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Abstract 

We combined microfabricated devices with multiparameter identification algorithms to probe the 
variability in size-dependent oxygen consumption parameters of single human hepatic cells.  We 
demonstrate that single cells exhibit an oxygen-dependent metabolic rate, typical of Michaelis-
Menten kinetics, and that their maximal oxygen consumption is significantly lower than that of 
monolayers or 3D hepatic cell aggregates. Notably, we found that clusters of two or more cells 
competing for a limited oxygen supply reduced their maximal single-cell consumption rate, 
highlighting their ability to adapt to local resource availability and the presence of nearby cells. 
Next, we used our high-throughput approach to characterize the covariance of size and oxygen 
consumption within a cell population.  
The results show that cooperative behaviour emerges in cell clusters, and that single-cell size and 
metabolism can be described by a lognormal joint probability density. Our study thus serves as a 
foundation to connect the metabolic activity of single human hepatocytes to their tissue- or organ-
level metabolism as well as describe its size-related variability through scaling laws. 
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Introduction 

Biological variability (i.e., the fluctuation of physiological traits among individuals of the same 
population, also referred to as biological noise) is ubiquitous and can impact phenomena such as 
metabolic scaling and resilience to environmental perturbations [1, 2]. Variability is often not 
confined to one parameter but characterized by an interplay between multiple variables within an 
organism or ecosystem. For instance, it has been suggested that the covariance between individual 
size and metabolism conditions the ability of living organisms to react to external stimuli (e.g., toxins 
or drugs) or explain patterns in homeostatic control [1, 3, 4]. Joint variations between physiological 
parameters can also impact the susceptibility of organisms to diseases and their overall health [5]. 
Biological variability has been extensively investigated at the molecular level (transcription and 
expression), but less so at cellular and organismal levels. Investigating individual cells, instead of 
in tissues or organs, offers the opportunity to characterize variability between individuals to infer 
dynamics occurring at higher scales of complexity. Single cells also provide a suitable testbed to 
determine intrinsic size-related variability and its role in metabolic scaling, which has been 
highlighted as a criterion for translatability of biological parameters from micro-scale in vitro 
systems to the in vivo context [1, 6, 7]. 
 
As oxygen (O2) is at the heart of aerobic metabolism [8, 9], several studies have measured O2 
consumption in individual mammalian cells [10–13]. However, the accuracy, reproducibility, and 
throughput of O2 measurements at this scale remain challenging. Mammalian cells possess the 
ability to modulate their O2 consumption according to its availability, a process that is, in turn, 
influenced by numerous factors  (e.g., height of culture medium and cell density) [14, 15]. However, 
many studies assume that cells possess a constant (zero-order) consumption rate which depends 
only on cell phenotype. The O2 consumption rate (𝑅𝑐𝑒𝑙𝑙, in mol s-1) of a single cell as a function of 

the surrounding O2 concentration (𝑐, in mol m-3) is typically represented by the Michaelis-Menten 
(MM) model [16–18] via two parameters: the maximal consumption rate (𝑠𝑂𝐶𝑅, in mol s-1) and the 

MM constant (𝑘𝑀, in mol m-3). 

𝑅𝑐𝑒𝑙𝑙 =  −𝑠𝑂𝐶𝑅
𝑐

𝑘𝑀 + 𝑐
 (1) 

𝑘𝑀 corresponds to the concentration at which the consumption rate is half of its maximal value. At 

high O2 levels (𝑐 ≫  𝑘𝑀), the cellular consumption rate saturates at its maximum value (i.e., 𝑅𝑐𝑒𝑙𝑙  ≅
 − 𝑠𝑂𝐶𝑅). On the other hand, if 𝑐 ≪  𝑘𝑀, the cellular uptake rate depends on the O2 concentration 

as 𝑅𝑐𝑒𝑙𝑙 =  − 
𝑠𝑂𝐶𝑅

𝑘𝑀
𝑐. Hence, a cell with a low 𝑘𝑀 value consumes O2 maximally even at low 

concentrations, whereas a cell with a high 𝑘𝑀 has a low O2 uptake efficiency (i.e., O2 levels must 
be high to achieve near-maximal consumption rates). 
 
Despite the widespread application of Eq. (1) and its relevance to the prediction and understanding 
of the ability of cells to adapt to environmental conditions, MM parameters for individual mammalian 
cells have not been measured. Here we present a systematic approach to conduct single-cell 
measurements of O2 consumption as described by the MM model. Our primary objective was to 
estimate the MM kinetic parameters (i.e., 𝑠𝑂𝐶𝑅 and 𝑘𝑀) and explore their size-related variability in 
a human hepatic cell line, HepG2 [19]. Using custom glass microwell devices coated with 
luminescent O2-sensitive optode materials [20, 21], we isolated single cells or clusters of a few cells 
(from two to seven) under precisely controlled experimental conditions. Automated fluorescence 
microscopy was used to perform time-series imaging of the wells to extract cell sizes and O2 
concentration profiles of individual wells. A multiparameter identification procedure [22] was applied 
to determine MM parameters from these profiles. Through this approach, we were able to estimate 
single-cell size and metabolic parameters of O2 as a joint probability distribution and so describe 
their correlated variability.  
This quantitative description of single-cell O2 consumption allows probing the biophysical basis of 
cooperative metabolic dynamics, which are only detectable at higher levels of organization. Our 
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study thus offers guidance in the design of in vitro or in silico cell-based models (e.g., microtissues, 
organoids) to improve their predictive value in biomedical applications. 

 

Results 
Using glass microwell devices (Figure 1A) in conjunction with O2 sensitive optode chemistry (Figure 
1B) we measured a total of 1080 microwells across five independent experiments. Of these, 227 
microwells (~ 21%) contained at least one hepatic cell whose O2 consumption dynamics (Figure 
1D) could be recorded without interference from neighbouring wells (see SI, section SI4). The 
distribution of the number of cells per well (𝑁𝑐𝑒𝑙𝑙) is reported in Figure 1E. Notably, in more than 
half of the cases in which cells were present in a microwell (i.e., 119 measurements, ~ 11% of all 
investigated microwells), a single cell was probed (Figure 1C), while a maximum of seven cells per 
well was recognized only once. 

 
Figure 1. O2 dynamics of single hepatic cells in glass microwells. (A) Brightifield image of 
individual microwells with deposited optode chemistry (yellow) in the custom-built glass microwell 
array. (B) Corresponding luminescent response (red) upon exposure to excitation light. (C) Image 
of a single hepatic cell in a microwell with 100 μm diameter. (D) O2 concentration profiles measured 
in 216 microwells. (E) Occupation (𝑁𝑐𝑒𝑙𝑙) frequency of cells in microwells. 

Oxygen consumption kinetics and number of cells per well 
The O2 profiles determined from individual or multiple cells within a glass microwell were used to 
compute sOCR and kM for cells within each microwell through a multiparameter identification 
algorithm [22]. The two MM parameters are reported both as overall probability distributions (Figure 
2A, 2C) and as a function of 𝑁𝑐𝑒𝑙𝑙 (Figures 2B, 2D). While our sOCR values are similar to previous 
estimates for hepatocytes cultured in a hollow fibre bioartificial liver [23], they were significantly 
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lower (median sOCR = 9.8×10-18 mol cell-1 s-1) than most of those reported in the literature for 
hepatocyte monolayers or 3D aggregates (median sOCR = 5.5×10-17 mol cell-1 s-1, Wilcoxon test, 
p < 0.0001, Figure 3A) [6, 15, 18, 22, 24–26]. Moreover, a Kruskal-Wallis test highlighted significant 
differences among sOCR values determined for microwells containing a different number of cells 
(p < 0.0001). Specifically, we found that sOCR decreases with increasing 𝑁𝑐𝑒𝑙𝑙  (Figure 2B, 
Spearman coefficient r = -1). This suggests that cells adjust their sOCR when O2 availability is 
limited because of consumption by other nearby cells.  

Our measurements of  kM show a wide distribution, covering three orders of magnitude (Figure 2C), 
with a significantly higher median  (5.3×10-2 mol m-3) compared to values previously reported for 
2D and 3D hepatic constructs (8.5×10-3 mol m-3 – Wilcoxon test, p < 0.0001) [15, 22]. Approximately 
36% of the measured kM values are comparable to or even higher than the O2 saturation level in 
water (𝑐0 = 0.21 mol m-3), suggesting that, once isolated, about a third of the cells do not approach 
their maximal consumption rate but instead follow first order kinetics. Due to the large variability of 
kM, neither a significant correlation with 𝑁𝑐𝑒𝑙𝑙 (Spearman coefficient r = -0.086) nor statistical 
differences among its medians for different 𝑁𝑐𝑒𝑙𝑙 values (Kruskal-Wallis test, p = 0.7603) were 
detected (Figure 2D). 

 
Figure 2. MM kinetic parameters in isolated hepatic cells determined through the 

multiparameter identification procedure. (A) Relative frequency of sOCR in occupied 
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microwells. (B) Correlation between the number of cells per microwell and the corresponding sOCR 

value (r = -1), over all occupied microwells. The red dashed curve is a weighted fit of results (one 

phase exponential decay, R2 = 0.9797). Pairwise statistical differences computed using Dunn’s 

post hoc multiple comparisons are also reported (*** p < 0.0005, **** p < 0.0001). (C) Relative 

frequency of kM in occupied microwells (expressed in logarithmic scale). (D) No correlation was 

observed between kM and the number of cells per well (r = -0.086). The vertical red dashed lines in 

(A) and (C) denote median literature values of sOCR and kM [13, 16, 20–23], respectively (see 

Table 1 for a complete list of reported values), while the solid blue line in (C) indicates the O2 

saturation level in water (𝑐0). In (B) and (D), data are reported as median ± range. 

To help distinguish mutual dependencies of sOCR and kM, MM parameters for all microwells 
investigated are presented in a scatter plot (Figure 3A). Data points referring to microwells 
populated by the same number of cells are clustered along the sOCR axis. However, no noticeable 
separation among groups of points corresponding to different values of Ncell with respect to kM was 
observed. A correlation analysis indeed suggests that the two MM parameters do not depend on 
each other (Spearman coefficient r = 0.1608), a finding that is in contrast to previous observations 
for 2D and 3D aggregates of hepatic cells [22]. For comparison, bulk values for the two kinetic 
parameters, averaged over several cells as reported in the literature [6, 15, 18, 22–26], are also 
indicated in Figure 3A and listed in Table 1. 

Joint measurements of single-cell size and metabolism  
Immediately after each experiment, HepG2 cells were stained with Trypan Blue, which allowed 
determining single-cell sizes from projected cell areas. From this data, we estimated the joint 
distribution of single-cell size and sOCR (Figure 3B). The Henze-Zirkler test (α = 0.01) 
demonstrated that the sample can be described by a lognormal joint probability density function (p 
= 0.0344). Further confirmation of lognormality was provided by independent optical measurements 
of dry mass of individual HepG2 cells – performed by means of quantitative phase imaging – which 
coherently displayed a marginal distribution with a lognormal shape (see SI, section SI6). 
 

 
Figure 3. Mutual dependency of MM parameters and the size-related variability of O2 
consumption in single human hepatic cells. (A) Scatter plot of measured sOCR and kM values. 
The Spearman coefficient indicates that the two parameters do not exhibit any correlation (r = 
0.1608). Each data point is denoted by a number, which corresponds to the value of 𝑁𝑐𝑒𝑙𝑙 for that 
data point. The red plus [15] and the blue cross [22] are median bulk values from the literature (see 
Table 1). Dashed lines indicate sOCR values from previous studies assuming zero-order kinetics 
for O2 consumption (yellow: [25], green: [26], purple: [23]). Note that kM values are reported in 
logarithmic scale. (B) Joint distribution of single-cell size (i.e., projected area) and O2 metabolism 
(i.e., sOCR), expressed as relative frequency of occurrence. 
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Table 1. Values of sOCR and kM from previous studies as bulk averages of human hepatic cell 
aggregates. Median values are reported for studies investigating different cell densities [15, 22].  
For references which consider zero-order consumption kinetics [23–26], kM values are not reported 
(NA). 

Aggregate type sOCR (×10-18 mol cell-1 s-1)  kM (×10-3 mol m-3) Reference 

Isolated single cell 9.8 53 This study 

Cell-laden hydrogel (3D) 69 6.2 [15] 

Cell monolayer (2D) 37 5.0 [22] 

Cell-laden spheroid (3D) 85 8.5 [22] 

Bioartificial liver (3D) 13 NA [23] 

Cell monolayer (2D) 55 NA [24] 

Cell-laden hydrogel (3D) 48 NA [25] 

Microcarrier (3D) 78 NA [26] 

 

Discussion  
Here we report on the characterization of O2 metabolism in single human hepatic cells. Using 
microfabricated glass devices, coated with O2-sensitive optodes, one or a few cells were seeded 
in each microwell, enabling the precise measurement of O2 consumption over time as a function of 
the number of cells per microwell. These data were then exploited in a multiparameter identification 
algorithm [22] to characterize the cellular O2 consumption kinetics according to the MM model (Eq. 
(1)).  
 
Using this integrated in silico-in vitro approach, we demonstrate that isolated HepG2 cells have a 
lower sOCR compared to values previously reported for 2D or 3D aggregates of the same cell type 
in comparable environmental conditions (Figure 2A) [15, 22, 24–26]. Additionally, our data show 
higher kM values compared to those reported in earlier studies (Figure 2C) [15, 22]. This suggests 
that cells modulate their O2 metabolism when isolated as individuals or in clusters of a few cells. In 
addition, the decrease in sOCR with increasing number of cells per microwell, 𝑁𝑐𝑒𝑙𝑙, shows that the 
modulation occurs as a function of both the local O2 concentration and the presence of other cells 
(Figure 2B). This behaviour mirrors observations on hepatocytes in 2D and 3D aggregates [22] and 
could be interpreted as an effect of cooperation among individual cells that coexist in a 
microenvironment where a limited resource is shared. However, contrary to what we previously 
observed for hepatic cells in 2D and 3D [22], the adaptive behaviour in isolated cells appears not 
to affect the O2 uptake efficiency, since kM is not dependent on 𝑁𝑐𝑒𝑙𝑙  (Figure 2D), and the two 
parameters are not significantly correlated (Figure 3A). It is worth noting that the identification of kM 
is influenced by the ability of the microwell system to effectively achieve hypoxic steady-state 
conditions. Thus, although the optodes are highly sensitive at low O2 concentrations (see SI, 
section SI3), even slight variations of stationary O2 levels can influence the estimation of kM and 
widen its distribution. Indeed, precisely characterizing kM is a well-known challenge because of the 
sensitivity of estimated values to experimental conditions [22, 27, 28], which might ultimately mask 
potential trends. Nonetheless, the estimations of sOCR are statistically robust and not impacted by 
the uncertainty in kM, as shown in Figure 2B.  
 
The throughput of our approach allowed us to measure the correlated variability of cell size and 
maximal O2 consumption rate (i.e., sOCR) and describe their joint frequency distribution (Figure 
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3B). This outcome successfully overcomes the challenge of jointly investigating individual size and 
metabolism, a hurdle previously encountered by our group and others [3]. Although further 
experiments are required to fully capture the covariance between single-cell size and O2 
consumption [1], our study is the first size-metabolic rate distribution based on joint experimental 
datasets reported so far. Notably, our analysis demonstrates that the sample is extracted from a 
population characterized by a lognormal multivariate function. Lognormally-distributed marginal 
probabilities have been commonly observed for organismal sizes [29], but they have not been 
explicitly reported for metabolic rates. 
 
Characterizing the covariance of single-cell size and metabolic parameters – as achieved here – is 
crucial to comprehensively describe the metabolic dynamics (e.g., O2 consumption) of human 
hepatocytes in isolation. It also paves the way to link these dynamics to the tissue or organ levels 
and to interpret behaviours emerging at higher scales such as cooperation or size-related scaling. 
A direct application of this work is the development of engineered cellular systems capable of 
recapitulating the heterogeneity of single-cell metabolic phenotypes. This may enhance precision 
medicine approaches, drug development strategies or (eco)toxicological assessments. Besides the 
biomedical field, the proposed methodology is also of general interest as it provides a powerful 
framework for systematically characterizing O2 metabolism and its size-related fluctuations in other 
single-cell scenarios, ranging from the photosynthetic activity of marine microorganisms to the 
evaluation of the impact of chemicals or environmental stressors on single-cell respiration. 
 
 
 
Materials and Methods 

Microwell devices for single-cell isolation and oxygen sensing  
Single cells or small clusters of cells were isolated in a custom-built microwell array (see the 
schematic in Figure 4 and SI, Figure S2). The array consists of a standard borosilicate glass slide 
with geometrically arranged microwells (100 columns × 250 rows, n = 25000 microwells) fabricated 
via standard dry etching techniques. The microfabrication procedure for this device is summarised 
in the Supporting Information (SI, Figure S1), and Table S1 reports relevant technical features of 
the dry etching process and geometric specifications of the array customized to match the size of 
human hepatic cells and to minimize optical and diffusional crosstalk between microwells. 
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Figure 4. Schematic of the assembled glass microfluidic device. (A) Microwells coated with 
optode chemistry are seeded with hepatic cells suspended in culture medium, and subsequently 
the device is overlaid with a glass coverslip coated in heavy mineral oil. This oil interface reduces 
lateral (i.e., inter-well) O2 diffusion so that the microwells effectively reach hypoxic conditions. (B) 
Once sealed, the system is exposed to short pulses of UV light and the resulting luminescence 
emission from optodes is detected over time to derive O2 concentrations across microwells. Inset: 
a typical O2 concentration profile obtainable by monitoring optode response in an individual 
microwell where at least one cell is settled. 

Optode sensor composition, deposition and calibration 
Composition. Quenching-based luminescent optode materials were chosen for O2 sensing as they 
are characterized by a high spatial resolution and short response time, as required for single-cell 
O2 consumption rate measurements [30, 31]. The deposited optode material was composed of 
platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6–pentafluorophenyl)-porphyrin (PtTFPP), polystyrene 
(PS) and MACROLEX® yellow 10GN (MY) dissolved in toluene. Here, PtTFPP is the O2-sensitive 
dye whereas MY acts as a reference (i.e., O2-insensitive) dye. Both dyes are excited using UV light 
(λ = 396 nm) and emit red luminescence (PtTFPP, λ ≥ 650 nm) or green luminescence (MY, λ = 
507 nm) in an O2 concentration-dependent manner [31] or at a constant intensity, respectively. The 
ratio of red-to-green (R/G) emission intensities thus represents a robust O2-dependent signal, with 
minimal noise from environmental artefacts (e.g., sensor bleaching) and, with appropriate 
calibration, allows for relating to O2 contents within individual microwells. 
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Deposition. To deposit the optode material, a 10% w/v solution of PS in toluene containing 0.15 
g/L of both MY and PtTFPP was spread on the glass microwell array via a pipette. The homogeneity 
of the optode coating was assessed by profilometry (see SI1 for details), which revealed that it had 
a nominal thickness of 5 µm and was most uniform in the central region of the array. Therefore, we 
prioritized this central area (containing at least 200 microwells) for seeding cells and investigating 
their O2 consumption. As the deposited optode material is hydrophobic, the array was briefly treated 
with O2 plasma (Zepto, Diener electronic, Ebhausen, Germany) for 10 s at 0.4 mbar and 50% 
intensity to promote filling of microwells with culture medium and assist in cell adhesion. This 
plasma treatment did not affect the response of optode materials to O2 (see SI2 for details). To 
avoid undesired background fluorescence, the optode material deposited outside of the microwells 
was removed using a scalpel. This process resulted in two regions with different wettability, i.e., (i) 
hydrophilic microwells containing a layer of optode material (yellow regions in the inset of Figure 
1A) surrounded by (ii) hydrophobic glass (gray regions in the inset of Figure 1A).  
Calibration. Following optode deposition, a calibration curve was constructed by averaging data 
acquired from 216 central microwells (see SI1 for details). To perform calibration measurements, 
the optode-coated array was placed into a gas-impermeable chamber with a transparent window 
for image acquisition. The chamber was placed in a microscopy incubator (Okolab srl, Pozzuoli, 
Italy) maintained at 37°C, to avoid temperature fluctuations, which might influence optode 
responses (Figure S2). Optode emissions were recorded via a fully automated fluorescence 
microscope (Nikon Ti2-E, Nikon, Tokyo, Japan) equipped with an RGB camera (DFK 33UX264 
colour industrial camera, The Imaging Source) and a LED excitation light (Spectra X, Lumencor, 
OR, USA). 
Calibration was performed by introducing gases at known levels of O2 saturation. Specifically, the 
R/G in totally anoxic conditions (𝑅 𝐺⁄

0) was measured by exposing the device first to pure nitrogen 

(N2) and thereafter to compressed air (i.e., 21% O2) to obtain 100% air saturation (𝑅 𝐺⁄
100), 

corresponding to an equilibrium concentration in aqueous media equal to 𝑐0. Images of single 
microwells were acquired with a 40× objective. All other imaging parameters were set as listed in 
Table 1 for monitoring cellular O2 consumption. The measurement was used to derive the Stern-
Volmer (SV) quenching constant [31] (𝑘𝑆𝑉, expressed in 1/% air sat.) of the array as follows. 

𝑘𝑆𝑉 =  
1

100
(

𝑅 𝐺⁄
0

𝑅 𝐺⁄
100

− 1) (2) 

Calibration curves were also estimated in liquid phase (i.e., cell culture medium) and compared to 
those obtained for corresponding microwell arrays using gases (see SI2 for details). No significant 
differences emerged between liquid phase and gas phase calibrations, and hence we routinely 
relied on the more convenient gas calibration prior to each experiment. Further, we ensured that 
optode bleaching was negligible in the timeframe of our single-cell O2 consumption tests (see SI3 
for details). Finally, experiments were conducted to determine the extent of optical crosstalk 
between microwells and to define inter-well distance and cell occupancy (see SI4 for details).  

Single-cell oxygen measurements 
Cell preparation. Human hepatic cells from hepatocellular carcinoma (HepG2 cells, ATCC, 
Manassas, Virginia, USA) were maintained in T25 flasks (Sarstedt, Numbrecht, Germany) under 
standard conditions (37 °C, 95% humidity, 5% CO2) and supplied with fresh Dulbecco’s Modified 
Eagle Medium (DMEM, Sigma-Aldrich, St Louis, Missouri, USA) every 3 days. Before experiments, 
cells were detached with trypsin-EDTA (Lonza, Basel, Switzerland).  
After optode calibration, the central area of the microwell array was overlaid with a thick poly-
dimethyl-siloxane (PDMS) frame into which 500 µL of cell suspension in DMEM was pipetted 
(Figure 1B). This allowed control of the seeding density and ensured that cells were confined to the 
region where the optode coating was determined to be homogeneous. Experiments were 
performed with different seeding densities, ranging from 2×103 cells mL-1 up to 106 cells mL-1. The 
former resulted in an optimal trade-off between an acceptable number of microwells containing 
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single cells and minimal lateral O2 diffusion between neighbouring microwells. Following cell 
seeding, the device was incubated overnight to allow cell adhesion to the microwells (inset in Figure 
1B). 
Monitoring single-cell consumption. Just before the single-cell O2 consumption experiments, 
the culture medium within the PDMS frame was changed and 60 µL of fresh DMEM were dispensed 
into the microwells. Then, the PDMS frame was removed and microwells seeded with cells were 
covered with a coverslip, which was affixed to the array via both paperclips and magnets (Figure 
1A). A thin coating of heavy mineral oil (Sigma-Aldrich) was applied to the underside of the coverslip 
to isolate the microwells from environmental O2 (Figure 4) and to define the initial and boundary 
conditions of the system. Mineral oil has a significantly lower O2 diffusion coefficient than aqueous 
media [32] and effectively seals off the array from ambient O2, allowing a hypoxic steady state to 
be reached – a necessary condition to properly characterize the MM consumption kinetics, 
particularly 𝑘𝑀 (see subsection Modelling single-cell consumption). The ratio of mineral oil to cell 
culture media was optimized to ensure maximal phase separation and minimize lateral (i.e., inter-
well) O2 diffusion and, at the same time, guarantee that cells are exposed to the medium phase 
within microwells (see SI5 for details). Image acquisition was started immediately after device 
assembly to ensure rapid monitoring of O2 dynamics (i.e., from the initial condition of maximum O2 
in the medium to the achievement of stationary hypoxia, defined as 𝑐 ≤ 0.04 mol m-3 [33]). 
Measurement duration and sampling frequency were set according to instrument limits and 
modelling considerations (see subsection Modelling single-cell consumption). The O2 dynamics 
associated with cell consumption were measured by repeatedly scanning the central area 
containing cells, using large area scanning mode. The large image acquisition parameters are listed 
in Table 2. 
Following each experiment, 30 µL of trypan blue dye (0.4% w/v solution, Sigma-Aldrich) was gently 
pipetted through the gap between the microwell array and the coverslip. Trypan blue was left to 
diffuse over the array for about 10 min, then a brightfield large image was acquired setting the same 
scanning pathway as used during experiments. This procedure enabled identifying 𝑁𝑐𝑒𝑙𝑙 in each 
microwell and  estimating cell size (i.e., the projected area) using ImageJ [34]. 

Table 2. Experimental parameters for O2 sensing, using a Nikon Ti2-E automated fluorescence 
microscopy system. 

Parameter Numerical value 

Magnification 10× 

Large image size (n×m) 6×6 

Time scale (𝑡𝑒𝑛𝑑) 1 h 

Time resolution (∆𝑡) 20 s 

Excitation light wavelength 396 nm 

Excitation light intensity 20% of maximum intensity* 

Excitation duration 50 ms 
*To achieve optimal saturation of the sensing dye, the intensity of the excitation light was coherently 
adjusted for each round of calibration and subsequent experiment. 

Determination of concentration profiles. Time series of large images were processed exploiting 
algorithms purposely developed in Matlab (R2021b, MathWorks, Massachusetts, USA). Briefly, 
each RGB image was segmented by means of customized thresholding to distinguish PtTFPP-
decorated microwells from the background. This allowed for the computation of the pixel-by-pixel 
R/G. Finally, for each microwell, R/G profiles were determined over time by averaging over pixels 
belonging to the same microwell. This allowed for conversion of R/G signals into O2 concentrations 
using previously established calibration curves.  
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Modelling single-cell consumption. Leveraging analytical considerations and bearing in mind 
that neither cell location nor the number of cells per well (Ncell) can be determined a priori, we 
established the duration (𝑡𝑒𝑛𝑑) and sampling frequency (𝑓) of measurements based on the 
experimental setup. From a modelling point of view, each microwell is a region of the space 
governed by the reaction-diffusion equation (Eq. (3)): 

𝜕𝑐

𝜕𝑡
= 𝐷∇2𝑐 + 𝑅 (3) 

where 𝑐 =  𝑐(𝑥, 𝑦, 𝑧, 𝑡) [mol m-3] is the O2 concentration field in the microwell, 𝐷 [m2 s-1] is the 

diffusion constant of O2 and 𝑅 =  𝑅(𝑥, 𝑦, 𝑧, 𝑡) [mol m-3 s-1] is the O2 production/consumption rate per 
unit volume. In the case of consumption, R is negative and can be described as a function of the 
single-cell MM consumption rate (𝑅𝑐𝑒𝑙𝑙) defined in Eq. (1). Thus: 

𝑅 =  𝜌𝑐𝑒𝑙𝑙𝑅𝑐𝑒𝑙𝑙 (4) 

where 𝜌𝑐𝑒𝑙𝑙 [cell m-3] is the cell density in the microwell volume. Given that cell and microwell sizes 
are comparable, and assuming that O2 consumption is uniform in the cell volume – and hence in 

the well domain – the cell density can be expressed as 𝜌𝑐𝑒𝑙𝑙 =  
𝑁𝑐𝑒𝑙𝑙

𝑉𝑤𝑒𝑙𝑙
⁄  (with Vwell indicating the 

microwell volume, Table S1). As the silicone oil layer is considered impermeable to O2, there is no 
flux at the oil/air boundary, likewise at the microwell walls or – given the homogeneity of 
consumption in the volume – within the domain. These assumptions imply that the O2 concentration 
field in the microwell depends only on time (𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑐(𝑡)), and the governing equation can be 

simplified as 
𝜕𝑐

𝜕𝑡
= 𝑅. In these conditions, a suitable duration for monitoring O2 consumption to 

hypoxia within each microwell was estimated based on the characteristic reaction time, 𝜏𝑟: 

𝜏𝑅 =  
𝑘𝑀 +  𝑐0

𝜌𝑐𝑒𝑙𝑙 ∗ 𝑠𝑂𝐶𝑅
 (5) 

where conditions of O2 saturation (i.e., 𝑐 = 𝑐0, see Table 3) and 𝑁𝑐𝑒𝑙𝑙  = 1 were assumed. These are 
cautious choices leading to the longest 𝜏𝑅 possible for the system, guaranteeing that the 

consumption dynamics are fully captured. Typical literature values were then used for 𝑠𝑂𝐶𝑅 and 

𝑘𝑀 [6, 18, 23, 24], giving 𝜏𝑅 = 678.4 s. Thus, experiments were set with 𝑡𝑒𝑛𝑑 ≥  5𝜏𝑅 and 𝑓 ≥ 10/𝜏𝑅.  

Kinetic parameter identification 
Experimentally measured O2 concentration profiles constituted the input datasets for the 
multiparameter identification algorithm reported in [22]. Briefly, values of sOCR and kM were 
estimated comparing the O2 dynamics measured in each microwell containing cells to those 
predicted in silico by modelling the system according to Eqs. (3) and (4). A model governed by the 
dimensionless form of Eq. (3) was iteratively solved for each specific microwell, taking 𝑁𝑐𝑒𝑙𝑙 from 
the trypan blue-stained image and parameters listed in Table 2 into account.  

𝜕𝛾

𝜕𝑇
=  − 

𝜏𝑅 ∗ 𝜌𝑐𝑒𝑙𝑙 ∗ 𝑠𝑂𝐶𝑅 ∗ 𝛾

𝑐0 (
𝑘𝑀

𝑐0
⁄ +  𝛾)

 (6) 
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In Eq. (6), 𝛾 =  𝑐 𝑐0⁄  and 𝑇 =  𝑡 𝜏𝑅⁄  are the non-dimensional concentration and time, respectively. 
Considering Eq. (5), the dimensionless equation implemented for simulating O2 consumption in the 
well is the following: 

𝜕𝛾

𝜕𝑇
=  − 𝑁𝑐𝑒𝑙𝑙

(
𝑘𝑀

𝑐0
⁄ +  1) 𝛾

(
𝑘𝑀

𝑐0
⁄ +  𝛾)

 (7) 

The multiparameter identification algorithm described in [22] was used to estimate the MM 
parameters through Eq. (7). Although the equation does not explicitly depend on sOCR, the latter 
determines the time scale of the solution, given the definition provided for the dimensionless time 
T. 

Statistical analysis and software 
Numerical values of consumption parameters identified for microwells as a function of Ncell were 
compared by means of a non-parametric Kruskal-Wallis test and pairwise post hoc Dunn’s multiple 
comparisons. Non-linear correlation (i.e., non-parametric Spearman coefficient) of sOCR and kM 
with respect to Ncell as well as with each other was also tested. Overall statistical differences 
between the MM parameters estimated here and typical literature values were assessed for both 
sOCR and kM using a non-parametric Wilcoxon signed-rank test. Furthermore, the joint distribution 
of single-cell size and sOCR was tested for both normality and lognormality via the Henze-Zirkler 
multivariate normality test performed on the original and log-transformed dataset, respectively. 
Image processing, simulation of O2 transport and consumption and multiparameter identification 
were implemented in Matlab (R2021b), while GraphPad Prism (version 7, GraphPad Software, 
California USA) was used to perform all statistical analyses. 

Table 3. Initial condition and range of parametric sweep implemented for simulating O2 dynamics 
within a microwell where 𝑁𝑐𝑒𝑙𝑙 cells have settled. 

Parameter Numerical value Description 

𝑐0 0.2 mol m-3 ([18]) 
Initial condition of O2 saturated-

culture medium 

𝑠𝑂𝐶𝑅 
[10-18; 10-16] mol cell-1 s-1 
(deduced from [18, 35]) 

Initial range of parametric sweep 

𝑘𝑀 
[10-3; 10-1] mol m-3 (deduced 

from [17, 18, 35]) 
Initial range of parametric sweep 
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