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Abstract	The	somatosensory	system	detects	peripheral	stimuli	that	are	translated	into	behaviors	9	

necessary	for	survival.	Fishes	and	amphibians	possess	two	somatosensory	systems	in	the	trunk:	the	10	

primary	somatosensory	system,	formed	by	the	Rohon-Beard	neurons,	and	the	secondary	11	

somatosensory	system,	formed	by	the	neural	crest	cell-derived	neurons	of	the	Dorsal	Root	Ganglia.	12	

Rohon-Beard	neurons	have	been	characterized	as	a	transient	population	that	mostly	disappears	during	13	

the	first	days	of	life	and	is	functionally	replaced	by	the	Dorsal	Root	Ganglia.	Here,	I	follow	Rohon-Beard	14	

neurons	in	vivo	and	show	that	the	entire	repertoire	remains	present	in	zebrafish	from	1-day	post-15	

fertilization	until	the	juvenile	stage,	15-days	post-fertilization.	These	data	indicate	that	zebrafish	retain	16	

two	complete	somatosensory	systems	until	at	least	up	to	a	developmental	stage	when	the	animals	17	

display	complex	behavioral	repertoires.		18	

	19	
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Introduction	23	

The	somatosensory	system	of	animals	detects	peripheral	stimuli,	such	as	touch,	temperature,	or	24	

noxious	chemicals	(Abraira	and	Ginty,	2013;	Basbaum	et	al.,	2009;	Cevikbas	and	Lerner,	2020;	Dhaka	et	25	

al.,	2006;	Meltzer	et	al.,	2021,	2021;	Woolf	and	Ma,	2007).	In	vertebrates,	the	somatosensory	system	of	26	

the	head	is	formed	by	neurons	of	the	Trigeminal	Ganglia	(Dyck	and	Thomas,	2005).	In	the	trunk,	the	27	
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situation	varies	between	amniotes	and	anamniote	vertebrates	such	as	fishes	and	amphibians.	While	the	28	

somatosensory	system	of	the	trunk	in	amniotes	is	formed	by	neurons	of	the	Dorsal	Root	Ganglia	(DRG),	29	

which	are	neural	crest	cell-derived	(Le	Douarin	and	Kalcheim,	1999),	anamniote	vertebrates	possess	30	

two	somatosensory	systems	during	development:	the	primary	somatosensory	system	and	the	31	

secondary	somatosensory	system.	The	primary	somatosensory	system	develops	first	and	is	formed	by	32	

the	Rohon-Beard	(RB)	neurons	(Beard,	John,	1890;	Bernhardt	et	al.,	1990;	Coghill,	1914;	Freud,	1878;	33	

Freud,	Sigmund,	1877;	Hughes,	1957;	Ogino	and	Hirata,	2018;	Rohon,	Josef	Victor,	1884).	RB	neurons	34	

are	bipolar	neurons	present	on	the	dorsal	part	of	the	spinal	cord,	and	participate	in	the	escape	response	35	

(Clarke	et	al.,	1984;	Hartenstein,	1993;	Hirata	and	Iida,	2018;	Kimmel,	CB	and	Westerfield,	M,	1990;	36	

Roberts	and	Clarke,	1982;	Roberts	and	Smyth,	1974;	Shorey	et	al.,	2021;	Umeda	et	al.,	2016).	RB	37	

neurons	possess	a	characteristic	large	spherical	body	and	extend	their	highly	arborized	sensory	38	

neurites	to	the	periphery	around	18	hours	post-fertilization	(hpf)	in	zebrafish	(Eisen,	1991;	Sagasti	et	39	

al.,	2005;	Saint-Amant	and	Drapeau,	1998).	Around	the	same	stage,	the	neural	crest	cells	of	the	trunk	40	

migrate	out	of	the	neural	tube	(Raible	et	al.,	1992;	Theveneau	and	Mayor,	2012)	and	start	41	

differentiating	into	DRGs,	the	secondary	somatosensory	system	(An	et	al.,	2002;	Raible	et	al.,	1992;	42	

Raible	and	Eisen,	1994;	Wright	and	Ribera,	2010).	Concomitantly	to	the	maturation	of	the	DRGs,	RBs	43	

are	thought	to	undergo	gradual	programmed	cell	death,	and	their	replacement	by	the	DRG	is	44	

considered	to	be	complete	at	around	5	days	post-fertilization	(dpf)	in	zebrafish	(Cole	and	Ross,	2001;	45	

Lamborghini,	1987;	Reyes	et	al.,	2004;	Svoboda	et	al.,	2001;	Williams	et	al.,	2000).	RBs	show	markers	46	

for	cell	death,	including	Terminal	deoxynucleotidyl	transferase	dUTP	nick	end	labeling	(TUNEL),	47	

activated	Caspase	3,	or	Annexin	V	during	their	disappearance	and	functional	replacement	by	the	DRGs	48	

in	fish	and	frogs	(Coen	et	al.,	2001;	Cole	and	Ross,	2001;	Kanungo	et	al.,	2006;	Reyes	et	al.,	2004;	49	

Svoboda	et	al.,	2001,	2001;	Williams	et	al.,	2000;	Williams	and	Ribera,	2020).	While	programmed	cell	50	

death	of	RBs	is	dependent	on	electrical	activity,	neurotrophin,	Cdk5	or	BCL	signaling	(Coen	et	al.,	2001;	51	

Kanungo	et	al.,	2006;	Nakano	et	al.,	2010;	Ogino	and	Hirata,	2018;	Pineda	et	al.,	2006;	Svoboda	et	al.,	52	

2001;	Williams	et	al.,	2000),	it	is	independent	of	the	formation	of	DRGs	(Honjo	et	al.,	2011;	Reyes	et	al.,	53	

2004).		54	
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RBs	were	originally	regarded	to	completely	disappear	during	development;	however,	recent	55	

observations	in	zebrafish	challenged	this	view	and	documented	that	up	to	40%	of	the	RBs	survive	to	56	

juvenile	stages	(Palanca	et	al.,	2013;	Williams	and	Ribera,	2020).	Here,	I	report	that	the	complete	57	

repertoire	of	RBs	present	at	1	dpf	remains	until	15	dpf	and	show	no	significant	signs	of	cell	death.		58	

	59	

Results	60	

The	complete	trunk	repertoire	of	RBs	survives	until	at	least	5	dpf	in	zebrafish	61	

To	understand	the	development	of	the	primary	somatosensory	system	through	the	dynamics	of	62	

RBs	loss,	I	investigated	(i)	where	in	the	trunk	and	(ii)	when	each	of	the	RBs	disappears.	I	repeatedly	and	63	

comprehensively	followed	in	vivo	the	RBs	of	individual	fish	from	1	dpf	until	5	dpf	using	an	isl2b:GFP	64	

transgenic	line	that	labels	all	RBs	(Pittman	et	al.,	2008)	(Figure	1).	The	isl2b:GFP	transgenic	line	labels	65	

both	RBs	and	Dorsal	Longitudinal	Ascending	(DoLA)	interneurons	throughout	early	development,	and	66	

additionally	DRG	neurons	from	2-3	dpf	onwards	(Williams	and	Ribera,	2020;	Won	et	al.,	2012).	RBs	67	

were	identified	by	their	dorsal	position	and	characteristic	large	soma,	while	DoLA	were	identified	based	68	

on	their	smaller	size	and	adjacent	position	to	the	dorsal	longitudinal	fasciculus	(Figure	1).	DRGs	were	69	

identified	based	on	their	location	outside	the	spinal	cord.	RBs	start	as	two	bilateral	populations	that	70	

converge	medially	(Fig.	1,	compare	top	vs	bottom	panel)	(Williams	and	Ribera,	2020).	Despite	their	71	

change	in	position,	in	all	embryos	analyzed	(n=3),	all	trunk	RB	neurons	present	at	24	hpf	could	be	72	

accounted	for	throughout	the	entirety	of	the	experimental	period,	until	5	dpf.	These	results	indicate	73	

that	all	RBs	survive	past	hatching	(~2-3	dpf)	until	free-swimming	larva	stages	(5	dpf).		74	

	75	
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	76	

Figure	1.	All	isl2b:GFP+	RBs	present	at	24	hpf	can	be	accounted	for	at	5	dpf.	Repeated	dorsal	in	vivo	imaging	of	the	same	77	

larva	from	the	first	until	the	fifth	day	of	life	reveals	that	all	RBs	present	in	the	trunk	survive	during	this	period	of	time.	The	78	

drawings	on	the	right	represent	the	same	RBs	throughout	time,	starting	from	the	dotted	box	area	at	24	hpf.	Scale	bar	equals	79	

100µm.	hpf	–	hours	post-fertilization;	dpf	-	days	post-fertilization;	DoLA	–	Dorsal	Longitudinal	Ascending	neurons;	DRG	–	80	

Dorsal	Root	Ganglia;	DLF	–	Dorsal	Longitudinal	Fasciculi.	81	

	82	

The	zebrafish	trunk	elongates	as	RB	converge	towards	the	midline	83	

The	comprehensive	tracking	revealed	that	all	RBs	are	present	until	5	dpf	and	their	bodies	84	

converge	medially,	ending	up	in	approximately	a	single	row	(Fig.	1)(Williams	and	Ribera,	2020).	85	

Interestingly,	the	bodies	of	RB	neurons	seem	to	get	displaced	anterio-posteriorly	(Fig.	S1,	compare	top	86	

vs	bottom	panels).	A	time-lapse	video	of	an	isl2b:GFP	transgenic	line	shows	this	effect	in	vivo	from	1	to	2	87	

dpf	(Video	1).		I	then	wondered	if	this	displacement	was	exclusive	to	RBs	or	whether	the	surrounding	88	

tissues	also	participate.	To	characterize	the	ongoing	elongation	of	the	trunk	and	RB	convergence	to	the	89	

midline,	I	injected	isl2b:GFP	embryos	with	mRNA	encoding	a	photoconvertible	nuclear-localized	Kaede	90	

(Figure	2)	and	followed	the	photoconverted	area	and	the	individual	RBs.	In	all	analyzed	samples,	the	91	

space	between	the	two	photoconverted	areas	increased	between	24	hpf	and	3	dpf	(Fig.	2	top	vs	bottom;	92	

n=3,	mean	distance	1	vs	1.391,	p-val=	0.0004).	Together,	these	data	indicate	that	there	is	not	only	a	93	

convergence	of	RBs	towards	the	midline,	but	also	anterio-posterior	displacement	due	to	the	94	

concomitant	extension	of	the	trunk.	95	
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	96	

	97	

Figure	2.	Photoconversion	indicates	the	concomitant	trunk	elongation	and	medial	convergence	of	RBs.	Two	stripes	98	

were	photoconverted	on	the	trunk	of	isl2b:GFP	fish	injected	with	a	nuclear-localized	Kaede	(nls-Kaede).	The	images	were	99	

aligned	using	the	anteriormost	photoconverted	area,	revealing	the	space	between	the	two	stripes	increased	(n=3;	Mean	length	100	

of	‘1’	at	24hpf,	versus	‘1.391’	at	3	dpf).	Asterisks	indicate	statistical	significance.	Scale	bar	equals	100µm.	hpf	—	hours	post-101	

fertilization;	dpf	—	days	post-fertilization.	102	

	103	

	104	

Video	1.	Time	lapse	of	medial	convergence	of	RB	neurons	from	24	hpf	to	48	hpf.	In	vivo	time-lapse	imaging	of	the	dorsal	105	

spinal	cord	of	a	isl2b:GFP	transgenic	line	from	24	to	48	hpf	(Dorsal	view).	One	frame	corresponds	to	30	minutes.	Scale	bar	106	

equals	100µm.	107	

	108	

The	vast	majority	of	RBs	survive	until	juvenile	stages	109	

	 The	data	above	shows	no	decline	in	the	number	of	RBs	during	the	first	days	of	life	and	full	110	

survival	until	5	dpf	(Fig.	1).	To	test	how	many	RBs	survive	to	juvenile	stages,	I	followed	the	same	111	

animals	from	3	dpf	—when	the	medial	convergence	has	ended	(Fig.	1)-	until	15	dpf.	RBs	can	be	112	

identified	at	15	dpf	based	on	their	medial	location	and	expression	of	isl2b:GFP	(Figure	3)(Won	et	al.,	113	

2012,	2011).	As	the	animal	grows	in	length,	the	space	between	RBs	continues	to	increase	overall	114	

(compare	Fig.	3	3	dpf	vs	15	dpf).	Furthermore,	97-100%	of	RBs	present	at	3	dpf	survived	until	15	dpf	in	115	

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.19.572352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.19.572352
http://creativecommons.org/licenses/by-nc/4.0/


 6	

my	imaging	conditions	and	analyzed	animals	(Fig.	3,	Supplementary	Table	1,	n=5).	Altogether,	this	data	116	

indicates	that	the	vast	majority	of	RBs	survive	until	juvenile	stages	in	zebrafish.	117	

	118	

Figure	3.	The	vast	majority	of	RBs	survive	until	juvenile	stages.	Imaging	of	the	same	isl2b:GFP	transgenic	animal	at	3	(a-c)	119	

and	15	dpf	(d-f)	show	that	the	majority	of	RBs	are	still	present	in	the	spinal	cord	of	15	dpf	zebrafish	and	the	distance	between	120	

them	increased.	(c	and	f)	Both	images	show	the	same	area	between	DRGs	number	16	and	19	(delineated	in	b	and	e).	Asterisks	121	

in	(f)	label	RBs	at	15	dpf.	Because	of	the	time	resolution,	the	exact	RB	identity	between	the	3	and	15	dpf	time	points	could	not	122	

be	established.	(g)	Quantification	of	the	number	of	RBs	per	animal	at	3	and	15	dpf	(exact	numbers	in	Supplementary	Table	1).	123	

Scale	bars	in	(a-b	and	d-e)	equal	250µm,	and	50µm	in	(c)	and	(f).	Images	from	3	dpf	and	15	dpf	are	to	scale	to	each	other	to	124	

reflect	the	amount	of	growth.	dpf	—	days	post-fertilization.	125	

	126	

RBs	do	not	show	signs	of	programmed	cell	death	at	24	hpf	127	

Given	the	persistence	of	RBs	through	5dpf,	and	until	juvenile	stages	(Fig.	1	and	3,	Video	1),	I	128	

next	tested	whether	cell	death	markers	were	distributed	in	any	discernible	pattern	that	may	suggest	a	129	

biological	role	other	than	cell	death.	To	detect	cell	death	markers,	I	used	two	different	methods	130	

previously	reported	in	RBs:	a	Sec5A-YFP	fluorescent	reporter,	which	labels	fluorescently	flipped	131	

phosphatidylserine	groups	in	cells	undergoing	apoptosis	(Ham	et	al.,	2010;	Williams	and	Ribera,	2020),	132	

and	TUNEL	(Reyes	et	al.,	2004;	Svoboda	et	al.,	2001;	Williams	et	al.,	2000).	In	my	assays,	RBs	did	not	133	

show	sec5A-YFP	signal	at	24	hpf	(Figure	3a,	Fig.	S2,	n=12);	however,	other	previously	reported	cells	134	

types	outside	the	spinal	cord	using	this	transgenic	line	showed	reproducible	secA5-YFP	signal,	135	
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 7	

confirming	the	functionality	of	the	reporter	in	my	experimental	setting	(Fig.	3a,	arrowheads)(Ham	et	al.,	136	

2010).	Furthermore,	RBs	did	not	show	significant	TUNEL	staining	(Figure	3b-d).	In	all	animals	analyzed	137	

(n=9),	only	one	TUNEL+	RB	neuron	was	found,	but	other	nearby	cells	in	the	skin	and	spinal	cord	did	138	

show	robust	TUNEL	staining,	confirming	the	functionality	of	the	assay	(Fig.	3b-c).	Together	with	my	in	139	

vivo	imaging	and	comprehensive	tracking,	these	results	argue	for	a	persistence	of	RB	neurons	in	140	

zebrafish	until	at	least	15	dpf	with	little	to	no	reduction	of	initial	RB	neuron	numbers	due	to	141	

programmed	cell	death.	142	

	143	

Figure	4.	RBs	do	not	show	SecA5-YFP	or	TUNEL	signal	at	24hpf.	Images	showing	lateral	(upper;	a)	and	dorsal	views	(lower;	144	

b-d)	of	two	different	experiments	assessing	cell	death.	(a)	secA5-YFP	is	driven	by	a	ubiquitous	beta-Actin	promoter,	and	none	145	

of	the	dsRed+	RBs	were	secA-YFP+.	Some	cells	around	the	pronephros	area	were	were	SecA5-YFP+	(arrowheads)	(n=12).	The	146	

yolk	extension	is	delineated	by	a	dashed	line.	(b)	A	dorsal	view	of	an	isl2b:GFP+	embryo	stained	for	TUNEL.	None	of	the	RBs	147	
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 8	

were	TUNEL	positive,	but	some	surrounding	cells	were	(n=9).	Inset	(dashed	line	in	b)	shows	the	TUNEL+	nucleus	of	a	skin	cell	148	

(c,	arrowhead)	and	the	RB	immediately	underneath	(d,	arrowhead).	Scale	bars	equal	100µm	in	a-	b,	and	10µm	in	c-d,	149	

respectively.	hpf	—	hours	post-fertilization.	150	

	151	

Discussion	152	

Since	their	first	description	in	the	late	1800s	(Beard,	John,	1890;	Freud,	1878,	1878;	Rohon,	153	

Josef	Victor,	1884),	RB	neurons	have	attracted	the	attention	of	both	developmental	biologists	and	154	

neuroscientists	due	to	their	large	soma	size,	their	accessibility	to	electrophysiological	recordings	and	155	

imaging,	and	their	function	in	somatosensation	and	escape	response	(Artinger	et	al.,	1999;	Bernhardt	et	156	

al.,	1990;	Blader	et	al.,	2003;	Douglass	et	al.,	2008;	Henderson	et	al.,	2020,	2019;	Hubbard	et	al.,	2016;	157	

Jacobson,	1981;	Kaji	and	Artinger,	2004;	Knafo	et	al.,	2017;	Lamborghini,	1987;	Moreno	and	Ribera,	158	

2014;	Nieuwenhuys,	1964;	O’Brien	et	al.,	2012;	Ogino	and	Hirata,	2018;	Park	et	al.,	2012;	Rossi	et	al.,	159	

2009,	2008;	Spitzer,	1984,	1982).	Previous	reports	described	the	total	or	partial	disappearance	of	RB	160	

neurons	starting	at	around	the	first	day	of	life	in	fishes	(Bernhardt	et	al.,	1990;	Henion	et	al.,	1996;	161	

Metcalfe	et	al.,	1990;	Metcalfe	and	Westerfield,	1990;	Ogino	and	Hirata,	2018;	Reyes	et	al.,	2004;	162	

Svoboda	et	al.,	2001;	Williams	et	al.,	2000;	Williams	and	Ribera,	2020).	In	contrast	to	these	163	

observations,	the	data	presented	here	indicate	that	the	entire	repertoire	of	RB	neurons	survives	until	164	

juvenile	stages.	First,	comprehensive	tracking	between	1	and	5	dpf	shows	that	all	RBs	can	be	accounted	165	

for	even	if	they	undergo	medial	and	anterio-posterior	displacement.	Second,	the	vast	majority	if	not	all	166	

RBs	survive	until	15	dpf.	Finally,	RBs	do	not	display	a	significant	presence	of	classical	apoptotic	167	

markers.	168	

	169	

Revealing	the	persistence	of	RB	neurons	with	live	imaging	170	

What	factors	and	experimental	settings	might	have	led	to	the	conclusion	that	RB	neurons	disappear	171	

during	zebrafish	development?	Previous	characterizations	of	RB	disappearance	during	development	172	

were	based	on	either	(i)	reporting	an	average	number	of	RBs	per	somite,	(ii)	imaging	of	animals	173	

laterally	rather	than	dorsally,	(iii)	quantification	of	RB	number	in	fixed	animals,	and/or	(iv)	use	of	174	

markers	(e.g	HNK1/zn-12,	isl1SS	enhancer)	that	might	stop	being	expressed	or	not	be	expressed	in	all	175	
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RBs	(Appel	et	al.,	1995;	Eisen	and	Pike,	1991;	Grunwald	et	al.,	1988;	Harris	and	Whiting,	1954;	Joya	et	176	

al.,	2014;	Metcalfe	et	al.,	1990;	Nakano	et	al.,	2010;	Nordlander,	1989;	Palanca	et	al.,	2013;	Pineda	et	al.,	177	

2006;	Reyes	et	al.,	2004;	Takamiya	and	Campos-Ortega,	2006;	Tamme	et	al.,	2002;	Tongiorgi	et	al.,	178	

1995;	Uemura	et	al.,	2005;	Williams	et	al.,	2000;	Williams	and	Ribera,	2020;	Won	et	al.,	2012,	2011).	179	

Furthermore,	recent	work	demonstrated	that	the	characteristic	large	RB	soma	size	decreases	over	time	180	

(Williams	and	Ribera,	2020),	making	it	difficult	to	differentiate	RBs	from	other	spinal	cord	neurons	181	

using	antibodies	such	as	Isl1/2/39.4D5	or	Elavl3/HuC	(Rossi	et	al.,	2009;	Segawa	et	al.,	2001).	182	

Considering	the	comprehensive	in	vivo	tracking	data	presented	here	(Fig.	1),	the	fact	that	RBs	converge	183	

medially	and	that	the	trunk	extends	concomitantly	(Fig.	2	and	3,	and	Video	1),	it	is	possible	that	the	184	

combination	of	these	processes	has	contributed	to	the	interpretation	of	RB	numbers	decreasing	over	185	

time.	For	example,	fixed	samples	of	different	animals	might	suggest	that	RBs	disappear	when	in	fact	186	

they	redistribute	along	the	elongating	trunk	and	thus	de	facto	decrease	their	density.	The	187	

comprehensive	longitudinal	tracking	method	employed	here	complements	prior	approaches,	and	188	

underlines	the	utility	of	tracking	all	RBs	on	a	per-animal	basis	in	the	context	of	concurrent	189	

developmental	processes.	190	

Cell	death	by	apoptosis	critically	contributes	to	sculpting	the	nervous	system	during	development	191	

(Burek	and	Oppenheim,	1996;	Charvet	et	al.,	2011;	Dekkers	et	al.,	2013;	Malin	and	Shaham,	2015;	Pop	192	

et	al.,	2020).	However,	in	my	described	assays	and	conditions,	I	did	not	detect	any	significant	presence	193	

of	cell	death	markers	in	RB	neurons	(Fig.	4).	Previous	publications	have	described	the	presence	of	cell	194	

death	markers	in	RB	neurons,	including	activated	Caspase-3,	TUNEL	and	Annexin	V	(Coen	et	al.,	2001;	195	

Cole	and	Ross,	2001;	Ham	et	al.,	2010;	Kanungo	et	al.,	2006;	Reyes	et	al.,	2004;	Svoboda	et	al.,	2001,	196	

2001;	Williams	et	al.,	2000;	Williams	and	Ribera,	2020).	These	reports	showed	that	not	all	cells	that	are	197	

secA5-YFP+	are	TUNEL+	(Dong	et	al.,	2011;	Ham	et	al.,	2010;	Williams	and	Ribera,	2020),	and	a	198	

negligible	number	of	RBs	express	activated	Caspase-3	per	embryo	(Williams	and	Ribera,	2020).	These	199	

observations	contrast	with	other	populations	of	neurons	that	undergo	apoptosis	in	zebrafish	(Mazaheri	200	

et	al.,	2014).	While	apoptosis	of	a	few	cells	cannot	be	ruled	out,	my	observations	using	SecA5-YFP	and	201	
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TUNEL	indicate	that	cell	death	is	not	a	common	fate	of	RB	neurons	in	the	first	15	days	of	zebrafish	202	

development.		203	

If	cell	death	markers	are	not	necessarily	labeling	programmed	cell	death	in	RBs,	what	concomitant	204	

process	might	they	reflect?	The	cell	death	machinery	has	non-apoptotic	roles	in	neurons	and	is	involved	205	

in	axon	pruning	or	pathfinding	(Mukherjee	and	Williams,	2017).	Furthermore,	double	strand	breaks	in	206	

the	DNA	contribute	to	neuron	maturation,	through	control	of	gene	diversification,	induction	of	gene	207	

expression,	or	cytoskeletal	dynamics	(Akagawa	et	al.,	2021;	Alt	and	Schwer,	2018;	Álvarez-Lindo	et	al.,	208	

2022;	Kellermeyer	et	al.,	2018;	Madabhushi	et	al.,	2015).	RB	neurons	expressing	markers	associated	209	

with	cell	death	might	instead	still	be	in	the	process	of	maturation	or	remodeling	their	sensory	axons	210	

while	reaching	their	peripheral	targets.		211	

	212	

Outlook	213	

The	data	presented	here	show	that	the	entire	repertoire	of	zebrafish	RB	neurons	that	are	present	214	

during	the	first	day	of	life	persists	until	juvenile	stages.	My	study	raises	several	questions	about	the	fate	215	

and	roles	of	RBs.	First,	is	survival	of	RBs	exclusive	of	fishes?	The	data	presented	here	argues	against	216	

prominent	neuron	disappearance	through	programmed	cell	death	during	development	of	the	217	

somatosensory	system	of	zebrafish.	However,	this	situation	might	be	exclusive	to	fishes	and	not	218	

translate	to	amphibian	models,	which	possess	RBs	during	early	stages	of	development	but	undergo	a	219	

more	dramatic	metamorphosis	process	that	involves	major	remodeling	of	the	nervous	system	(Coen	et	220	

al.,	2001;	Coghill,	1914;	Eichler	and	Porter,	1981;	Kerr	et	al.,	1972;	Kollros	and	Bovbjerg,	1997;	221	

Lamborghini,	1987;	Nishikawa,	2012).	222	

	Second,	do	RBs	act	as	pioneer	neurons	upon	which	the	DRG	system	builds?	RBs	and	DRGs	overlap	223	

during	a	substantial	amount	of	time	(Fig.	1	and	3),	including	the	period	of	free-swimming	larva	and	224	

acquisition	of	complex	behaviors.	Several	systems	are	built	using	pioneer	neurons,	including	225	

innervation	of	the	limbs	in	grasshoppers	(Bentley	and	Keshishian,	1982),	CNS	development	in	226	

Drosophila	(Hidalgo	and	Brand,	1997),	Cajal-Retzius	and	subplate	neurons	in	mammals	(Frotscher,	227	

1997;	McConnell	et	al.,	1989;	Meyer	et	al.,	1998),	and	neurons	of	the	CNS,	statoacoustic	ganglion	and	228	
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olfactory	system	in	zebrafish	(Bañón	and	Alsina,	2023;	Whitlock	and	Westerfield,	1998;	Wilson	and	229	

Easter,	1991).	RB	and	DRG	peripheral	arbors	overlap	(Wright	and	Ribera,	2010),	and	while	the	DRGs	230	

are	not	necessary	for	RB	development	(Honjo	et	al.,	2011;	Reyes	et	al.,	2004),	whether	RB	neurons	231	

participate	during	the	development	of	the	secondary	somatosensory	system	is	unknown.		232	

Third,	what	are	the	physiological	and	behavioral	consequences	of	having	two	functional	233	

somatosensory	systems	in	the	trunk?	Do	RBs	and	DRG	neurons	complement	each	other	functionally?	In	234	

zebrafish,	DRGs	and	RBs	express	a	shared	set	of	receptors	and	signaling	molecules	related	to	their	235	

somatosensory	function,	including	NTRKs,	purinergic	receptors,	scn8aa/Nav1.6,	and	PKCa	(Kucenas	et	236	

al.,	2006;	Martin	et	al.,	1998;	Palanca	et	al.,	2013;	Patten	et	al.,	2007;	Pineda	et	al.,	2006;	Tuttle	et	al.,	237	

2023;	Won	et	al.,	2012).	Both	RBs	and	DRGs	innervate	the	skin	and	specialized	structures	such	as	the	238	

pectoral	fin	and	scales	(Henderson	et	al.,	2020,	2019;	O’Brien	et	al.,	2012;	Rasmussen	et	al.,	2018),	and	239	

their	sensory	processes	overlap	substantially	(Wright	and	Ribera,	2010).	Future	studies	comparing	the	240	

activity	and	function	of	RBs	and	DRGs	will	help	reveal	the	overlapping	or	split	roles	these	241	

somatosensory	systems	may	have.	242	

	243	

Materials	and	Methods	244	

Fish	Husbandry	245	

Zebrafish	lines	were	raised	under	standard	light-dark	conditions	(14-10	hours)	and	fed	a	246	

standard	diet	of	Artemia	and	Dry	food	4	times	a	day.	All	zebrafish	experiments	were	performed	247	

according	to	the	Swiss	Law	and	the	Kantonales	Veterinäramt	of	Kanton	Basel-Stadt	(licenses	#1035H	248	

and	#3097).	Wild-type	TLAB,	Tg(-17.6kb	isl2:mmGFP5)cz7	(referred	to	as	isl2b:GFP	throughout	the	249	

manuscript,	(Pittman	et	al.,	2008);	a	kind	gift	from	Dr.	Berta	Alsina),	Tg(isl1SS:Gal4;UAS:dsRed)zf234Tg	(a	250	

kind	gift	from	Dr.	A	Sagasti;	sensory:RFP	in	Palanca	et	al.	(Palanca	et	al.,	2013))	and	Tg(bAct:secA-YFP)	251	

(this	manuscript	and	(Ham	et	al.,	2010))	zebrafish	lines	were	used.	Embryos	were	obtained	by	standard	252	

cross	protocol,	and	collected	in	E3	embryo	media	(5	mM	NaCl,	0.17	mM	KCl,	0.33	mM	CaCl2,	0.33	mM	253	

MgSO4,	pH	7.2)	and	kept	in	an	incubator	at	28.5C	and	a	14h	light/10h	dark	cycle.	For	the	experiments	254	

that	required	from	repeated	imaging	from	24	hpf	to	5	dpf,	0.003%	1-phenyl	2-thiourea	(PTU)	was	255	
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added	to	the	embryo	media	to	block	the	formation	of	pigment.	Staging	of	the	embryos	was	performed	256	

according	to	Kimmel	et	al.	(Kimmel	et	al.,	1995).	257	

	258	

Tg(bAct:secA-YFP)	transgenic	fish	259	

To	generate	the	Tg(bAct:secA-YFP)	transgenic	fish,	the	Tol2-bActin:secA-YFP	plasmid	(Addgene	260	

#105664,	a	gift	from	Dr.	Qing	Deng)	was	co	injected	with	Tol2	transposase	mRNA	as	previously	261	

described	(Suster	et	al.,	2009)	into	one-cell	stage	embryos.	Then,	embryos	were	screened	at	24	hpf	for	262	

positive	YFP	clones	and	raised	until	adulthood.	The	F0	founders	were	screened	for	germline	integration	263	

of	bAct:secA-YFP	by	outcrossing	to	TLAB	wild-type	fish,	and	the	F1	progeny	raised	until	adulthood.	264	

Afterwards,	F1	stable	fish	were	screened	for	robust	YFP	expression	by	outcross	to	TLAB	wild-type	fish,	265	

and	the	produced	F2	progeny	raised	until	adulthood.	All	experiments	were	conducted	using	F3s	of	the	266	

generated	Tg(bAct:secA-YFP)	transgenic	lines.	267	

	268	

Zebrafish	mounting	and	time-lapse	Imaging	269	

isl2b:GFP	positive	fish	were	manually	dechorionated,	anesthetized	using	6.5%	MS-222/Tricaine	270	

Methanesulfonate	(Sigma-Aldrich,	Cat#E10521;	4g/L	pH9.0	stock	in	E3	embryo	media)	and	mounted	in	271	

Low	Melting	Point	Agarose	(LMP;	Sigma-Aldrich,	Cat#A-9414)	as	previously	described	(Venero	272	

Galanternik	et	al.,	2016)	in	Glass-Bottom	MatTek	plates	(MatTek).	For	dorsal	views,	the	dorsal	part	of	273	

the	animal	was	closer	to	the	coverslip,	and	fluorescent	images	were	acquired	using	a	Zeiss	LSM880	274	

AiryScan,	25X	Oil	Objective	in	a	heated	chamber	at	28.5C.	The	produced	time	lapse	video	was	time	275	

registered	using	the	‘stackreg’	plugin	276	

(https://research.stowers.org/imagejplugins/ImageJ_tutorial2.html)	to	maintain	the	original	center	of	277	

the	field	of	view	stable.	278	

For	the	time-lapses	that	required	from	repeated	imaging	in	Figure	1,	after	each	session	of	279	

imaging,	larvae	were	retrieved	from	the	LMP	and	kept	in	fresh	E3	embryo	media	+	0.003%	PTU	until	280	

the	next	imaging	session.	Images	were	processed	with	the	commercial	software	Adobe	Photoshop	2021	281	

for	Intensity	and	Contrast,	and	the	Figures	were	assembled	in	Adobe	Illustrator	2021.	282	
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	283	

Photoconversion	284	

mRNA	was	synthetized	using	the	SP6	mMessenger	Machine	(Thermo	Fisher,	Cat#AM1340)	and	285	

purified	using	Zymo	RNA	Cleaner	and	Concentrator	(Zymo	Research,	Cat#R1017).	nlsKaede	mRNA	(a	286	

Kind	gift	from	Dr.	K	Kwan	(Kwan	et	al.,	2012))	was	injected	into	one-cell	stage	eggs	from	an	isl2b:GFP	to	287	

TLAB	cross,	under	standard	conditions.	The	mRNA	was	injected	at	a	concentration	of	20	pg	per	embryo,	288	

and	eggs	were	kept	in	an	incubator	at	28.5C	in	the	dark	to	avoid	fluorophore	bleaching.	At	23hpf	289	

embryos	were	screened	for	robust	expression	of	both	nls-Kaede	and	the	isl2b:GFP	transgene,	and	290	

mounted	for	imaging	in	LMP	as	described	above.	291	

Photoconversion	was	performed	using	the	405	UV	laser	of	a	Zeiss	LSM880	AiryScan,	25X	Oil	292	

Objective,	using	the	‘Regions’	and	‘Bleaching	Setup’	of	ZEN	Software	until	photoconverted	nuclear	293	

Kaede	intensity	was	robust.	294	

	295	

Statistical	analysis	296	

Distances	between	photoconverted	areas	in	Figure	2	were	measured	in	Fiji	(Schindelin	et	al.,	297	

2012)	using	the	‘Line’	tool,	and	converted	to	ratios	of	24	hpf	vs	72	hpf	values.	Unpaired	t-test	statistical	298	

analysis	and	data	plotting	were	performed	using	the	commercial	software	Prism	9.	299	

	300	

Terminal	deoxynucleotidyl	transferase	dUTP	nick	end	(TUNEL)	staining	301	

isl2b:GFP	positive	larvae	were	fixed	using	4%	PFA	in	1X	PBS	(pH=7.4)	at	24	hpf.	TUNEL	staining	302	

was	performed	using	the	In	Situ	Cell	Death	Detection	Kit	(Roche,	Cat	#11684817910)	according	to	the	303	

manufacturer’s	specifications.	Anti-DIG	(in	the	kit)	and	anti-GFP	(Biozol,	Aves	GFP-1020;	1:500)	304	

antibodies	were	co-incubated.	305	

	306	
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Supplementary	Figures	323	

	324	

Supplementary	Figure	1	to	Figure	1.	Lines	show	the	amount	of	displacement	the	isl2b:GFP+	RBs	undergo	in	the	anterio-325	

posterior	axis	in	Figure	1.	Scale	bar	equals	100µm.	hpf	—	hours	post-fertilization;	dpf	—	days	post-fertilization.	326	

	327	
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	328	

Supplementary	Figure	2	to	Figure	4.	RBs	do	not	show	SecA5-YFP	(Annexin	V)	signal	at	24	hpf.	Images	showing	a	dorsal	view	329	

of	a	secA5-YFP+	transgenic	embryo.	secA5-YFP	is	driven	by	a	ubiquitous	beta-Actin	promoter.	None	of	the	RBs	of	the	trunk	330	

were	secA5-YFP+.	Scale	bar	equals	100µm.	hpf	—	hours	post-fertilization.	331	

	332	

Supplementary	Table	1	to	Figure	3.	isl2b:GFP+	RB	counts	of	the	same	animals	at	3	and	15	dpf	(Fish	5	is	shown	in	Figure	3).	333	

	334	
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Figure 1. All isl2b:GFP+ RBs present at 24 hpf can be accounted for at 5 dpf. Repeated dorsal in vivo imaging of the same larva from the first until
the fifth day of life reveals that all RBs present in the trunk survive during this period of time. The drawings on the right represent the same RBs throughout
time, starting from the dotted box area at 24 hpf. Scale bar equals 100 um. hpf – hours post-fertilization; dpf - days post-fertilization; DoLA – Dorsal
Longitudinal Ascending neurons; DRG – Dorsal Root Ganglia; DLF - Dorsal Longitudinal Fasciculi
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Figure 3. The vast majority of RBs survive until juvenile stages. Imaging of the same isl2b:GFP transgenic
animal at 3 (a-c) and 15 dpf (d-f) show that the majority of RBs are still present in the spinal cord of 15 dpf
zebrafish and the distance between them increased. (c and f) Both images show the same area between DRGs
number 16 and 19 (delineated in b and e). Asterisks in (f) label RBs at 15 dpf. Because of the time resolution, the 
exact RB identity between the 3 and 15 dpf time points could not be established. (g) Quantification of the number 
of RBs per animal at 3 and 15 dpf (exact numbers in Supplementary Table 1). Scale bars in (a-b and d-e) equal 
250um, and 50um in (c) and (f). Images from 3 dpf and 15 dpf are to scale to each other to reflect the amount of 
growth. dpf — days post-fertilization.

Figure 2. Photoconversion indicates the concomitant trunk elongation and medial convergence of RBs. 
Two stripes were photoconverted on the trunk of isl2b:GFP fish injected with a photoconvertible nuclear-localized
Kaede. The images were aligned using the anteriormost photoconverted area, revealing the space between the
two stripes increased (n=3; Mean length of 1 at 24hpf, versus 1.391 at 72hpf). Asterisks indicate statistical
significance. Scale bar equals 100um. hpf - hours post-fertilization; dpf- days post-fertilization
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Figure 4. RBs do not show secA5-YFP (Annexin V) or TUNEL signal at 24 hpf. Images showing lateral 
(upper; a) and dorsal views (lower; b-d) of two different experiments assessing cell death. a. secA5-YFP is 
driven by a ubiquitous beta-Actin promoter, and none of the dsRed+ RBs were secA5-YFP+. Some secA5-YFP+ 
cellsaround the pronephros area were observed were SecA5-YFP+ (arrows) (n=3). The yolk extension is 
delineated by a broken line. b. A dorsal view of an isl2b:GFP+ embryo stained for TUNEL. None of the RBs were 
TUNEL positive, but some surrounding cells were (n=9). Inset (dashed line in b) shows the TUNEL+ nucleus of 
a skin cell (c, arrowhead) and the RB immediately underneath (d, arrowhead).  Scale bars equal 100um in a- b, 
and 10um in c-d, respectively. hpf - hours post-fertilization. 
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Dorsal view

Supplementary Figure 2 to Figure 3. Images showing a dorsal view of a secA5-YFP+ transgenic embryo. secA5-YFP 
is driven by a ubiquitous beta-Actin promoter. None of the RBs of the trunk were secA5-YFP+.Scale bar equals 100um. 

24 hpfisl1SS:Gal4;UAS:dsRed bact:secA5-YFP

Supplementary Figure 1 to Figure 1. Lines show the amount of displacement the isl2b:GFP+ RBs (same one per line)
undergo in the anterio-posterior axis in Figure 1.  Error bar equals 100um. hpf – hours post-fertilization; dpf - days 
post-fertilization
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