels indicate individual interactors and in 

parentheses the number of significant interaction changes involving the interactor in 

ASDmut-PPI y-axis labels indicate the parent hcASD baits and in parentheses the number 

of variants in ASDmut-PPI. Point size reflects the number of hcASD variant baits with 

significantly changed binding to the indicated interactor and color reflects the proportion 

of hcASD baits variants with significantly changed binding to the indicated interactor. For 

example: there were four changed interactions with the interactor FOXP4 (highlighted in 

red text): three from FOXP1 variants (100%) and one from FOXP2 variants (100%). 

(C) Differential interaction of FOXP2-R570C and FOXP1-R513C, R513H and L327P with 

FOXP4. 

(D) Representative Western blot evaluating immunoprecipitation of Strep-tagged FOXP2-WT 

or FOXP2-R570C with FOXP4. 

 
Supplemental Figure 7. Mapped mutations onto AF models relate to functional changes 
based on their presence in interaction interfaces, related to Figure 7. 

(A) Distribution of mutant bait-int pairs from the ASDmut-PPI network based on distance of the 

mutated residue to the interaction interface (y axis). The mutant bait-int interactions are 

classified as down (interactions that are weakened), no change, and up (interactions that 

are enhanced) in presence of a mutation. 

(B-D) Confidence (pLDDT) per residue plotted for PPP2R5D-PPP4C (B), GNAI1-RIC8A (C), 

and FOXP1-FOXP4 (D) with pLDDT scores ranging from 0 (red) to 100 (blue). 

(E) EVE scores123 of hcASD missense mutations in ASDmut-PPI (higher scores reflect higher 

predicted pathogenicity).  

 
Supplementary Figure 8. FOXP1R513H differentially regulates neuronal gene expression, 
related to Figure 8. 

(A) Confirmation of forebrain identity by IHC staining for FOXG1 (green) in both FOXP1 

R513H/WT and WT organoids. 

(B) Additional quantifications from IP-WB from Figure 8C, showing no change in FOXP4 (left) 

or FOXP1 (right) expression between FOXP1R513H/WT and WT NPCs. Abbreviations: IP- 

Immunoprecipitation 

(C) CUT&Tag estimated library size for replicates 1 and 2, for both FOXP1 R513H/WT and 

WT organoids at D111. Libraries for FOXP1 binding are shown in orange, and libraries for 

FOXP4 are shown in green. 
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(D) Gene and UMI count, and mitochondrial percentage for FOXP1 R513H/WT and WT 

organoid scRNA-seq at D111. 

(E) Gene and UMI count, and mitochondrial percentage across clusters. 

(F) Cell-type specific genes used to annotate scRNA-seq clusters, shown in Figure 8G. 

(G) Cluster proportion graph showing distribution of cells from either FOXP1 R513H/WT or 

WT forebrain organoids in each cluster. FOXP1 R513H/WT cells are enriched in EN-3. 

(H) Volcano plot from Figure 8L with additional genes annotated. 

(I) Enrichment of hcASD255 (Fu et al. 2022) in FOXP1 differentially bound genes (DB, left 

panel) and cell-type specific differentially expressed genes (DEGs, middle panel: 

upregulated in FOXP1R413H/WT, right panel: upregulated in FOXP1R514H/WT). Two-sided 

Fisher’s exact tests, p values adjusted for multiple hypothesis testing (Bonferroni 

correction, 16 tests). 

(J) Scatter plot showing correlation of CUT&Tag FOXP1 differential peaks between FOXP1 

R513H/WT and WT (x-axis) and scRNA-seq DEGs between FOXP1 R513H/WT and WT 

in EN-3 cluster (y-axis). 

(K) Full images that were cropped around rosettes and quantified for Figure 8J-K. While 

minimal TBR1 expression (was seen in the cropped images for the WT as compared to 

FOXP1R513H/WT, full images show that TBR1 is expressed in these organoids. 

 

 

Supplemental Table 1. Related to Figure 1 and S1 
Supplemental Table 2. Related to Figure 2 and S2 
Supplemental Table 3. Related to Figure 3 and S3 
Supplemental Table 4. Related to Figure 4 and S4 
Supplemental Table 5. Related to Figure 5 and S5 
Supplemental Table 6. Related to Figure 6 and S6 

Supplemental Table 7. Related to Figure 7 and S7 
Supplemental Table 8. Related to Figure 8 and S8 
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Methods 
Cloning hcASD risk genes 
The coding sequence of each hcASD risk gene was cloned into a pcDNA4 plasmid with either N- 

or C-terminal 2xStrep tags, which encode the bait proteins for the AP-MS study (Table S1). The 

terminus position of the tags was determined so that the tag will not interfere with the protein 

function based on the prior reported plasmids that have been used in functional studies. The 

isoforms for the hcASD risk gene were chosen based on high brain expression levels as well as 

the high frequency of mutations observed in ASD using Clonotator (http://ec2-52-91-98-

53.compute-1.amazonaws.com/login/). All constructs were sequence validated. 

 

Cell culture 
HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Corning) 

supplemented with 10% fetal bovine serum (FBS; Gibco, Life Technologies) and 1% penicillin–

streptomycin (Corning). All cells were maintained in a humidified incubator at 37 °C with 5% CO2. 

hiPSCs (WTC11, 13234) were cultured on Matrigel (Corning #354230) coated plates in StemFlex 

Medium (Gibco #A3349401) with 100ug/ml Primocin (Invivogen #ANTPM1). Cells were 

passaged 1:10 every 3 days using ReLeSR (StemCell Technologies #05873). Cells were 

maintained in a humidified incubator at 37°C with 5% CO2. 

 

Transfection 
Each transfection (102 baits, one GFP control and one empty vector control) was carried out in 

a 15cm dish with 10 million HEK293T cells (70-80% confluency), with three biological replicates 

per bait. Transfections were split in 15 batches, with three biological replicates of GFP and empty 

vector controls included in each batch. For each transfection, 15 μg of Strep-tagged plasmids 

was combined with PolyJet Transfection Reagent (SignaGen Laboratories) at a 1:3 μg:μl ratio of 

plasmid:transfection reagent, incubated at room temperature for 10 mins, and added dropwise to 

HEK293T cells. About 48h post transfection, cells were resuspended at room temperature using 

10 ml Dulbecco’s phosphate-buffered saline without calcium and magnesium (DPBS) 

supplemented with 10 mM EDTA, followed by centrifugation at 200g, 4 °C for 5 min. Cell pellets 

were frozen on dry ice and stored at −80 °C. 

 

Affinity purification 
The cell pellets were thawed on ice and then lysed with 1 ml ice-cold lysis buffer (IP buffer (50 

mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.5% Nonidet P40 substitute (NP40; Fluka 
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Analytical), cOmplete mini EDTA-free protease and PhosSTOP phosphatase inhibitor cocktails 

(Roche)). Samples were then flash-frozen on dry ice for about 10 min and partially thawed at 

37°C for 30-45s before incubation for 30 min at 4 °C on a tube rotator. Lysates were centrifuged 

at 13,000g, 4 °C for 15 min to clarify lysate and pellet debris. A 50 μl lysate was reserved at this 

point for future experiments such as Western blot. The remaining lysates either underwent 

automated affinity purification on the KingFisher Flex Purification System (Thermo Scientific), 

which was first equilibrated to 4°C in the cold room or were processed for immunoprecipitation 

for validation.  First, MagStrep ‘type3’ beads (30 μl; IBA Lifesciences) were equilibrated twice 

with 1 ml wash buffer (IP buffer supplemented with 0.05% NP40) and incubated with 0.95 ml 

lysate for 2 h. Beads were washed 3 times with 1 ml wash buffer and once with 1 ml IP buffer, 

then resuspended in 50 μl denaturation–reduction buffer (2 M urea, 50 mM Tris-HCl pH 8.0, 1 

mM DTT) and 50 μl 1× buffer BXT (IBA Lifesciences) and dispensed into a single 96-well 

KingFisher microtitre plate. Purified proteins were eluted at room temperature for 30 min with 

constant shaking at 1,100 rpm on a ThermoMixer C incubator. 

For immunoprecipitation, the lysate was incubated with MagStrep ‘type3’ beads (30 μl; IBA 

Lifesciences) for 2 h at 4C, followed by washing with 1ml wash buffer (IP buffer supplemented 

with 0.05% NP40) three times. The resulting washed beads were mixed with 6X Laemmli SDS 

Sample buffer (Boston Bioproducts, Cat#BP-111R), heated at 95C for 5 mins and loaded onto 

SDS-PAGE for Western blot. 

 

On-bead digestion 
Bead-bound proteins were denatured and reduced at 37 °C for 30 min, brought back to room 

temperature, alkylated in the dark with 3 mM iodoacetamide for 45 min and quenched with 3 mM 

DTT for 10 min. To offset evaporation, 15 μl 50 mM Tris-HCl, pH 8.0 were added and proteins 

were digested with 1.5 μl trypsin (0.5 μg/μl; Promega) with constant shaking at 1,100 rpm and 

incubation at 37 °C on a ThermoMixer C incubator for 4 h, and again for 1–2 h with 0.5 μl 

additional trypsin. Resulting peptides were combined with 50 μl 50 mM Tris-HCl, pH 8.0 to rinse 

beads and then, acidified with trifluoroacetic acid (0.5% final, pH < 2.0). Desalting was conducted 

in a BioPureSPE Mini 96-Well Plate (20 mg PROTO 300 C18; The Nest Group) according to 

standard protocols. 

 
MS data acquisition and analysis 
To prepare for mass spectrometry, samples were resuspended in 4% formic acid, 2% acetonitrile 

solution, and separated by a reversed-phase gradient over a Nanoflow C18 column (Dr Maisch). 
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Each sample was directly injected via an Easy-nLC 1200 (Thermo Fisher Scientific) into a Q-

Exactive Plus mass spectrometer (Thermo Fisher Scientific) and analyzed with a 75 min 

acquisition, with all MS1 and MS2 spectra collected in the orbitrap; data were acquired using the 

Thermo software Xcalibur (4.2.47) and Tune (2.11 QF1 Build 3006). For all acquisitions, QCloud 

was used to control instrument longitudinal performance. All proteomic data were searched 

against the human proteome (UP000005640_9606, downloaded in October 2021) using the 

default settings for MaxQuant software (version 1.6.12.0) (Cox & Mann, 2008) with match-

between-runs (MBR) feature turned on. Briefly, the MBR algorithm annotates unidentified peaks 

by assessing and comparing the retention times of the identified peaks in an MS1 

spectrum.  Detected peptides and proteins were filtered to 1% false-discovery rate in MaxQuant, 

and identified proteins were then subjected to protein–protein interaction scoring with both 

SAINTexpress (v.3.6.3)46 and CompPASS (version 0.0.0.9000)47,48. 

 

Removal of carryover effect and identification of high-confidence interactors 
A crucial step in our AP-MS study is the probabilistic scoring of all quantified proteins in the 

dataset to identify high-confidence interaction proteins (HCIP) of the ASD risk genes. To do this, 

the scoring outputs from existing computational tools such as CompPASS (Comparative 

Proteomic Analysis Software Suite)47,48 and SAINTexpress46 were systematically combined. 

These two scoring algorithms are widely used in the proteomics community to score the quality 

of protein-protein interactions as distinct from background. 

Input files - bait, prey and interaction files - for SAINTexpress were made using 

artmsEvidenceToSaintExpress function in an open-sourced R package, artMS154. The interaction 

input file for SAINTexpress was reformatted to be used as a CompPASS input file. As 

CompPASS requires all baits to have the same number of preys, we defined spectral counts for 

the union of all identified proteins across all AP-MS experiments for each bait; if the bait-prey 

interaction was not detected, its spectral count was assigned to be zero. This bait-prey spectral 

count matrix was used to search for carryover effect, which was defined as proteins with a 

continuous decrease in spectral counts in replicates where such proteins were used as baits in 

the previous sample injections. The resulting bait-prey spectral count data table after carryover 

removal was reformatted and used as the input file for SAINTexpress and CompPASS. 

To determine the scoring cutoffs that capture the highest number of true interactions, a gold 

standard set of protein-protein interactions was manually defined. Gold standard interactions 

were extracted from publicly available large-scale PPI databases, Hein et al.52,  InWeb51, CORUM 
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(Core Corum Complexes, Corum 3.0)50, BioPlex48, and BioGrid49,92, with some additional filtering 

steps for BioGrid and InWeb. As BioGrid contains interactions from various sources, including 

both experimental and predicted, the dataset was filtered to only interactions that were attained 

using another experimental method in addition to the AP-MS method. Similarly, InWeb databases 

were filtered for interactions that have a high-confidence score of > 0.95 and are identified through 

an experimental method.  

SAINTexpress (version 3.6.3) was run batch-wise, each batch with its own empty-vector and 

GFP replicates as controls. The outputs were then concatenated to a single SAINTexpress 

output. CompPASS was run using the R package, cRomppass 

(https://github.com/dnusinow/cRomppass). The scoring outputs from SAINTexpress and 

CompPASS were merged for each interaction. The SAINTexpress Bayesian False Discovery 

Rate (BFDR) and CompPASS WD score (rank_WD, ranked from 0 to 1 across the dataset) were 

used as prediction confidence scores. Using the ranked CompPASS WD score (rank_WD) as a 

predictive value and interactions found in the previously described manually curated gold 

standard PPI database as true positives, the optimal rank_WD score cutoff for each 

SAINTexpress BFDR increment was determined by calculating Youden’s index. The best 

performing composite score of SAINTexpress and CompPASS (out of 78 composite scores) was 

determined by calculating precision, recall and F1 scores. 

 

Selection and cloning of Missense Mutations for AP-MS studies  
Satterstrom et al. considered combined deleterious effects of both protein truncating variants 

(PTVs) and missense variants to generate a list of genes that are highly associated with ASD in 

family studies. To quantitatively measure functional effects of these variants, they calculated 

“probability of loss-of-function intolerance” (pLI) scores for PTVs and an integrated score called 

MPC for missense mutations. There are three tiers for MPC score (≥2, 1-2, 0-1) which are in the 

order of decreasing functional impact. When evaluating the MPC scores of de novo missense 

variants, Satterstrom et al. found that MPC ≥ 2 are 2.2-fold more enriched in cases. To study 

protein interaction changes using AP-MS, we focused on these missense mutations in hcASD 

risk genes with MPC≥ 2. This resulted in 87 de novo missense mutations in 43 hcASD risk genes. 

The missense mutations were introduced in the wildtype version of the pcDNA4 construct using 

Q5 site-directed mutagenesis and used in the usual AP-MS pipeline described above. After 

checking for expression of the variants in HEK293T cells and further quality control, 33 variants 

across 13 hcASD were removed.  
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PPI scoring for Missense Mutations in AP-MS studies  
Following the identification and quantification of proteins using MaxQuant, high confidence 

interacting proteins (hcIP) were identified by running both SAINTexpress and CompPASS after 

carryover effects were removed. ASD-PPI refers to the AP-MS dataset generated from 102 

hcASD risk genes. ASDmut-PPI refers to AP-MS dataset generated from 87 de novo missense 

mutations in 43 hcASD risk genes, along with repeated AP-MS of their respective wildtype 

constructs as controls for differential interaction analysis, and the usual empty-vector and GFP 

controls. SAINTexpress was run batch-wise, using empty vector and GFP constructs as controls. 

To have better specificity in identifying hcIPs using CompPASS, a larger input dataset was 

created by combining the ASD-PPI CompPASS input with ASDmut-PPI input. CompPASS was 

then run using the CompPASS input for ASD-PPI WT network as the background stats table. 

hcIPs were identified using the scoring cutoffs previously optimized from the wildtype ASD-PPI 

network: SAINTexpress score (1-BFDR) ≥ 0.95 and CompPASS score (rank_WD) ≥ 0.971. We 

removed new hcIPs identified for ASD-PPI; these were likely a result of rerunning CompPASS on 

the ASD-PPI input together with ASDmut-PPI creating a different background model. We retained 

only hcIPs from the mutant AP-MS experiments (including from their WT quantitative controls) to 

build the ASD_mut-PPI interactome. As a first step for quantifying differential interactions, we 

normalized interactor peptide intensity values to baits levels to account for variation in bait 

expression. This bait normalization was completed within each AP-MS run using a Tukey Median 

Polish normalization method on all bait peptides to calculate and remove the bait-variation across 

all peptides in the run. Following normalization, we quantified the changes observed in interactors 

between wildtype and mutant baits, using the R package MSstats (Choi et al. 2014). Using the 

default parameters, except to disable further normalization, we used the functions dataProcess 

and groupComparison on the normalized intensity values to run differential analysis between 

wildtype and mutant groups. Differential interactors were then identified using thresholds p < 0.05 

and Log2FC > 1. 

 

ASD-PPI protein expression in HEK293T cells 
We defined the HEK293T proteome to be the n=11,133 proteins with detected protein expression 

in a published global quantitative mass spectrometry dataset155. We defined the protein 

expression level to be the average intensity based absolute quantification (iBAQ) scores for the 

two HEK293T experimental replicates reported in Supplementary Table 7. For subsequent 
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analyses, we defined HEK293T proteome genes to be the union of proteins with non-zero iBAQ 

scores in Bekker-Jensen et al. 2017 and ASD-PPI interactors.  

 

Network Layout of Baits and interactors 

The total network showing AP-MS detected interactions between 100 hcASD baits and their 

connections to 1043 prey plus connections to other baits was laid out using t-SNE (R package 

Rtsne) on a weighted combination of distance based on shared Gene Ontology annotations 

(weight = 4) and distance based on shared AP-MS connections (weight = 1). Binary distances, 

equivalent to 1-Jaccard similarity, were used for both distances. For GO distances, to create a 

limited set of 141 GO terms that maximally cover and describe the set of 1043 interactors, the 

GO terms were limited to those significantly (FDR < 0.05) enriched in the full set of 1043 

interactors and further limited to only those terms that were the top-enriched term (by p value) per 

at least one interactor.  Enrichment was computed and scored by the function enricher in the R 

clusterProfiler package using GO annotations from all GO in org.Hs.eg.db (R package) and 

limiting GO terms to those with at least 20 and at most 500 genes. Interactors were assigned to 

terms according to their GO annotations. Baits were assigned to these GO terms based on 

significant (p value < 0.05) enrichment in their set of interactors using the set of 1043 as 

background (universe), or when no significant enrichment existed, simply the one term (of 141) 

with highest number of interactors per bait. For network distances, a symmetric adjacency matrix 

was built where each bait and interactor were connected to itself and to each protein that it 

connects to by a direct AP-MS interaction, and binary distances were computed on rows of the 

matrix. After layout by t-SNE (default settings except is_distance = TRUE and theta = 0.0), protein 

two dimensional coordinates were adjusted to avoid overlapping nodes using an iterative, 

repulsive algorithm. The final image was formatted and drawn using the R package ggplot2, 

mostly with functions geom_point and geom_segment.  Coloring of interactors was based on a 

subset of the GO terms chosen to best cover the 1043 interactors in a non-redundant fashion with 

a small number of terms. For this term selection, an additional GO enrichment run was completed, 

allowing terms to have at most 2000 genes, and including additional terms that described 

interactors previously undescribed by the 141 terms. Clustering rows and columns of the 

annotation matrix, 1043 genes x 186 terms, was performed to aid in this manual selection. In the 

network view, where a gene is annotated to more than one of the chosen terms, it is assigned the 

color whose median 2D location on the plot it is closest to. 

 

Comparing convergence in prey sets  
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Convergence in an AP-MS network, the interaction of multiple baits with the same interactor, was 

measured by the portion of of all possible paired baits that had a statistically significant (p < 0.05) 

number of overlapping (convergent) genes as measured by a hypergeometric test with a 

background size of 11,169 proteins (the number of proteins in a HEK293T proteome; Bekker 

Jensen, 2017). To calculate a baseline, considering a study's network size and degree distribution 

of the baits, we used random samples of baits from BioPlex to match each study. For each actual 

bait in a study, a random bait was chosen from BioPlex that had an identical number of interactors 

(degree), or from among the smallest balanced window of degree around the actual degree that 

included at least 100 different baits. 1000 randomly assembled networks were used for each 

study, and the full all-pair hypergeometric tests were done per randomly assembled network. 

 

Comparison of ASD-PPI and Pintacuda et al. 2023 PPI network 
Pintacuda et al. 2023 reported a PPI network for 13 ASD risk genes in using IP-MS of endogenous 

proteins in human excitatory neurons derived from iPS cells23. Interactors from Pintacuda 2023 

were extracted from Supplemental Table S3 ('Interaction_Annotations' sheet). 

We used Fisher's enrichment tests (one-sided, greater) to assess whether there was greater than 

expected overlap in the combined interactors for all n=13 hcASD index proteins in Pintacuda 2023 

and 1) the subset of ASD-PPI interactors from the matched set of n=13 hcASD baits; and 2) all 

ASD-PPI interactors from n=100 hcASD baits. We defined the universe of genes to be the set of 

n=2552 genes that are in the HEK293T proteome and in the set of detected proteins in Pintacuda 

et al. 202323,156 (Pintacuda 2023 Table S3, union of the interactor and non-interactor proteins in 

the combined network). The 2x2 contingency table was defined as: X, the number of ASD-PPI 

interactors that are Pintacuda 2023 combined network interactors; Y; the number of ASD-PPI 

interactors that are not Pintacuda 2023 combined network interactors; Z, the number of Pintacuda 

2023 interactors that are not ASD-PPI interactors; W, the number of genes that are not interactors 

in either ASD-PPI or Pintacuda 2023 combined network. 

We additionally assessed whether damaging de novo variants in Pintacuda 2023 interactors or 

ASD-PPI subset interactors are associated with ASD. We focused on de novo damaging variants 

identified from the Simon’s Simplex Collection (Satterstrom et al. 20206 Supplementary Table 1). 

We defined “damaging” variants to be variants that resulted in a damaging missense mutation 

(Polyphen Mis3 (damaging); or MPC Mis B (MPC>=2)) or PTV (frameshift, stop gained, or 

canonical splice site disruption). 
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(ssc_enrichment/scripts/01_format_satterstrom2020_SSC_variants.R). We defined 2 genesets 

of interest: 

1. Pintacuda 2023 interactors: interactors from combined network in Pintacuda et al.2023 

(n=979 genes). 

2. ASD-PPI subnetwork interactors - hcASD13: ASD-PPI_13 interactors, excluding 

hcASD13 (n=222 genes) 

For each Fisher's enrichment test, the universe of genes was defined to be the geneset members, 

and the 2x2 contingency table was: X, the number of ASD probands with a damaging variant in 

at least one gene in the geneset; Y; the number of control siblings with a damaging variant in at 

least one gene in the geneset; Z, the number of ASD probands with no damaging variants in any 

gene in the geneset; W, the number of control siblings with no damaging variants in any gene in 

the geneset. We calculated the enrichment odds ratio with Fisher’s exact test (one sided, 

alternative = greater), and adjusted p values for multiple hypothesis testing (Bonferroni correction, 

p.adj = p*number genesets assessed). 

We assessed whether there is significant difference in ORs for the Pintacuda 2023 complete 

network and the ASD-PPI_13 subnetwork (baits + interactors) using the Breslow Day test (R 

DescTools::BreslowDayTest). We found no significant difference (p=0.085). 

 

Comparison of ASD-PPI and Murtaza et al. 2021 PPI networks 
Murtaza et al. 202124 report ASD-relevant PPI networks generated by overexpressing baits and 

identifying interactors via in vitro proximity labeling (BioID2), including: 

1. HEK-PPI: 7 ASD risk genes in HEK293T cells (3 baits overlapping with ASD-PPI baits) 

2. Mouse-PPI: 41 ASD risk genes in mouse primary neurons co cultured with glia (17 baits 

overlapping with ASD-PPI baits). ASD risk genes were selected to have non-nuclear 

cellular localization. 

HEK-PPI data was obtained from Murtaza et al. 2023 Table S2. We converted "Gene" column 

from mouse to human ontology (GRCm39 to GRCh38.p13) and removed those that did not map 

to human genes, self-interactions, and non-significant interactors ("HEK_Biotinylation" column = 

"NS"). This resulted in n=539 unique interactors (original 710). 

Mouse-PPI data was obtained from Murtaza et al. 2023 Table S1. We trimmed Table S1 to the 

41 ASD risk genes, converted "Prey" interactors from mouse to human ontology (GRCm39 to 
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GRCh38.p13). We removed interactors that did not map to human genes and removed self-

interactions, resulting in n=807 unique interactors (original 1107).  

We defined the mouse brain proteome set of background genes using data from Murtaza et al. 

2023 Table S5. We started with the list of mouse brain proteome genes in sheet "Mouse Brain 

Protein List", converted the genes from mouse to human ontology (GRCm39 to GRCh38.p13), 

and removed genes that did not map to human genes. The final list consists of 8,678 genes 

(originally 11,992).  

  

We conducted a Fisher’s exact test (one sided, greater) to evaluate the overlap between Murtaza 

2023 HEK-PPI (7 baits) and combined interactors from ASD-PPI (100 baits) and HEK-PPI (7 

baits). We defined the universe of genes to be the HEK293T proteome (union of Bekker Jensen 

2017, ASD-PPI interactors, and HEK-PPI interactors, n=11,181 genes). The 2x2 contingency 

table was defined by ASD-PPI interactor (yes/no) and HEK-PPI interactor (yes/no). We conducted 

a second Fisher’s exact test (one sided, greater) to evaluate the overlap between ASD-PPI (100 

baits) and Mouse-PPI (41 baits). We defined the universe of genes to be the intersection of the 

HEK293T proteome and mouse brain proteome (n=7049 genes). The 2x2 contingency table was 

defined by ASD-PPI interactor (yes/no) and Mouse-PPI interactor (yes/no). 

  

We determined the association between having a damaging variant in different genesets of 

interest with ASD status. We defined the following genesets: 

● ASD-PPI interactors: all ASD-PPI interactors from n=100 hcASD baits (n=1,074) 

● HEK-PPI interactors: all interactors from Murtaza 2023 HEK-PPI that map to human genes 

(536 interactors from 7 baits) 

● Mouse-PPI interactors: all interactors from Murtaza mouse-PPI that map to human genes 

(792 interactors from 41 baits) 

Fisher’s enrichment tests were conducted as described in “Comparison of ASD-PPI and 

Pintacuda et al. 2023 PPI network”.  

 

Interactor expression in adult brain tissue (GTEx) 
The Genotype-Tissue Expression (GTEx) project includes RNA-sequencing data from 54 non-

diseased tissue sites across nearly 1,000 adult donors54. We downloaded GTEx v8 data (dbGaP 

Accession phs000424.v8.p2) from the GTEx website (https://www.gtexportal.org/home/datasets), 
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which contains median gene-level TPM for samples from 54 tissue types, including 13 brain tissue 

sites. (gtex/scripts/01_downloadGtexData.R) 

We assessed whether ASD-PPI genes are more highly expressed in GTEx brain tissues 

compared to other HEK293T expressed proteins. We defined HEK293T expressed proteins as 

the union of proteins detected by global quantitative mass spectrometry155 and ASD-PPI 

interactors. We defined genesets of interest to be baits, interactors (excluding hcASD102), and 

HEK293T expressed proteins that are not baits or interactors. For each geneset, we found the 

median geneset expression percentile within individual brain tissue samples and performed T-

tests to assess whether these were significantly different across genesets. P values were adjusted 

for multiple hypothesis testing (Bonferroni correction, p.adj = p x 3 tests). (Figure S2B, 

gtex/scripts/02_GTEx_asdPPI100_analysis.R) 

We evaluated whether interactors are more highly expressed in GTEx brain samples compared 

to permuted genesets from the HEK293T proteome. We created 100,000 permuted genesets 

from a universe of n=10,984 genes that are in the HEK293T proteome, measured in GTEx RNA-

sequencing data, and not ASD-PPI baits. The probability of gene selection was weighted by 

HEK293T iBAQ scores155 and permuted genesets were required to have a median HEK293T 

iBAQ rank within 1 quantile of that of ASD-PPI interactors. We calculated the median geneset 

expression rank for interactors (observed) and for the 100,000 permuted genesets (null 

distribution) in GTEx brain tissue samples, where higher rank reflects higher relative expression 

within a sample. We then calculated the permuted significance of the observed ASD-interactor 

GTEx expression rank within each tissue type. P values were adjusted for multiple hypothesis 

testing (Bonferroni correction, p.adj = p x 13 brain regions). We found that 3 brain tissues - 

cerebellum (p.adj = 0.0023), cerebellar hemisphere (p.adj = 0.0043), and cortex (p.adj = 0.626, p 

= 0.048) - had at least nominally significantly higher median genset rank for interactor genes 

compared to permuted genesets. (Figure S2C, gtex/scripts/02_GTEx_asdPPI100_analysis.R) . 

 

hcASD102 and interactor expression in human brain tissue (BrainSpan RNAseq data) 
The BrainSpan developmental RNAseq dataset (‘bsRNAseq’) profiled human brain tissue RNA 

expression across the full course of human brain development, from early prenatal stages through 

late adulthood150. BsRNAseq data (n=524 samples) was downloaded from brainspan.org. The 

original 52,376 genes were trimmed to a final set of 18,552 protein-coding genes associated with 

an HGNC symbol; if a HGNC symbol was associated with multiple Ensembl Gene IDs, only one 
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was kept. Expression values were reported in reads per kilobase million (RPKM). 

(bsRNAseq/scripts/ 01_download_format_bsRNAseq.R) 

 

Expression of ASD-PPI genes and other HEK293T proteins in prenatal brain tissue: We assessed 

whether ASD-PPI genes are expressed at relatively higher levels in BrainSpan prenatal samples 

compared to 293T background genes. We defined 3 genesets of interest:  

- Baits: ASD-PPI baits; 

- Interactors: ASD-PPI interactors, excluding hcASD102; 

- Other: n= 10,046 genes that are in the HEK293T proteome155 that are not in the ASD-

PPI network. 

 

We restricted our analysis to the n=237 prenatal brain samples as the prenatal period has been 

previously implicated in ASD14–16. For each geneset, we calculate the median geneset expression 

percentile within individual brain tissue samples. We performed T-tests to assess whether the 

median genset expression percentiles are significantly different between different genesets, 

adjusting p values for multiple hypothesis testing (Bonferroni correction, p.adj = p * 3 

comparisons) (Figure 2A; bsRNAseq/scripts/02_asdPPI_bsRNAseq_prenatal_expression.R). 

Calculating the relative expression of ASD-PPI genes compared to permuted genesets: We 

created 100,000 permuted genesets from HEK293T proteome genes, matching the number of 

interactor genes. To generate the permuted genesets, we selected genes from a set of n=10,902 

genes that are 1) in the HEK293T proteome155 (described above), 2) measured in BrainSpan 

RNAseq, and 3) not an ASD-PPI bait. The probability of gene selection was weighted by HEK293T 

protein expression level (median iBAQ rank), and only genesets with a median iBAQ rank within 

1 quantile of the median iBAQ rank of ASD-PPI interactors were retained. We calculated the 

median geneset rank (‘medRank’) within each bsRNAseq brain tissue sample for the interactors 

and each of the 100,000 permuted genesets (higher medRank reflects higher geneset expression 

within a sample). For each brain tissue sample, we calculated the ‘normalized medRank’, defined 

as the observed medRank – median (100,000 permuted medRanks). The normalized medRank 

reflects the sample-level expression enrichment of interactors, with positive values reflecting 

higher than expected expression. As a comparator, we also calculated the sample-level 

expression enrichment of hcASD102 genes6 compared to permuted genesets. 

(03_asdPPI_bsRNAseq_permutations.R)  
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Comparing expression levels of ASD-PPI baits and interactors in brain samples across 

development: To assess whether the relative expression of interactors mirror that of hcASD102 

genes across samples, we calculated the Spearman and Pearson correlations of the normalized 

medRanks for interactors versus hcASD102 genes across n=524 brain samples (Spearman rho 

= 0.884, Pearson R = 0.897, indicating high correlation between interactors and hcASD102 

expression across samples). To compare relative interactor (or hcASD102) expression in prenatal 

versus postnatal brain tissue, we grouped bsRNAseq brain samples by prenatal versus postnatal 

status (n=237 prenatal, n=287 postnatal), and assessed whether the normalized medRank of 

interactors (or hcASD102) were significantly different between prenatal versus postnatal samples 

(T-test, p<2.2e-16 for both interactors and hcASD102, prenatal samples with significantly higher 

expression of interactors and hcASD102 compared to postnatal samples). We also grouped 

bsRNAseq brain samples by developmental period (as defined in Kang et al. 2011150), where 

periods 1-7 reflect prenatal stages of development and periods 8-15 reflect late infancy through 

late adulthood, resulting in 13 sample groups ranging from period 2-14. For each period, we 

calculated the median(normalized medRank) across samples for interactors and hcASD102; we 

subsequently calculated the correlation of median(normalized medRank) for interactors versus 

hcASD102 across the 13 period groups (Spearman rho = 0.946, Pearson R = 0.901, indicating 

high correlation between interactors and hcASD102 expression across developmental periods) 

(Figures 2B, 2C, S2D; 04_make_bsRNAseq_asdPPI_hcASD102_permutation_plots.R). 

 

Interactor enrichment for ASD genetic risk 
If ASD-PPI has successfully identified ASD network genes that are ASD-relevant, interactor 

genes should be enriched for ASD genetic risk. We used de novo genetic variants previously 

identified from simplex family studies as a measure of ASD genetic risk6 and conducted 

enrichment tests (Fisher’s exact) to assess whether interactors are enriched for ASD genetic risk 

compared to other genes in the HEK293T proteome or other exome genes. 

We focused on de novo damaging variants identified from the Simon’s Simplex Collection 

(Satterstrom et al. 2020 Supplementary Table 1) We defined “damaging” variants to be variants 

that resulted in a damaging missense mutation (Polyphen Mis3 (damaging); or MPC Mis B 

(MPC>=2)) or PTV (frameshift, stop gained, or canonical splice site disruption). 

(ssc_enrichment/scripts/01_format_satterstrom2020_SSC_variants.R) 

We determined the association between having a damaging variant in different genesets of 

interest with ASD status. We defined the following genesets: 
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● Interactors: ASD-PPI interactors (n=1,074) 

● HEK293T (- Interactors, -hcASD102): HEK293T proteome genes, excluding interactors 

and hcASD102 (n = 10,045) 

● Exome: all autosomal genes measured in Satterstrom et al. 2020 (n= 17,332) 

● Exome (- hcASD102): autosomal genes measured in Satterstrom et al. 2020, excluding 

hcASD102 (n= 17,230) 

● Exome (-Interactors, hcASD102): autosomal genes measured in Satterstrom 2020, 

excluding hcASD102 and interactors (n= 16,234) 

For each Fisher's enrichment test, the universe of genes was defined to be the geneset members, 

and the 2x2 contingency table was: X, the number of ASD probands with a damaging variant in 

at least one gene in the geneset; Y; the number of control siblings with a damaging variant in at 

least one gene in the geneset; Z, the number of ASD probands with no damaging variants in any 

gene in the geneset; W, the number of control siblings with no damaging variants in any gene in 

the geneset. We calculated the enrichment odds ratio with Fisher’s exact test (one sided, 

alternative = greater), and adjusted p values for multiple hypothesis testing (Bonferroni correction, 

p.adj = p*number genesets assessed) (Figures 2D, S2E; 

ssc_enrichment/scripts/03_asdPPI_geneticRisk_Satterstrom2020_SSC.R). 

Downsampling analyzes: To determine whether increasing the number of baits used to create 

ASD-PPI is associated with increased ability to identify interactors associated with ASD genetic 

risk, we downsampled the ASD-PPI network. Specifically, we randomly selected sets of baits 

(ranging from n = 1-100 baits, 1000 iterations for each set size) and trimmed the ASD-PPI network 

to include only interactors associated with the downsampled baits. For each downsampled 

network, we calculated the association between having a damaging variant in different genesets 

of interest with ASD status as described above. We evaluated 2 genesets: 1) Interactors (-

hcASD102), and 2) Exome (-Interactors, -hcASD102), which allows us to compare the amount of 

ASD-associated genetic risk in interactors versus the remaining genes in the human exome. For 

each bait set size, we calculated the median and standard deviation of ORs across the 1000 

iterations, as well as the median and standard error of p-values across the 1000 iterations (Figure 
2F; ssc_enrichment/scripts/04_asdPPI_prey_ASDrisk_downsamplingAnalysis.R). 

We additionally assessed whether increasing the number of baits used to create ASD-PPI is 

associated with increased ability to identify interactors that are novel hcASD genes. We defined 

novel hcASD genes as the n=255 genes with FDR < 0.1 in the latest omnibus WES study3. We 
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downsampled the ASD-PPI network as described above. For each downsampled network, we 1) 

counted the number of hcASD255 genes in the interactors and 2) conducted a Fisher's exact test 

(one sided, greater) to assess for enrichment of hcASD255 in interactors. The counts of the two-

by-two contingency tables were: X, the number of hcASD255 that are interactors; Y, the number 

of hcASD255 genes that are not interactors; Z, the number of interactors that are not in 

hcASD255; and W the number of genes that are not interactors or hcASD255. We defined the 

universe of possible genes to consist of those with 1) proteins that are detected in the HEK293T 

proteome155 or ASD-PPI interactors); 2) measured in Satterstrom et al. 20206; and 3) measured 

in Fu et al. 20223. For each bait set size, we calculated the median and standard deviation of OR, 

-log10(pvalue), and number of hcASD255 genes among interactors across the 1,000 iterations. 

We repeated this analysis after excluding hcASD102 genes (Satterstrom et al. 20206, FDR <0.1) 

from the gene universe to assess the ability of ASD-PPI to identify truly novel hcASD genes 

(Figure 2G; risk_gene_enrichment/scripts/02_asdPPI_downsampling_hcASD255discovery.R). 

 

Interactor enrichment for ASD, DD, or SCZ risk genes 
We evaluated whether interactors are enriched for risk genes that have been implicated in ASD, 

DD, or schizophrenia. We defined several sets of risk genes, including: 

● ASD, Fu 20223: n=255 autosomal genes with TADA FDR <0.1 

● ASD, Trost 20224: n=134 autosomal genes with TADA FDR<0.1 

● ASD, Zhou 20225: n=72 genes with study-wide significance (based on 5,754 constrained 

genes, p<8.69E-6) 

● ASD, SFARI152: SFARI genes are a database that endeavors to include all genes 

associated with ASD risk, regardless of the level or nature of evidence. SFARI genes are 

further divided into categories, including syndromic, category 1 (high confidence), 

category 2 (strong candidate), and category 3 (suggestive evidence). SFARI genes were 

downloaded from gene.sfari.org (09/02/2021 release), and included a total of n=1,020 

genes, of which there were n=230 syndromic genes, n = 92 syndromic and category 1 

genes, n=206 category 1 genes, n=219 category 2 genes, and n=514 category 3 genes. 

● DD, Kaplanis 2022153: n=285 genes that are significantly associated with DD after one-

sided Bonferroni correction 

● SCZ, Singh 202260: n=34 genes with TADA FDR<0.1. 

We defined the HEK293T expressed genes to be the union of interactors and proteins that were 

detected by global quantitative mass spectrometry155. We conducted two sets of enrichment tests. 
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For the first set of enrichment tests, we assessed only risk genes from genetic studies that 

reported the set of genes that were evaluated as possible risk genes3–5,60. We defined the universe 

of possible genes to be those that were 1) HEK293T expressed genes; 2) measured in 

Satterstrom et al. 20206, and 3) measured in the genetic study that generated the risk gene set 

of interest 3–5,60 (Figure 2E). For the second set of enrichment tests (Figure S2G), we simply 

defined the gene universe to be HEK293T expressed genes, as the exact gene universe 

considered is unavailable for the SFARI risk genesets. For both sets of enrichment tests, we 

conducted Fisher’s exact tests (one sided, greater), in which the contingency tables were set up 

by interactor status (yes/no) and disease geneset status (yes/no). We corrected p values for 

multiple hypothesis testing (Bonferroni correction, p.adj = p * number of genesets assessed). 

(Figures 2E, S2G; risk_gene_enrichment/01_asdPPI_prey_riskGeneEnrichment.R; 

data/geneAnnotation_hek293T_ASD_DD_SCZ.csv). 

  
Evolutionary constraint metrics of ASD-PPI genes 
We evaluated whether ASD-PPI genes are more evolutionary constrained than expected by 

assessing several metrics, including the pLI (probability of being intolerant of a single loss-of-

function variant), misZ (missense Z score, measures gene intolerance to missense variation), 

synZ (synonymous Z score, measures gene intolerance to synonymous variation, used as 

negative control), and s_het (selective effect for heterozygous PTVs)57,58. 

We obtained pLI, misZ, and synZ scores from the Genome Aggegation Database (ExAC dataset, 

https://storage.googleapis.com/gcp-public-data--

gnomad/legacy/exac_browser/forweb_cleaned_exac_r03_march16_z_data_pLI_CNV-

final.txt.gz) and s_het scores from Cassa et al. 2017 Supplementary Table 158. We assessed 

whether the pLI, misZ, s_het, and synZ scores of ASD-PPI bait genes, interactor genes, and 293T 

proteome genes155 were significantly different from ASD-PPI baits, interactors (excluding 

hcASD102), and other HEK293T proteome genes using t-tests, adjusting p values for multiple 

hypothesis testing (Bonferroni correction, p.adj = pvalue * number of t-tests) (Figure S2H, 

02_eval_asdPPI_geneConstraintMetrics.R). 

 

Comparison of interactor overlap between bait pairs predominantly associated with ASD 
or ASD/NDD 
Satterstrom et al. 20206 categorized hcASD into those that were more frequently mutated in ASD 

(ASD-predominant; ASDP) and those that were more frequently mutated in NDD (ASDNDD). If 

ASDP vs ASDNDD genes have separable molecular functions, we would expect ASDP baits to have 
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greater interactor overlap with other ASDP baits (and the same for ASDNDD bait pairs). We 

categorized ASD-PPI baits as ASDP or ASDNDD as defined in Satterstrom et al. 20206 

(Supplementary Table 2, Sheet 2, ASD_vs_DDID column). We evaluated the interactor overlap 

for the following four groups of bait pairs: 1) all ASD-PPI bait-bait pairs, 2) ASDP - ASDP bait pairs; 

3) ASDNDD - ASDNDD bait pairs; and 4) ASDP - ASDNDD bait pairs. We determined the significance 

of interactor overlap using Fishers exact tests (one sided, greater), where the 2x2 contingency 

table was defined by: bait #1 interactor (yes/no) and bait #2 interactor (yes/no). The universe of 

genes was defined to be the HEK293T proteome. For each of the four baits groupings, we 

calculated the proportion of bait pairs whose interactors had nominally significant overlap 

(pval<0.05). We additionally used a Kruskal-Wallis rank-sum test to evaluate whether the 

distribution in bait-bait interactor overlap p values is significantly different across the 4 groups of 

bait pairs (R kruskal.test). We conducted these analyses using a trimmed dataset that includes 

only baits with fewer than 45 interactors (excludes 9 baits). Analyses using the full ASD-PPI 

dataset showed similar findings (data not shown). 

 

Prioritizing ASD-PPI interactors by number of hcASD interactions and shared interactors 
with hcASD 
We were interested in ASD-PPI interactors that interact with large numbers of hcASD genes as 

they may be members of molecular complexes upon which hcASD genes functionally converge. 

We defined a set of n=7 ASD-PPI interactors (“prioritized interactors”) that interacted with at least 

8 baits/hcASD102 genes (Figure 5A, asdppi_prioritizedPrey/scripts/ 

01_asdPPIprey_topDegreeBait.R). 

We assessed whether BioGRID interactors of these prioritized interactors are enriched for hcASD 

genes. Interactors were defiend using BioGRID) human physical interactions92. The file 

"BIOGRID-MV-Physical-4.2.191.tab2.txt" was downloaded from 

https://downloads.thebiogrid.org/BioGRID/Release-Archive/BIOGRID-4.2.191/. 

"Official.Symbol.Interactor.A" and interactors were defined using "Official.Symbol.Interactor.B". 

Interactions were trimmed to human data (Organism.Interactor.A and Organism.Interactor.B = 

9606). Bait and interactor symbols were updated using limma:alias2GeneSymbolTable. For each 

of the n=7 prioritized interactors, we conducted one-sided Fishers exact tests (greater) to assess 

whether interactors associated with individual baits are enriched for hcASD255 genes3. We 

restricted the gene universe to genes that were measured in Fu et al. 2022. The counts of the 

two-by-two contingency table were: X the number of interactors that are hcASD; Y, the number 
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of interactors that are not hcASD; Z, the number of not.interactors that are hcASD; and W, the 

number of not.interactors that are not hcASD. We corrected p values for multiple hypothesis 

testing (Bonferroni correction, p.adj = pval* 7 genes). We found that DCAF7 BioGRID interactors 

to be nominally enriched for hcASD255 (Figure 5B, 

asdppi_prioritizedPrey/scripts/02_asdPPIprey_bioGRIDinteractors_hcASD255enrichment.R). 

We were interested in identifying hcASD with interactomes that overlap with that of DCAF7. 

Therefore, we conducted two-sided Fisher's exact tests to evaluate whether there is significant 

overlap between DCAF7 interactors and the interactors of each of the 8 hcASD that bound to 

DCAF7 in ASD-PPI. We restricted the gene universe to the HEK293T proteome. The counts in 

the 2x2 contingency table were: DCAF7 interactor in BioGRID (yes/no) and hcASD interactor in 

ASD-PPI (yes/no). We corrected p values for multiple hypothesis testing (Bonferroni correction, 

p.adj = pval* 7 genes).  

 
Effect of DYRK1A delta94-105 on DCAF7 and FAM54C interactions 
We expressed Strep-tagged DYRK1A or DYRK1AΔ80-100 or empty vector (control) in HEK293T 

cells and conducted AP-MS as discussed above (3 replicates each for control and DYRK1A; 2 

replicates for DYRK1AΔ80-100). We calculated SAINT scores (spectral counts). We defined 

significnat interactions to be those with SAINT 1-BFDR >=0.95. We evaluated the strength of 

binding (Log2FC(DYRK1A/control) spectral counts) of DYRK1A or DYRK1AΔ80-100 to DCAF7 and 

FAM54C. 
 
Enrichment of ASD risk genes among DCAF7-DYRK1A shared interactors 
Co-expression of FLAG-tagged DCAF7 and Strep-tagged DYRK1A in HEK293T cells followed by 

sequential (double) AP-MS identified 126 shared interactors between DYRK1A and DCAF7 (see 

above). We evaluated whether these shared interactors are enriched for the n=255 ASD risk 

genes found to have FDR<0.1 in Fu et al. 20223 using a two-sided Fisher’s exact test. The setup 

of the 2x2 contingency table was DCAF7-DYRK1A shared interactor (yes/no) and hcASD 

55(yes/no). The gene universe was restricted to the HEK293T proteome (union of Bekker-Jensen 

2017, ASD-PPI interactors and single/doubleIP interactors, n=11180 genes). 

(asdppi_prioritizedPrey/scripts/03_DCAF7interactors_hcASDenrichment_FET.R) 

  

Network co-expression in prenatal brain cells 
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We compared relative network co-expression in cells from three prenatal brain atlases. Briefly, 

for each cell type within a prenatal brain atlas, we evaluated the observed coexpression of network 

gene pairs and normalized this value by a background coexpression value to adjust for differences 

in the expected coexpression of genes present in the context from which the network was derived 

(i.e. for the 100 hcASD network we used all gene pairs present in the proteome of HEK293T 

cells155 and for the iEN network we used all gene pairs present in the iEN proteome23). We then 

compared the distribution of observed network co-expression across cell types using Wilcoxon 

rank sum tests. 

We defined 2 sets of networks of interest: 

1. Set 1: ASD-relevant PPI networks from experimental data and STRING66 

a. ASD-PPI (HEK) hcASD-int: 1,143 nodes and 1,879 edges. 

b. Pintacuda 2023 (iEN) hcASD-int: 1034 nodes and 1343 edges. 1343 index-

interactor interactions identified for 13 hcASD index genes from iEN cells in 

Pintacuda et al. 2023. Interactions were extracted from Supplemental Table S3 

('Interaction_Lists' sheet, selected rows where IsInteractor column is 'T' and Index 

protein column was not 'COMBINED'). 

c. ASD-PPI (HEK) hcASD-int & int-int: 1143 nodes and 10,191 edges. Union of 

interactions from ASD-PPI and STRINGv11.5 (experimental score >0) for genes 

in ASD-PPI 

d. Pintacuda 2023 (iEN) hcASD-int & int-int: 1034 nodes and 11,706 edges. Union of 

interactions from Pintacuda et al. 2023 and STRINGv11.5 (experimental score >0) 

for genes in Pintacuda 2023 (iEN) hcASD-int. 

2. Set 2: ASD-relevant PPI networks trimmed to direct interactions supported by AF 

a. hcASD-int (AF iPTM > 0.5): 291 nodes and 284 edges. ASD-PPI hcInteractions 

with AF iPTM>0.5 

b. hcASD-int & int-int (AF iPTM>0.5): 933 nodes and 2,350 edges. Union of and ASD-

PPI hcASD-int and int-int interactions with AF iPTM>0.5. 

  

We used data from three prenatal brain cell atlases: 

1. The Nowakowski et al. 201762 scRNAseq data (n = 4,261 cells) was downloaded from 

https://cortex-dev.cells.ucsc.edu/. The original set of n=56,864 genes was trimmed to a 

final set of 18,803 genes by keeping only protein coding genes associated with a HGNC 

symbol. If a HGNC symbol was associated with multiple Ensembl gene IDs, only the first 
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was kept. Expression values were not altered from the original data download and are in 

the form of TPM. We grouped cells into the 19 cell types defined in Satterstrom et al. 20206 

and excluded unassigned cells from the analysis; see Supplemental Table 2 for the names 

of cell type in original publication and the simplified names used in this manuscript.  

2. The Polioudakis et al. 201963 scRNAseq data (n = 33976 cells) was downloaded from 

http://solo.bmap.ucla.edu/shiny/webapp/. Genes were trimmed to a final set of 16548 

genes by keeping only protein coding genes associated with a HGNC symbol. If a HGNC 

symbol was associated with multiple Ensembl gene IDs, only the first was kept. 

Expression values were not altered from the original data download and are in the form of 

UMI counts. Cell types were defined in Polioudakis et al. 2019, and consisted of 16 cell 

types: vRG, ventricular radial glia; oRG, outer radial glia; PgS, cycling progenitors (S 

phase); PgG2M, Cycling progenitors(G2/M phase); IP, intermediate progenitor; ExN, 

migrating excitatory; ExM, maturing excitatory; ExM-U, maturing excitatory upper 

enriched; ExDp1, excitatory deep layer 1; ExDp2, excitatory deep layer 2; InMGE, 

interneuron MGE; InCGE, interneuron MGE; OPC, oligodendrocyte precursor; End, 

endothelial cell; Per, pericyte; Mic, microglia. See Supplemental Table 2 for the names of 

cell type in original publication and the simplified names used in this manuscript. 

3. The Bhaduri et al. 202167 scRNAseq data (neocortex, GW15-25, n = 404,218 cells) was 

downloaded from https://cells-test.gi.ucsc.edu/?ds=dev-brain-regions+neocortex. Cell 

types were defined using the "ConsensusCellType-Final" column in the meta.tsv file (n=12 

cell types). We excluded 'Excitatory Neurons' from our analyses as this cluster contains 

few cells (n=61) and this cluster is not included in the Bhaduri et al. 2021 main text Figure 

2. See Supplemental Table 2 for the names of cell type in original publication and the 

simplified names used in this manuscript. 

 

scRNAseq data is limited by dropouts and resultant sparse and heterogeneous gene expression 

across cells. Therefore, we define gene pairs to be 'co-expressed' in a cell if there is at least 1 

read of each gene detected. We define the co-expression between gene pairs as the proportion 

of cells in a cell type that co-express both genes (range 0-1). 

We defined two sets of background genes:  

1. HEK: 11185 genes in the HEK293T proteome (union of Bekker Jensen 2017155 and ASD-

PPI genes). We used this background for ASD-PPI based networks. 
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2. iEN: 3274 genes in the iEN proteome as defined in Pintacuda et al. 202323 (Pintacuda et 

al. 2023 Supplemental table 3, sheet 'Interaction_Lists', 'Gene symbol' column). We used 

this background for Pintacuda et al. 202323 based networks. 

  

For each cell type context, we determined the average background co-expression by calculating 

the connectivity between all possible gene-gene pairs. We use this background co-expression as 

a normalization factor to remove biases that have to do with global differences in co-expression 

in each cell type. Let i and j denote genes and k denote cell type context. Define rijk as the co-

expression between genes i and j in cell type k, and define avg(rk) as the average co-expression 

over all pairs of background genes measured in cell type k. Then define a normed co-expression 

as:  

𝑐!"# 	= 	
𝑟!"#

𝑎𝑣𝑔(𝑟#)
 

 

Within each prenatal brain atlas, for each cell type, we calculated the normed co-expression of all 

observed network edges. We then evaluated whether the distribution of observed network co-

expression within each individual cell type was significantly different from the base distribution 

(concatenated observed network co-expression of all cell types) using a two-sample Wilcoxon 

rank sum test (R wilcox.test). We used the Wilcoxon estimator for the difference in location as a 

measure of relative difference in network co-expression between in the cell type versus base 

distribution). Within each single cell atlas, p-values were corrected for multiple hypothesis testing 

(Bonferroni correction, p.adj = pval * number of cell types * number of networks evaluated).  

  

Generating a random set of ASD-PPI bait-int 
We generated a set of random interactors to use as a baseline benchmark for the ASD-PPI 

AlphaFold-Multimer (hereafter also referred to as AF) pairwise interaction analysis. For each of 

the baits in ASD-PPI, we generated a set of random interactors that matched true interactors in 

protein size and for which odds of selection were weighed by HEK293T protein expression levels. 

Specifically, we defined HEK293T protein expression level by average iBAQ expression (Bekker-

Jensen 2017155 Supplementary table 7, average of iBAQ scores for the two HEK293T 

experimental replicates) and used cDNA length reported in Satterstrom et al. 2020 as a proxy for 

protein size (Satterstrom et al. 20206 Supplementary Table 2, "Autosomal" sheet, "cDNA" 

column). We divided the roughly 10,000 HEK293T expressed proteins into 5 groups based on 

cDNA length (cDNA_quantile). For each observed ASD-PPI interactor, we selected a random 
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interactor from HEK293T-expressed proteins in the same cDNA quantile, with probability of 

selection weighted by HEK293T protein expression level. Random interactors were required to 

be unique at a bait level but could be duplicated across different baits.  

 

Running AlphaFold to predict direct pairwise interactions 

Pairwise protein interactions and protein complexes were predicted using AlphaFold-Multimer157 

(AlphaFold version 2.3.1) via ColabFold158 (version 1.5.2). As input to protein structure prediction, 

sequences for each protein pair were extracted from uniprot 

(https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteo

mes/Eukaryota/UP000005640/UP000005640_9606.fasta.gz). In all cases, we utilized the 

wildtype protein sequence even when examining interactions defined by mutant-specific baits.  

Multiple sequence alignments (MSA) were generated from ColabFold using MMseqs278 (Release 

14), with the following databases: Colabfold Env DB (2021_08), UniRef30 (2021_03). All input 

complexes were run without templates or amber relaxation for 10 recycles and with at least three 

random seeds. For bait-prey interactions three model replicates were run for each seed, bringing 

the total number of replicates to at least nine. Only one model per seed was run for the int-int set, 

so only three models per pair were produced. Some inputted sequences failed to return structures 

due to memory limits (particularly for large complexes) or MSA failures. The five different sets of 

pairs modeled were: bait-int produced 1654 structures of 1879 attempted pairs, bait-random 

produced 1677 for 1862, bait-int-mutant (those pairs only observed in the mutant network) 

produced 126 for 148 pairs, bait-int-Pintacuda produced 1133 for 1303, and int-int produced 

32,890 for 35,897.  

 

From each replicate, multiple statistics were generated. AF predicted scores (pTM, ipTM, pLDDT) 

were extracted directly from replicate json files and PDB files. The pDockQ score is based on 

parameters fit to match true DockQ values for simulated protein complexes with resolved crystal 

structures, and it was calculated as described previously79. The Confidence score was a weighted 

combination of pTM and ipTM, 0.8 x ipTM + 0.2 x pTM.  

 

Searching Protein Data Bank (PDB) for homologous complex structures 
As a proxy for possible presence of a complexed structure for any pair in the AF training set, we 

searched the full PDB for structures with detectably similar sequences.  BLAST+ v2.15 was used 

to run blastp with default parameters against a custom database built based on all sequences 

deposited to PDB (downloaded on 11/17/2023). Possible matches were assembled in an iterative 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

60 

process over all sequences in any AF pair. For each protein, all individual chains that return a 

BLAST match were identified. For each matching chain, the other chains within each 

corresponding PDB entry were then queried to identify the subset that matches to a protein that 

forms an AF pair to the starting protein. 

 

Visualizing protein structure files 
ChimeraX or PyMOL were used to generate all 3D figures of protein structures. 

 
Calculating distances from mutations to PPI interface 
Inter-chain distances in an AF model were calculated using the center-center inter-atom distances 

between the three-dimensional coordinates of atoms in the AF structure file. Per residue, we used 

the minimum distance across all atoms to any atom in the opposite chain with plDDT at least 25.0. 

Only wildtype sequences were modeled, so the distance is from any atom in the wildtype residue.  

 
Evaluating residue-level evolutionary conservation with ConSurf 
We used the ConSurf159–161 web server (https://consurf.tau.ac.il/consurf_index.php) to estimate 

the evolutionary conservation of amino acid positions for  DCAF7 and DYRK1A based on the 

phylogenetic relations between homologous sequences. We ran ConSurf on each protein 

separately with default parameters (one HMMER iteration, maximum 150 homologs, E-value 

cutoff of 0.0001). The sequences found were clustered by their level of identity using CD-HIT and 

the cutoff specified to be between 35% to 95% identity) 

 
Evaluating whether Mut-PPI changed interactors are enriched for ASD risk genes 
We evaluated whether the interactors that demonstrate increased (n=69) or decreased (n=95) 

interaction with hcASD in Mut-PPI are enriched for the n=255 ASD risk genes with FDR < 0.1 in 

Fu et al. 20223. We defined the gene universe to be HEK293T expressed proteins measured in 

Fu et al. 2022. The 2x2 contingency table used for the two-sided Fisher’s enrichment tests were 

defined by: hcASD255 (yes/no), changed interactor (yes/no). P values were corrected for multiple 

hypothesis testing (Bonferroni correction, padj = pval * 2 tests).  

 

Protein System Enrichment 
De novo mutations: A comprehensive list of exome-wide de novo somatic mutations identified in 

the ASD cohort considered in this research was obtained from the large-scale whole exome 

sequencing study from Satterstrom et al. 20206. We used the 5287 filtered probands from the 
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analyses and considered only functionally disrupting missense and protein truncating variant 

mutations. Specifically, we only kept mutations that met any of the following criteria: (1) 

VEP_functional_class_canonical_simplified equal to one of ["frameshift_variant", "stop_gained", 

"splice_acceptor_variant",  "splice_donor_variant"] AND pLI >= 0.995; (2) MPC >= 2; or (3) 

Polyphen_prediction ==  “probably_damaging''. 

 

Integrated protein network: We compiled a diverse set of experimental and curated protein-protein 

interaction datasets (Table S6). We processed each PPI network as follows: (1) standardized the 

naming of all the gene symbols by mapping to their standard symbols via HUGO Gene 

Nomenclature Committee (HGNC) ID; (2) removed interactions with no documented score; (3) 

removed self-interactions; and (4) removed duplicates. In addition to aforementioned processing, 

for the case of Mentha and BioGRID, we only kept interactions in humans (Taxon A/B == 96096 

in Mentha & Organism Name Interactor A/B == "Homo sapiens" in BioGRID). We further filtered 

BioGRID to include only physical interactions.  

 

The ASD-PPI and other PPI networks were integrated into a single interaction network. The 

integration was performed using BIONIC162, a graph convolutional neural network that uses graph 

attention networks. We used the following parameter settings {epochs: 1000, batch_size: 512, 

learning_rate: 0.00005, embedding_size: 512}, with the remaining parameters using the default 

values. BIONIC ran until the reconstruction loss stabilized.  

 

We computed an interaction score between each pair of proteins by calculating the cosine 

similarity score between their embeddings. We then focused the network on the 102 identified 

high-risk ASD-genes and the interactors of ASD-PPI and ASDmut-PPI by obtaining their top 

associated proteins. We further retained all ASD-PPI interactions. 

 

Multi-scale map of protein systems: To identify a multi-scale map of systems of tightly connected 

proteins, we applied Hierarchical community Decoding Framework (HiDeF)163 to the integrated 

network. HiDeF determines connected proteins across various thresholds and identifies systems 

from most stringent thresholds to least stringent, where the smaller more stringent identified 

systems were part of the larger less stringently identified systems. We used the following 

parameter setting {maxres: 50, tau: 0.75, chi: 5, alg: ‘leiden’}. 
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Differential proteins systems: To identify systems that have stronger evidence in ASD-PPI, 

ASDmut-PPI, or balanced, we modified the computed WT integrated network according to 

interactions found to have stronger support in either ASD-PPI or ASDmut-PPI.  We then generated 

another multi-scale map using the modified network using the same multiscale community 

detection algorithm described previously. We computationally assessed which systems have 

stronger evidence in ASDmut-PPI or ASD-PPI by aligning the original and modified multi-scale 

maps using the align function developed by Dutkowski & Kramer et al.164. 

 

Systems enriched with mutated genes and disrupted interactions: To identify systems that have 

significant enrichment for functionally disrupting mutations, we performed hypergeometric tests 

on the number of mutated genes in each system. To compute the number of mutated genes, we 

identified genes with functionally disruptive de novo mutations as described in section “Mutation 

data”. The significance of the number of mutated genes was computed using the hypergeom.sf 

function from the scipy package in Python. We used a cutoff of 0.05 to determine significance. 

 

Protein system names: The protein systems were labeled using a GPT-4-based pipeline 

developed by Hu et al. 2023165. This pipeline assigns a set of genes with succinct literature-driven 

names that summarizes their consensus functions as well as providing supportive analysis text. 

We used the latest version of GPT-4 (gpt-4-1106-preview) for this analysis.  

 

Evaluating whether FOXP1-mutant differentially bound genes or DEGs are enriched for 
ASD risk genes 
We evaluated whether FOXP1-differentially bound genes or cell type-specific differentially 

expressed genes (DEGs) from FOXP1WT/WT vs FOXP1R513H/WT organoids are enriched for a set of 

n=255 ASD risk genes with FDR < 0.1 in Fu et al. 20223. We defined genes that are more strongly 

(CUT&Tag pval<0.05 & log2FoldChange>0) or weakly (pval<0.05 & log2FoldChange<0) bound 

by FOXP1 in FOXP1R513H/WT organoids. For each cell type, we defined DEGs that are upregulated 

in FOXP1R513H/WT (scRNAseq p_val_dj<0.05 and pct.1-pct.2 >0) or downregulated (val_adj<0.05 

and pct.1-pct.2<0) in FOXP1R513H/WT organoids. We defined the gene universe to be the 

intersection of genes expressed in each cell type and measured in Fu et al. 2022. We conducted 

two-sided Fisher’s enrichment tests, defining the 2x2 contingency table by the parameters: 

hcASD255 (yes/no) and differentially bound/DEG (yes/no). We corrected p values for multiple 

hypothesis testing (Bonferroni correction, p.adj = pval* #comparisons). 
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HEK293T microscopy 
HEK293T cells were transfected with DYRK1A, DCAF7, KIAA032 plasmids using Lipofectamine 

3000 (Invitrogen, #L3000001) and fixed after 30h with 4% paraformaldehyde (EMS, #50980487). 

After permeabilization with 0.1% TritonX-100, cells were stained with anti-Flag (1:1000, Cell 

Signaling, 14793), anti-Strep (1:1000, IBA, 2-1507), anti-ɑ-Tubulin (1:500, Santa Cruz, sc-53029) 

and anti-DYRK1A (1:500, R&D systems, AF5407). Secondary fluorescence-conjugated 

antibodies were used at 1:1000 (Abcam ab150177, Abcam ab150159, Thermo Fisher A31553, 

Thermo Fisher A32732). Cells were imaged on a Zeiss 980 LSM confocal microscope with fast 

airyscan with a 63X oil objective and processed in ImageJ and Adobe Illustrator.  

 
Obtaining Xenopus tropicalis Embryos and Tadpoles 
Ovulation was induced by injection of human chorionic gonadotropin (Sigma) into the dorsal 

lymph sac according to standard procedure166 and in accordance with approved UCSF IACUC 

protocols. Natural matings and in vitro fertilizations were performed. Embryos and tadpoles were 

staged by 167. Clutch mates were always used as matched controls. 

 

Xenopus tropicalis Microinjections  
Xenopus tropicalis embryonic microinjections were performed as described before166. 

Microinjections were performed at the 2-cell stage using a Narishige micromanipulator, Parker 

Picospritzer, and Zeiss Stemi microscopes. Injection volume was calibrated with an eye-piece 

micrometer. Embryos were grown between 22–25°C in 1/9 Modified Ringer’s (MR) solution, which 

was refreshed daily. Male and female embryos were analyzed. 

 

Xenopus CRISPR/Cas9 Genome Editing  
High-efficiency sgRNAs were designed, synthesized, and validated as in 168. For each embryo, 3 

ng of purified Cas9-NLS protein (Macrolabs, UC Berkeley), 800 pg sgRNA, and a dextran dye 

conjugated with Alexa-555 (Invitrogen) were injected into 1 cell of a 2-cell stage embryo. The day 

following injection at stages 14–20, embryos were sorted left from right according to the dye. 

 

Xenopus Whole Mount Immunofluorescence Staining 
Xenopus immunostaining was carried out as previously described102 with a primary antibody 

against beta-tubulin (1:100, DSHB E7) and a secondary goat anti-mouse fluorescent antibody 

(1:250, Life Technologies A32723).  
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Microscopy and Xenopus Brain Size Measurements 
Xenopus tadpole images were acquired on a Zeiss Axio Zoom.V16 microscope with apotome and 

a 1X objective. Images were processed using Fiji169. Telencephalon size was calculated from 

stereoscope images of brain immunostainings using the freehand select and measure functions 

in Fiji169. The injected side was compared to the noninjected side (internal control). These 

measurements were from two-dimensional images taken from a dorsal perspective and reflect 

relative size differences. GraphPad Prism software version 8.3 was used to graph data and 

determine statistical significance using a student’s paired t-test. p values less than 0.05 were 

considered significant.  

 

Differentiation of iPSCs to NPCs 
Dorsal forebrain patterned NPCs were generated from iPSCs using a small molecule protocol 

adapted from a published method170. Specifically, we plated iPSCs on Matrigel coated plates in 

mTeSR plus medium (STEMCELL Technologies, Cat#100-0276). For the next 3 days, we fed 

cells with the KSR medium (15% Knockout Serum Replacement in Knockout DMEM, 

1xGlutaMAX, 1xMEM-NEAA, 0.1mM BME) containing small molecules 250nM LDN193189 

(Tocris, Cat No. 6053), 10uM SB431542 (Tocris, Cat#1614) and 5uM XAV939 (Tocris, Cat#3748) 

(LDN/SB/XAV) for dual SMAD inhibition and Wnt inhibition. On day 4 and day 5, we fed cells with 

in ⅔ KSR + ⅓ N2 (DMEM/F12, 1x N2, 1x B27 -Vitamin A, 1x GlutaMAX, 1x MEM-NEAA) + 

LDN/SB/XAV and ⅓ KSR + ⅔ N2 + LDN/SB/XAV respectively. On day 6, we passaged cells at 

1:2 using EDTA and plated cells onto Matrigel coated plates. For day 6 and day 7, cells were 

cultured in NPC medium (DMEM/F12, 1xN2, 1xB27 -Vitamin A, 1x GlutaMAX, 1x MEM-NEAA, 

10ng/ml FGF2, 10ng/ml EGF) supplemented with 5uM XAV. On day 8, we passaged the cells at 

1:3 using Accutase (STEMCELL Technologies, Cat#07920) and cultured cells in NPCs medium 

onwards. 

 

CRISPR/Cas9 mediated DCAF7, DYRK1A, KIAA0232 knockdowns in neuronal progenitor 
cells (NPCs) 
We designed non-targeting control and DCAF7, DYRK1A or KIAA0232 targeting single guide 

RNA (sgRNA) using a bioinformatics pipeline developed by Martin Kampamann’s lab at UCSF 

(https://github.com/mhorlbeck/CRISPRiaDesign). Individual sgRNA was cloned into lentiviral 

vector pMK1334 expressing BFP (Addgene Cat# 127965). Lentiviruses carrying sgRNAs were 

produced in Lenti-X 293T cells (Takara Bio, Cat#632180) by transfection and concentrated using 

Lenti-X concentrator (Takara Bio, Cat# 631231). We transduced NPCs with the concentrated 
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lentiviruses and selected the transduced NPCs using 4ug/ml puromycin until the BFP+ cells 

reached greater than 90%. We then cultured the NPCs in NPC medium (DMEM/F12, 1xN2, 1xB27 

-Vitamin A, 1x GlutaMAX, 1x MEM-NEAA.) on tissue culture plates coated with Martrigel (Fisher 

Scientific, Cat# 08-774-552). The knockdown efficiency of sgRNA was measured by qPCR. 

 

Cortical neuron differentiation 
Cortical neuronal differentiation was carried out as described before170. NPCs were thawed and 

grown to confluency in a 6-well dish. The cells then were dissociated using Accutase for 5 minutes 

at 37°C to single cell resolution and plated at ~10,000 cells/well in NPC media and 10 µM ROCKi. 

Lentiviral constructs of either RGEDI2 or pHR-hSyn:EGFP (Addgene #114215)3 were added to 

the cell suspension at 5 MOI at the time of passage and removed after 48 hours. The NPCs were 

cultured in a 12-well dish to confluency in NPC media and then dissociated using Accutase for 5 

minutes at 37°C to single cell resolution and plated on 5 µg/mL human laminin and 5µg/mL 

fibronectin-coated 384 well plates (Perkin Elmer Cat #6057308) at 12,000 cells/well in NPC media 

and 10 µM ROCKi. 24 hours later, media was replaced with Neuronal Differentiation media 

consisting of: 1:1 DMEM/F12:Neurobasal Media (Gibco 21103049), 1x N2, 1x B27 -Vitamin A, 1x 

GlutaMAX, 0.5 mM dibutyryl cAMP (Sigma D0627), 0.2 mM ascorbic acid (Sigma A4403-100MG), 

1 μM PD0325901 (Selleck Chem S1036), 5 μM SU5402 (Selleck Chem S7667), 10 μM DAPT 

(R&D v), 20 ng/mL BDNF (R&D 248-BD). Media was refreshed at 75% every other day up to Day 

18 of differentiation. 

 

Immunocytochemistry 
Fixed cells were permeabilized using a 0.1% Triton-X/PBS solution for 20 minutes at room 

temperature. Permeabilization solution was removed, and a 1 M glycine solution added and 

incubated at room temperature for 20 minutes. A blocking solution of 0.1% Triton-X/PBS, 2% 

FBS, and 3% BSA was added after removal of the glycine solution and incubated at room 

temperature for 1.5 hours. MAP2 (1:1000 Abcam chicken-anti MAP2 # ab5392) and Ki67 (1:200 

Millipore mouse-anti Ki67 # mab4190) antibodies were diluted in blocking solution and incubated 

overnight at 4°C. Primary antibody was removed by washing cells 3 times with 0.1%Triton-X/PBS. 

Secondary antibodies (goat anti-chicken 488 Abcam # ab96947), goat anti-mouse 555 Invitrogen 

# A21426) were added to 1:1000 in blocking solution and incubated at room temperature and 

covered for 1.5 hours. Cells were spun down at 8000 RPM in a cold centrifuge during the washes. 

Cells were washed in PBS for 5 minutes, then once with PBS plus Hoechst at a dilution of 1:1000 
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in PBS and incubated for 10 minutes at room temperature, covered. The Hoechst was washed 

out with PBS and the cells covered in PBS for imaging. 

 

Longitudinal imaging 
Cells that contained the red GEDI biosensor were imaged on an ImageXpress Micro Confocal 

High-Content Imaging System from Molecular Devices for 7-10 days starting on differentiation 

day 7. Montages of 9 tiles were imaged in RFP (200 ms) and GFP (100 ms) channels at 20x 

magnification per well. Ki67- stained NPCs were imaged at 9 tiles per well in the RFP (100 ms), 

GFP (50 ms), and DAPI (15ms) channels at 20x per well. Images were processed using a custom 

workflow in Galaxy171. 

 

Odds ratio of cell death (GEDI) 
Cells from each line were assessed for being alive or dead by the GEDI110 biosensor on different 

plates at multiple points in time. The change in odds of cell death (OR-CD) at any point in time is 

modeled using a generalized linear model using the glm function in R, between the cell line and 

time using the binomial probability distribution as the family argument to this function. The 

modeled changes include the plate on which the cell was assayed, the time (as a continuous 

variable) at which the cell status was ascertained, the cell-line from which the cell was derived 

and the interaction between the cell-line and time. These changes, as odds ratios are derived 

from the model fits to the data. Custom -built scripts in R were developed to model the data. 

  
Cell Profiler 
The Ki67 proliferation assay used a modified Cell Profiler172 example pipeline for colocalization 

(https://cellprofiler.org/examples). Images were pooled in CellProfiler and analyzed on a per-

image basis. Background values were calculated per image then subtracted from the whole 

image. Following background correction, all objects in each DAPI image were identified as nuclei 

using minimum and maximum diameters per object and filtering out excessive intensity values 

using a Minimum Cross-Entropy thresholding method. This method identifies all possible nuclear 

objects within the appropriate size range. Intensity values were calculated per object then used 

to filter out non-nuclear objects or dead cells that display bright nuclei that have much higher 

intensities than live cells, which were relabeled as nuclei segments. Images that contained Ki67 

staining in the FITC channel were run through a feature enhancement step that increases the 

signal-to-noise ratio. Enhanced images were run through segmentation to identify all FITC objects 

that fit Ki67 signal criteria in terms of size and signal intensity again using a Minimum Cross-
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Entropy thresholding method. These identified objects were renamed as Ki67 segments. Ki67 

segments were related to the nuclei segments to determine how many nuclei were Ki67-positive. 

Finally, the number of Ki67-positive nuclei was divided by the number of total nuclei to calculate 

the percent of Ki67-positive nuclei. The segmentation overlays and math were exported from the 

program and then plotted in Prism10. 

 

Statistical Analysis 
We developed a statistical package called RMeDPower173 in R, a complete package of statistical 

tools that allow a scientist to understand the effect size and variance contribution of a set of 

variables within a dataset to a given response. RMeDPower uses linear mixed models on 

repeated measures data such as those described here. Outliers were removed and data was log 

transformed for statistical analysis. All p values and estimates for each comparison of NPCs or 

cortical neurons that contain scrambled versus ASD gRNAs for both the nerite analysis and 

percent Ki67-positive staining were calculated in RMeDPower. 

 

hiPSC CRISPR/Cas9 genome editing plasmid design 
The closest PAM sequence to FOXP1 R514H for CRISPR/Cas9 genome editing was identified, 

and the corresponding sgRNA sequence (GTGCGAGTAGAAAACGTTAA) was cloned into the 

pX459 plasmid (Addgene #62988) using BbsI Golden Gate cloning. To construct the donor 

plasmid, an IDT gBlock was ordered to create the silent R5414H mutation, as well as create a 

silent mutation in the PAM site to prevent further editing. ~500bp homology arms to the FOXP1 

cut site were generated using PCR, and the homology arms and gBlock were inserted into the 

pUC18 plasmid (Addgene #50004) linearized with HindIII and BamHI. 

 

hiPSC CRISPR/Cas9 genome editing and genotyping 
eWT-1323.4 hiPSCs174 were incubated for one hour in StemFlex media supplemented with the 

CEPT small molecule cocktail175 containing: Chroman 1 (MedChem Express #HY-15392, 50nM); 

Emricasan (SelleckChem #S7775, 5µM); Polyamine Supplement (Sigma Aldrich #P8483, 1:1000 

diluted); and trans-ISRIB (Tocris #5284, 0.7 µM). For electroporation using the Invitrogen Neon 

Transfection System, cells were enzymatically lifted using TrypLE (Gibco #12605010), quenched 

with 10% FBS, and counted using a hemocytometer. 100,000 cells per electroporation reaction 

were pelleted and resuspended in 5uL Buffer R per reaction. Separately, 2µg pX459, 1µg pUC18, 

and Buffer R were mixed to 7µL. 5µL cells were added to the plasmid mix, and 10µL cells and 

plasmid mix were electroporated using a 10µL pipet tip (Invitrogen #MPK1025) with the following 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

68 

settings: 1100 V, 30ms, 1 pulse. Electroporated cells were added to plates with prewarmed 

StemFlex media with CEPT and incubated overnight. Starting 16 hours after electroporation, cells 

were incubated with media supplemented with 0.5µg/ml Puromycin for 72 hours to select for cells 

that received the pX459 plasmid and were more likely to be genome edited. 

Seven days after electroporation, individual colonies were manually passaged, with one colony 

per one well of a 12 well plate. After reaching confluency, cells were passaged once more, with 

remaining cells lysed for gDNA extraction using the NEB Monarch Genomic DNA Isolation Kit 

(#T3010S). Clonal gDNA was PCR amplified to contain the CRISPR/Cas9 edit site, PCR products 

were purified using the Macherey Nagel NucleoSpin PCR clean up kit (#740609) and submitted 

for Sanger sequencing. The correctly targeted clone and two untargeted clones were expanded. 

 

hiPSC-derived cortical organoid differentiation 
hiPSCs were lifted using ReLeSR and resuspended in Neural Induction Media containing GMEM 

(Gibco #11710035), 10% Knockout Serum Replacement (Gibco #10828028), NEAA diluted 1:100 

(Gibco #11140050), Sodium Pyruvate diluted 1:100 (Gibco #11360070), 5mM 2- 

mercaptoethanol (Sigma Aldrich #M6250), and 100µg/mL Primocin supplemented with 5µM 

SB431542 (Tocris #1614), 100nM LDN-193189 (Sigma Aldrich #SML0559), and 3µM IWR1-endo 

(Cayman Chemicals #13659). Cells in Neural induction media were moved to 6-well low 

attachment plates (Corning #3471), with a media change on day 3 with CEPT, and day 6 without 

CEPT. From day 9-25, organoids were cultured in Maintenance Media 1: 50% DMEM/F12 with 

Glutamax (Gibco #10565042) and 50% Neurobasal (Gibco #21103049) with B27 without vitamin 

A (Gibco #12587001), N2 (Gibco #17502048), NEAA diluted 1:100, Glutamax diluted 1:200 

(Gibco #35050061), and 55µM 2-mercaptoethanol supplemented with 10ng/mL each FGF 

(Peprotech #100-18B) and EGF (Peprotech #100-47). Media was changed every 2-3 days. From 

days 26-35, media was changed without FGF and EGF. From day 55 onward, organoids were 

cultured in Maintenance Media 2: Maintenance Media 1 supplemented with B27 with vitamin A 

(Gibco #17504001), instead of B27 without vitamin A. From day 63-70, organoids were cultured 

in Maintenance Media 2 supplemented with 10ng/mL each of BDNF (Alomone #B-250) and NT3 

(Alomone #N-260). 

 

Cortical organoid fixation, embedding, cryosectioning 
Organoids were fixed in 4% PFA in PBS for 30 minutes at room temperature, then washed with 

PBS three times. Organoids were then dehydrated in 30% sucrose in PBS at 4C overnight. 
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Cryomolds were filled with a 1:1 mixture of 30% sucrose in PBS and OCT, and organoids were 

embedded in the cryomolds and frozen on dry ice before being stored at -80C. Fixed and frozen 

organoids were cryosectioned to 18µm thickness and mounted on SuperFrost Plus microscope 

slides (Fisher Scientific #12-550-15). 

 

Immunohistochemistry 
Sectioned organoids were first rehydrated in PBS for 10 minutes and then treated with boiling 

10mM sodium citrate solution pH 6 for 15 minutes. Slides were washed once with PBS and 

blocked for one hour at room temperature in blocking buffer of PBS with 1% Normal Donkey 

Serum (Jackson ImmunoResearch #017-000-121), 0.1% Gelatin, and 1% Triton X-100. Primary 

antibodies were diluted in blocking buffer and added to slides in a hybridization chamber, where 

slides were incubated at 4C overnight. Slides were then washed three times with PBS with 1% 

Triton X-100 and incubated with secondary antibodies diluted 1:1000 in blocking buffer in a 

hybridization chamber at room temperature for 3 hours. Slides were washed three times in PBS 

with 1% Triton X-100 and coverslips were mounted using ProLong Gold Antifade Mountant 

(Invitrogen #P36930). 

The following primary antibodies and dilutions were used: FOXP1 (Abcam #ab227649 1:100), 

FOXP2 (R&D Systems #AF5647 1:500), FOXG1 (Abcam #ab18259 1:1000), DLX2 (Santa Cruz 

Biotechnology #sc-393879 1:50), PAX6 (Biolegend #901301 1:200), Ki67 (Dako #M7240 1:200), 

CTIP2 (Abcam #ab18465 1:500). 

 

Imaging and quantification 
Prepared slides were imaged on a Leica SP8 laser scanning confocal microscope using a 20x air 

objective. Images were processed using Fiji and quantified using CellProfiler172. Mann-Whitney U 

test was used to determine significant differences in expression, with FDR q = 0.01. 

 

Cortical organoid dissociation 
Organoids were dissociated using 20 units of Papain (Worthington #LK003178) with 5% 

Trehalose in HBSS for 30 minutes at 37C. DNase was added, and organoids were incubated for 

another 15 minutes at 37C. Papain was quenched using Albumin-ovomucoid inhibitor and cells 

were filtered through a 40µm cell strainer. Cells were spun down, resuspended, and counted. 

 

CUT&Tag 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

70 

CUT&Tag was performed on dissociated organoids as previously described136 with some 

modifications. Briefly, 200,000 cells per reaction were pelleted at 600g for 3 minutes at room 

temperature and resuspended and fixed in PBS with 0.1% formaldehyde for 2 minutes. 1.25M 

glycine was added to double the molar concentration of formaldehyde and stop cross linking, and 

cells were spun down at 1300g at 4C for 3 minutes. Cells were resuspended in wash buffer (20mM 

HEPES pH 7.5, 150mM NaCl, 0.5mM spermidine, and 1 EDTA-free complete protease inhibitor 

tablet). Concanavalin A-coated beads (Fisher Scientific #NC1526856) were prepared by adding 

10µL beads per reaction to bead-binding buffer (20mM HEPES pH 7.9, 10mM KCl, 1mM CaCl2, 

and 1mM MnCl2). Using a magnetic rack, binding buffer was removed, and beads were 

resuspended in binding buffer once more before removing the binding buffer again and finally 

resuspending in enough binding buffer for 10µL per reaction. 10µL beads were then added to 

cells and incubated on an end over end rotator for 10 minutes at room temperature. Wash buffer 

was removed from cells using a magnetic rack, and cells were resuspended in enough antibody 

buffer (wash buffer with 2mM EDTA, 0.1% BSA, and 0.05% digitonin) for 50µL per reaction. 

Primary antibodies (FOXP1 Cell Signaling Technologies #2005S, FOXP2 Abcam #ab16046, 

FOXP4 Millipore #ABE74, H3K27me3 Cell Signaling Technologies #9733, IgG Epicypher #13-

0042) were added at 1:50 dilution and samples were nutated overnight at 4C. 

Using a magnetic rack, primary antibody was removed, and cells were resuspended in 100µL 

secondary antibody (Antibodies Online #ABIN101961) diluted in wash buffer with 0.05% digitonin. 

Cells were then nutated for one hour at room temperature. Secondary antibody mix was removed 

using a magnetic rack, and cells were washed with wash buffer with 0.05% digitonin three times. 

pA-Tn5 preloaded with Nextera adapters (Epicypher #15-1117) was diluted 1:20 in dig-300 buffer 

(20mM HEPES pH7.5, 300mM NaCl, 0.5mM spermidine, 0.015% digitonin with 1 EDTA-free 

complete protease inhibitor tablet) and cells were resuspended in 50µL of pA-Tn5 mix. Cells were 

nutated for one hour at room temperature. Using a magnetic rack, pA-Tn5 mix was removed, and 

cells were washed three times in dig-wash buffer. Cells were resuspended in 300µL of 

tagmentation buffer (dig-300 buffer with 10mM MgCl2) and incubated in a 37C water bath for one 

hour. Cells were released from beads with addition of 10µL 0.5M EDTA, 3µL 10% SDS, and 2.5µL 

20mg/ml proteinase K. Samples were vortexed and incubated in a heat block at 55C for one hour. 

Fragments were purified by adding 300µL phenol:chloroform:isoamyl alcohol (25:24:1 v/v) and 

sample to a phase lock tube (Qiagen #129046), and spun down at 16,000g for 3 minutes. 300µL 

chloroform was added to each sample and spun down once more at 16,000g for 3 minutes. The 

aqueous layer was added to a 1.5ml lo-bind tube with 750µL 100% ethanol and mixed by 
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pipetting. Samples were cooled on ice and spun down at 16,000g for 15 minutes at 4C. 

Supernatant was decanted, and samples were washed once more with 1ml 100% ethanol and 

spun down at 16,000g for 1 minute at 4C. Ethanol was decanted, the pellet was air dried, and 

resuspended in 22µL water. Libraries were amplified by mixing 21µL sample, 2µL each i5 and i7 

primers (Illumina #FC-131-2001), and 25µL NEBNext High Fidelity 2X Master Mix (NEB 

#M0541S) and using the following PCR cycle settings: 72C for 5 minutes, 98C for 30 seconds, 

98C for 10 seconds, 61C for 10 seconds, repeat steps 3-4 15x, and a final 72C incubation for 1 

minute. Libraries were purified using SPRI Select Reagent (Beckman Coulter #B23317) and 

eluted in 20µL water. 

Libraries were pooled to 2nM and diluted to a final concentration of 750pM with 2% PhiX spike in 

for sequencing using the Illumina NextSeq 2000 with a targeted read depth of ~10 million reads 

per sample. 2 technical replicates were used per sample. 

 

CUT&Tag analysis 
Reads were trimmed using TrimGalore, aligned to reference genomes for hg38 and E. coli using 

bowtie2 with parameters “--end-to-end --very-sensitive --no-mixed --no-discordant --phred33 -I 10 

-X 700.” Duplicates were marked and removed with picard. Peaks were called using MACS2 using 

the corresponding IgG sample as a control, with q = 0.01. 

DESeq2 was used to determine differential peaks between FOXP1 R514H and WT. Wald test 

was used to determine significance with Benjamini-Hochberg correction. 

 

scRNA-seq 
Dissociated organoids as described above were used as input for Fluent Biosciences PIP-seq T2 

V4.0 kit176 with 20,000 cells per reaction as input with two technical replicates per sample. 

Libraries were pooled to 2nM and sequenced at 750pM final concentration with 2% PhiX spike-

in. Libraries were paired-end sequenced with a targeted sequencing depth of 20,000 reads per 

cell on a NextSeq 2000. 

 

scRNA-seq analysis 
Cell by gene matrices for each sample/replicate were generated using PIPseeker and were 

integrated into one object using Seurat. High quality cells were subsetted by removing those with 

less than 500 or greater than 10,000 genes; less than 1000 UMIs; and greater than 10% 

mitochondrial reads. Reads were normalized using SCTransform and batch correction was done 
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with Harmony. Cells were clustered using resolution 0.2. Clusters were manually annotated using 

cluster markers. Differentially expressed genes between FOXP1 R514H/+ and WT in each cluster 

were determined using FindMarkers with the default parameters. 
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During the preparation of this work the authors used chatGPT-3 to shorten text sections. After 

using this tool/service, the authors reviewed and edited the content as needed and take full 

responsibility for the content of the publication. 

References 

1. Lord, C., Brugha, T.S., Charman, T., Cusack, J., Dumas, G., Frazier, T., Jones, E.J.H., 
Jones, R.M., Pickles, A., State, M.W., et al. (2020). Autism spectrum disorder. Nat Rev Dis 
Primers 6, 5. 

2. Tick, B., Bolton, P., Happé, F., Rutter, M., and Rijsdijk, F. (2016). Heritability of autism 
spectrum disorders: a meta-analysis of twin studies. J. Child Psychol. Psychiatry 57, 585–
595. 

3. Fu, J.M., Satterstrom, F.K., Peng, M., Brand, H., Collins, R.L., Dong, S., Wamsley, B., Klei, 
L., Wang, L., Hao, S.P., et al. (2022). Rare coding variation provides insight into the genetic 
architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331. 

4. Trost, B., Thiruvahindrapuram, B., Chan, A.J.S., Engchuan, W., Higginbotham, E.J., Howe, 
J.L., Loureiro, L.O., Reuter, M.S., Roshandel, D., Whitney, J., et al. (2022). Genomic 
architecture of autism from comprehensive whole-genome sequence annotation. Cell 185, 
4409–4427.e18. 

5. Zhou, X., Feliciano, P., Shu, C., Wang, T., Astrovskaya, I., Hall, J.B., Obiajulu, J.U., Wright, 
J.R., Murali, S.C., Xu, S.X., et al. (2022). Integrating de novo and inherited variants in 
42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 54, 
1305–1319. 

6. Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An, J.-Y., Peng, 
M., Collins, R., Grove, J., Klei, L., et al. (2020). Large-Scale Exome Sequencing Study 
Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 
180, 568–584.e23. 

7. Willsey, H.R., Willsey, A.J., Wang, B., and State, M.W. (2022). Genomics, convergent 
neuroscience and progress in understanding autism spectrum disorder. Nat. Rev. Neurosci. 
23, 323–341. 

8. Sestan, N., and State, M.W. (2018). Lost in Translation: Traversing the Complex Path from 
Genomics to Therapeutics in Autism Spectrum Disorder. Neuron 100, 406–423. 

9. State, M.W., and Šestan, N. (2012). Neuroscience. The emerging biology of autism 
spectrum disorders. Science 337, 1301–1303. 

10. Willsey, A.J., Morris, M.T., Wang, S., Willsey, H.R., Sun, N., Teerikorpi, N., Baum, T.B., 
Cagney, G., Bender, K.J., Desai, T.A., et al. (2018). The Psychiatric Cell Map Initiative: A 
Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in 
Neuropsychiatric Disorders. Cell 174, 505–520. 

11. Paulsen, B., Velasco, S., Kedaigle, A.J., Pigoni, M., Quadrato, G., Deo, A.J., Adiconis, X., 
Uzquiano, A., Sartore, R., Yang, S.M., et al. (2022). Autism genes converge on 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

74 

asynchronous development of shared neuron classes. Nature 602, 268–273. 

12. Sacai, H., Sakoori, K., Konno, K., Nagahama, K., Suzuki, H., Watanabe, T., Watanabe, M., 
Uesaka, N., and Kano, M. (2020). Autism spectrum disorder-like behavior caused by 
reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. 
Nat. Commun. 11, 5140. 

13. Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., Amenduni, M., 
Szekely, A., Palejev, D., Wilson, M., et al. (2015). FOXG1-Dependent Dysregulation of 
GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell 162, 375–390. 

14. Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A., Reilly, S.K., 
Lin, L., Fertuzinhos, S., Miller, J.A., et al. (2013). Coexpression networks implicate human 
midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–
1007. 

15. Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K., Chandran, V., Horvath, S., and 
Geschwind, D.H. (2013). Integrative functional genomic analyses implicate specific 
molecular pathways and circuits in autism. Cell 155, 1008–1021. 

16. Ben-David, E., and Shifman, S. (2013). Combined analysis of exome sequencing points 
toward a major role for transcription regulation during brain development in autism. Mol. 
Psychiatry 18, 1054–1056. 

17. Willsey, H.R., Exner, C.R.T., Xu, Y., Everitt, A., Sun, N., Wang, B., Dea, J., Schmunk, G., 
Zaltsman, Y., Teerikorpi, N., et al. (2021). Parallel in vivo analysis of large-effect autism 
genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 109, 
788–804.e8. 

18. Kim, I.B., Lee, T., Lee, J., Kim, J., Lee, S., Koh, I.G., Kim, J.H., An, J.-Y., Lee, H., Kim, 
W.K., et al. (2022). Non-coding de novo mutations in chromatin interactions are implicated 
in autism spectrum disorder. Mol. Psychiatry 27, 4680–4694. 

19. Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E., Cicek, A.E., 
Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., et al. (2015). Insights into Autism Spectrum 
Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 87, 1215–1233. 

20. De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Cicek, A.E., Kou, Y., 
Liu, L., Fromer, M., Walker, S., et al. (2014). Synaptic, transcriptional and chromatin genes 
disrupted in autism. Nature 515, 209–215. 

21. Gilman, S.R., Iossifov, I., Levy, D., Ronemus, M., Wigler, M., and Vitkup, D. (2011). Rare 
de novo variants associated with autism implicate a large functional network of genes 
involved in formation and function of synapses. Neuron 70, 898–907. 

22. Lasser, M., Sun, N., Xu, Y., Wang, S., Drake, S., Law, K., Gonzalez, S., Wang, B., Drury, 
V., Castillo, O., et al. (2023). Pleiotropy of autism-associated chromatin regulators. 
Development 150. 10.1242/dev.201515. 

23. Pintacuda, G., Hsu, Y.-H.H., Tsafou, K., Li, K.W., Martín, J.M., Riseman, J., Biagini, J.C., 
Ching, J.K.T., Mena, D., Gonzalez-Lozano, M.A., et al. (2023). Protein interaction studies in 
human induced neurons indicate convergent biology underlying autism spectrum disorders. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

75 

Cell Genom 3, 100250. 

24. Murtaza, N., Cheng, A.A., Brown, C.O., Meka, D.P., Hong, S., Uy, J.A., El-Hajjar, J., Pipko, 
N., Unda, B.K., Schwanke, B., et al. (2022). Neuron-specific protein network mapping of 
autism risk genes identifies shared biological mechanisms and disease-relevant 
pathologies. Cell Rep. 41, 111678. 

25. Sakai, Y., Shaw, C.A., Dawson, B.C., Dugas, D.V., Al-Mohtaseb, Z., Hill, D.E., and Zoghbi, 
H.Y. (2011). Protein interactome reveals converging molecular pathways among autism 
disorders. Sci. Transl. Med. 3, 86ra49. 

26. Kim, M., Park, J., Bouhaddou, M., Kim, K., Rojc, A., Modak, M., Soucheray, M., McGregor, 
M.J., O’Leary, P., Wolf, D., et al. (2021). A protein interaction landscape of breast cancer. 
Science 374, eabf3066. 

27. Swaney, D.L., Ramms, D.J., Wang, Z., Park, J., Goto, Y., Soucheray, M., Bhola, N., Kim, 
K., Zheng, F., Zeng, Y., et al. (2021). A protein network map of head and neck cancer 
reveals PIK3CA mutant drug sensitivity. Science 374, eabf2911. 

28. Eckhardt, M., Zhang, W., Gross, A.M., Von Dollen, J., Johnson, J.R., Franks-Skiba, K.E., 
Swaney, D.L., Johnson, T.L., Jang, G.M., Shah, P.S., et al. (2018). Multiple Routes to 
Oncogenesis Are Promoted by the Human Papillomavirus-Host Protein Network. Cancer 
Discov. 8, 1474–1489. 

29. Kratz, A., Kim, M., Kelly, M.R., Zheng, F., Koczor, C.A., Li, J., Ono, K., Qin, Y., Churas, C., 
Chen, J., et al. (2023). A multi-scale map of protein assemblies in the DNA damage 
response. Cell Syst 14, 447–463.e8. 

30. Gonzalez-Teran, B., Pittman, M., Felix, F., Thomas, R., Richmond-Buccola, D., Hüttenhain, 
R., Choudhary, K., Moroni, E., Costa, M.W., Huang, Y., et al. (2022). Transcription factor 
protein interactomes reveal genetic determinants in heart disease. Cell 185, 794–814.e30. 

31. Judge, L.M., Perez-Bermejo, J.A., Truong, A., Ribeiro, A.J., Yoo, J.C., Jensen, C.L., 
Mandegar, M.A., Huebsch, N., Kaake, R.M., So, P.-L., et al. (2017). A BAG3 chaperone 
complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2. 
10.1172/jci.insight.94623. 

32. Zhu, L., Choudhary, K., Gonzalez-Teran, B., Ang, Y.-S., Thomas, R., Stone, N.R., Liu, L., 
Zhou, P., Zhu, C., Ruan, H., et al. (2022). Transcription Factor GATA4 Regulates Cell 
Type-Specific Splicing Through Direct Interaction With RNA in Human Induced Pluripotent 
Stem Cell-Derived Cardiac Progenitors. Circulation 146, 770–787. 

33. Hota, S.K., Rao, K.S., Blair, A.P., Khalilimeybodi, A., Hu, K.M., Thomas, R., So, K., 
Kameswaran, V., Xu, J., Polacco, B.J., et al. (2022). Brahma safeguards canalization of 
cardiac mesoderm differentiation. Nature 602, 129–134. 

34. Tracy, T.E., Madero-Pérez, J., Swaney, D.L., Chang, T.S., Moritz, M., Konrad, C., Ward, 
M.E., Stevenson, E., Hüttenhain, R., Kauwe, G., et al. (2022). Tau interactome maps 
synaptic and mitochondrial processes associated with neurodegeneration. Cell 185, 712–
728.e14. 

35. Hiatt, J., Hultquist, J.F., McGregor, M.J., Bouhaddou, M., Leenay, R.T., Simons, L.M., 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

76 

Young, J.M., Haas, P., Roth, T.L., Tobin, V., et al. (2022). A functional map of HIV-host 
interactions in primary human T cells. Nat. Commun. 13, 1752. 

36. Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J., Obernier, K., White, K.M., O’Meara, M.J., 
Rezelj, V.V., Guo, J.Z., Swaney, D.L., et al. (2020). A SARS-CoV-2 protein interaction map 
reveals targets for drug repurposing. Nature 583, 459–468. 

37. Bouhaddou, M., Reuschl, A.-K., Polacco, B.J., Thorne, L.G., Ummadi, M.R., Ye, C., 
Rosales, R., Pelin, A., Batra, J., Jang, G.M., et al. (2023). SARS-CoV-2 variants evolve 
convergent strategies to remodel the host response. Cell 186, 4597–4614.e26. 

38. Gordon, D.E., Hiatt, J., Bouhaddou, M., Rezelj, V.V., Ulferts, S., Braberg, H., Jureka, A.S., 
Obernier, K., Guo, J.Z., Batra, J., et al. (2020). Comparative host-coronavirus protein 
interaction networks reveal pan-viral disease mechanisms. Science 370. 
10.1126/science.abe9403. 

39. Batra, J., Hultquist, J.F., Liu, D., Shtanko, O., Von Dollen, J., Satkamp, L., Jang, G.M., 
Luthra, P., Schwarz, T.M., Small, G.I., et al. (2018). Protein Interaction Mapping Identifies 
RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell 175, 1917–1930.e13. 

40. Haas, K.M., McGregor, M.J., Bouhaddou, M., Polacco, B.J., Kim, E.-Y., Nguyen, T.T., 
Newton, B.W., Urbanowski, M., Kim, H., Williams, M.A.P., et al. (2023). Proteomic and 
genetic analyses of influenza A viruses identify pan-viral host targets. Nat. Commun. 14, 
6030. 

41. Thorne, L.G., Bouhaddou, M., Reuschl, A.-K., Zuliani-Alvarez, L., Polacco, B., Pelin, A., 
Batra, J., Whelan, M.V.X., Hosmillo, M., Fossati, A., et al. (2022). Evolution of enhanced 
innate immune evasion by SARS-CoV-2. Nature 602, 487–495. 

42. Jäger, S., Cimermancic, P., Gulbahce, N., Johnson, J.R., McGovern, K.E., Clarke, S.C., 
Shales, M., Mercenne, G., Pache, L., Li, K., et al. (2011). Global landscape of HIV-human 
protein complexes. Nature 481, 365–370. 

43. Ramage, H.R., Kumar, G.R., Verschueren, E., Johnson, J.R., Von Dollen, J., Johnson, T., 
Newton, B., Shah, P., Horner, J., Krogan, N.J., et al. (2015). A combined 
proteomics/genomics approach links hepatitis C virus infection with nonsense-mediated 
mRNA decay. Mol. Cell 57, 329–340. 

44. Shah, P.S., Link, N., Jang, G.M., Sharp, P.P., Zhu, T., Swaney, D.L., Johnson, J.R., Von 
Dollen, J., Ramage, H.R., Satkamp, L., et al. (2018). Comparative Flavivirus-Host Protein 
Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell 
175, 1931–1945.e18. 

45. Penn, B.H., Netter, Z., Johnson, J.R., Von Dollen, J., Jang, G.M., Johnson, T., Ohol, Y.M., 
Maher, C., Bell, S.L., Geiger, K., et al. (2018). An Mtb-Human Protein-Protein Interaction 
Map Identifies a Switch between Host Antiviral and Antibacterial Responses. Mol. Cell 71, 
637–648.e5. 

46. Teo, G., Liu, G., Zhang, J., Nesvizhskii, A.I., Gingras, A.-C., and Choi, H. (2014). 
SAINTexpress: improvements and additional features in Significance Analysis of 
INTeractome software. J. Proteomics 100, 37–43. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

77 

47. Sowa, M.E., Bennett, E.J., Gygi, S.P., and Harper, J.W. (2009). Defining the human 
deubiquitinating enzyme interaction landscape. Cell 138, 389–403. 

48. Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, 
G., Colby, G., Baltier, K., et al. (2015). The BioPlex Network: A Systematic Exploration of 
the Human Interactome. Cell 162, 425–440. 

49. Oughtred, R., Stark, C., Breitkreutz, B.-J., Rust, J., Boucher, L., Chang, C., Kolas, N., 
O’Donnell, L., Leung, G., McAdam, R., et al. (2019). The BioGRID interaction database: 
2019 update. Nucleic Acids Res. 47, D529–D541. 

50. Giurgiu, M., Reinhard, J., Brauner, B., Dunger-Kaltenbach, I., Fobo, G., Frishman, G., 
Montrone, C., and Ruepp, A. (2019). CORUM: the comprehensive resource of mammalian 
protein complexes-2019. Nucleic Acids Res. 47, D559–D563. 

51. Li, T., Wernersson, R., Hansen, R.B., Horn, H., Mercer, J., Slodkowicz, G., Workman, C.T., 
Rigina, O., Rapacki, K., Stærfeldt, H.H., et al. (2017). A scored human protein-protein 
interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64. 

52. Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., 
Weisswange, I., Mansfeld, J., Buchholz, F., et al. (2015). A human interactome in three 
quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723. 

53. Li, M., Santpere, G., Imamura Kawasawa, Y., Evgrafov, O.V., Gulden, F.O., Pochareddy, 
S., Sunkin, S.M., Li, Z., Shin, Y., Zhu, Y., et al. (2018). Integrative functional genomic 
analysis of human brain development and neuropsychiatric risks. Science 362. 
10.1126/science.aat7615. 

54. GTEx Consortium (2013). The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 
45, 580–585. 

55. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis 
Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx 
(eGTEx) groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA, 
Biospecimen Collection Source Site—NDRI, et al. (2017). Genetic effects on gene 
expression across human tissues. Nature 550, 204–213. 

56. Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M., 
Kosmicki, J.A., Rehnström, K., Mallick, S., Kirby, A., et al. (2014). A framework for the 
interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950. 

57. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O’Donnell-
Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of protein-coding 
genetic variation in 60,706 humans. Nature 536, 285–291. 

58. Cassa, C.A., Weghorn, D., Balick, D.J., Jordan, D.M., Nusinow, D., Samocha, K.E., 
O’Donnell-Luria, A., MacArthur, D.G., Daly, M.J., Beier, D.R., et al. (2017). Estimating the 
selective effects of heterozygous protein-truncating variants from human exome data. Nat. 
Genet. 49, 806–810. 

59. Fischbach, G.D., and Lord, C. (2010). The Simons Simplex Collection: a resource for 
identification of autism genetic risk factors. Neuron 68, 192–195. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

78 

60. Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J.D., Bass, N., Bigdeli, 
T.B., Breen, G., Bromet, E.J., et al. (2022). Rare coding variants in ten genes confer 
substantial risk for schizophrenia. Nature. 10.1038/s41586-022-04556-w. 

61. Banerjee-Basu, S., and Packer, A. (2010). SFARI Gene: an evolving database for the 
autism research community. Dis. Model. Mech. 3, 133–135. 

62. Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A., Di Lullo, E., 
Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D., et al. (2017). 
Spatiotemporal gene expression trajectories reveal developmental hierarchies of the 
human cortex. Science 358, 1318–1323. 

63. Polioudakis, D., de la Torre-Ubieta, L., Langerman, J., Elkins, A.G., Shi, X., Stein, J.L., 
Vuong, C.K., Nichterwitz, S., Gevorgian, M., Opland, C.K., et al. (2019). A Single-Cell 
Transcriptomic Atlas of Human Neocortical Development during Mid-gestation. Neuron 103, 
785–801.e8. 

64. Ruzzo, E.K., Pérez-Cano, L., Jung, J.-Y., Wang, L.-K., Kashef-Haghighi, D., Hartl, C., 
Singh, C., Xu, J., Hoekstra, J.N., Leventhal, O., et al. (2019). Inherited and De Novo 
Genetic Risk for Autism Impacts Shared Networks. Cell 178, 850–866.e26. 

65. Voineagu, I., Wang, X., Johnston, P., Lowe, J.K., Tian, Y., Horvath, S., Mill, J., Cantor, 
R.M., Blencowe, B.J., and Geschwind, D.H. (2011). Transcriptomic analysis of autistic brain 
reveals convergent molecular pathology. Nature 474, 380–384. 

66. Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, 
N.T., Legeay, M., Fang, T., Bork, P., et al. (2021). The STRING database in 2021: 
customizable protein-protein networks, and functional characterization of user-uploaded 
gene/measurement sets. Nucleic Acids Res. 49, D605–D612. 

67. Bhaduri, A., Sandoval-Espinosa, C., Otero-Garcia, M., Oh, I., Yin, R., Eze, U.C., 
Nowakowski, T.J., and Kriegstein, A.R. (2021). An atlas of cortical arealization identifies 
dynamic molecular signatures. Nature 598, 200–204. 

68. Manoli, D.S., and State, M.W. (2021). Autism Spectrum Disorder Genetics and the Search 
for Pathological Mechanisms. Am. J. Psychiatry 178, 30–38. 

69. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., 
Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of 
biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29. 

70. Gene Ontology Consortium, Aleksander, S.A., Balhoff, J., Carbon, S., Cherry, J.M., 
Drabkin, H.J., Ebert, D., Feuermann, M., Gaudet, P., Harris, N.L., et al. (2023). The Gene 
Ontology knowledgebase in 2023. Genetics 224. 10.1093/genetics/iyad031. 

71. Kaushik, S., Haderk, F., Zhao, X., Hu, H.-M., Shah, K.N., Jang, G.M., Olivas, V., Nanjo, S., 
Jascur, J., Masto, V.B., et al. (2020). A tyrosine kinase protein interaction map reveals 
targetable EGFR network oncogenesis in lung cancer. bioRxiv, 2020.07.02.185173. 
10.1101/2020.07.02.185173. 

72. Halder, D., Lee, C.-H., Hyun, J.Y., Chang, G.-E., Cheong, E., and Shin, I. (2017). 
Suppression of Sin3A activity promotes differentiation of pluripotent cells into functional 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

79 

neurons. Sci. Rep. 7, 44818. 

73. Roopra, A., Sharling, L., Wood, I.C., Briggs, T., Bachfischer, U., Paquette, A.J., and 
Buckley, N.J. (2000). Transcriptional repression by neuron-restrictive silencer factor is 
mediated via the Sin3-histone deacetylase complex. Mol. Cell. Biol. 20, 2147–2157. 

74. Packer, A. (2016). Neocortical neurogenesis and the etiology of autism spectrum disorder. 
Neurosci. Biobehav. Rev. 64, 185–195. 

75. Quevedo, M., Meert, L., Dekker, M.R., Dekkers, D.H.W., Brandsma, J.H., van den Berg, 
D.L.C., Ozgür, Z., van IJcken, W.F.J., Demmers, J., Fornerod, M., et al. (2019). Mediator 
complex interaction partners organize the transcriptional network that defines neural stem 
cells. Nat. Commun. 10, 2669. 

76. Ding, N., Zhou, H., Esteve, P.-O., Chin, H.G., Kim, S., Xu, X., Joseph, S.M., Friez, M.J., 
Schwartz, C.E., Pradhan, S., et al. (2008). Mediator links epigenetic silencing of neuronal 
gene expression with x-linked mental retardation. Mol. Cell 31, 347–359. 

77. Osipovich, A.B., Gangula, R., Vianna, P.G., and Magnuson, M.A. (2016). Setd5 is essential 
for mammalian development and the co-transcriptional regulation of histone acetylation. 
Development 143, 4595–4607. 

78. Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., 
Blackwell, S., Yim, J., et al. (2022). Protein complex prediction with AlphaFold-Multimer. 
bioRxiv, 2021.10.04.463034. 10.1101/2021.10.04.463034. 

79. Bryant, P., Pozzati, G., and Elofsson, A. (2022). Improved prediction of protein-protein 
interactions using AlphaFold2. Nat. Commun. 13, 1265. 

80. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., Wang, J., 
Cong, Q., Kinch, L.N., Schaeffer, R.D., et al. (2021). Accurate prediction of protein 
structures and interactions using a three-track neural network. Science 373, 871–876. 

81. Gao, M., Nakajima An, D., Parks, J.M., and Skolnick, J. (2022). AF2Complex predicts direct 
physical interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744. 

82. Humphreys, I.R., Pei, J., Baek, M., Krishnakumar, A., Anishchenko, I., Ovchinnikov, S., 
Zhang, J., Ness, T.J., Banjade, S., Bagde, S.R., et al. (2021). Computed structures of core 
eukaryotic protein complexes. Science 374, eabm4805. 

83. Skurat, A.V., and Dietrich, A.D. (2004). Phosphorylation of Ser640 in muscle glycogen 
synthase by DYRK family protein kinases. J. Biol. Chem. 279, 2490–2498. 

84. Yu, D., Cattoglio, C., Xue, Y., and Zhou, Q. (2019). A complex between DYRK1A and 
DCAF7 phosphorylates the C-terminal domain of RNA polymerase II to promote 
myogenesis. Nucleic Acids Res. 47, 4462–4475. 

85. Glenewinkel, F., Cohen, M.J., King, C.R., Kaspar, S., Bamberg-Lemper, S., Mymryk, J.S., 
and Becker, W. (2016). The adaptor protein DCAF7 mediates the interaction of the 
adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2. Sci. Rep. 6, 
28241. 

86. Miyata, Y., and Nishida, E. (2023). Identification of FAM53C as a cytosolic-anchoring 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

80 

inhibitory binding protein of the kinase DYRK1A. Life Sci Alliance 6. 
10.26508/lsa.202302129. 

87. Magini, P., Smits, D.J., Vandervore, L., Schot, R., Columbaro, M., Kasteleijn, E., van der 
Ent, M., Palombo, F., Lequin, M.H., Dremmen, M., et al. (2019). Loss of SMPD4 Causes a 
Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis. 
Am. J. Hum. Genet. 105, 689–705. 

88. Ravenscroft, G., Clayton, J.S., Faiz, F., Sivadorai, P., Milnes, D., Cincotta, R., Moon, P., 
Kamien, B., Edwards, M., Delatycki, M., et al. (2021). Neurogenetic fetal akinesia and 
arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J. 
Med. Genet. 58, 609–618. 

89. Miyata, Y., and Nishida, E. (2011). DYRK1A binds to an evolutionarily conserved WD40-
repeat protein WDR68 and induces its nuclear translocation. Biochim. Biophys. Acta 1813, 
1728–1739. 

90. Xiang, J., Yang, S., Xin, N., Gaertig, M.A., Reeves, R.H., Li, S., and Li, X.-J. (2017). 
DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in 
Down syndrome. Proc. Natl. Acad. Sci. U. S. A. 114, E1224–E1233. 

91. Yousefelahiyeh, M., Xu, J., Alvarado, E., Yu, Y., Salven, D., and Nissen, R.M. (2018). 
DCAF7/WDR68 is required for normal levels of DYRK1A and DYRK1B. PLoS One 13, 
e0207779. 

92. Oughtred, R., Rust, J., Chang, C., Breitkreutz, B.-J., Stark, C., Willems, A., Boucher, L., 
Leung, G., Kolas, N., Zhang, F., et al. (2021). The BioGRID database: A comprehensive 
biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 
187–200. 

93. Wang, B., Doan, D., Roman Petersen, Y., Alvarado, E., Alvarado, G., Bhandari, A., 
Mohanty, A., Mohanty, S., and Nissen, R.M. (2013). Wdr68 requires nuclear access for 
craniofacial development. PLoS One 8, e54363. 

94. Geng, Z., Wang, Q., Miao, W., Wolf, T., Chavez, J., Giddings, E., Hobbs, R., DeGraff, D.J., 
Wang, Y., Stafford, J., et al. (2023). AUTS2 Controls Neuronal Lineage Choice Through a 
Novel PRC1-Independent Complex and BMP Inhibition. Stem Cell Rev Rep 19, 531–549. 

95. Wang, Q., Geng, Z., Gong, Y., Warren, K., Zheng, H., Imamura, Y., and Gao, Z. (2018). 
WDR68 is essential for the transcriptional activation of the PRC1-AUTS2 complex and 
neuronal differentiation of mouse embryonic stem cells. Stem Cell Res. 33, 206–214. 

96. Jain, B.P., and Pandey, S. (2018). WD40 Repeat Proteins: Signalling Scaffold with Diverse 
Functions. Protein J. 37, 391–406. 

97. Stirnimann, C.U., Petsalaki, E., Russell, R.B., and Müller, C.W. (2010). WD40 proteins 
propel cellular networks. Trends Biochem. Sci. 35, 565–574. 

98. Li, S., Xu, C., Fu, Y., Lei, P.-J., Yao, Y., Yang, W., Zhang, Y., Washburn, M.P., Florens, L., 
Jaiswal, M., et al. (2018). DYRK1A interacts with histone acetyl transferase p300 and CBP 
and localizes to enhancers. Nucleic Acids Res. 46, 11202–11213. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

81 

99. Zhang, P., Zhang, Z., Fu, Y., Zhang, Y., Washburn, M.P., Florens, L., Wu, M., Huang, C., 
Hou, Z., and Mohan, M. (2021). K63-linked ubiquitination of DYRK1A by TRAF2 alleviates 
Sprouty 2-mediated degradation of EGFR. Cell Death Dis. 12, 608. 

100. Li, Y.-L., Zhang, M.-M., Wu, L.-W., Liu, Y.-H., Zhang, Z.-Y., Zeng, L.-H., Lin, N.-M., and 
Zhang, C. (2022). DYRK1A reinforces epithelial-mesenchymal transition and metastasis of 
hepatocellular carcinoma via cooperatively activating STAT3 and SMAD. J. Biomed. Sci. 
29, 34. 

101. Willsey, H.R., Xu, Y., Everitt, A., Dea, J., Exner, C.R.T., Willsey, A.J., State, M.W., and 
Harland, R.M. (2020). The neurodevelopmental disorder risk gene DYRK1A is required for 
ciliogenesis and control of brain size in Xenopus embryos. Development 147, dev189290. 

102. Willsey, H.R., Walentek, P., Exner, C.R.T., Xu, Y., Lane, A.B., Harland, R.M., Heald, R., 
and Santama, N. (2018). Katanin-like protein Katnal2 is required for ciliogenesis and brain 
development in Xenopus embryos. Dev. Biol. 442, 276–287. 

103. Gheiratmand, L., Coyaud, E., Gupta, G.D., Laurent, E.M., Hasegan, M., Prosser, S.L., 
Gonçalves, J., Raught, B., and Pelletier, L. (2019). Spatial and proteomic profiling reveals 
centrosome-independent features of centriolar satellites. EMBO J. 38, e101109. 

104. O’Neill, A.C., Uzbas, F., Antognolli, G., Merino, F., Draganova, K., Jäck, A., Zhang, S., 
Pedini, G., Schessner, J.P., Cramer, K., et al. (2022). Spatial centrosome proteome of 
human neural cells uncovers disease-relevant heterogeneity. Science 376, eabf9088. 

105. Alvarado, E., Yousefelahiyeh, M., Alvarado, G., Shang, R., Whitman, T., Martinez, A., Yu, 
Y., Pham, A., Bhandari, A., Wang, B., et al. (2016). Wdr68 Mediates Dorsal and Ventral 
Patterning Events for Craniofacial Development. PLoS One 11, e0166984. 

106. Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K.R., MacLeod, G., Mis, 
M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., et al. (2015). High-Resolution CRISPR 
Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell 163, 1515–
1526. 

107. Nissen, R.M., Amsterdam, A., and Hopkins, N. (2006). A zebrafish screen for craniofacial 
mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression. 
BMC Dev. Biol. 6, 28. 

108. Ritterhoff, S., Farah, C.M., Grabitzki, J., Lochnit, G., Skurat, A.V., and Schmitz, M.L. (2010). 
The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and 
MEKK1 kinase functions. EMBO J. 29, 3750–3761. 

109. Frendo-Cumbo, S., Li, T., Ammendolia, D.A., Coyaud, E., Laurent, E.M.N., Liu, Y., Bilan, 
P.J., Polevoy, G., Raught, B., Brill, J.A., et al. (2022). DCAF7 regulates cell proliferation 
through IRS1-FOXO1 signaling. iScience 25. 10.1016/j.isci.2022.105188. 

110. Linsley, J.W., Shah, K., Castello, N., Chan, M., Haddad, D., Doric, Z., Wang, S., Leks, W., 
Mancini, J., Oza, V., et al. (2021). Genetically encoded cell-death indicators (GEDI) to 
detect an early irreversible commitment to neurodegeneration. Nat. Commun. 12, 5284. 

111. Najas, S., Arranz, J., Lochhead, P.A., Ashford, A.L., Oxley, D., Delabar, J.M., Cook, S.J., 
Barallobre, M.J., and Arbonés, M.L. (2015). DYRK1A-mediated Cyclin D1 Degradation in 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

82 

Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome. 
EBioMedicine 2, 120–134. 

112. Recasens, A., Humphrey, S.J., Ellis, M., Hoque, M., Abbassi, R.H., Chen, B., Longworth, 
M., Needham, E.J., James, D.E., Johns, T.G., et al. (2021). Global phosphoproteomics 
reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discov 7, 81. 

113. Bellmaine, S.F., Ovchinnikov, D.A., Manallack, D.T., Cuddy, C.E., Elefanty, A.G., Stanley, 
E.G., Wolvetang, E.J., Williams, S.J., and Pera, M. (2017). Inhibition of DYRK1A disrupts 
neural lineage specificationin human pluripotent stem cells. Elife 6. 10.7554/eLife.24502. 

114. Sansom, S.N., Griffiths, D.S., Faedo, A., Kleinjan, D.-J., Ruan, Y., Smith, J., van 
Heyningen, V., Rubenstein, J.L., and Livesey, F.J. (2009). The level of the transcription 
factor Pax6 is essential for controlling the balance between neural stem cell self-renewal 
and neurogenesis. PLoS Genet. 5, e1000511. 

115. Osumi, N., Shinohara, H., Numayama-Tsuruta, K., and Maekawa, M. (2008). Concise 
review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a 
multifunctional regulator. Stem Cells 26, 1663–1672. 

116. Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain 
neural progenitor identity. Neuron 39, 749–765. 

117. Hettige, N.C., Peng, H., Wu, H., Zhang, X., Yerko, V., Zhang, Y., Jefri, M., Soubannier, V., 
Maussion, G., Alsuwaidi, S., et al. (2022). FOXG1 dose tunes cell proliferation dynamics in 
human forebrain progenitor cells. Stem Cell Reports 17, 475–488. 

118. Samocha, K.E., Kosmicki, J.A., Karczewski, K.J., O’Donnell-Luria, A.H., Pierce-Hoffman, 
E., MacArthur, D.G., Neale, B.M., and Daly, M.J. (2017). Regional missense constraint 
improves variant deleteriousness prediction. bioRxiv, 148353. 10.1101/148353. 

119. Calderone, A., Castagnoli, L., and Cesareni, G. (2013). mentha: a resource for browsing 
integrated protein-interaction networks. Nat. Methods 10, 690–691. 

120. Luck, K., Kim, D.-K., Lambourne, L., Spirohn, K., Begg, B.E., Bian, W., Brignall, R., 
Cafarelli, T., Campos-Laborie, F.J., Charloteaux, B., et al. (2020). A reference map of the 
human binary protein interactome. Nature 580, 402–408. 

121. Langenbacher, A.D., Lu, F., Tsang, L., Huang, Z.Y.S., Keer, B., Tian, Z., Eide, A., 
Pellegrini, M., Nakano, H., Nakano, A., et al. (2023). Rtf1-dependent transcriptional pausing 
regulates cardiogenesis. bioRxiv. 10.1101/2023.10.13.562296. 

122. Tall, G.G., Krumins, A.M., and Gilman, A.G. (2003). Mammalian Ric-8A (synembryn) is a 
heterotrimeric Galpha protein guanine nucleotide exchange factor. J. Biol. Chem. 278, 
8356–8362. 

123. Frazer, J., Notin, P., Dias, M., Gomez, A., Min, J.K., Brock, K., Gal, Y., and Marks, D.S. 
(2021). Disease variant prediction with deep generative models of evolutionary data. Nature 
599, 91–95. 

124. Shu, W., Yang, H., Zhang, L., Lu, M.M., and Morrisey, E.E. (2001). Characterization of a 
new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

83 

as transcriptional repressors. J. Biol. Chem. 276, 27488–27497. 

125. Ferland, R.J., Cherry, T.J., Preware, P.O., Morrisey, E.E., and Walsh, C.A. (2003). 
Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature 
brain. J. Comp. Neurol. 460, 266–279. 

126. Araujo, D.J., Anderson, A.G., Berto, S., Runnels, W., Harper, M., Ammanuel, S., Rieger, 
M.A., Huang, H.-C., Rajkovich, K., Loerwald, K.W., et al. (2015). FoxP1 orchestration of 
ASD-relevant signaling pathways in the striatum. Genes Dev. 29, 2081–2096. 

127. Co, M., Anderson, A.G., and Konopka, G. (2020). FOXP transcription factors in vertebrate 
brain development, function, and disorders. Wiley Interdiscip. Rev. Dev. Biol. 9, e375. 

128. Lozano, R., Gbekie, C., Siper, P.M., Srivastava, S., Saland, J.M., Sethuram, S., Tang, L., 
Drapeau, E., Frank, Y., Buxbaum, J., et al. (2021). FOXP1 syndrome: a review of the 
literature and practice parameters for medical assessment and monitoring. J. Neurodev. 
Disord. 13, 1–18. 

129. Braccioli, L., Vervoort, S.J., Adolfs, Y., Heijnen, C.J., Basak, O., Pasterkamp, R.J., Nijboer, 
C.H., and Coffer, P.J. (2017). FOXP1 Promotes Embryonic Neural Stem Cell Differentiation 
by Repressing Jagged1 Expression. Stem Cell Reports 9, 1530–1545. 

130. Pearson, C.A., Moore, D.M., Tucker, H.O., Dekker, J.D., Hu, H., Miquelajáuregui, A., and 
Novitch, B.G. (2020). Foxp1 Regulates Neural Stem Cell Self-Renewal and Bias Toward 
Deep Layer Cortical Fates. Cell Rep. 30, 1964–1981.e3. 

131. Bacon, C., Schneider, M., Le Magueresse, C., Froehlich, H., Sticht, C., Gluch, C., Monyer, 
H., and Rappold, G.A. (2015). Brain-specific Foxp1 deletion impairs neuronal development 
and causes autistic-like behaviour. Mol. Psychiatry 20, 632–639. 

132. Li, X., Xiao, J., Fröhlich, H., Tu, X., Li, L., Xu, Y., Cao, H., Qu, J., Rappold, G.A., and Chen, 
J.-G. (2015). Foxp1 regulates cortical radial migration and neuronal morphogenesis in 
developing cerebral cortex. PLoS One 10, e0127671. 

133. Park, S.H.E., Kulkarni, A., and Konopka, G. (2023). FOXP1 orchestrates neurogenesis in 
human cortical basal radial glial cells. PLoS Biol. 21, e3001852. 

134. Li, S., Weidenfeld, J., and Morrisey, E.E. (2004). Transcriptional and DNA binding activity of 
the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol. 
Cell. Biol. 24, 809–822. 

135. Sin, C., Li, H., and Crawford, D.A. (2015). Transcriptional regulation by FOXP1, FOXP2, 
and FOXP4 dimerization. J. Mol. Neurosci. 55, 437–448. 

136. Kaya-Okur, H.S., Wu, S.J., Codomo, C.A., Pledger, E.S., Bryson, T.D., Henikoff, J.G., 
Ahmad, K., and Henikoff, S. (2019). CUT&Tag for efficient epigenomic profiling of small 
samples and single cells. Nat. Commun. 10, 1930. 

137. Searles Quick, V.B., Wang, B., and State, M.W. (2021). Leveraging large genomic datasets 
to illuminate the pathobiology of autism spectrum disorders. Neuropsychopharmacology 46, 
55–69. 

138. Myers, S.M., Challman, T.D., Bernier, R., Bourgeron, T., Chung, W.K., Constantino, J.N., 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

84 

Eichler, E.E., Jacquemont, S., Miller, D.T., Mitchell, K.J., et al. (2020). Insufficient Evidence 
for “Autism-Specific” Genes. Am. J. Hum. Genet. 106, 587–595. 

139. Buxbaum, J.D., Cutler, D.J., Daly, M.J., Devlin, B., Roeder, K., Sanders, S.J., and Autism 
Sequencing Consortium (2020). Not All Autism Genes Are Created Equal: A Response to 
Myers et al. Am. J. Hum. Genet. 107, 1000–1003. 

140. Homma, F., Huang, J., and van der Hoorn, R.A.L. (2023). AlphaFold-Multimer predicts 
cross-kingdom interactions at the plant-pathogen interface. Nat. Commun. 14, 6040. 

141. Liu, J., Guo, Z., Wu, T., Roy, R.S., Quadir, F., Chen, C., and Cheng, J. (2023). Enhancing 
AlphaFold-Multimer-based Protein Complex Structure Prediction with MULTICOM in 
CASP15. bioRxiv. 10.1101/2023.05.16.541055. 

142. Sollis, E., Deriziotis, P., Saitsu, H., Miyake, N., Matsumoto, N., Hoffer, M.J.V., Ruivenkamp, 
C.A.L., Alders, M., Okamoto, N., Bijlsma, E.K., et al. (2017). Equivalent missense variant in 
the FOXP2 and FOXP1 transcription factors causes distinct neurodevelopmental disorders. 
Hum. Mutat. 38, 1542–1554. 

143. Sollis, E., Graham, S.A., Vino, A., Froehlich, H., Vreeburg, M., Dimitropoulou, D., Gilissen, 
C., Pfundt, R., Rappold, G.A., Brunner, H.G., et al. (2016). Identification and functional 
characterization of de novo FOXP1 variants provides novel insights into the etiology of 
neurodevelopmental disorder. Hum. Mol. Genet. 25, 546–557. 

144. Estruch, S.B., Graham, S.A., Quevedo, M., Vino, A., Dekkers, D.H.W., Deriziotis, P., Sollis, 
E., Demmers, J., Poot, R.A., and Fisher, S.E. (2018). Proteomic analysis of FOXP proteins 
reveals interactions between cortical transcription factors associated with 
neurodevelopmental disorders. Hum. Mol. Genet. 27, 1212–1227. 

145. Takahashi, K., Liu, F.-C., Hirokawa, K., and Takahashi, H. (2008). Expression of Foxp4 in 
the developing and adult rat forebrain. J. Neurosci. Res. 86, 3106–3116. 

146. Jourdon, A., Wu, F., Mariani, J., Capauto, D., Norton, S., Tomasini, L., Amiri, A., Suvakov, 
M., Schreiner, J.D., Jang, Y., et al. (2023). Modeling idiopathic autism in forebrain 
organoids reveals an imbalance of excitatory cortical neuron subtypes during early 
neurogenesis. Nat. Neurosci. 26, 1505–1515. 

147. Avino, T., and Hutsler, J.J. (2021). Supernumerary neurons within the cerebral cortical 
subplate in autism spectrum disorders. Brain Res. 1760, 147350. 

148. Krogsaeter, E.K., McKetney, J., Marquez, A., Cakir, Z., Stevenson, E., Jang, G.M., Rao, A., 
Zhou, A., Huang, Y., Krogan, N.J., et al. (2023). Lysosomal proteomics reveals 
mechanisms of neuronal apoE4associated lysosomal dysfunction. bioRxiv. 
10.1101/2023.10.02.560519. 

149. Cakir, Z., Lord, S.J., Zhou, Y., Jang, G.M., Polacco, B.J., Eckhardt, M., Jimenez-Morales, 
D., Newton, B.W., Orr, A.L., Johnson, J.R., et al. (2023). Quantitative Proteomic Analysis 
Reveals apoE4-Dependent Phosphorylation of the Actin-Regulating Protein VASP. Mol. 
Cell. Proteomics 22, 100541. 

150. Kang, H.J., Kawasawa, Y.I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A.M.M., Pletikos, M., 
Meyer, K.A., Sedmak, G., et al. (2011). Spatio-temporal transcriptome of the human brain. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

85 

Nature 478, 483–489. 

151. Huttlin, E.L., Bruckner, R.J., Navarrete-Perea, J., Cannon, J.R., Baltier, K., Gebreab, F., 
Gygi, M.P., Thornock, A., Zarraga, G., Tam, S., et al. (2021). Dual proteome-scale 
networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022–
3040.e28. 

152. Abrahams, B.S., Arking, D.E., Campbell, D.B., Mefford, H.C., Morrow, E.M., Weiss, L.A., 
Menashe, I., Wadkins, T., Banerjee-Basu, S., and Packer, A. (2013). SFARI Gene 2.0: a 
community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 
4, 36. 

153. Kaplanis, J., Samocha, K.E., Wiel, L., Zhang, Z., Arvai, K.J., Eberhardt, R.Y., Gallone, G., 
Lelieveld, S.H., Martin, H.C., McRae, J.F., et al. (2020). Evidence for 28 genetic disorders 
discovered by combining healthcare and research data. Nature 586, 757–762. 

154. artMS Bioconductor. http://bioconductor.org/packages/artMS/. 

155. Bekker-Jensen, D.B., Kelstrup, C.D., Batth, T.S., Larsen, S.C., Haldrup, C., Bramsen, J.B., 
Sørensen, K.D., Høyer, S., Ørntoft, T.F., Andersen, C.L., et al. (2017). An Optimized 
Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Syst 
4, 587–599.e4. 

156. Tsitsiridis, G., Steinkamp, R., Giurgiu, M., Brauner, B., Fobo, G., Frishman, G., Montrone, 
C., and Ruepp, A. (2023). CORUM: the comprehensive resource of mammalian protein 
complexes-2022. Nucleic Acids Res. 51, D539–D545. 

157. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). 
ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682. 

158. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., 
Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate 
protein structure prediction with AlphaFold. Nature 596, 583–589. 

159. Armon, A., Graur, D., and Ben-Tal, N. (2001). ConSurf: an algorithmic tool for the 
identification of functional regions in proteins by surface mapping of phylogenetic 
information. J. Mol. Biol. 307, 447–463. 

160. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and Ben-Tal, N. 
(2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary 
conservation in macromolecules. Nucleic Acids Res. 44, W344–W350. 

161. Ben Chorin, A., Masrati, G., Kessel, A., Narunsky, A., Sprinzak, J., Lahav, S., Ashkenazy, 
H., and Ben-Tal, N. (2020). ConSurf-DB: An accessible repository for the evolutionary 
conservation patterns of the majority of PDB proteins. Protein Sci. 29, 258–267. 

162. Forster, D.T., Li, S.C., Yashiroda, Y., Yoshimura, M., Li, Z., Isuhuaylas, L.A.V., Itto-
Nakama, K., Yamanaka, D., Ohya, Y., Osada, H., et al. (2022). BIONIC: biological network 
integration using convolutions. Nat. Methods. 10.1038/s41592-022-01616-x. 

163. Zheng, F., Zhang, S., Churas, C., Pratt, D., Bahar, I., and Ideker, T. (2021). HiDeF: 
identifying persistent structures in multiscale ’omics data. Genome Biol. 22, 21. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

86 

164. Dutkowski, J., Kramer, M., Surma, M.A., Balakrishnan, R., Cherry, J.M., Krogan, N.J., and 
Ideker, T. (2013). A gene ontology inferred from molecular networks. Nat. Biotechnol. 31, 
38–45. 

165. Hu, M., Alkhairy, S., Lee, I., Pillich, R.T., Bachelder, R., Ideker, T., and Pratt, D. (2023). 
Evaluation of large language models for discovery of gene set function. ArXiv. 

166. Sive, H.L., Grainger, R.M., and Harland, R.M. (2000). Early Development of Xenopus 
Laevis: A Laboratory Manual (CSHL Press). 

167. Nieuwkoop, P.D. (1994). Normal Table of Xenopus Laevis (Daudin): A Systematical and 
Chronological Survey of the Development from the Fertilized Egg Till the End of 
Metamorphosis (Garland Science). 

168. Willsey, H.R., Exner, C.R.T., Xu, Y., Everitt, A., Sun, N., Wang, B., Dea, J., Schmunk, G., 
Zaltsman, Y., Teerikorpi, N., et al. (2021). Parallel in vivo analysis of large-effect autism 
genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 109, 
1409. 

169. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source 
platform for biological-image analysis. Nat. Methods 9, 676–682. 

170. Qi, Y., Zhang, X.-J., Renier, N., Wu, Z., Atkin, T., Sun, Z., Ozair, M.Z., Tchieu, J., Zimmer, 
B., Fattahi, F., et al. (2017). Combined small-molecule inhibition accelerates the derivation 
of functional cortical neurons from human pluripotent stem cells. Nat. Biotechnol. 35, 154–
163. 

171. Keaveney, M.K., Tseng, H.-A., Ta, T.L., Gritton, H.J., Man, H.-Y., and Han, X. (2018). A 
MicroRNA-Based Gene-Targeting Tool for Virally Labeling Interneurons in the Rodent 
Cortex. Cell Rep. 24, 294–303. 

172. Stirling, D.R., Swain-Bowden, M.J., Lucas, A.M., Carpenter, A.E., Cimini, B.A., and 
Goodman, A. (2021). CellProfiler 4: improvements in speed, utility and usability. BMC 
Bioinformatics 22, 433. 

173. Shin, M.-G., Kaye, J.A., Amirani, N., Lam, S., Thomas, R., and Finkbeiner, S. (2022). 
RMeDPower for Biology: guiding design, experimental structure and analyses of repeated 
measures data for biological studies. bioRxiv, 2022.07.18.500490. 
10.1101/2022.07.18.500490. 

174. Matsumoto, Y., Hayashi, Y., Schlieve, C.R., Ikeya, M., Kim, H., Nguyen, T.D., Sami, S., 
Baba, S., Barruet, E., Nasu, A., et al. (2013). Induced pluripotent stem cells from patients 
with human fibrodysplasia ossificans progressiva show increased mineralization and 
cartilage formation. Orphanet J. Rare Dis. 8, 190. 

175. Chen, Y., Tristan, C.A., Chen, L., Jovanovic, V.M., Malley, C., Chu, P.-H., Ryu, S., Deng, 
T., Ormanoglu, P., Tao, D., et al. (2021). A versatile polypharmacology platform promotes 
cytoprotection and viability of human pluripotent and differentiated cells. Nat. Methods 18, 
528–541. 

176. Clark, I.C., Fontanez, K.M., Meltzer, R.H., Xue, Y., Hayford, C., May-Zhang, A., D’Amato, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805


 

87 

C., Osman, A., Zhang, J.Q., Hettige, P., et al. (2023). Microfluidics-free single-cell 
genomics with templated emulsification. Nat. Biotechnol. 41, 1557–1566. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.03.569805doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569805

	ASD-PPI manuscript_final
	Figures_CellSubmission

