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Abstract 
 

Accurate interpretation of genetic variation is a critical step towards realizing the potential 

of precision medicine. Sequencing-based genetic tests have uncovered a vast array of 

BRCA2 sequence variants. Due to limited clinical, familial and/or epidemiological data, 

thousands of variants are considered to be variants of uncertain significance (VUS). To 

determine the functional impact of VUSs, here we develop AVENGERS: Analysis of 

Variant Effects using NGs to Enhance BRCA2 Stratification, utilizing CRISPR-Cas9-

based saturation genome editing (SGE) in a humanized-mouse embryonic stem cell line. 

We have categorized nearly all possible missense single nucleotide variants (SNVs) 

encompassing the C-terminal DNA binding domain of BRCA2. We have generated the 

function scores for 6270 SNVs, covering 95.5% of possible SNVs in exons 15-26 

spanning residues 2479-3216, including 1069 unique missense VUS, with 81% functional 

and 14% found to be nonfunctional. Our classification aligns strongly with pathogenicity 

data from ClinVar, orthogonal functional assays and computational meta predictors. Our 

statistical classifier exhibits 92.2% sensitivity and 96% specificity in distinguishing 

clinically benign and pathogenic variants recorded in ClinVar. Furthermore, we offer 

proactive evidence for 617 SNVs being non-functional and 3396 SNVs being functional 

demonstrated by impact on cell growth and response to DNA damaging drugs like 

cisplatin and olaparib. This classification serves as a valuable resource for interpreting 

unidentified variants in the population and for physicians and genetic counselors 

assessing BRCA2 VUSs in patients.  
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Introduction 
An array of BRCA2 sequence variants have been identified due to the availability of 

sequencing-based genetic tests1. Assessing pathogenicity by linking genotype to 

phenotype is challenging as many of the variants of uncertain significance (VUS) are rare 

and may only be identified in a single person or family2–5. Hence, multiplexed assay for 

variant effect (MAVE) are necessary to assess a large number of variants 

experimentally6–9. The advent of CRISPR-based SGE has facilitated the creation of 

programmed variants enabling high-throughput variant screening and multiplexing using 

Next Generation Sequencing (NGS)10,11. Albeit with notable trade-offs, recent CRISPR 

tools like homology-directed repair10,11, base editing12–14 and prime editing15 have also 

emerged to classify genetic variants of many cancer-predisposing genes. 

 

Hereditary breast and ovarian cancer (HBOC) results predominantly due to mutations in 

BRCA1 and BRCA2 genes. The exponential increase in sequencing of breast cancer 

patients as well as individuals at risk of developing the disease has unveiled numerous 

variants in cancer pre-disposing genes (Figure 1a), with several types of mutations 

identified in BRCA2 (Figure 1b). The clinical variant database, ClinVar, has reported a 

total of 13,201 BRCA2 SNVs to date, with 59% still considered to be VUS16 (Clinvar 

update: 30 Oct, 2023) (Figure 1c). As the number of unique variants observed is 

expected to increase with improved sampling in the coming years, it is crucial to develop 

more efficient methods of variant assessment and classification. Functional assays have 

been developed to study the effect of BRCA2 VUSs on homologous recombination, 

proliferation, and sensitivity to chemotherapeutic drugs, resulting in an impressive 

collection of data17–22. Despite a concerted and interdisciplinary community effort, the 

classification of less than a few thousand variants has been achieved to date. Only a 

handful of these variants have been studied using genetic murine models, which are time 

consuming and resource-intensive23–25. 

 

BRCA2 is a 3418-amino acid protein consisting of several functional domains such as the 

N-terminal domain26,27 that interacts with Partner and localizer of BRCA2 (PALB2), eight 

BRC repeats in the middle of the protein and a C-terminal DNA binding (CTDB) domain 
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consisting of a helical domain (HD), tower domain and three oligosaccharides binding 

(OB) domains (Figure 1d). The BRC repeats as well as the C-terminal RAD51-binding 

(CRB) domain of BRCA2 can bind to RAD51, which is required for repair of DNA double 

strand breaks by homologous recombination (HR)28–32. Because of its critical function in 

maintaining the genomic integrity, BRCA2 is essential for cell proliferation and viability of 

mouse embryonic stem cells (mESCs)10,33,34. Thus, assessing fitness defect provides a 

reliable parameter for identifying loss-of-function (LoF) variants. We have stably 

integrated human BRCA2 into the mouse genome that does not contain Brca2.  This 

enables us to engineer a single variant per cell and investigate the effect of these variants 

on regulatory activity, splicing and protein function35.  

 

Using AVENGERS, we have classified all possible SNVs in BRCA2 exons 15–26 

encoding the CTDB domain spanning residues 2479–3216 due to the predominance of  

known ClinVar-reported pathogenic missense variants in this domain 36,37. For SGE, we 

used a mouse ES cell line expressing a single copy of human BRCA2 (Brca2-/-,Tg[BRCA2])35 

along with either a single or a combination of guide-RNAs (sgRNAs) and spCas9 along 

with a library of 180 bp long single-stranded oligo donors (ssODN) for variant generation 

using homology-directed repair (HDR) (Figure 1d). Pools of cells were sampled at an 

initial time point (day 3) and a later timepoint (day 14) either without any drug treatment 

(DMSO only) or after treatment with cisplatin (damages DNA by forming DNA adducts) or 

olaparib (poly (ADP-ribose) polymerase inhibitors, PARPi) treatment. We calculated the 

relative frequency of variants based on their NGS read counts in the pool of cells. 

Classifying genetic variants based on PARP inhibitor sensitivity, which reflects a defect 

in HR, could also provide valuable, patient-specific clinical insights and actionable 

treatment options38. The dropout frequency of SNVs is defined as function scores which 

were analyzed using a Gaussian-mixture-model to calculate their probability of impact on 

function (PIF) (Figure 1e). Following The American College of Medical Genetics and 

Genomics (ACMG)/Association for Molecular Pathology (AMP) sequence variant 

interpretation guidelines39,40, we derived the strength of evidence that could be applied 

for BRCA2 clinical variant interpretation based on the performance of our classified 

variants with known clinical relevance. 
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Results and Discussion 
SGE coupled with cell viability and chemotherapeutic drug response measure 
BRCA2 function 
 
Depending on the availability of sgRNAs, we used 48 different oligo pools as HDR 

template for SGE of 12 exons and ~3-7bp of adjacent intronic sequences that encode the 

entire CTDB domain. Each oligo-pool is comprised of 180-mer long ssODNs (ranging 

from 87-339 ssODNs per pool) that contain: a) a synonymous mutation at the PAM site 

to block recutting by Cas9, which also acts as a fixed HDR marker during sequencing 

analysis and b) degenerate nucleotides containing all three non-wildtype nucleotides per 

position along the 30-50 bp region of saturation (Figure 1d). Transfections for SGE 

experiments were performed on day 0 and genomic DNA were isolated for amplicon 

sequencing at days 3 and 14 to measure the frequency of variants present in each 

pool35,41 (Figure 1e). Using this approach, we have recovered 95.5% of all possible 

missense variants (6270 out of 6544 SNVs) (Supplementary figure 1a). The rate of 

indels varied within the range of 5% to 45% of the total read count, while HDR rates 

ranged from 2% to 16% across different exons depending on the respective sgRNAs 

(Supplementary Figure 1b-c). Notably, we observed a robust correlation in read counts 

for SNVs generated by HDR from two independent replicates at day 3 (Supplementary 
Figure 1d). This correlation enabled us to use initial read count frequency in our 

calculations and compute relative dropout frequency, which we have termed "function 

scores (FS)".  

 
We have assigned function scores (FS) to 6270 variants by taking the log2 ratio of each 

SNV’s frequency on day 14 using the day 3 samples as a baseline for fold change 

calculation. The positional biases in editing rates were corrected and the subsequent FS 

values were normalized between oligo pools and across different exons such that the 

median synonymous SNV and nonsense SNV matched the global medians. Additionally, 

FS values were computed by considering dropout frequencies following treatments with 

cisplatin and olaparib at day 14. Our rationale for incorporating the response to DNA 

damaging agents is twofold: to introduce an additional parameter for robustly categorizing 
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BRCA2 variants and to refine SNV filtering to prevent erroneous functional classification. 

Our working hypothesis is that variants displaying normal cellular fitness will survive in 

the presence of these drugs, while loss-of-function (LoF) variants will not. 

 

We found a strong correlation between FS values derived from cellular fitness and those 

from the response to cisplatin and olaparib (ρ= 0.84 for DMSO vs Cisplatin, ρ= 0.85 for 

DMSO vs olaparib, and ρ= 0.87 for olaparib vs cisplatin) (Supplementary Figure 2a). FS 

values were bimodally distributed, and we employed a two-component Gaussian Mixture 

Model (GMM) to calculate the probability of impact on function (PIF). 

 

The PIF scores were used to classify the 6270 SNVs based on the cell fitness data that 

survive in the pool at day 14. Similarly, we generated integrated FS values by taking a 

weighted-mean of FS values from cell fitness (DMSO-treated) and drug response 

(cisplatin-treated and olaparib-treated) data. By employing GMM, we categorized variants 

based on the integrated values, revealing that 5968 (95.1%) SNVs exhibited strong 

concordance, while only 302 (4.8%) SNVs showed an opposite classification with cell 

fitness data. Consequently, we filtered out 302 SNVs as "uncertain" that could not 

confidently be scored (Supplementary Figure 2b-d). In summary, our approach, which 

integrates assessments of cellular fitness and responses to DNA damaging drugs, allows 

for the accurate classification of BRCA2 variants. 

 
Unraveling the pathogenic spectrum of BRCA2 variants 
 
We observed that the majority of frame-shifting indels in each of our experimental pools 

exhibit a significant impact on cellular fitness, emphasizing the efficacy of our approach 

in accurately categorizing LoF variants (Supplementary Figure 3a). FS values for all 

nonsense SNVs scored below -1.11 (N = 310, median = -2.00), whereas synonymous 

SNVs scored above -0.95 (N = 1266, median = -0.02) (Figure 2a). The posterior 

probability computed from GMM were used to categorize SNVs by setting thresholds for 

PIF scores as follows: Pnf > 0.95 = ‘non-functional’, 0.01< Pnf < 0.95 = ‘indeterminate’, 

Pnf <0.01 = ‘functional’ (Supplementary Figure 4a). The FS values for all variants 
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strongly correlate between the replicates clearly demarcating the functional and non-

functional SNVs (Supplementary Figure 4b). We also observed a clear separation 

between synonymous and non-sense SNVs across all the exons, which strengthens the 

accuracy of our functional categorization (Supplementary Figure 4c). 
 

We have classified 1165 synonymous SNVs (92%) as functional and 283 nonsense SNVs 

(91.2%) as non-functional (Supplementary Figure 4d). We hypothesize that potential 

impact on splicing may explain the discordance in the interpretation of a small percentage 

of variants, specifically where synonymous SNVs behave as non-functional and protein-

truncating variants behave as functional. For example, synonymous SNV p.Pro3039Pro 

(c.9117G>C and c.9117G>A) at the canonical splice site leads to premature protein 

truncation caused by exon 23 skipping42, which explain the non-functional class of this 

synonymous SNV. Similarly, we have previously identified p.Trp194X(c.809G>A) 

mutation, predicted to create an N-terminal truncation, produces a fully functional 

BRCA243. This highlights that, despite predictions of premature protein truncation, some 

alleles may express alternatively spliced transcripts that result in functional proteins.  

 

We next investigated the ClinVar variants that are expert-curated for BRCA2 which could 

be a valuable resource for verifying the accuracy of our classification. Out of the 301 

SNVs classified as ‘pathogenic’ or ‘likely pathogenic’ in ClinVar, which are also included 

in our classifications, 255 (84.7%) were categorized as ‘non-functional’, 31 as ‘functional’ 

and the remaining 15 as ‘uncertain’. Conversely, among the 444 SNVs labeled as ‘benign’ 

or ‘likely benign’ in ClinVar, 412 (92.79%) SNVs were classified as ‘functional’, 19 as ‘non-

functional’ and 13 as ‘intermediate’ (Figure 2b, Supplementary Figure 4e). Additionally, 

we provided interpretation to 1069 VUSs with identification of 865 (80.92%) as ‘functional’ 

and 151 (14.12%) as ‘non-functional’ (Figure 2c). Furthermore, we categorize 233 SNVs 

with ‘conflicting interpretations of pathogenicity’ as 177 (75.96%) ‘functional’ and 45 

(19.31%) ‘non-functional’ (Figure 2c). Using this approach, we classified 4881 SNVs to 

be functional (81.7%) and 1087 SNVs to be non-functional (18.2%) across 12 exons from 

the CTDB domain, (Figure 2d, Supplementary Figure 4f). We observed an AUC value 

of 0.96 with 92.2% sensitivity and 96% specificity of our model to accurately classify 
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pathogenic/likely pathogenic and benign/likely benign variants annotated in ClinVar. 
Similarly, AUC value of 0.97 was observed in classifying synonymous and nonsense 

SNVs with 93.5% sensitivity and 95.2% specificity (Supplementary Figure 5a). We have 

also compared FS values of ClinVar variants to commonly used computational predictors 

like CADD44, BayesDel45, REVEL46, PRIOR, EVE47 and AlphaMissense48. While there is 

generally a broad consensus among these models in predicting LoF variants, some 

functional SNVs were often interpreted as pathogenic in computational predictors. We 

observed AUC ranging from 0.71 to 0.92, outperforming predictions from computational 

models and functional assay results (Supplementary Figure 5 a-b). In summary, the 

strong concordance of our results with ClinVar helps ensure reliability of variant 

classification for clinical decision-making and genetic counseling. The AVENGERS map 

revealed the pathogenicity spectrum of all possible SNVs across the CTDB domain and 

splice site variants (Figure 3). 
 

Structural interpretation aligns with BRCA2 variant pathogenicity 
 
Furthermore, we applied a framework for variant interpretation based on in-silico 

structural methods, i.e., MAVISp (Multi-layered Assessment of Variants by Structure for 

proteins)49 to investigate the effects of the BRCA2 variants in the CTDB domain and that 

are reported in COSMIC50, cBioPortal51, and ClinVar36. MAVISp allows to scrutinize 

variants’ effect using not only pathogenicity scores as EVE47 and AlphaMissense48, but 

also to annotate the impact of variants on different protein features, such as structural 

stability, and protein-protein interactions. CTDB domain interacts with Deletion of Split 

hand/split foot 1 (DSS1/SEM1) which is essential for the stability of BRCA227. We focused 

on the effects on structural stability or on the interaction between BRCA2 and 

DSS1/SEM1. We observed a strong concordance between MAVISp-based saturation 

scans for the CTDB and AVENGERS and Alpha-missense (Figure 4a). For 92 of the non-

functional variants, we identified an effect due to changes in structural stability according 

to the Rosetta and FoldX predictions. The 38 non-functional variants the effects seem to 

be related to changes in the interaction with DSS1/SEM1 (Figure 4b-e). Moreover, 
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p.Gly2784Val, p.Ala2786Pro and p.Gly2739Arg in the CTDB domain are predicted to 

destabilize both stability and  the DSS1/SEM1 interaction.  

 

Furthermore, the predictions on variants at the p. Leu2721 residue changed to His, Pro, 

and Arg, and p.Asp2723 residue changed to Gly, His, and Val in terms of stability are 

consistent with the non-functional readout of AVENGERS and align with AlphaMissense 

prediction (Figure 4 d,e). This concordance is displayed in the sequence-function map 

which portrays the effects of changing individual residues within the CTDB domain to all 

amino acid residues (Supplementary Figure 6 a-d). The p.Leu2721His was previously 

characterized as deleterious based on HR assay and its sensitivity to PARP inhibition. 

Taken together, we demonstrate MAVISp predictions for BRCA2 variants align with 

AVENGERS, providing a mechanistic explanation underlying the impact of SNVs 

resulting in non-functional experimental readouts. 

 

We overlaid the non-functional SNVs In the BRCA2 3D structure27 and revealed a region 

spanning from residues 2619 to 2630 within the helical domain that is highly intolerant to 

missense variation (Figure 4f). Notably, the p.His2623 residue clusters within the helical 

domain, which has been previously identified to contain deleterious variants14. 

Additionally, residues from 2720 to 2726 within the OB1 fold also exhibit intolerance to 

variant changes. In this region, several pathogenic BRCA2 variants, such as 

p.Thr2722Arg and p.Asp2723His, have been identified. Interestingly, the OB2 and OB3 

regions are more tolerant to missense variation, particularly the Tower domain within the 

OB2 fold, where no pathogenic variants have been previously reported. 

 

The mixture-models revealed 92% sensitivity and 96% specificity to accurately classify 

ClinVar variants, and the positive likelihood ratio (LR+) based on ClinVar is 23.64 and the 

negative likelihood ratio (LR-) is 0.08. Furthermore, to estimate the evidence strength of 

our assay, we calculated the Odds of Pathogenicity (OddsPath) value of our model, based 

on the recommendations for application of the functional evidence PS3/BS3 criterion 

using ACMG variant interpretation framework39,40. Our OddsPath value for pathogenic 
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variant is 23.35 equivalent to PS3 level of evidence and for benign variant is 0.006 

equivalent to BS3 level of evidence.   

 

To assess whether FSs predict variants driving breast cancer, we correlated our variant 

classification with a substantial dataset from the Breast Cancer Association Consortium 

BRIDGES project2. This included 59,538 breast cancer cases and 53,165 controls, with 

5,467 carriers of 1,425 unique BRCA2 variants. Notably, we identified 9 SNVs as non-

functional in our dataset that were classified as (likely) pathogenic on ClinVar or by 

ENIGMA expert guidelines. For instance, p.Leu2510Pro (c.7529T>C) was identified in 2 

cases and 1 control, and its deleterious effect was previously characterized35,43,52. Other 

SNVs from the helical domain include p.Ile2627Phe(c.7879A>T), 

p.Leu2647Pro(c.7940T>C), p.Leu2653Pro(c.7958T>C), p.Ile2675Val(c.8023A>G). Other 

SNVs include p.Asn3124Ile(c.9371A>T) identified in 11 breast cancer cases and 1 control 

population, p.Gly3076Arg(c.9226G>A) identified in 3 cases and 0 controls, with relative 

risk estimates similar to truncating variants, confirming their non-functional nature. 

Correlating breast cancer risk association results for individual SNVs with a frequency 

between 0.1% and 5% based on population samples in the BRIDGES dataset, we found 

p.Ala2717Ser(c.8149G>T) (98 cases and 130 controls), p.Val2728Ile(c.8182G>A) (219 

cases and 208 controls), p.Glu2856Ala(c.8567A>C) (133 cases and 172 controls), 

p.Ala2951thr(c.8851G>A) (299 cases and 340 controls) that have a oddsRatio of nearly 

1 and are functional in our assay. To summarize the population data, we observed a good 

concordance to the Helix-High SNVs identified in the BRIDGES dataset to be non-

functional and variants with low Helix score are mostly functional in our assay (Figure 
4g). In summary, our population data demonstrated good concordance with non-

functional SNVs in the BRIDGES dataset, suggesting the clinical applicability of our 

functional assay for patient management in the future. 

 

AVENGERS scores align with high-throughput orthogonal assays.  
 
While our functional categorization has shown strong agreement with ClinVar-

classification, it is important to exercise caution when drawing definitive conclusions about 
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the pathogenicity of variants. Reproducible yet unanticipated effects, such as editing at 

off-target sites, could be a potential caveat in CRISPR-based assays. To address this 

caveat, we present a holistic approach to compare our SGE data to previously reported 

orthogonal assays. Several of the sgRNAs used in our SGE experiments were previously 

used to saturate a few codons of BRCA2 using Prime Editing (PE), known to reduce indel 

formation and off-target editing15. We observed 131 out of 156 SNVs (84%) to be 

concordant between our AVENGERS classification and PE, of which 116 SNVs were 

functional and 15 SNVs were nonfunctional (Supplementary Figure 7a). As an 

independent validation, we used 155 SNVs previously generated using a BAC-

recombineering-based method and classified these using our mouse ES cell line20,33. We 

observed 91.6% of the SNV classification matching our SGE dataset, that includes 75 

functional and 56 nonfunctional variants concordant between both the datasets 

(Supplementary Figure 7b). Furthermore, our comparison with 117 SNVs previously 

classified using the MANO-B assay21 based on their response to different PARP inhibitors 

(olaparib, rucaparib, niraparib) and carboplatin revealed 82% of the SNV classification 

matches our SGE class. Out of 21 discordant SNVs, we found that one-third of these 

SNVs fell in the Tower domain of BRCA2 where SNVs were identified to have sensitivity 

to PARP inhibitors (fclass-3 or 4). However, SNVs identified in this region had no effect 

on HR19, in agreement with our functional classification (Supplementary Figure 7c). 
BRCA2 variants associated with defective homologous recombination (HR) render cells 

sensitive to PARP inhibitors, making them a target for precision cancer therapy. We 

observed 43 out of 47 SNVs to show concordance to a recently reported BRCA2 variant 

classification based on the ability to perform HR and integrative in silico prediction53. Only 

two HR-proficient SNVs were classified as non-functional by AVENGERS (p.Gly2593Glu 

and p.Tyr2601Cys) (Supplementary Figure 7d). In addition, our comparison to a large 

dataset for several ClinVar variants and their ability to perform HR also showed strong 

comparison. Interestingly, we observed that SNVs in the Tower domain that can perform 

HR19 are functional in our SGE-based classification (Supplementary Figure 8a). 
 

Imposing a stringent threshold to calculate pathogenicity, we have categorized 302 SNVs 

as “uncertain” which show discordance between cell fitness-based classification and 
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drug-response. However, these “uncertain” variants that typically survive but exhibit 

vulnerability to DNA damaging agents could potentially be hypomorphic variants, 

warranting further investigation (Supplementary Figure 9a). We identified p.Tyr2624Cys 

(c.7871A>G) to have normal cell fitness but was sensitive to drugs, concordant with 

reduced HDR54 and its pathogenicity identified to be high risk in breast cancer patients2. 

Several BRCA2 SNVs were classified based on their intermediate level of HR activity and 

associated with moderate risk of breast cancer. This includes p.Gln2925Arg (c.8774A>G) 

and p.Leu2972Trp (c.8915T>C) which we classified as functional based on integrated 

dataset, but these are sensitive to either one or both the drugs. The p.Asp2606Gly 

(c.7817A>G) and p.Gly2812Glu (c.8435G>A) were functional in AVENGERS, despite 

their intermediate HDR activity. Other hypomorphic variants identified to contribute to a 

moderate risk of breast cancer55 include p.Gly2508Ser and p.Ala2717Ser in the functional 

class, but p.Tyr3035Ser falls in the indeterminate zone. The p.Gly2609Asp(c.7826G>A) 

variant located in the coding exon 16 of BRCA2 had reduced HR activity with a prediction 

of being likely deleterious18 and sensitive to PARPi21, concordant with our hypomorphic 

classification. 
 

In summary, AVENGERS represents a high-throughput MAVE approach to classify 

missense variants compared to traditional medium and low-throughput assays22, offering 

valuable insights into yet-to-be-identified variants. Despite the inherent limitations of SGE, 

our approach successfully elucidates the phenotypic effects of 6270 BRCA2 SNVs 

spanning the region encoding the CTDB domain. By integrating cellular fitness and 

response to DNA damaging agents along with structural predictions, we have established 

that our functional classification aligns closely with ClinVar classification with 

concordance to other MAVEs and orthogonal functional assays.  
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Methods 
 

1. Mouse embryonic stem cell culture 
 

Mouse ESC line expressing a single copy of human BRCA2 (Brca2-/-,Tg[BRCA2]) [Clone: 

F7/F7] 35 was cultured on feeder cells (SNLP) that express leukemia inhibitory factor (Lif) 

and puromycin and neomycin resistance genes33. The maintenance medium (M15) 

consisted of Knockout DMEM (Gibco) supplemented with 15% FBS (HyClone), penicillin-

streptomycin-glutamine (Gibco) and 0.1 mM b-mercaptoethanol. The media was changed 

every day and cells were trypsinized and passaged when ESCs reached 80% confluency.  
 

2. Guide RNA design and cloning 
 

20 bp of crRNA sequences targeting exons 15-26 of BRCA2 were designed for high on-

target score using www.benchling.com  and synthesized by Integrated DNA Technologies 

(IDT). The single guide RNAs (sgRNAs) were cloned into PX330 or PX458 (Cas9-P2A-

GFP) vectors, that expresses the gRNA from a U6 promoter and Cas9 expression 

cassette56. Complimentary oligonucleotides were annealed, phosphorylated, diluted, and 

ligated into BbsI-digested plasmid56. sgRNAs were selected based on the option to 

introduce a synonymous variant at the PAM sites. The plasmids were confirmed by 

Sanger sequencing using U6 primers for the correct integration of crRNA sequences.  

 

3. Nucleofection for CRISPR-Cas9 based saturation genome editing. 
 

We prepared mESCs for nucleofection by culturing them in a 10 cm culture dish one day 

before the procedure to ensure they were actively dividing. Subsequently, we performed 

nucleofection on 3.3x106 mESCs using a combination of 3 µg of plasmid containing the 

desired sgRNA and Cas9-expressing cassette, along with 6.5 µg of ssODN oligo, 

following the manufacturer's instructions for the Lonza nucleofector 2B (Program: A030). 

To facilitate this process, we synthesized libraries of ssODNs for each sgRNA at a 

concentration of 50 pmol/oligo. These ssODNs were precisely 180 bases long and 
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contain all degenerate nucleotides at every nucleotide position, enabling the introduction 

of three non-wildtype nucleotides at each position of interest. We divided each exon into 

specific regions, typically ranging from 30-50 bp in length, to adapt to the availability of 

sgRNAs and genomic regions of interest. If proximate sgRNAs were not readily available, 

we utilized a combination of two sgRNAs to cover the intervening region. Additionally, 

each ssODN was engineered to include a fixed synonymous PAM mutation, preventing 

subsequent Cas9 cleavage and serving as a consistent HDR marker for later sequencing 

analysis. 

 

To reduce variability of knock-in efficiency, the same set of sgRNA and oligo library was 

used for three nucleofections each containing 3.3 x106 mESCs. A total of 10 x 106 mESCs 

from these three replicates were pooled into one 10 cm dish after nucleofection, which 

represents replicate 1. The same experimental strategy was repeated to yield replicate 2. 

The cells were cultured post-nucleofection, for an initial 72-hour period, with regular 

media changes every 24 hours. After this, we trypsinized each plate. Half of the cell 

population was collected for DNA isolation, while the remaining cells were re-plated onto 

a single 10 cm feeder plate and cultured for an additional 4 days of culture, with daily 

media changes. On the 7th day following nucleofection, we plated 106 cells from each 

plate onto three separate 10 cm feeder-containing dishes, preparing them for subsequent 

drug treatments. On days 8, 10, and 12, we added fresh media supplemented with either 

0.4 µM cisplatin or 0.05 µM olaparib, in addition to a DMSO control. Following the drug 

treatment phase, cells from both replicates for each oligo pool were consolidated on day 

14 and pelleted to facilitate DNA extraction. 

 

Genomic DNA was extracted from the cell pellets utilizing the Zymo Genomic DNA 

Extraction kit (Cat# D3024), and targeted regions were PCR amplified, purified and sent 

for Next-Generation Sequencing (NGS) at Azenta/Genewiz (New Jersey). The DNA 

libraries were meticulously prepared in line with the protocol specified in the Illumina 

TruSeq Nano DNA Library Prep kit and subsequently underwent deep sequencing on the 

MiSeq platform, employing a 2 x 250 cycle sequencing method. 
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4. Variant analysis and functional classification 
 

Paired-end sequencing was performed on an Illumina MiSeq instrument with a read 

coverage of 1-3 million reads per sample. The reads were demultiplexed using bcl2fastq 

(Illumina) and fastq files were generated. SeqPrep was used for adapter trimming and 

merging the read pairs. Merged reads containing “N” bases were removed from the 

analysis. The remaining reads were aligned to GRCh38 human reference genome using 

the needleall command from the EMBOSS package. Abundances of SNVs were 

quantified when the reads contained the synonymous PAM modification (HDR marker) 

and no other substitution or indels were present. The variants generated at a low 

frequency (less than 1 in 105 reads in any one of the replicates) were excluded from further 

analysis to prevent erroneous variant classification. A pseudocount of 1 was added to all 

reads, for every sample and at all the conditions. Read counts for each SNVs were then 

normalized to the total read coverage of the sequencing library. Individual variants with a 

read count of more than 1 in 100,000 reads at day 3 were used for analysis. The dropout 

or enrichment scores were calculated by taking the ratio of frequency of the variants at 

day 14 in DMSO or cisplatin or olaparib over day 3. The scores were expressed in log2 

scale, which we define as function scores of SNVs in DMSO, cisplatin and olaparib.  

 

5. Statistical modeling for SNV classification by AVENGERS  
 

The ratios of frequency of each SNV at day 14 over day 3 were normalized within each 

experiment using the median ratio for synonymous and non-sense SNV. Position biases 

in editing rates were modelled using these ratios and the chromosomal position of each 

SNV within each exon. The ratio was expressed as a function of chromosomal position 

using the “loess” function from R. The score obtained from the modeling was then 

subtracted from the log2 ratio, thus removing any positional bias.  The corrected log2 

ratios were linearly normalized within each exon and across all exons, such that the 

median nonsense function scores within an exon matched the global nonsense function 

scores across all exons. For each SNV, four function scores were calculated: one for each 
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treatment (DMSO, cisplatin, olaparib) and one global using a weighted mean of the three 

conditions (weights: 0.4 for DMSO, 0.25 for cisplatin and olaparib). 

 

The position-corrected and normalized function scores were used as an input for a 

Gaussian mixture model estimating the probability for each SNV to be functional or non-

functional. The synonymous variants that were not expected to affect splicing (based on 

SpliceAI predictions) constituted the “Functional” class and the non-sense variants 

constituted the “Non-functional" class. A model was trained using this dataset and the 

“mclust” function in R. Then, the model predicted the probability of pathogenicity for all 

SNV using theirs function scores. SNV with a probability of pathogenicity higher than 95% 

were considered “Non-functional” and SNV with a probability of pathogenicity lower than 

1% were considered “Functional”. The remaining SNV were considered as “Uncertain”. 

The classification obtained using DMSO data were considered for final classification.  The 

variants that showed discordance between DMSO and global (weighted mean) 

classifications were classified as “Uncertain”.  

 

ROC curves were used to assess performance of the computational model at predicting 

assigned ClinVar classifications using SGE data and other predictors (CADD44, 

BayesDel45, REVEL46, PRIOR, EVE47 and AlphaMissense48). ROC curves were produced 

with the package “pROC” in R and using missense pathogenic and benign variants as 

predictors. The SGE function scores were also used to predict “non-sense” and 

“synonymous” codon types. 

 

6. Saturation scan using MAVISp for variant interpretation 
 

We applied the simple mode of the MAVISp framework49 to retrieve and aggregate 

missense mutations in COSMIC50, cBioPortal51, and ClinVar36 for BRCA2 using the 

Uniprot identifier P51587 and the RefSeq identifier NP_000050. Within the MAVISp 

framework, we used free energy calculations to predict the effects of the variants on 

folding/unfolding or binding free energies57,58. In addition, folding free energy data for all 

potential mutations within BRCA2 region spanning residues 2470-3185 were obtained 
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using MutateX and RosettaDDGP prediction with the cartesian2020 protocol and ref2015 

energy function57,58. We classified the mutations for changes in folding or binding free 

energy according to a consensus approach between the two protocols applied for the free 

energy calculations, as previously described49. For the calculations, we used the 

AlphaFold model of BRCA2 (residues 2479-3185) from the AlphaFold database59. The 

structure of the complex between BRCA2 and SEM1 has been modelled with AF-multimer 

by using the murine BRCA2 C-terminal domain 2479-3185 and the whole sequence of 

SEM1 (i.e., residues 1-70). The quality of the model has been assessed through 

superimposition with the structure of the C-terminal domain of BRCA2 and SEM1 

contained in  the PDB entry 1IYJ60. We also retrieved or calculated the pathogenicity 

scores from AlphaMissense48, DeMask48, and EVE47 using the tools implemented in 

MAVISp. The final classification of each amino acid in the HD, OB1, OB2 and OB3 

domains were mapped along with AlphaMissense and EVE classifications in the form of 

a heatmap presenting the classification for each amino acid in these domains, using a 

custom R script.  

 

7. Function scores mapping to the BRCA2 PDB structure 
 

Function scores for all SNVs were mapped onto the structures of BRCA2 by averaging 

missense SNV probability of pathogenicity at each amino acid position. The amino acids 

of the PDB structure: 1MIU was aligned with the corresponding amino acids in human 

BRCA2 sequence using COBALT. For each amino acid, the averaged probability of 

pathogenicity was calculated using the missense SNV affecting the given amino acid. The 

figure was then created using Jmol and POV-Ray.  
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Figure Legends 
Figure 1: Reducing uncertainty in BRCA2 variants of uncertain significance (VUSs) 
using Saturation Genome Editing (SGE). 
 
Donut plots showing the distribution of (a) different classes of genetic variants identified 

for cancer predisposition genes and reported in ClinVar, the Clinical Variant database (n 

= 2,226,284). 55% of all variants are still considered to be VUS. (b) Different types of 

mutation identified for BRCA2 (n = 23060); 33.5% missense variants are identified. (c) 
Distribution of BRCA2 SNVs identified in ClinVar (n=7863 VUS, 1064 Pathogenic, 197 

likely pathogenic,3339 likely benign and 738 benign). 59% of BRCA2 SNVs is still 

considered to be VUS. (d) Schematic representation of the strategy for sgRNA and oligo 

donor design to saturate the entire CTDB domain of BRCA2 encoded by exons 15-26. 

Depending on the availability of sgRNAs (green lines), we used oligo pools as repair 

template to saturate 12 exons across the entire CTDB domain. Each oligo-pool comprises 

of 180-mer long ssODNs containing a synonymous mutation at the PAM site (black line) 

and degenerate nucleotides (blue, yellow and red lines) containing all three non-wildtype 

nucleotides per position across the region of saturation. (HA=Homology arm represented 

with an orange line, CRB = C-terminal RAD51-binding domain). (e) Schematic 

representation of the experimental workflow of CRISPR-SGE experiments where mouse 

ES cell line expressing a single copy of human BRCA2 (Brca2-/-,Tg[BRCA2])) were 

transfected with sgRNA-Cas9 plasmids, and successful transfection was confirmed by 

GFP fluorescence. Two groups of cells were then analyzed: one on day 3 to determine 

initial variant representation and another on day 14 days with or without treatment of DNA 

damaging agents (cisplatin and olaparib) to evaluate the variant abundance. Variants that 

decreased in abundance over time are considered non-functional, while those that did not 

significantly deplete are deemed functional.  

 

Figure 2: AVENGERS accurately determine clinical interpretations of BRCA2 SNVs. 
(a) The distribution of SNV function scores for Nonsense (red), Synonymous (blue), 

intronic (grey) and Missense (light green). The dashed line represents the median of the 

nonsense SNVs (red) and synonymous SNVs (blue). (b) Histogram showing distribution 
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of SNV function scores categorized by ClinVar interpretation (n = 717), with at least a '1-

Star' review status in ClinVar and either a 'Pathogenic' or 'Benign' Interpretation (including 

'Likely benign and likely pathogenic). The dashed lines represent functional and non-

functional classification thresholds derived from the Mixture Modeling. (c) Histogram 

Illustrating the distribution of 1069 SNVs classified as Variants of Uncertain Significance 

(VUS) alongside 233 SNVs with Conflicting Interpretations of Pathogenicity in ClinVar. 

The bimodal distribution indicates our capacity to categorize them as either functional or 

non-functional, demonstrated by the dashed lines derived from Mixture Modeling. (d) 
Distribution of function scores for all possible SNVs (n = 5968) across exon 15-26 from 

the c-terminal DNA binding domain. We categorized 4881 SNVs to be functional (81.7%) 

and 1087 SNVs to be non-functional (18.2%). 
 
Figure 3: AVENGERS map for 6270 BRCA2 SNVs across 12 exons spanning the C-
terminal DNA binding (CTDB) domain. 
 
The Sequence-function map unveils the pathogenic range of all potential SNVs in the 

BRCA2 CTDB Domain. The box color signifies Functional (Blue), Non-Functional (Red), 

and Uncertain (Turquoise Blue) class. The wild-type nucleotide is shown in Gray, while 

white boxes indicate excluded nucleotides. A black border surrounding the box denotes 

SNVs reported in ClinVar, and a dashed border represents SNVs predicted to affect 

splicing with SpliceAI Score > 0.261. The alphabet denotes the single-letter amino acid 

code and their change due to SNVs. The numbers at the top denote the amino acid 

residue and the bottom indicate the nucleotide position on chromosome 13 as per the 

Genome Reference Consortium (Human GRCh38). The solid line depicts individual 

functional domains. Residues 2830-2843 (exon20) and 2997-3026 (exon 23) were 

excluded due to lack of efficient sgRNAs for SGE.  

 

Figure 4: Structural prediction and adaptation of SGE classes for breast cancer risk 
estimation 
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MAVISp predictions demonstrate concordance with SNVs classified as non-functional 

according to MAVE assay and their destabilizing status with DSS1 interaction. (a) 
Sequence function map demonstrating strong concordance between AVENGERS, 

MAVISp and Alphamissense across residues 2479 to 3186 for all possible amino acid 

changes. Blue box represent functional/stabilizing, black as non-functional/des-stabilizing 

and turquoise blue as uncertain. The original amino acid residue is represented as a 

circle. (b-d) The dot plots reveal the consequences of individual SNVs derived from 

pathogenicity predictors like DeMAsk, EVE, and AlphaMissense. The dot plots also 

include the effects predicted for each SNV with the stability and local interaction modules 

of MAVISp. The Structural 3D plots are derived from BRCA2 CTDB domain from 

Alphafold depicting the helical domain (b), OB1 (c), OB2 (d) and OB3 (e). The color code 

of the 3D structure plot is derived from AlphaFold and correlated with the pLDDT score, 

a score to provide information about the confidence of the prediction of a specific residue, 

in particular regions with a pLDDT score <50 are colored in orange, regions with a pLDDT 

score between 50 and 70 are colored in yellow, regions with a pLDDT score between 70 

and 90 are colored in light blue, regions with a pLDDT score > 90 are colored in blue. In 

MAVISP we used structures or portion of structures with a pLDDT score > 70. (f) The 

probability of pathogenicity of missense variants across the CTDB is displayed on the 

BRCA2-DSS1 complex structure (PDB: 1MIU). Residues within helical domain are among 

the position’s intolerant to SNV changes and variants in the tower domain are mostly 

tolerated. (g) Function scores from AVENGERS can predict clinical pathogenicity derived 

from BRIDGES consortium dataset3 and their comparison to AlphaMissense48 and EVE47 

score prediction (n = 36 helix-high, n = 220 helix-low SNVs). 
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