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Abstract1

Protein coding features can emerge de novo in non coding transcripts, resulting in emer-2

gence of new protein coding genes. Studies across many species show that a large frac-3

tion large fraction of evolutionarily novel non-coding RNAs have an antisense overlap4

with protein coding genes. The open reading frames (ORFs) in these antisense RNAs5

could also overlap with existing ORFs. In this study, we investigate how the evolution6

an ORF could be constrained by its overlap with an existing ORF in three different read-7

ing frames. Using a combination of mathematical modeling and genome/transcriptome8

data analysis in two different model organisms, we show that antisense overlap can9

increase the likelihood of ORF emergence and reduce the likelihood of ORF loss, es-10

pecially in one of the three reading frames. In addition to rationalising the repeatedly11

reported prevalence of de novo emerged genes in antisense transcripts, our work also12

provides a generic modeling and an analytical framework that can be used to under-13

stand evolution of antisense genes.14

Introduction15

New protein coding genes often arise from existing protein coding genes. This pro-16

cess frequently involves duplication of an existing gene, and a subsequent divergence17

of one of the duplicated copies from the ancestral sequence (Long et al., 2003; Rastogi18
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and Liberles, 2005; Näsvall et al., 2012). Several studies have shown that protein coding19

genes can also emerge de novo, in DNA sequences that did not previously encode a pro-20

tein (de novo gene emergence; Tautz and Domazet-Lošo, 2011; Zhao et al., 2014; Schmitz21

and Bornberg-Bauer, 2017; Vakirlis et al., 2017; Van Oss and Carvunis, 2019; Vakirlis22

et al., 2020). A protein coding gene thus emerged does not inherit the DNA sequence23

features necessary for gene expression (transcription and translation), from an ancestral24

protein coding gene. It must therefore, acquire them through random mutations.25

The most basic requirement for translation is an open reading frame (ORF), which is the26

region of an RNA that is translated into a protein sequence. Efficient translation often27

requires additional features such as Kozak consensus sequences (Kozak, 1986; Acevedo28

et al., 2018; Noderer et al., 2014), an optimal codon usage (Hanson and Coller, 2017),29

and other context dependent regulatory features present in the 5’ and 3’ untranslated30

regions of the RNA (Hinnebusch et al., 2016; Mayr, 2017).31

Because heritable (germline) mutations are rare in most organisms (less than 1 mutation32

in 100 million base pairs of DNA per generation; Schrider et al., 2013; Zhu et al., 2014;33

Jee et al., 2016), it is unlikely for many features to emerge simultaneously. That is, fea-34

tures must evolve sequentially. This in turn means that emergence of a phenotype, such35

as gene expression, is more likely when some required features already exist, and the36

missing features emerge via mutations. For example, de novo emergence is more likely37

when an ORF is already present and transcriptional features emerge subsequently, or38

vice versa. In our recent work, we also show that de novo emergence is more likely via39

the trajectory where transcription emerges before the emergence of an ORF (Iyengar40

and Bornberg-Bauer, 2023). Thus stably synthesized RNAs that are not actively and41

specifically involved in protein synthesis (such as long non-coding RNAs or lncRNAs)42

can be good sources of new proteins.43

Experimental analyses of the ribosome’s footprint on RNAs (ribosome profiling) sug-44

gest that some ORFs present in lncRNAs are actively translated (Ruiz-Orera et al., 2014;45

Ingolia et al., 2014; Patraquim et al., 2022; Blevins et al., 2021; Wacholder et al., 2023).46

Proteins synthesized from the translation of such ORFs can also be beneficial to the host47

organism (Patraquim et al., 2022; Wacholder et al., 2023). Many lncRNA genes share their48

genomic location with other genes, but are transcribed in the opposite direction (anti-49

sense overlap; Wu and Sharp, 2013; Jadaliha et al., 2018; Tan-Wong et al., 2019; Canzio50

et al., 2019; Mattick et al., 2023). A recent study has characterized previously unknown51

RNAs in different species of yeasts, and has shown that a large proportion of these RNA52

genes have an antisense overlap with existing genes (Blevins et al., 2021). This study53

also shows that ORFs contained in these RNAs show signatures of translation. These54

translated ORFs also include those that have recently emerged in one specific species55
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of yeast. However, these species specific ORFs are less efficiently translated than the56

ORFs that are conserved between different species. Overall, this study lends support57

to a hypothesis that many new proteins arise from antisense RNAs. It is likely that the58

ORFs encoding such proteins are also antisense to existing genes.59

In this study, we analyse the emergence of ORFs in antisense RNAs. We specifically60

focus on ORFs that have an antisense overlap with the coding region (canonical ORF)61

of an existing protein coding gene. We refer to these ORFs as antisense ORFs (asORFs).62

Evolution of asORFs is also interesting because it is constrained by the evolutionary se-63

lection pressure on the overlapping protein coding genes (Sabath et al., 2012; Mir and64

Schober, 2014). A pair of mutually antisense ORFs can overlap with each other in three65

different reading frames. That is, the codon positions in the two ORFs can either per-66

fectly overlap or be offset by one or two nucleotides. The constraints on the co-evolution67

of the two ORFs would be different in the different reading frames (Mir and Schober,68

2014). Our study aims to explore the constraints that affect the evolution of asORFs.69

To this end, we employ a mathematical model to calculate the probabilities of asORF70

emergence and loss, in each of the three reading frames. Using the model, we predict71

that one of the reading frames has a higher propensity to harbor ORFs. We also pre-72

dict that the likelihood of ORF emergence in this reading frame is higher, and that of73

ORF loss is lower, than in the other two reading frames. We support our model’s pre-74

dictions with genome analysis of two different organisms – Saccharomyces cerevisiae and75

Drosophila melanogaster. We also find that emergence of asORFs in reading frame 1 can76

be more likely than emergence of non-antisense (intergenic) ORFs.77

Results78

We developed a mathematical model to estimate the probabilities of ORF emergence79

and loss, in DNA regions antisense to existing protein coding ORFs. This model is80

defined by two kinds of probability. The first is the probability of finding a certain81

kind of DNA sequence, for example an ORF. This stationary probability depends on82

the nucleotide composition of the DNA region that can be roughly approximated by83

GC-content or by the frequencies of short DNA sequences (oligomers). The second84

kind of probability describes the mutational change of a sequence to a different kind85

of sequence. For example, gain or loss of an ORF. This transition probability depends86

on the mutation rate and mutation bias, in addition to nucleotide composition. We87

estimate these parameters primarily from the data on the yeast, Saccharomyces cerevisiae88

(Table 1; Zhu et al., 2014). Our choice is motivated by the fact that the budding yeast is89

a convenient model organism for laboratory experimental studies that can be used to90

validate several of our theoretical predictions. We also performed analogous analyses91
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using data obtained from Drosophila melanogaster (Table S1, Schrider et al., 2013).92

We estimated the stationary and transition probabilities of antisense ORFs (asORFs,93

Equations 1 – 3) using the existing (sense) ORF as a reference. asORFs can overlap94

with the sense ORFs in three different reading frames (henceforth referred to as just95

“frames”). In frame 0, the codons in the asORF exactly overlap the codons in the sense96

ORF. In frames 1 and 2, the codons in the asORF are shifted towards the 5’ end of the97

sense ORF by one and two nucleotide positions, respectively. Thus in frames 1 and 2,98

the sequence of an antisense codon is determined by two partially overlapping sense99

codons (dicodons, Figure 1A). Due to this sequence overlap, the evolution of asORFs100

would be constrained by the evolutionary selection pressures on the sense ORF. Fur-101

thermore, these constraints would be different for asORFs located in the three different102

frames. We analysed the evolution of asORFs when the sense ORF is under three differ-103

ent levels of purifying selection, defined in our study as follows. The first level describes104

an absence of purifying selection, where any kind of mutation except a non-sense mu-105

tation (gain of stop codon) in the sense ORF is tolerated. The second level describes106

a weak purifying selection that allows synonymous mutations, as well as mutations107

where an amino acid is substituted by a chemically similar amino acid (for example, as-108

partic acid to glutamic acid; Table 4). Finally, the third level describes a strong purifying109

selection, where only synonymous mutations are tolerated in the sense ORF.110

Antisense ORFs are more likely to exist in frame 1111

For any stretch of DNA to be an ORF, its sequence should contain 3n nucleotides (n ≥ 3),112

with a start codon that marks its beginning, and exactly one stop codon that marks its113

Substitution Probability(µ)

A:T→T:A 0.063

A:T→G:C 0.144

A:T→C:G 0.110

G:C→A:T 0.349

G:C→T:A 0.182

G:C→C:G 0.152

Table 1: Mutation bias probabilities for different nucleotide mutations in Saccharomyces cere-
visiae (Zhu et al., 2014). A:T denotes an A-T base pair in a double stranded DNA. Thus A→G
mutation on one DNA strand would cause a T→C mutation on the complementary strand. We
describe the other mutations in the same way. For our model, we used the reported mutation
rate of 1.7 × 10−10 mutations per nucleotide position per generation, in diploid Saccharomyces
cerevisiae cells (Zhu et al., 2014). For mutation bias probabilities in D. melanogaster, see Table S1.
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end. The absence of any stop codon within the DNA sequence is the most important fac-114

tor in determining the existence of an ORF. That is because the likelihood of a premature115

stop codon increases exponentially with the ORF’s length, whereas the likelihoods of a116

start codon and a terminal stop codon are independent of the ORF’s length (Equations117

1 – 3).118

Based on these considerations, we determined the probability of finding an asORF. To119

this end, we first calculated the probability of finding a stop codon in the three an-120

tisense frames, given the condition that no stop codon exists within the overlapping121

sense DNA. A stop codon can exist in frame 0 wherever the three reverse complemen-122

tary codons exist in the sense ORF. Because these codons are allowed in the sense ORF,123

the overlap does not affect stop codon’s probability in frame 0. A stop codon can exist124

in frames 1 and 2, overlapping with 192 possible dicodons in the sense ORF. However,125

given the restriction that these dicodons should not contain a stop codon, the number of126

possible dicodons that overlap a stop codon in antisense frame 1 reduces to 128. In con-127

trast, stop codons in antisense frame 2 can overlap with all possible 192 dicodons, and128

their probability is thus unaffected by the overlap (see Supplementary Section 2). The129

probability of finding a stop codon in frame 1, is equivalent to the probability of find-130

ing the allowed dicodons. Codon and dicodon probabilities depend on the nucleotide131

composition, which can be approximated by the GC-content of the locus (Iyengar and132

Bornberg-Bauer, 2023). We calculated the probability of a start codon without consid-133

ering the effect of antisense overlap because this effect would be small in magnitude.134

Using the start and stop codon probabilities, we estimated the probability of finding an135

asORF of different lengths in each of the three frames. We did so for four different val-136

ues of GC-content (30, 40, 50 and 60%). The probabilities of asORFs in frames 0 and 2 are137

identical for all lengths and GC-content because the overlap does not affect stop codon138

probability in these frames. This in turn, means that asORFs in these frames are equally139

probable as intergenic ORFs (igORFs) with identical length and GC-content. This is not140

the case for frame 1, where we found that asORFs are more likely to be found than in141

the other two frames and intergenic regions (Figure 1B). The only exceptions are ORFs142

shorter than 17, 21, 27 and 39 codons present in a DNA region with a GC-content of 30%,143

40%, 50% and 60%, respectively. Even for these exceptional cases, the probability of an144

asORF in frame 1 is no less than 74% of the corresponding ORF probabilities in the other145

frames. We expect that igORFs can indeed be more numerous than asORFs if intergenic146

regions are long. Our results merely suggest that given that length and GC-content are147

identical, the probability of an ORF increases when it has an antisense overlap with an148

existing ORF in frame 1.149

We also calculated the probability of asORFs using actual codon and dicodon frequen-150

cies in annotated yeast ORFs. Likewise, we calculated the probability of igORFs us-151
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Figure 1: asORFs are more likely to exist than igORFs of identical lengths and composition.
(A) A hypothetical antisense codon (bottom sequence, orange) can overlap with sense ORF (top
sequence, black) in three different frames. Arrows indicate the direction of translation and verti-
cal bars indicate base complementarity. Adjacent codons in the sense ORF are demarcated with
horizontal square brackets. (B) The probability of asORFs in frame 1 relative to that of igORFs
(log2 ratio, vertical axis), for different values of GC-content of the ORFs (line colors yellow =
30%, blue = 40%, red = 50%, purple = 60%). We do not show asORFs in frames 0 and 2 because
their probabilities are identical to that of igORFs. The probability of asORFs relative to that of
igORFs (log2 ratio, vertical axis), calculated using frequencies of short DNA sequences from (C)
the yeast genome, and (D) the fruitfly genome. Frames 0, 1 and 2 are denoted by dotted, solid
and dashed lines, respectively. Horizontal axes in panels (B) – (D) show the length of the ORFs.
We only show asORFs that overlap completely with the sense ORF.

ing the frequencies of DNA trimers in yeast intergenic genome. With this analysis, we152

found that asORFs longer than 17, 21, and 19 codons, in frames 0, 1 and 2, respectively,153

are more likely to exist than igORFs of the same lengths (Figure 1C).154

The probability of finding an ORF doesn’t depend on mutation rate bias. Therefore,155

ORF probability calculations using GC-content (Figure 1B) is organism-independent.156

However, when we computed the ORF probabilities using the frequencies of codons,157

dicodons and intergenic trimers from D. melanogaster, we found that frame 0 was most158

likely to harbor long asORFs (>38 codons; Figure 1C). This difference between the pre-159

dicted ORF probabilities of two organisms results because of differences in codon usage160
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between the two organisms. Specifically the codons that overlap stop codons (TTA,161

CTA, TCA) in antisense frame 0 encode serine and leucine. Both these amino acids162

are encoded by six codons each, and have similar frequencies in the coding regions of163

both the organisms. However, the usage of the codons – TTA, CTA, TCA, to encode164

the corresponding amino acids is relatively higher in S. cerevisiae than in D. melanogaster165

(Supplementary Section 3; Figure S1).166

Antisense ORFs are frequently located in frame 1167

Our mathematical model predicts that frame 1 is more likely to harbor asORFs than168

the other two frames. To verify this prediction, we analysed the genome of the bud-169

ding yeast, S. cerevisiae. We specifically chose this yeast as a model because most of its170

genes lack introns. This in turn allows us to investigate asORFs whose overlap with the171

sense ORFs is not interrupted by intronic sequences. Our choice of yeast as a model172

was further motivated by the availability of data on novel antisense RNAs identified173

in a recently published study (Blevins et al., 2021). This study further showed that new174

protein coding genes can emerge de novo from these antisense RNAs. We identified all175

asORFs located in the novel RNAs reported in this study, and calculated the frame in176

which they overlap with the annotated (sense) ORFs. We also included seven annotated177

yeast antisense RNAs for the identification of asORFs. Next, we calculated the number178

of asORFs in each of the three frames, that are at least 30nt long and are wholly con-179

Antisense
Frame 0

Antisense
Frame 1

Antisense
Frame 2 Intergenic

Total loci 7985381 7985381 7985381 798843580

Expected number 592
(612)

657
(690)

632
(612)

49786
(49646)

Observed number 447 646 548 40647

Observed number
+ subORFs 494 903 623 48598

Expected frequency 7.4× 10−5

(7.7× 10−5)
8.2× 10−5

(8.6× 10−5)
7.9× 10−5

(7.7× 10−5)
6.2× 10−5

(6.2× 10−5)

Observed frequency
(+ subORFs) 6.2× 10−5 1.1× 10−4 7.8× 10−5 6.1× 10−5

Table 2: Expected and observed numbers of antisense and igORFs. Expected numbers and fre-
quencies of ORFs within parantheses were estimated using GC-content of each locus, whereas
those outside the parantheses were estimated using DNA oligomer frequencies. For both ex-
pected and observed number of asORFs, we only consider ORFs that overlap completely with a
sense ORF. Here “sub-ORFs” refers to smaller ORFs (≥30nt) that exist within an ORF such both
ORFs share the same stop codon.
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Figure 2: Yeast asORFs preferentially exist in frame 1 than in the other two frames. (A) Total
number of asORFs (vertical axis). (B) asORF length distribution (vertical axis) denoted by a
boxplot where the boxes extend from the first to the third quartile and the whiskers have a length
equal to 1.5 × the interquartile range. We indicate the median length using a white horizontal
bar. (C) Cumulative length of all asORFs (vertical axis). In all the panels, the horizontal axes
denote the three different antisense frames. We only show asORFs that overlap 100% with the
sense ORF.

tained within the boundaries of a sense ORF. We found that asORFs in frame 1 were180

significantly more numerous than those in the other two frames (one-tailed Fisher ex-181

act test, FDR corrected P < 4 × 10−5). Specifically, ∼39% of all asORFs were located in182

frame 1, while ∼33% and ∼28% asORFs were located in frames 2 and 0, respectively (Ta-183

ble 2, Figure 2). We also calculated the number of ORFs that have at least 50% of their184

sequences overlapping in antisense with a sense ORF. This relaxation of overlap per-185

centage did not remarkably increase the number of identified asORFs. To understand186

if the observed number and proportion of asORFs are in agreement with the model, we187

calculated the expected number of asORFs in each frame (Equation 6). Specifically, we188

estimated the total number of expected ORFs that are at least 30nt long and are located189

in genomic region where antisense RNAs overlap with a known ORF. We found that the190

actual asORFs in the yeast genome were 1.6 – 24% fewer than expected (Table 2). The191

ORF identification tool we used (getorf ; Rice et al., 2000), reports the longest ORF. How-192

ever, alternate start codons can exist within the ORF sequence wherever a methionine193

is encoded. Our model does not reject short ORFs (sub-ORFs) within a longer ORFs.194

When we included the sub-ORFs (≥30nt), the observed asORFs in frame 1 were signif-195

icantly more numerous than expected (one-tailed Fisher exact test, P = 5.2× 10−8 with196

locus specific GC-content, and P = 2.5 × 10−10 with average oligomer frequencies; Ta-197

ble 2). In contrast, observed asORFs in frame 0 were significantly fewer than expected198

(one-tailed Fisher exact test, P < 1.7 × 10−3). If the observed of ORFs are significantly199

fewer than expected then negative selection could be an explanation. We note that our200

calculation of expected number of asORFs (Equation 6) assumes that existence of ORFs201

in the three different frames is independent of each other. However, presence of an ORF202

in any one frame can reduce the probability of ORFs in overlapping alternate frames.203
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Probability of finding an ORF can not only determine the expected number of ORFs,204

but also the length of the ORFs. Therefore, we next asked if asORFs in frame 1 are205

generally longer than those in the other two frames. We found that asORFs in frame206

1 (median length 75nt) were significantly longer than asORFs in frame 0 and frame207

2 (median length 63nt and 60nt, respectively; one tailed Mann-Whitney U test, FDR208

adjusted P < 10−4; Figure 2B). Furthermore, the cumulative length of all the asORFs in209

frame 1 (62kb) was higher than that of the asORFs in frames 0 and 2 (36kb and 40kb,210

respectively; Figure 2C).211

Next, we analysed if the observed frequency of igORFs is different from that of asORFs.212

To this end, we calculated the observed number of igORFs including the sub-ORFs, in213

S. cerevisiae genome, using a procedure identical to that we used for identifying asORFs.214

We then compared the frequencies of igORFs (observed ORFs relative to total loci, Ta-215

ble 2) with that of each type of asORFs, and found that the frequencies of all the three216

types of asORFs were higher than that of igORFs (one-tailed Fisher exact test, P < 10−8).217

We note again that this result does not indicate that igORFs are less likely to occur than218

asORFs, as we show that they are indeed more numerous than asORFs (Table 2).219

We also performed a similar analysis of D. melanogaster genome. Specifically, we used220

genome and transcriptome data from inbred lines obtained from seven geographically221

distinct D. melanogaster populations (Grandchamp et al., 2023). We used these datasets222

because they contain several novel RNAs that are not annotated in the reference genome.223

We found that among the three antisense frames, frame 1 harbored the most number of224

asORFs. The cumulative length of all the asORFs in the frame 1 was also higher than225

those in the other two frames (Figure S2). This was true for all the seven lines, and also226

for the set of unique orthologous sequences between all the lines (orthogroups). How-227

ever, asORFs in frame 1 were not generally longer than those in the other two frames.228

Specifically, the median length of asORFs in frame 0, was the highest in all populations229

but this difference was not statistically significant in all populations (one tailed Mann-230

Whitney U test, 95% confidence interval). A possible reason for the larger median length231

of asORF in frame 0 could be the codon usage bias in D. melanogaster protein coding232

genes (Supplementary Section 3). We also analysed if igORFs have a higher frequency233

than asORFs in D. melanogaster. We restricted this analysis to asORFs that completely234

overlap with a coding exon. We also restricted our analysis to asORFs that do not have235

introns. That is because introns can change the overlap frame between the flanking ex-236

ons, and one cannot attribute a specific frame to an asORF. Given these restrictions, we237

found that asORFs were significantly less frequent than igORFs. We speculate that this238

difference form S. cerevisiae exists because our search space for asORFs is much smaller239

than that of igORFs. This in turn, can cause many asORFs to not be detected.240

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.08.30.555508doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555508
http://creativecommons.org/licenses/by-nc-nd/4.0/


ORFs that are more likely to exist may also evolve additional protein coding features. To241

verify if this is the case, we compared the translational efficiency of S.cerevisiae asORFs242

in different frames using ribosome profiling data (Wacholder et al., 2023). We did not243

find any significant correlation between frame and translational efficiency of asORFs244

(Supplementary Section 5). However, igORFs in S. cerevisiae had significantly higher245

translational efficiency than asORFs. One possible reason is that the far more numerous246

igORFs can have a higher total rate of evolutionary adaptation than asORFs. We did247

not find any significant difference between the predicted translational efficiency (Kozak248

consensus sequence strength) for the different asORFs, and igORFs of D. melanogaster.249

Overall, our genome data analyses from both organisms support our model’s prediction250

that frame 1 offers the most optimal location for asORFs.251

Antisense overlap can facilitate ORF emergence and reduce ORF loss252

We next analysed how likely it is for asORFs to emerge, when they are not already253

present. To this end, we calculated gain probability of asORFs in each of the three254

frames, and under three different intensities of purifying selection. We also calculated255

the probability of ORF gain in the intergenic regions. We found that asORFs are less256

likely to emerge in frames 0 and 2, than ORFs in intergenic regions, for all ORF lengths257

and GC-content. In contrast, long asORF in frame 1 are more likely to emerge than258

identically sized igORFs (Figure 3A).259

Increasing the intensity of purifying selection reduces the emergence likelihood of asORFs260

in all the three frames. However, long asORFs in frame 1 are still more likely to emerge261

than identically sized igORFs, even under strong purifying selection. Specifically, the262

minimum ORF length at which asORFs in frame 1 are more likely to emerge than ig-263

ORFs, increases with GC-content and the intensity of selection. For example, in the264

absence of purifying selection, and at a GC-content of 40%, this length is 26 codons. At265

the same intensity of selection, this length is 46 codons when the GC-content is 60%.266

Under strong purifying selection and a GC-content of 60%, only the asORFs longer than267

108 codons are more likely to emerge than identically sized igORFs (Figure 3A). Our268

analogous analysis with mutation bias parameters estimated from D. melanogaster pro-269

duced similar results (Figure S4A).270

Our analysis of ORF gain probabilities using the frequencies of DNA oligomers (codons,271

dicodons and intergenic trimers), also shows that asORFs are very likely to emerge in272

frame 1 (Figure 3B). ORFs longer than 29, 59 and 68 codons are more likely to emerge273

in antisense frame 1 than in intergenic regions, when the purifying selection is ab-274

sent, weak and strong, respectively. Interestingly, this analysis revealed that, although275
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Figure 3: Antisense overlap can facilitate ORF emergence. (A) The probability of ORF emer-
gence in the three antisense frames (left to right) relative to that in intergenic regions (log2 ratio,
vertical axis), at different intensities of purifying selection (top to bottom). Line colors indicate
the GC-content of the ORFs. (B) ORFs gain probability in the three antisense frames relative to
that in intergenic regions (log2 ratio, vertical axis), calculated using frequencies of short DNA
sequences from the yeast genome. Solid, dashed and dotted lines denote zero, weak and strong
purifying selection, respectively. Horizontal axis in every plot shows the length of the ORFs. In
every plot, we only show asORFs that overlap completely with the sense ORF. In plots where
the log ratio spans both positive and negative values, we have highlighted the log ratio of zero
using a grey horizontal gridline.

asORFs are less likely to emerge in frame 2 than in frame 1, they can emerge more276

frequently than igORFs. Specifically when the purifying selection is absent, weak and277

strong, ORFs that are more likely to emerge in antisense frame 2 than in intergenic re-278

gions, contain at least 10, 43 and 82 codons, respectively.279

However, our analysis of ORF gain probabilities with DNA oligomers estimated from280
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Figure 4: Antisense overlap can reduce ORF loss. (A) The probability of ORF loss in the three
antisense frames (left to right) relative to that in intergenic regions (log2 ratio, vertical axis), at
different intensities of purifying selection (top to bottom). Line colors indicate the GC-content of
the ORFs. (B) The ORFs loss probability in the three antisense frames relative to that in intergenic
regions (log2 ratio, vertical axis), calculated using frequencies of short DNA sequences from the
yeast genome. Solid, dashed and dotted lines denote zero, weak and strong purifying selection,
respectively. Horizontal axis in every plot shows the length of the ORFs. In every plot, we only
show asORFs that overlap completely with the sense ORF.

D. melanogaster showed that frame 0 has the highest probability of asORF gain (Figure281

S4B). This finding is in agreement with the corresponding probabilities of finding the282

different asORFs (Figure 1C).283

Purifying selection reduces the number of tolerated mutations in a DNA locus. We note284

again that even the lowest intensity of purifying selection according to our definition,285

disallows nonsense mutations from occurring in the sense ORFs. We thus hypothesized286

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.08.30.555508doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555508
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: (A) Most recently gained asORFs in D. melanogaster are frequently located in frame
1. Horizontal axis denotes the number of D. melanogaster lines that contain an asORF in their
transcriptome (express), and vertical axis denotes the number of such ORFs. (B) D. melanogaster
asORFs in frame 0 have a higher rate of loss. First panel shows total number of lost ORFs
(vertical axis) whereas the second panel shows the percentage of total asORFs that are lost. In
all figure panels, the three frames are denoted by three different colors (0: orange, 1: blue, and
2: brown).

that overlap with a sense ORF may protect the asORFs from being lost. To this end, we287

calculated ORF loss probabilities for different ORF lengths, GC-content, and intensities288

of purifying selection (Figure 4A). In an analogous analysis, we used codon, dicodon,289

and intergenic trimer frequencies, instead of GC-content, to calculate ORF loss proba-290

bilities (Figure 4B). Our analyses show that asORFs are indeed protected from loss due291

to overlap with existing ORFs, especially when they exist in frame 1. This protection292

against loss increases with increasing intensity of purifying selection. Our analysis with293

parameters based on D. melanogaster was also in agreement with this result (Figure S5).294

To corroborate some of our model’s predictions, we analysed the genome and the tran-295

scriptome data from the seven different lines of D. melanogaster. Six of these lines were296

obtained from different locations in Europe, whereas one line, the outgroup, was ob-297

tained from Zambia (Grandchamp et al., 2023). This data set allowed us to analyse gain298
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and loss of transcripts and ORFs in short evolutionary timescales (Supplementary sec-299

tion 6.2, Figure S6). If an asORF is found in at least one line, it is gained once in D.300

melanogaster. More specifically, the most recently emerged asORF would be detected in301

only one line, given the assumption that it is not independently lost in six other lines.302

We found that regardless of whether an asORF is present in one or many lines, they are303

more abundant in frame 1 than in the other two frames (Figure 5A). This corroborates304

our model’s prediction (especially GC-content based calculation) that antisense overlap305

in frame 1 facilitates ORF gain (Figure 3A, Figure S4A).306

Next, we analysed the rate of ORF loss in the D. melanogaster lines . The genetic variance307

(FST) between the European populations of D. melanogaster is low (Kapun et al., 2020),308

suggesting that they are not significantly isolated (Whitlock and McCauley, 1999). As a309

consequence, we could not establish a clear phylogeny for them. Thus we used a very310

stringent identification of ORF loss. Specifically, if an ORF is present in the outgroup311

line (Zambian) and at least one European line, we assume that it was lost in the rest312

of the European lines. For this definition, we assumed that it is unlikely for an ORF313

to be gained multiple times independently, and that an ORF can be shared between a314

European line and the outgroup only if it was already present in their common ancestor.315

To understand the rate of ORF loss, we normalized the number of asORFs lost in any one316

frame with total number of asORFs present in the same frame. We found that the rate317

of ORF loss was highest in frame 0, followed by frames 1 and 2 respectively (Figure 5B).318

However, the magnitude of this difference was small (<5%) as qualitatively predicted319

by our model (Figure 4, Figure S5).320

Although antisense overlap can protect ORFs from being lost, it can also constrain the321

evolution of their sequence. Furthermore, effect of mutations in the sense ORF can also322

affect different asORFs in the three frames differently. We found that when a sense ORF323

is under purifying selection (weak or strong), mutational effects are the strongest for324

asORFs located in frame 2, and the weakest for those in frame 0 (Figure S7).325

Overall, our analyses suggest that antisense overlap with an existing ORF facilitates326

emergence of new ORFs, and protects the existing asORFs from being lost.327

Discussion328

To express a protein, a DNA sequence needs to be transcribed as well as translated.329

New protein coding genes can emerge de novo in non-genic sequences when both these330

requirements are met. Genomic regions that are already transcribed are thus more likely331

to evolve protein coding features (Iyengar and Bornberg-Bauer, 2023). Non-coding332
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RNAs indeed harbor ORFs, and some of these ORFs are also actively transcribed, albeit333

less efficiently than canonical ORFs present in mRNAs (Ruiz-Orera et al., 2014; Ingo-334

lia et al., 2014; Patraquim et al., 2022; Wacholder et al., 2023). Several long non-coding335

RNA genes overlap with other genes in an antisense orientation (Mattick et al., 2023).336

This overlap can cause the evolution of asORFs to be constrained by the evolutionary337

pressures on the corresponding sense genes. The effect of ORF overlap is particularly338

important in viruses where novel genes frequently emerge overlapping with existing339

genes, in order to keep the genome compact (Sabath et al., 2012). In this study, we inves-340

tigate how likely it is for asORFs to exist in the three possible antisense frames, and how341

their evolution is constrained by the purifying selection on the sense ORFs. To answer342

these questions, we developed a mathematical model based on mutation probabilities,343

and analysed the genome sequence for validating some of the model’s predictions.344

Using the model, we show that asORF are most likely to be found in frame 1 than in345

the other two frames. This prediction is supported by our analysis of asORFs in Saccha-346

romyces cerevisiae and Drosophila melanogaster genomes. Furthermore, asORFs in frame347

1 are not only more likely to emerge, but may be also less likely to be lost than asORFs348

those in the other two frames. More interestingly, ORFs are generally more likely to349

emerge and to be found in antisense frame 1 than in intergenic regions. Conversely,350

these asORFs are less likely to be lost than igORFs, due to random mutations. This hap-351

pens because presence of a sense ORF reduces the chances of premature stop codons to352

occur in the antisense frame 1.353

A previous study has also investigated the effect of selection pressure on different frames,354

using information theory (Mir and Schober, 2014). Although this study also investigates355

antisense frames, its analytical approach is different from that of our model. Specifically,356

we calculate the probability of different kinds of mutations, and focus on the presence or357

absence of ORFs of different lengths, instead of measuring the fidelity of evolutionary358

information transfer based on relative rates of synonymous and nonsynonymous muta-359

tions. Despite these differences in the analytical approach, the findings of our study are360

in agreement with the previous study. That is, selection pressure on sense ORF (frame361

+1 in Mir and Schober, 2014) causes preservation of asORFs in frame 1 (frame −2 in Mir362

and Schober, 2014).363

By limiting the number of tolerated mutations, an overlap with an existing ORF can364

affect the evolution of the protein sequence encoded in an asORF. We quantified muta-365

tional effects by estimating the average chemical difference between an original amino366

acid and a substituted amino acid that results due to random mutations. We found that367

mutational effects were the strongest in the asORFs in frame 2 (Figure S6). This means368

that the mutations tolerated in the sense ORFs under purifying selection produce ex-369
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treme non-synonymous changes in the asORFs in frame 2.370

Like all computational models, our model is based on some assumptions and simplifi-371

cations, that need to be considered. For example, we use GC-content as a measure of372

nucleotide composition which we use in turn to calculate different probability values.373

For these calculations, we also use codon, dicodon and DNA trimer frequencies, which374

are data based measures of nucleotide composition. Our results show that probabil-375

ity values calculated using GC-content can sometimes noticeably differ from the values376

calculated using DNA oligomer distributions, especially for D. melanogaster. For exam-377

ple, our estimated probability of finding a D. melanogaster asORF was highest in frame378

1 when we used GC-content, whereas it was highest in frame 0 when we used oligomer379

distributions. Both our measures of nucleotide composition can vary significantly across380

the genome (with oligomer frequencies showing more variation; Supplementary Section381

8, Figure S8). We used different values of GC-content for our calculations that can repre-382

sent different genomic loci. In contrast, our DNA oligomer based calculations is based383

on the average frequency of oligomers from the whole genome. Thus they may not384

accurately represent any one specific locus. However, our computational framework385

can be adapted to analyse specific loci. Therefore, model predictions may not be 100%386

accurate. However, despite the possible inaccuracies, our models are able to produce387

results that qualitatively agree with real data. Our analyses of asORFs from S. cerevisiae388

and D. melanogaster support our model based finding that antisense frame 1 has higher389

likelihood to harbor asORFs. Our models are based on the assumptions of uniform mu-390

tation rate and independence of mutational events. These assumptions are not exactly391

accurate because mutation rates can vary across the genome (Monroe et al., 2022), and392

multiple nucleotides can be mutated in a single mutational event (Harris and Nielsen,393

2014). Furthermore, mutation rate bias can be different in different organisms (Cano394

et al., 2022; Bergeron et al., 2023, also compare Table 1 and Table S1). Our results show395

that despite the differences in the mutation rate and mutation rate bias, between yeast396

and D. melanogaster, the results qualitatively remain the same. Thus our predictions are397

robust to small changes in parameters.398

We believe our work opens up interesting questions, and avenues for future research.399

For example, the cellular functions and biochemical properties of proteins encoded by400

asORFs would be worth investigating. This may be especially relevant for antisense401

lncRNAs, some of which are involved in regulation of gene expression. asORFs may402

possibly provide another dimension to the cellular function of these RNAs. Transla-403

tion of ORFs in lncRNAs can indeed be spatiotemporally regulated (Patraquim et al.,404

2022). asORFs may especially be relevant in organisms with compact genomes, such as405

viruses. Existing work indeed shows that new protein coding genes emerge in viruses,406

overlapping with existing genes (Sabath et al., 2012; Schlub and Holmes, 2020; Romerio,407
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2023). This overlap couples the evolution of the two overlapping genes. Eventually, un-408

derstanding viral evolution may help design better therapeutic strategies against viral409

diseases.410

Materials and Methods411

Probabilities of finding, gaining, and losing an ORF412

We calculated the probabilities of finding, gaining and losing a ORF, using nucleotide413

composition, mutation rate and mutation rate bias, as described in our previous study414

(Iyengar and Bornberg-Bauer, 2023). Briefly, a reading frame is an ORF (PORF) when a415

start codon exists at its beginning (PATG), a stop codon exists at its end (Pstop), and no416

stop codon exists in the middle (1 − Pstop). An ORF emerges (PORF-gain) when two of the417

three required features are present and are not lost due to mutations, while the missing418

feature emerges due to mutations. Conversely, an ORF is lost (PORF-loss) when any one419

of the three required features is lost. The probabilities of finding, gaining and losing an420

ORF containing k codons, are described by the following equations (Equations 1 – 3).421

Table 3 describes the terms used in these equations.422

PORF(k) = PATG × Pstop × (1− Pstop)
k−2 (1)

PORF-gain(k) = PATG-gain × Pstop-stay × (1− Pstop − Pstop-gain)
k−2

+ PATG-stay × Pstop-gain × (1− Pstop − Pstop-gain)
k−2

+ PATG-stay × Pstop-stay × Pstop-loss × (k − 2)× (1− Pstop − Pstop-gain)
k−3 (2)

PORF-loss(k) = PATG-loss + Pstop-loss + (k − 2)×
Pstop-gain

1− Pstop
(3)

Term Description

Pstop Probability of finding a stop codon

Pstop-gain Probability of gaining a stop codon

Pstop-loss Probability of losing a stop codon given that it already exists

Pstop-stay Probability that a stop codon exists and is not lost due to mutations

Table 3: Description of the probability terms used in Equations 1 – 3. Here we describe the
probabilities associated with stop codons. Analogous probability terms for a start codon are
denoted by the subscript, ATG (instead of stop). For asORFs, Pstop, Pstop-gain, Pstop-loss and Pstop-stay
will vary depending on the frame.
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Modeling weak purifying selection423

Both gain and loss probabilities of asORFs depend on the strength of selection on the424

sense ORF. That is, selection would limit the number of sense codons or dicodons that425

any of the existing codons and dicodons can mutate to. Under strong purifying selec-426

tion only synonymous mutations are allowed, whereas weak purifying selection allows427

an amino acid to be substituted by a chemically similar amino acid. To determine chem-428

ically similar amino acids, we used an amino acid similarity matrix based on binding429

covariance of different short peptides to MHC (Major Histocompatibility Complex, Kim430

et al., 2009). As noted by Kim et al. (2009), we identified chemically similar amino acids431

from pairs of amino acids whose covariance scores are more than 0.05 (Table 4).432

Amino acid
Chemically similar

amino acids

A P, T, V

C -

D E

E D

F I, W, Y

G -

H K, R

I F, L, M, V

K H, R

L I, M

Amino acid
Chemically similar

amino acids

M I, L

N -

P A

Q -

R H, K

S T

T A, S

V A, I

W F, Y

Y F, W

Table 4: Chemically similar amino acids identified using the data from Kim et al. (2009)

Estimating trimer, codon, and dicodon frequencies433

We used a sliding window of size 1nt, to calculate the frequency of all trimers in the434

annotated intergenic regions of S. cerevisiae (Engel et al., 2014). We calculated codon435

and dicodon frequencies from a non-redundant list of annotated protein coding ORF436

sequences (CDS; Engel et al., 2014).437

We applied the same method for estimating DNA oligomer frequencies in D. melanogaster.438

To this end, we used the D. melanogaster reference genome (release 6.4.9; Gramates et al.,439

2022).440

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.08.30.555508doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555508
http://creativecommons.org/licenses/by-nc-nd/4.0/


Identification of asORFs in the genome441

To identify asORFs in Saccharomyces cerevisiae genome, we first compiled a list of known442

antisense RNAs from the S288C reference genome (Engel et al., 2014), and combined it443

with the list of novel RNAs identified in a recent study (Blevins et al., 2021). Next, we444

identified all ORFs in the combined set of RNAs using the program getorf (Rice et al.,445

2000). Specifically, we identified the longest sequence that starts with the canonical446

ATG start codon and ends with a stop codon. We used a minimum ORF length of 30nt447

(default value in getorf ). We then mapped the genomic coordinates of all the identified448

ORFs, verified if they overlap with a known ORF in the opposite strand, and calculated449

the frame of antisense overlap. We used awk scripts for this analysis. To calculate the450

number of ORFs expected from the model, we first identified genomic regions where an451

antisense overlap exists between an annotated ORF and a RNA. For each such region A,452

with a length lA, we caculated the number of loci (nLoci) where any asORF containing453

k codons could exist:454

nLoci(A, k) =
lA − 3k + 1

3
(4)

nLoci (total) =
∑
A

∑
k≥10
3k<lA

nLoci(A, k) (5)

Total number of asORFs in any frame (f ) would be defined as:455

NasORF(f) =
∑
A

∑
k≥10
3k<lA

PORF(f, k) nLoci(A, k) (6)

Where PORF(f, k) is the probability of finding an ORF in a frame f (Figure 1).456

We also identified igORFs from annoted S. cerevisiae intergenic regions (I ; Engel et al.,457

2014) using getorf (Rice et al., 2000). We calculated the number of intergenic loci where458

an igORF could exist, and the total number of predicted igORFs as described by the459

following equations:460

nLoci(I, k) = lI − 3k + 1 (7)

NigORF =
∑
A

∑
k≥10
3k<lI

PORF(k) nLoci(I, k) (8)
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We performed an analogous analysis for D. melanogaster. For details please see Supple-461

mentary Section 4.462

Data availability463

All scripts and necessary data files are freely available on GitHub:464

BharatRaviIyengar/DeNovoEvolution.465

We implemented our model using Julia programming language using the following466

scripts:467

• antisenseGenes.jl (main script)468

• antisenseGenes supplement.jl469

(calculations using codon, dicodon, and intergenic trimer frequencies)470

• nucleotidefuncts.jl (dependency for basic functions)471

The awk scripts for asORF identification from yeast and D. melanogaster genome are472

located in the folder DataAnalysis. A wrapper bash script implements the complete anal-473

ysis pipeline in both cases. We also include some original data files for yeast but not for474

D. melanogaster.475

Source data for the figures are provided with this paper.476

Acknowledgments477

References478

Acevedo, J. M., Hoermann, B., Schlimbach, T., and Teleman, A. A. 2018. Changes in global479

translation elongation or initiation rates shape the proteome via the Kozak sequence. Scientific480

Reports, 8(1): 4018.481

Bergeron, L. A., Besenbacher, S., Zheng, J., and others 2023. Evolution of the germline mutation482

rate across vertebrates. Nature, 615(7951): 285–291.483

Blevins, W. R., Ruiz-Orera, J., Messeguer, X., and others 2021. Uncovering de novo gene birth in484

yeast using deep transcriptomics. Nature Communications, 12(1): 604.485
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1. Mutation rate and mutation rate bias in in Drosophila melanogaster

Substitution Probability(µ)

A:T→T:A 0.056

A:T→G:C 0.243

A:T→C:G 0.074

G:C→A:T 0.483

G:C→T:A 0.075

G:C→C:G 0.069

Table S1: Mutation bias probabilities for different nucleotide mutations based on Schrider et al. (2013)
and Zhang and Gerstein (2003). A:T denotes an A-T base pair in a double stranded DNA. Thus A→G
mutation on one DNA strand would cause a T→C mutation on the complementary strand. We describe
the other mutations in the same way. We used an average mutation rate of 7.8 × 10−9 mutations per
nucleotide position per generation (Schrider et al., 2013)

2. Probability of asORFs in frames 0 and 2 is identical to that of igORFs of

same length and GC-content

The probability of finding an antisense stop codon in frame 0 is same as the probability of
finding the three reverse complementary codons in the sense ORF (TTA, CTA and TCA). These
three codons are allowed in the sense ORFs, and their probability would be simply determined
by the GC-content of the sense ORF. These three codons have the same GC composition as the
stop codons, and therefore, their probability is identical to that of stop codons (given identical
GC-content of the locus). Therefore, given these considerations, the probability of a frame-0
antisense ORF (asORF) is identical to that of an intergenic ORF (igORF) of same length and
GC-content.

Next, we explain why the probability of frame-2 asORFs is identical to that of igORFs of sim-
ilar nucleotide composition and length. The probability of finding a frame-2 antisense stop
codon is determined by the corresponding dicodons in the sense ORF. There are 64 possible
overlapping dicodons for both frame 1 and frame 2 antisense codons (43 = 64 ; three out of six
positions in a dicodon are determined by the overlapping antisense codon). Thus, there are
64× 3 = 192 dicodons that overlap with any of the three antisense stop codons. By definition,
the sense ORF should not contain a stop codon which means that no dicodon can contain a
stop codon. For frame-1 antisense stop codons, 64 overlapping sense overlapping dicodons
contain a stop codon (Table S2A), whereas for frame-2 antisense stop codons none of the over-
lapping dicodons contain a stop codon (Table S2B). Therefore, the probability of an antisense
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(A)

TAA TAG

AAT TAA AAT TAG AAC TAA AAC TAG
TAT TAA TAT TAG TAC TAA TAC TAG
GAT TAA GAT TAG GAC TAA GAC TAG
CAT TAA CAT TAG CAC TAA CAC TAG
ATT TAA ATT TAG ATC TAA ATC TAG
TTT TAA TTT TAG TTC TAA TTC TAG
GTT TAA GTT TAG GTC TAA GTC TAG
CTT TAA CTT TAG CTC TAA CTC TAG
AGT TAA AGT TAG AGC TAA AGC TAG
TGT TAA TGT TAG TGC TAA TGC TAG
GGT TAA GGT TAG GGC TAA GGC TAG
CGT TAA CGT TAG CGC TAA CGC TAG
ACT TAA ACT TAG ACC TAA ACC TAG
TCT TAA TCT TAG TCC TAA TCC TAG
GCT TAA GCT TAG GCC TAA GCC TAG
CCT TAA CCT TAG CCC TAA CCC TAG

(B)

TAA TAG TGA

ATT AAA ATT AAT ATT AAG ATT AAC ACT AAA ACT AAT ACT AAG ACT AAC ATC AAA ATC AAT ATC AAG ATC AAC
TTT AAA TTT AAT TTT AAG TTT AAC TCT AAA TCT AAT TCT AAG TCT AAC TTC AAA TTC AAT TTC AAG TTC AAC
GTT AAA GTT AAT GTT AAG GTT AAC GCT AAA GCT AAT GCT AAG GCT AAC GTC AAA GTC AAT GTC AAG GTC AAC
CTT AAA CTT AAT CTT AAG CTT AAC CCT AAA CCT AAT CCT AAG CCT AAC CTC AAA CTC AAT CTC AAG CTC AAC
ATT ATA ATT ATT ATT ATG ATT ATC ACT ATA ACT ATT ACT ATG ACT ATC ATC ATA ATC ATT ATC ATG ATC ATC
TTT ATA TTT ATT TTT ATG TTT ATC TCT ATA TCT ATT TCT ATG TCT ATC TTC ATA TTC ATT TTC ATG TTC ATC
GTT ATA GTT ATT GTT ATG GTT ATC GCT ATA GCT ATT GCT ATG GCT ATC GTC ATA GTC ATT GTC ATG GTC ATC
CTT ATA CTT ATT CTT ATG CTT ATC CCT ATA CCT ATT CCT ATG CCT ATC CTC ATA CTC ATT CTC ATG CTC ATC
ATT AGA ATT AGT ATT AGG ATT AGC ACT AGA ACT AGT ACT AGG ACT AGC ATC AGA ATC AGT ATC AGG ATC AGC
TTT AGA TTT AGT TTT AGG TTT AGC TCT AGA TCT AGT TCT AGG TCT AGC TTC AGA TTC AGT TTC AGG TTC AGC
GTT AGA GTT AGT GTT AGG GTT AGC GCT AGA GCT AGT GCT AGG GCT AGC GTC AGA GTC AGT GTC AGG GTC AGC
CTT AGA CTT AGT CTT AGG CTT AGC CCT AGA CCT AGT CCT AGG CCT AGC CTC AGA CTC AGT CTC AGG CTC AGC
ATT ACA ATT ACT ATT ACG ATT ACC ACT ACA ACT ACT ACT ACG ACT ACC ATC ACA ATC ACT ATC ACG ATC ACC
TTT ACA TTT ACT TTT ACG TTT ACC TCT ACA TCT ACT TCT ACG TCT ACC TTC ACA TTC ACT TTC ACG TTC ACC
GTT ACA GTT ACT GTT ACG GTT ACC GCT ACA GCT ACT GCT ACG GCT ACC GTC ACA GTC ACT GTC ACG GTC ACC
CTT ACA CTT ACT CTT ACG CTT ACC CCT ACA CCT ACT CCT ACG CCT ACC CTC ACA CTC ACT CTC ACG CTC ACC

Table S2: (A) The 64 sense dicodons that contain a stop codon, and that overlap with an antisense stop
codon in frame-1. (B) The 192 sense dicodons overlapping an antisense stop codon in frame-2. We have
highlighed in red font the reverse complementary sequence corresponding to an antisense stop codon.

frame-2 stop codon is identical to that of a stop codon in an intergenic locus with identical
GC-content.

3. Why asORFs appear to be most probable in frame 0, in D. melanogaster

but not in S. cerevisiae

We analysed the differences between the predictions from the two species more closely. The
most salient difference exists in the probability of asORFs in frame 0. The reason is that stop
codons in frame 0 are 2.7 times more likely in S. cerevisiae than in D. melanogaster (Table S3).
Therefore we analysed the frequency of these codons and their specific usage to encode the
corresponding amino acids.

Stop codons in frame 0 overlap with the codons – TTA, CTA (coding for leucine) and TCA
(coding for serine). Both leucine and serine are encoded by six codons. We analysed the
coding regions of S. cerevisiae and D. melanogaster to estimate the codon usage for leucine and
serine in both these organisms. We found that the total frequencies of leucine and serine are
similar betwen the two organisms. However, the codons that overlap with an antisense stop
codon are more frequently used in S. cerevisiae than in D. melanogaster (Figure S1).
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S. cerevisiae D. melanogaster

Start codon 0.0169 0.0172
Stop codon: Frame 0 0.0592 0.0216
Stop codon: Frame 1 0.0399 0.0319
Stop codon: Frame 2 0.0482 0.0423

Table S3: Probability of start and stop codons in the three different antisense frames, calculated using
distribution of codons and dicodons in S. cerevisiae and D. melanogaster coding sequences.

Figure S1: Codon usage of leucine and serine in S. cerevisiae and D. melanogaster. Codons highlighted
in bold overlap with an antisense stop codon.

4. Distribution of antisense ORFs in Drosophila melanogaster genome

We identified antisense ORFs and intergenic ORFs using genome and transcriptome data from
seven D. melanogaster lines (Grandchamp et al., 2023b). We performed the same analysis for
every D. melanogaster line. Specifically, we first obtained the genome assembly, genome anno-
tations and transcriptome assembly for each line (Grandchamp et al., 2023b). Next, we identi-
fied RNAs that overlap in antisense to any annotated protein coding gene. Next, we extracted
ORFs in these antisense RNAs using getorf (Rice et al., 2000). Next, we mapped the genomic
coordinates of these ORFs using nucleotide BLAST (100% query coverage and sequence iden-
tity; Altschul et al., 1990; Camacho et al., 2009), and identified all asORFs and their frame of
overlap using awk scripts (we note that not all ORFs in antisense RNAs are asORFs). Finally,
we only analysed asORFs whose genomic sequences were uninterrupted by introns (Table S4).
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Denmark Finland Spain Sweden Türkiye Ukraine Zambia

Total antisense loci 1440501 1272815 1326269 1119960 1641755 1143721 1200121

Expected asORF0 314 (327) 276 (290) 291 (304) 250 (256) 361 (374) 252 (262) 269 (279)

Observed asORF0 276 144 253 178 194 179 175

Expected asORF1 371 (299) 325 (265) 343 (279) 296 (230) 428 (338) 297 (239) 319 (252)

Observed asORF1 483 300 391 391 469 377 430

Expected asORF2 397 (327) 348 (290) 367 (304) 318 (256) 459 (374) 318 (262) 342 (279)

Observed asORF2 251 150 179 201 181 138 226

Total intergenic loci 2147483647 2147483647 2147483647 2147483647 2147483647 2147483647 2147483647

Expected igORF
1707687 1776758 1840872 1761983 1808499 1760268 1690669

(1768465) (1839181) (1906004) (1823809) (1873396) (1822705) (1750696)

Observed igORF 1763975 1828152 1889493 1807274 1858731 1811161 1740461

Table S4: Summary of antisense and intergenic ORFs identified in D. melanogaster lines. Expected
numbers of ORFs within parantheses were estimated using GC-content of each locus, whereas those
outside the parantheses were estimated using DNA oligomer frequencies. The different asORFs re-
ported here include sub-ORFs within longer ORFs detected by getorf. Here we only report asORFs that
do not contain introns and that completely overlap with a protein coding exon (sense ORF).
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Figure S2: Frame preference of antisense ORFs in D. melanogaster genome that have 100% overlap with
a codon exon. We show three metrics of frame preference as three bar groups – percentage of total ORFs
(left), cumulative length of all antisense ORFs (middle), and median ORF length (right), in each of the
three frames (bar colors). We calculated these metrics from the genomics and the transcriptomics data
from the seven different D. melanogaster lines (Grandchamp et al., 2023b,a).
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5. Translational efficiency of asORFs

To estimate the translational efficiency of asORFs in S. cerevisiae, we used data from a recently
published study (Wacholder et al., 2023). This large dataset (iRibo) has been compiled from dif-
ferent published ribo-seq (sequencing of ribosomal footprint) experiments in S. cerevisiae such
that every ORF (predicted or annotated) is assigned a number of reads that are in-frame with
the ribosome’s elongation periodicity. For every antisense-ORFs (as annotated by this study),
we extracted the number of reads, and calculated the frame of overlap. We note that iRibo
dataset is recent and was not available when we started our study. However, our analysis
of asORFs from iRibo agrees with our model’s predictions, and qualitatively agrees with the
observed frequencies of asORFs shown in Table 2 and Figure 2 (Figure S3A/B). More specif-
ically, the asORFs in frame 1 are significantly more numerous than those in the other two
frames (Figure S3A; one tailed Fisher exact test, FDR corrected P < 10−22). The asORFs in
frame 1 are also significantly longer than those in the other two frames (Figure S3B; one tailed
Mann-Whitney U test, FDR corrected P < 10−22). Next, we analysed if asORFs in frame 1
have more riboseq reads than those in the other two frames. We found that asORFs in frame 1
have significantly more reads than asORFs in frame 0 (one tailed Mann-Whitney U test, FDR
corrected P = 7.5 × 10−3) but not asORFs in frame 2 (one tailed Mann-Whitney U test, FDR
corrected P = 0.115). This does not indicate that there is no significant difference in the total
translational output for asORFs in the different frames. That is so because both the number of
asORFs and the translational efficiency is responsible for translational output. We found that
the total translational output is significantly higher for asORFs in frame 1 than those in the
other two frames (Figure S3A; one tailed Fisher exact test, FDR corrected P < 10−22). Next, we
compared the number of riboseq reads of the different asORFs and igORFs. We found that ig-
ORFs had a significantly larger number of reads than all asORFs (Figure S3B; one tailed Fisher
exact test, FDR corrected P < 10−22). More interestingly, the riboseq read count distribution
of igORFs was bimodal. Specifically, a subset of igORFs was expressed more than the other

Figure S3: Yeast asORFs from iRibo (Wacholder et al., 2023). Number of total asORFs (A, vertical
axis), ORF length distribution of asORFs and igORFs (B, vertical axis), and riboseq reads distribution
of asORFs and igORFs (C vertical axis), in each of the three frames (horizontal axis). We only show
asORFs that overlap 100% with the sense ORF.
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subset, by two orders of magnitude. Interestingly, the length distribution of igORFs was also
bimodal. These observations suggest that there are two different kinds of igORFs. The longer
and highly translated igORFs could have undergone adaptive evolution.

To perform an analogous analysis for D. melanogaster asORFs, we did not find a compiled
resource like iRibo. Therefore we used Kozak consensus sequence (KCS) score (Acevedo et al.,
2018) and ORF position in the RNA as proxies of translational efficiency as shown in another
study (Patraquim et al., 2022). We did not find any statistically significant difference between
the values of these parameters for the different frames, that is also consistent across the seven
different D. melanogaster lines (Mann-Whitney U test, 95% confidence interval, FDR corrected).
We also did not find any significant difference between the KCS scores of igORFs and any of
the three kinds of asORFs (Mann-Whitney U test, 95% confidence interval, FDR corrected).
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6. Gain and loss probabilities of antisense ORFs in Drosophila melanogaster

6.1 Model predictions

Figure S4: Antisense overlap can facilitate ORF emergence. Panel (A) shows the probability of ORF
emergence in the three antisense frames (left to right) relative to that in intergenic regions (log2 ratio,
vertical axis), at different intensities of purifying selection (top to bottom). Line colors indicate the
GC-content of the ORFs. Panel (B) shows the ORFs gain probability in the three antisense frames
relative to that in intergenic regions (log2 ratio, vertical axis), calculated using frequencies of short
DNA sequences from D. melanogaster genome. Dotted, solid and dashed lines, denote the zero, weak
and strong purifying selection, respectively. Horizontal axis in all panels shows the length of the ORFs.
For data in both panels, we assume that antisense ORFs overlap completely with the sense ORF.
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Figure S5: Antisense overlap can reduce ORF loss. Panel (A) shows the probability of ORF loss in
the three antisense frames (left to right) relative to that in intergenic regions (log2 ratio, vertical axis),
at different intensities of purifying selection (top to bottom). Line colors indicate the GC-content of
the ORFs. Panel (B) shows the ORFs loss probability in the three antisense frames relative to that in
intergenic regions (log2 ratio, vertical axis), calculated using frequencies of short DNA sequences from
D. melanogaster genome. Dotted, solid and dashed lines, denote the zero, weak and strong purifying
selection, respectively. Horizontal axis in all panels shows the length of the ORFs. For data in both
panels, we assume that antisense ORFs overlap completely with the sense ORF.

6.2 Analysis of asORF gain and loss using genomics data

To estimate gain and loss of asORFs we compared their presence or absence in the transcrip-
tome of the different D. melanogaster lines. We assume that an ORF emerges only once. That
is, if an ORF is detected in five lines, we assume that it emerged once and spread in five lines.

In the first step, we identified ORFs that were shared by several lines. We call defined an
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orthogroup as a group of query unique ORF sequences detected in any of the seven lines. Our
definition of orthology in this case is very stringent. If an ORF duplicated in two lines, we
classified the duplicated copies into two separate orthogroups. That is so because we were
interested in the gain and loss of the original ORF and its duplicated copy separately. We also
discarded orthogroups where the ORFs from the different lines were not located in the same

Figure S6: Summary of ORF gain and loss analysis in the seven D. melanogaster lines. (A) Hypothetical
asORF orthogroups denoted by alphabets (A – D) with their frames denoted by the colors orange (0),
blue (1) and brown (2). (B) The hypothetical example of the orthogroups A and B (containing ORFs A
and B, respectively). In both the orthogroups, the ORFs are systematically located in the same frame in
every line where they are present. For each of the two orthgroups, we count one gain event. ORF-A
is detected in the Zambian outgroup line, but not in the European lines. Thus this ORF is lost in two
lines. Because, ORF-B is not detected in the Zambian line, we do not analyse its loss. (C) ORF-C is
detected in several lines but was located in different frames in the different lines. Thus we do not use
this orthogroup for our analysis. (D) ORF-D is present in six lines, and has duplicated in two lines
(denoted as ORF-D and ORF-d). The duplicated copy (ORF-d) is located in an different frame as ORF-
D. Therefore, we classify them into consider 2 orthogroups – the orthogroup containing ORF-D, which
is present in the Zambian and some European lines, so that we can estimate its loss. The orthogroup
containing ORF-d is only present in two European lines, and therefore we cannot estimate if it was
indeed lost in the other lines or only gained in these two lines.
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frame. We did so because if would be difficult to infer in which frame (line) the ORF gain
occurred first.

To identify orthogroups, we used nucleotide BLAST (Altschul et al., 1990; Camacho et al., 2009).
We used nucleotide BLAST instead of protein BLAST for a specific reason – we wanted to iden-
tify orthologous asORFs that may be frameshifted. In case of a frameshift, BLASTp may not
detect any homology. For the BLASTn analysis, we used an e-value cutoff of 10−2 and required
a 100% query coverage. Furthermore, we verified that the orthologous asORFs antisense-
overlapped with the same protein coding gene. Given these criteria, our algorithm picks the
highest scoring hit if there are multiple hits. To keep the analysis focused and less compli-
cated, we only analysed asORF orthologs in which the frame was conserved. Thus our BLAST
analyis is overall quite stringent.

Most orthogroups contained only one ORF per line. However, some orthogroups contained
several ORFs in a single line, due to tandem duplications. We split these orthogroups such
that they contained only one ORF per line, and sorted them according to their frame and the
overlapping “sense” ORF. Among the 3536 orthogroups we detected, 105 had several ORFs
in several lines. 32 out of these 105 orthogroups contained more than four duplicates in some
lines. We discarded these orthogroups because we could not reliably categorize them into
sub-orthogroups after splitting them based on frame and position. We also discarded 147
orthogroups were from our analysis because the homologous ORFs were located in different
frames.

To estimate the loss, we used the outgroup (Zambian) line. The Zambian populations sepa-
rated from the European populations between 14000 – 30000 years ago (Li and Stephan, 2006;
Laurent et al., 2011). Therefore, if an ORF was found in the outgroup and at least one Euro-
pean line, we assume that it emerged in an ancestral D. melanogaster population and was lost
in rest of the five European lines. We found 319 orthogroups where the ORF was present in
the Zambian line and at least one European line but not all six of them.

7. Effect of mutations on asORFs

In the previous sections, we showed that purifying selection on the sense ORF can affect the
emergence and loss of asORFs. We next asked if this purifying selection can also constrain the
diversification of the proteins encoded by asORF sequences. To this end, we first calculated
the “chemical distance” (δ) between any two amino acids. For this calculation we used a dis-
tance matrix that we derived from an experimentally estimated amino acid similarity matrix
reported in a previous study (Kim et al., 2009). Next, we calculated the average chemical differ-
ence (δ̄) introduced by a random mutation, weighted by the probability of different mutations
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(Equation 1). To this end, we created an amino acid distance matrix by modifying the amino
acid similarity matrix of Kim et al. (2009). Specifically, we subtracted the value of 0.3 from each
element of the matrix, reversed the sign of each element, and set the diagonal to zero. By doing
this, we set every distance value to be greater than 0. Next, we calculated the average chemical
difference introduced by any mutation (i → j) allowed under a selection regime. Specifically,
if i denotes the original codon, j denotes the substituted codon, Pi denotes the probability of
finding codon-i, µij denotes the probability of codon-i mutating to codon-j, and δij denotes
the chemical difference between the amino acids encoded by these codons, then the average
chemical difference is defined by the following equation:

δ̄ =

∑
i

Pi

∑
j

µijδij∑
i

Pi

∑
j

µij

(1)

Using δ̄ as a measure of divergence, we estimated the extent to which asORFs in the three
frames can diverge as a result of mutations, and due to purifying selection on the sense ORFs.
Likewise, we also calculated the divergence of intergenic ORFs as a consequence of random
mutations. We found that frame 2 allows maximum divergence of asORFs, under both weak
and strong purifying selection on the sense ORF (Figure S7A). asORFs in frame 0 diverge
the least. Interestingly, strong selection on sense ORFs increases the divergence of asORFs in
frame 2. The reason could be that the few mutations that do occur under strong purifying
selection, cause a relatively higher increase in divergence than the more numerous mutations
that are allowed to occur under weak purifying selection. We also found that the divergence of
asORFs in frame 2 was higher than than that of intergenic ORFs under both selection regimes.
We note this result does not mean that intergenic ORFs can diverge less than asORFs. Evo-
lution of intergenic ORFs is not constrained by another DNA sequence. However, as long as
the mutants do not affect the organismal fitness, evolution would not be biased towards di-
vergence increasing mutations. Thus random mutations in intergenic ORFs could also consist
of many synonymous and chemistry preserving mutations, that are probably disallowed in
frame 2 asORFs due to purifying selection on sense ORFs.

In contrast to frame 2, the divergence of asORFs in the other two frames decreased with in-
creasing strength of purifying selection on the sense ORF (Figure S7A). For example, asORFs
in frame 0, did not diverge at all when the sense ORF was under strong purifying selection.
asORFs in frames 0 and 1 also diverged less than intergenic ORFs under both selection regimes.

We observed identical trends in divergence of asORFs from our analysis based on D. melanogaster
parameters (Figure S7B).

These findings not negate the fact that intergenic ORFs have less constraints on their evo-
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(A) S. cerevisiae

(B) D. melanogaster

Figure S7: Antisense ORFs in (A) S. cerevisiae and (B) D. melanogaster, can diversify when sense ORFs
are under purifying selection. Vertical axis denotes the divergence (δ̄) of asORFs due to a random
mutation when the sense ORF is under weak (left) or strong (right) purifying selection. Horizontal axes
denote the three antisense frames. Colored bars denote divergence values of asORFs with different
GC-content, and black bars denote the diversity values calculated using frequencies of short DNA
sequences from the yeast genome. Filled circles that are similarly color coded, denote the divergence of
intergenic ORFs due to mutations.

lution. Even though chemical consequences of tolerated mutations may be larger in some
asORFs than in intergenic ORFs, purifying selection on the sense ORF limits the total number
of possible mutations. This would not be the case for intergenic ORFs.

8. Is GC-content a better parameter for asORF probability calculation than

global DNA oligomer frequencies?

Any calculation made using an averaged nucleotide composition distribution is likely to be
an approximation. It is true for both GC-content (for example, using the average genomic

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.08.30.555508doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555508
http://creativecommons.org/licenses/by-nc-nd/4.0/


GC-content) or average distribution of DNA oligomers across different genomic loci. Both
GC-content and oligomer distribution can be calculated for specific loci, which can make the
calculations more realistic. In our plots for of stationary, gain and loss probability based on GC-
content (Figures 1B, 3A and 4A), we show four different values of GC-content. They are correct
as long as our assumptions hold true. The plots based on DNA oligomer frequencies (Figures
1C, 3B and 4B) may be less realistic because they assume that the oligomer distribution is
uniform across the genome (CDS or intergenic regions). Thus the GC-content based plots are
more informative.

To understand how realistic averages can be, we performed an empirical analysis of variance
of nucleotide composition. Specifically, we normalized the distribution such that the sum
of frequencies of a trimer (or GC-fraction) across all loci is equal to one, and calculated the
variance of this distribution. We found that GC-content has a smaller variance than that of
any DNA trimer (Figure S8). However, this empirical analysis does not prove that GC-content
is a better estimate of the real nucleotide distribution.

Ultimately, the most realistic analysis would estimate parameters from each locus separately,
and estimate the ORF probabilities specific to that locus. We have indeed done so for calcu-
lating expected number of ORFs based on GC-content (main text Table 2). To this end, we
calculated the GC-content of each contiguous intergenic or antisense overlapping region, and
estimated the ORF probability as well as expected number of ORFs using this specific GC-
content. We found that the expected number of ORF using global DNA trimer distribution

Figure S8: Variance of the normalized distribution of GC-content and of different DNA trimers in
S. cerevisiae. For coding regions we calculated the frequencies of the different codons as they exist in
annotated ORFs (top panel), whereas for regions overlapping with antisense ORFs, we calculated the
distribution of DNA trimers using a sliding window (bottom panel). We have excluded stop codons
from both the panels.
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and locus specific GC-content do not differ significantly.
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