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Abstract 29 

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment 30 

options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and 31 

poor translatability of available preclinical models. To address these limitations, we generated spatially 32 

resolved transcriptome maps of human IPF and bleomycin-induced mouse lung fibrosis. We uncovered 33 

distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment 34 

dominated by TGFβ signaling alongside factors such as p53 and ApoE. We also identified a clear divergence 35 

between the arrested alveolar regeneration in the IPF fibrotic niches, and the active tissue repair in the acutely 36 

fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes 37 

alveolar regeneration as a promising therapeutic strategy for IPF.  38 
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Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive and irreversible 39 

scarring of the lung. Treatment options are limited, and the development of new therapies is impeded by 40 

incomplete understanding of disease pathogenesis and translatability limitations of available pre-clinical 41 

models. Recent advances into mechanistic understanding of IPF pathogenesis reveal complex gene-42 

environment interactions as key pathophysiological drivers1-3.  43 

Single-cell studies have revealed IPF-associated cell states, including atypical epithelial cells, fibroblasts4,5, 44 

and pro-fibrotic alveolar macrophages6,7. Interestingly, a novel KRT5-/KRT17+ aberrant basaloid (AbBa) 45 

epithelial cell population has been independently identified in multiple studies4,5,8,9, expressing epithelial, 46 

basal, and mesenchymal markers and genes related to senescence and extracellular matrix (ECM) 47 

production. These cells likely originate from alveolar type 2 (AT2) or club cells4,5,9,10, but their role in the fibrotic 48 

microenvironment remains elusive. A closely related Krt8+ alveolar differentiation intermediate (ADI) cell 49 

population is present in the widely used mouse model of bleomycin (BLM)-induced lung fibrosis11-13, which, in 50 

contrast to the IPF lung, features relatively rapid inflammatory onset, epithelial regeneration, and fibrosis 51 

resolution14,15. 52 

Although recent single-cell (sc) RNA-seq studies have significantly advanced our understanding of the IPF 53 

lung cellular composition4-7,16-18, they lack insights into tissue architecture and cellular interplay in a spatial 54 

context. Spatially resolved transcriptomics (SRT) enables RNA profiling of intact tissue19-22 and can illuminate 55 

dynamic cellular interactions in lung tissue23-25. However, a transcriptome-wide map of extensive areas of the 56 

fibrotic lung is currently missing.   57 

Here, we applied SRT to map the fibrotic lung landscape in human IPF and the BLM mouse model. We 58 

integrated SRT with scRNA-seq data to characterize the AbBa cell microenvironment and delineate the 59 

dynamic crosstalk between alveolar epithelial cells, myofibroblasts, fibroblasts, and pro-fibrotic macrophages. 60 

These first-of-its-kind spatial atlases broaden our understanding of the IPF cellular interplay and unveil key 61 

convergent and divergent pathways in human IPF and the BLM mouse model.  62 

Results 63 

Spatial transcriptomics of healthy and IPF lungs 64 

We generated transcriptome-wide spatial profiles of freshly frozen human lung biopsies from four IPF patients 65 

(IPF 1-4, collected during lung transplantation) and four subjects with no known lung disease (healthy 66 

controls; HC 1-4, “B0”, collected post-mortem) using the Visium Spatial Gene Expression platform (Fig. 1a,b). 67 

For each IPF patient, three biopsies (“B1”, “B2”, “B3”) reflecting increasing extent of fibrotic injury within the 68 

same donor were selected (Fig. 1a). 69 

We analyzed an average of around 4000 spots (each spot representing a transcriptome of the tissue covering 70 

the spot) per tissue section (Fig. 1c (i)), capturing an average of >1500 unique genes per spot (Fig. 1c (ii)). 71 

We observed a higher average number of genes per spot and transcript count levels in IPF samples 72 

compared to HC, likely due to disease-associated differences in cellular density between the samples. A 73 

pseudo-bulk differential expression analysis (DEA) between IPF and HC samples identified a total of 1469 74 

differentially expressed genes (DEGs) (Fig. 1c (iii)), including genes associated with fibroblasts, previously 75 
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reported to be upregulated in IPF (FNDC1, COL10A1, THY1)26, as well as matrix metalloproteinases 76 

(MMPs)27 and genes involved in IPF-associated signalling pathways (SFRP2, WNT10A, TGFBI)28,29. Many of 77 

the upregulated genes in IPF samples mapped to areas of remodelled tissue. 78 

  79 

Figure 1. Spatial transcriptomic profiling of human pulmonary fibrosis. a) Tissue sections from distal lung biopsies 80 
from healthy controls (HC; B0; n=4) and IPF patients (n=4), were sectioned and analyzed using the Visium Spatial Gene 81 
Expression technology. Three biopsies exhibiting progressive tissue remodeling (B1-3) were selected from each IPF 82 
donor. b) Schematic illustration of the Visium workflow and subsequent data processing steps. NMF was used for 83 
dimensionality reduction, generating 30 distinct factors. Cell type distributions were inferred through integration with a 84 
scRNA-seq dataset published by Habermann et al. (2020; GSE135893). c) Summarizing descriptions of the data, 85 
including the number of Visium capture spots per sample (i), the average number of unique gene detected per spot (ii), 86 
and a pseudo-bulk differential expression analysis (DEA) comparing pooled HC and IPF Visium data per donor to identify 87 
significant differentially expressed genes between condition based on data from entire tissue sections (iii). d) Spatial 88 
distribution maps for selected NMF factors that correspond histological and/or transcriptional profiles of bronchiole 89 
epithelium (F1), smooth muscle (F10), and plasma cells (F6). e) Correlation (Pearson) heatmap of NMF factor activity and 90 
inferred cell type densities, using the Habermann et al. scRNA-seq data set, across spots. f) Histopathological annotations 91 
performed on sections from each HC and IPF biopsy (i) based on the H&E stained Visium sections (ii). Visualizing spatial 92 
NMF activity (iii) and inferred cell type densities (iv), confirms the co-localization of highly correlated factor-cell pairs. H&E, 93 
hematoxylin and eosin; NMF, non-negative matrix factorization; DEA, differential expression analysis; AT1, alveolar type 1 94 
cells; AT2, alveolar type 2 cells; pDC/cDCs, plasmacytoid/classical dendritic cells; NK cells, natural killer cells. 95 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.12.21.572330doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572330
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Deconvolution of spatial gene expression identifies morphological structures and cell types. The data 96 

were deconvoluted into 30 “factors” using non-negative matrix factorization (NMF)30 (Fig. 1d). These factors 97 

revealed gene signatures of distinct cell types and structures including mixed bronchiolar epithelial cell types 98 

(Factor 1; F1), smooth muscle cells (F10), and plasma and B cells (F6). The spatial distribution of cell-type 99 

densities was further inferred by integration31 with an IPF-derived scRNA-seq dataset5 (referred to as 100 

“Habermann (2020)”). This revealed a distinct group (F1 and F21) that correlated with ciliated airway cell 101 

types, including basal cells, club cells, ciliated cells, and MUC5B+ cells (Fig. 1e), in line with spatial mapping 102 

of F1 activity to bronchial epithelium. Other factors correlated specifically with the alveolar compartment, 103 

including alveolar macrophages (spatial overlap with F5; Fig. 1f), AT1 cells (spatial overlap with F12 and 104 

annotated alveolar tissue; Fig. 1f), and AT2 cells. An additional group of factors corresponded to immune 105 

cells and stromal components of the lung, including lymphocytes, endothelial cells and fibroblasts (spatial 106 

overlap with F4 and areas labelled as fibrous or remodeled tissue; Fig. 1f). Several factors could not be 107 

clearly attributed to specific cell types/groups, likely representing a more complex mixture of cells, cell types 108 

not annotated in the reference dataset, and/or novel cell states. This included F16 in the alveolar 109 

compartment of HC and IPF lungs (Fig. 1e), dominated by prostaglandin signaling genes and AT1, AT2, and 110 

fibroblast marker genes. 111 

Dissecting factor activity reveals pathways and cellular interactions. Further examination of factor 112 

distribution across samples revealed 11 factors that were more prevalent in IPF compared to HC (Fig. 2a). 113 

These factors associated with important IPF cell morphologies/processes (Fig. 2b) including ECM-related 114 

pathways, and overlapped with regions of tissue fibrosis (F4 and F14) or classic IPF “honeycomb” formations 115 

(F5 and F21), whereby F5 displayed markers of dendritic cells and macrophages, whilst F21 presented a 116 

MUC5B-expressing airway epithelial signature. The F21 profile might reflect a previously identified MUC5b+, 117 

BPIFB1+, SCGB3A1+ IPF-associated cell population32. In line with our SRT data, MUC5b expression has 118 

previously been localized to honeycomb cysts, and MUC5B polymorphisms have been linked to IPF risk33. F9 119 

appeared to overlap with alveolar regions in IPF tissues and was dominated by genes related to oxidative 120 

stress, inflammation, ECM remodeling, and vascular changes, indicating early inflammatory and fibrotic 121 

responses, or potential protective mechanisms in the non-remodeled tissue. 122 

Among the ECM/fibrosis-related factors, F14 was highly active in IPF, particularly in the more severely 123 

remodeled tissue (Fig. 2c). In addition to various collagens and fibrosis-related genes, keratins such as KRT7 124 

and KRT8 also contributed notably to the factor signature (Fig. 2d). F14 activity correlated with inferred cell 125 

type densities of KRT5-/KRT17+ AbBa cells, myofibroblasts, and the recently described HAS1-hi fibroblast 126 

subtype5, specifically in the IPF samples (Fig. 2e). One lung (IPF donor 2) demonstrated a weaker correlation 127 

between F14 and the KRT5-/KRT17+ AbBa cell type, possibly reflecting interindividual heterogeneity in IPF 128 

cellular processes. Visual inspection confirmed that F14 positive spots coincided with the correlated cell types, 129 

and revealed that F14 activity spatially aligned with fibroblastic foci (FF) (Fig. 2f), a histological feature of 130 

active tissue remodeling24,34,35. Spots with elevated KRT5-/KRT17+ AbBa cell densities were predominantly 131 

situated along the FF borders, confirming the previously proposed positioning of these cells within the fibrotic 132 

human lung4. Importantly, our NMF approach thus identified a signature encompassing the KRT5-/KRT17+ 133 

AbBa cell type independently of scRNA-seq data, placed in its spatial histological context across IPF samples. 134 
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 135 

Figure 2. Disease-associated signatures revealed by non-negative matrix factorization. a) NMF identified signatures 136 
over-represented in IPF tissue. Their relative contribution to each factor (scaled) is displayed for the top five contributing 137 
genes per factor (i), and the proportion of spots with the highest activity (99th percentile) by condition and biopsy severity 138 
grade (ii). b) Spatial representation of selected NMF factors across IPF lung sections, demonstrating distinct localization 139 
patterns. F4 and F14 marked heavily fibrotic regions (i), F5 and F21 associated with honeycombing structures (ii), and F9 140 
were seen in alveolar regions (iii). Displaying the average activity (scaled and centred) and detection rate (percentage of 141 
spots with increased activity) within the annotated histological regions across all biopsies (iv) c) Activity profile of the top 142 
100 ranked spots per sample based on F14 activity, highlighting a consistent distinction between HC and IPF tissues (i), 143 
further summarized by summing the F14 activity levels displayed in (i) and grouped based on biopsy remodelling extent 144 
(B0-3) (ii). d) The contribution ranking of the top 100 genes for F14 based on gene weight (contribution) to the factor, with 145 
keratins, collagens, and other fibrosis-related genes emphasized. e) Correlation heatmap between F14 activity and 146 
densities of inferred cell types within spatial spots, capturing potential co-localization of F14 and cell types (strong 147 
correlation suggests spatial co-occurrence). f) Visualization of fibroblastic focus (FF) annotations, F14 activity, and the 148 
distribution of inferred KRT5-/KRT17+ cells, providing a spatially integrated view of the fibrotic niche. NMF, non-negative 149 
matrix factorization. 150 

Characterization of the aberrant basaloid epithelial and fibrotic niche in IPF 151 

To better understand the cell type heterogeneity in the FF-specific factor, F14, we isolated its most active 152 

spots (denoted F14hi) and identified five distinct sub-clusters, denoted F14hi C0-C4 (Fig. 3a). Defining genes 153 

of C0 corresponded to markers of the KRT5-/KRT17+ AbBa cell type (e.g. PRSS2, KRT7) 4,5, characteristically 154 
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devoid of the basal cell marker KRT5. The remaining four F14hi clusters expressed genes corresponding to 155 

fibroblasts/myofibroblasts (C1 and C2), macrophages (C3), and basal and secretory airway epithelial cells 156 

(C4). Based on the marker gene profiles, C1 and C2 appeared to represent fibrotic populations with distinct 157 

roles, whereby C1 displayed a matrix deposition and scar formation profile, while C2 had markers indicative of 158 

stress responses (metallothioneins), immune modulation (CCL2, FCN3), and vascular interactions (ENG, 159 

THBD), likely reflecting diverse fibroblast phenotypes within the fibrotic niche of IPF lungs. Spatial inspection 160 

revealed alignment of C0-spots with the edges of FF (Fig. 3b), mirroring the spatial distribution of inferred 161 

KRT5-/KTR17+ AbBa cell densities (Fig. 2f) and corroborating C0 as a refined AbBa-dense population within 162 

F14. In contrast, the cluster displaying fibroblast markers resided within the FF core. 163 

Cellular crosstalk and molecular signaling in the IPF AbBa microenvironment. We found a higher 164 

abundance of AT2 cells and transitional AT2 cells around the F14hiC0 AbBa niche, compared to more distant 165 

regions (Fig. 3c), whereby the peak of transitional AT2 cell density was observed at a shorter distance 166 

compared to the peak of AT2 cells. This suggests a possible differentiation lineage from AT2 to transitional 167 

AT2 cells and towards AbBa cells, consistent with a previously proposed cell trajectory5, captured in space. 168 

Additionally, the proximity of SCGB3A2+ secretory cells to F14hiC0 spots aligns with previous findings 169 

suggesting them as another potential source for AbBa cells 5,32.  170 

We observed a decline in matrix remodeling and fibrosis-associated genes (e.g., MMP11, POSTN, COL1A2) 171 

with increasing distance from F14hiC0 (Fig. 3d), indicating elevated fibrotic activity around AbBa cells. 172 

Conversely, genes linked to alveolar function and immune response (e.g., SFTPA2, SFTPC, SLPI) showed 173 

lower expression within C0 compared to its immediate surroundings. A group of immunoglobulin-related 174 

genes (e.g., IGLC1, IGKC, PIGR) resided near AbBa cell dense areas, but not within, implying a differential 175 

immune response or possible exclusion of certain immune elements from the AbBa microenvironment. 176 

Further analysis of areas neighboring (nb) the F14hiC0 spots identified clusters containing alveolar epithelial 177 

cells (nb. cluster 0), fibroblasts/myofibroblasts (nb. cluster 1), alveolar macrophages (nb. cluster 2), and 178 

plasma cells (nb. cluster 3) (Fig. 3e), allowing us to study regulatory molecules and signaling within and 179 

between clusters. Upstream regulator and pathway enrichment analyses performed in Ingenuity Pathway 180 

Analysis (IPA) predicted upstream activation in F14hiC0 and nb. cluster 1 of molecules (including TGFB1, 181 

TGFB2, MRTFB, TEAD1-4, ISG15) known to be involved in fibrosis (Fig. 3f). The canonical pro-fibrotic 182 

cytokine TGF-β (encoded by TGFB1 and TGFB2) plays a significant role in IPF28,36 and has been implicated in 183 

ADI cell formation and inhibition of differentiation towards AT1 cells37. MRTFB regulates myofibroblast 184 

differentiation38, whilst TEAD family members (part of YAP/TAZ co-activator complex) are key effectors of 185 

profibrotic pathways including Hippo-, TGF-β, and Wnt signaling39-41, implicated in tissue regeneration and in 186 

fibrosis29,42. The p53 modulator, ISG15, implicated in age-related signaling43, was a predicted activated 187 

upstream regulator of F14hiC0. Enrichment of IPF-, glycoprotein VI (GP6)-, and wound healing signaling 188 

pathways, along with pathways associated with cell movement and migration, further supports an active 189 

fibrogenic node. 190 

 191 
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192 
Figure 3. Cellular and molecular deconvolution of the aberrant basaloid niche. a) Clustering of the 99th percentile of 193 
F14 active (F14hi) spots identified five distinct clusters (F14hiC0-4), visualized in UMAP space, with the corresponding top 194 
ten gene markers listed (i). Expression of the KRT5-/KRT17+ aberrant basaloid cell gene markers PRSS2 and KRT17, 195 
along with the absence of KRT5, overlapped with F14hiC0 (ii). Inferred cell-type densities highlighted the prominence of 196 
KRT5-/KRT17+ cells in F14hiC0, while lacking inferred basal cells (iii). b) The spatial location of F14hi clusters within FF in 197 
representative IPF biopsies. F14hiC0 was predominantly observed at the periphery of FF, while F14hiC1 (fibroblasts) 198 
localized to the FF core. c) The spatial tissue location of cluster F14hiC0 across IPF lung sections with an analysis of 199 
inferred cell type densities relative to the radial distance from the F14hiC0 boundary (distance = 0). Distances below zero 200 
corresponds to spots within F14hiC0. Smoothed cell type densities produced by fitting a generalized additive model (GAM) 201 
to the data, where gray shadings indicate 95% confidence interval d) Gene expression correlation analysis within a 500 202 
µm radius from the F14hiC0 border identified the top 20 positively and negatively associated genes based on correlation 203 
(Pearson) values. e) Neighboring (nb.) clusters of the F14hiC0 regions were generated by further clustering of spots within 204 
a 2-spot distance (~ 200 µm) of the F14hiC0 borders. Dot plots displays the top marker genes of each F14hiC0 nb. cluster 205 
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and the inferred cell type densities of selected cell types to highlight their abundance within each cluster. Bar chart shows 206 
the number of spots per donor labeled with each F14hiC0 nb. cluster. f) Enrichment analysis in Ingenuity Pathway Analysis 207 
(IPA) based on marker genes (adj. p < 0.05) for nb. clusters 0-2 when compared against each other, and F14hiC0 markers 208 
when compared against all other spots in the IPF samples. Heatmaps of activation z-scores of top 20 significant predicted 209 
upstream regulators, and top 10 enriched canonical pathways and diseases and functions. g) Cell-cell communication 210 
analysis using NicheNet within the F14hiC0 niche. Prediction of prioritized ligands acting upon the F14hiC0 and nb. clusters 211 
0-2 regions (i), with mean expression levels of the ligands in each cluster to deduce the potential origin of the ligand (ii). h) 212 
Average expression levels of APOE and its canonical receptors within F14hiC0 and their change over radial spot distance 213 
(3 spots; ~300 µm), where “rest” corresponds to the background expression observed across all remaining spots across 214 
samples. Directional arrows indicating correlation (Pearson) trends based on expression over spot distance. UMAP, 215 
uniform manifold approximation and projection; FF, fibroblastic foci. 216 

Prediction analysis of ligand-target interaction44, with directional information preserved (Methods), identified 217 

further cell-cell communications within the F14hiC0 microenvironment, including TGFB1, IL1B, and SFRP2 218 

(Fig. 3g). SFRP2 (a Wnt signaling modulator) expression distinctly originated from the neighboring fibroblast 219 

cluster, implicating potential autocrine/paracrine Wnt signaling between (myo)fibroblasts, alveolar epithelial, 220 

and AbBa cells. Furthermore, the predicted ligand apolipoprotein E (APOE), with its receptor SORL1 being an 221 

upstream regulator of the AbBa-dense cluster, was highly expressed in the macrophage cluster, alluding to a 222 

monocyte-derived and M2-like profile of the neighboring macrophage population45,46. By analyzing the gene 223 

expression data of all annotated APOE receptors across the F14hiC0 region distance, we identified an inverse 224 

expression pattern between APOE and several of its receptors (Fig 3h). Glypican 1 (GPC1), LDL receptor-225 

related protein 1 (LRP1), and syndecan 1 (SDC1) were more highly expressed within, and in close proximity 226 

to, the F14hiC0 region. These observations suggest a potentially under-recognized role for apolipoprotein 227 

signaling within the AbBa cell fibrotic niche in IPF. 228 

Spatially resolved transcriptomics in a mouse model of pulmonary fibrosis 229 

To increase understanding of the translational predictivity of the BLM mouse model for human IPF, we 230 

generated SRT data from mouse lung samples collected at day 7 (d7) and day 21 (d21) following BLM or 231 

saline (vehicle) administration (Fig. 4a).  232 

Healthy alveolar regions accounted for 80-90% and 30-50% of the total number of spots in saline and BLM 233 

challenged lungs, respectively. Remaining spots in the BLM challenged samples were labelled as areas of 234 

tissue damage or remodeling. A pseudo-bulk DEA between BLM and vehicle controls identified a total of 3214 235 

and 3787 DEGs at d7 and d21, respectively.  236 

Comparative analysis of gene expression and cellular composition. We identified differentially expressed 237 

genes (DEGs) in annotated fibrotic areas compared to control samples in the mouse model and analyzed their 238 

overlap with DEGs in IPF (Fig. 4b). Numerous DEGs overlapped between mouse and human (178 between 239 

IPF and d7 BLM fibrotic regions, and 93 between IPF and d21 BLM), with eight DEGs displaying contrasting 240 

fold-change directionality. Among the latter, most are involved in ECM organization (COL17A147), 241 

inflammatory signaling (CX3CL148), and apoptosis regulation and cellular adhesion (S100A1449, FAIM250). 242 

While these genes may play a role in fibrosis in both conditions, Their inverse expression patterns of these 243 

DEGs suggest divergent roles in human IPF compared to the mouse BLM model. 244 

Cell type deconvolution was performed using a lung scRNA-seq dataset generated in the BLM mouse model11 245 

(referred to as “Strunz (2020)”). Spatial visualization of cell type densities demonstrated accurate mapping to 246 

relevant tissue regions, where alveolar epithelial cells were inferred in healthy alveolar tissue (Fig. 4c). 247 
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Pronounced differences in cell type densities were observed between BLM and vehicle groups, including 248 

resolution (M2 polarized) macrophages and Krt8+ADI cells (Fig. 4d). AT2 cell abundance decreased at d7 but 249 

showed recovery by d21. The apparent influx of recruited (pro-inflammatory) macrophages at d7 normalized 250 

by d21, confirming resolution of acute inflammation.  251 

Spatial compartmentalization reveals dynamic lung tissue remodeling in response to BLM. Co-252 

localization analysis revealed dynamic spatial compartmentalization of cell types within spots, capturing the 253 

spatiotemporal dynamics of fibrogenesis and indicating lung tissue remodeling in response to BLM injury (Fig. 254 

4e). In vehicle control lungs, we identified two compartments consisting of bronchial epithelial (A) and alveolar 255 

(B) tissue, outlining the uninjured lung architecture. In the d7 BLM-challenged lungs, prominent cell densities 256 

consisted of bronchial epithelium (C), alveolar epithelium and alveolar capillary endothelium (D), and 257 

remodeled alveolar tissue marked by fibroblasts and myofibroblasts (E). At d21 the cellular composition of the 258 

compartments was altered, so that in addition to bronchial epithelium (F) and fibrotic, remodeled alveolar 259 

tissue (H),  we observed a compartment (G) characterized by alveolar epithelium macrophages and Krt8+ADI 260 

cells, exhibiting a profile of regenerating alveolar tissue (Fig. 4e). Spatial mapping confirmed that F aligned 261 

with bronchial structures, H coincided with fibrotic/remodeled tissue, while G was present along the borders of 262 

fibrotic areas and extending into intact tissue (Fig. 4f).  263 

Comparative analysis of regenerative signatures reveals divergent epithelial responses. Given that day 264 

21 in the mouse model reflected an established stage of fibrosis with minimal acute inflammation, we focused 265 

on this time point for comparison with IPF. NMF application to the mouse d21 data (mmNMFd21) generated 30 266 

factors. Factor activity and cell type abundance co-localization analysis largely reflected the d21 BLM 267 

compartmentalization, affirming that NMF effectively captures patterns comparable to the cell type 268 

deconvolution approach (Fig. 4g). The regenerating alveolar epithelial compartment (G) was represented by a 269 

set of factors primarily reflecting AT2 cells (F30), alveolar and resolution macrophages (F8), or activated AT2 270 

and Krt8+ADI cells (F14). Factors F18, F5, and F7 predominantly represented AT1 and endothelial cells.  271 

We further compared mmNMFd21 factors with factors identified by IPF NMF analysis (hsNMF) (Fig. 4h). The 272 

top contributing genes showed an overall weak overlap between human and mouse factors. However, factors 273 

associated with distinct morphological features, such as smooth muscle cells (SMC), blood vessels, and 274 

ciliated airway epithelium, demonstrated more pronounced overlap, highlighting conserved signatures normal 275 

lung structures, compared to disease or injury responses. Notably, factors containing transcriptional 276 

signatures for the human KRT5-/KRT17+ AbBa cells (hsNMF-F14) and mouse Krt8+ADI cells (mmNMFd21-277 

F14) had a limited overlap.  278 

 279 
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  280 

Figure 4. Comparative spatial analysis of pulmonary fibrosis in mouse and human. a) Experimental design for the 281 
mouse bleomycin (BLM) lung injury model. Mouse lungs were collected at days 7 (d7) and 21 (d21) post BLM or vehicle 282 
administration for spatial transcriptomic analysis using the Visium platform (n=6 BLM, n=3 vehicle per time point). b) 283 
Differential expression analysis (DEA) compared annotated fibrotic regions in human IPF and BLM-treated mouse tissue 284 
against respective controls. Venn diagrams of differentially expressed genes (DEGs) specific and shared between human 285 
IPF and mouse d7 or d21 post-BLM treatment (i), where the shared genes exhibiting inverse expression patterns between 286 
human IPF and the BLM samples are further explored (ii). c) Schematic overview of the scRNA-seq data integration, using 287 
Visium data and the annotated scRNA-seq data set published by Strunz et al. (2020; GSE141259) as input for 288 
cell2location to infer spot cell type densities (i). Exemplified by the inferred AT2 cell density in selected Visium samples 289 
across time points (ii). d) Averaged cell type abundance per animal, comparing densities between timepoints and 290 
treatments for selected cell types. Welch Two Sample t-test (two-sided; nVeh. = 3, nBLM = 6, per time point) was used to test 291 
for significance between groups, * p < 0.05, ** p < 0.01, *** p < 0.001. Center line, median; box limits, upper and lower 292 
quartiles; whiskers, 1.5x interquartile range; points, value per animal.  e) Inferred cell-cell correlation heatmaps display 293 
distinct cellular co-localization compartments that changes across condition and time. Compartments (A-H) were identified 294 
based on the same height, h, cutoff (orange dashed line) (h = 1.5) of the hierarchical clustering for the selected data 295 
subsets (i). Sankey diagram depicting the shift in cell types within each compartment from vehicle controls to BLM d7 and 296 
then BLM d21, illustrating the cellular spatiotemporal dynamics within fibrotic mouse lungs (ii), with Krt8+ADI (orange line) 297 
and myofibroblast (green line) populations highlighted how they move across compartments. Zooming into compartment G 298 
(iii), Krt8+ ADI cells (orange arrow) are found co-localizing with alveolar epithelial cells and macrophages. f) Computed 299 
scores for each compartment (F-H scores), calculated by summing the cell type densities of the compartment-associated 300 
cell types, displayed in a BLM d21 lung section alongside the H&E staining of the same section. g) NMF was performed 301 
on the d21 subset and the factor activities in each spot were compared with inferred cell-type densities using Pearson 302 
correlation and hierarchical ordering. The cell type group colors correspond to their respective compartments (A-H) based 303 
on the prior analysis and highlight sets of factors that strongly matches distinct or groups of cell types, largely capturing a 304 
similar BLM d21 compartmentalization. h) Comparison of gene contributors to the human derived NMF analysis with the 305 
mouse d21 NMF analysis, by computing and visualizing the Jaccard similarity coefficient based on the top 100 genes 306 
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contributing to each factor. Heatmap displays filtered results based on factors having a Jaccard index of > 0.1 with at least 307 
one other factor, to exclude factors with no apparent overlap between species. NMF, non-negative matrix factorization; 308 
DEA, differential expression analysis; DEG, differentially expressed genes; ADI, alveolar differentiation intermediate; AM, 309 
alveolar macrophages; Recr. Mac., recruited macrophages; Res. Mac., resolution macrophages; VECs, vascular 310 
endothelial cells; ECM, extracellular matrix. 311 

Translation of the fibrotic microenvironment 312 

Contrasting fibrogenic and regenerative responses in human IPF and BLM-induced lung fibrosis in 313 

mouse. We analyzed the spatial correlation of the factors containing KRT5-/KRT17+ AbBa (hsNMF-F14) in 314 

human IPF samples and the factors containing Krt8+ADI cells (mmNMFd21-F14) in the mouse BLM samples. 315 

HsNMF-F14 activity predominantly correlated with fibroblasts (HAS1-hi), myofibroblasts, and KRT5-/KRT17+ 316 

AbBa cells. Conversely, mmNMFd21-F14 activity primarily correlated with Krt8+ADI cells and AT2 cells, while 317 

showing a weaker correlation with myofibroblasts. Additionally, mmNMFd21-F14 showed correlation (albeit 318 

weaker) with AT1 cells, unlike hsNMF-F14 (Fig. 5a), in line with the distinct fibrogenic environment in the 319 

human aberrant basaloid niche.  320 

To further compare the gene signatures of the AbBa (IPF) or ADI (BLM) niches, we refined mmNMFd21-F14 321 

and clustered the spots based on gene expression (Methods), and identified four clusters (mmNMFd21-F14hi 322 

C0-3), where cluster 0 (mmNMFd21-F14hi C0) exhibited the strongest association with Krt8+ADI cells (Fig. 5b). 323 

We detected shared marker genes between hsNMF-F14hi C0 and mmNMFd21-F14hi C0, including several 324 

collagens and ECM-related genes (e.g., COL1A1, FN1, TNC, CTHRC1), epithelial cell markers (CDH1), and 325 

markers for human AbBa cells (KRT17) and mouse ADI cells (KRT8) (Fig. 5c). This suggests shared traits 326 

between AbBa and ADI regions involving ECM remodeling and a basaloid phenotype, further supported by 327 

pathway analysis. However, the ADI-related gene signature observed in mouse predominantly engaged 328 

pathways related to inflammation and repair, whereas the AbBA-related gene signature observed in human 329 

IPF reflected the chronic and progressive nature of IPF, dominated by immune responses and pathways 330 

governing long-term tissue remodeling. 331 

For better understanding of the aberrant fibrotic niche drivers, we performed an upstream regulator analysis 332 

for hsNMF-F14hi C0 and mmNMFd21-F14hi C0 (Fig. 5d). Both groups had predicted activation of TGFB1, 333 

TP53, and SMAD3, suggesting a conserved TGF-β-related mechanism28,51,52 and cellular senescence53. 334 

hsNMF-F14hi C0-specific regulators included the anti-fibrotic growth factor BMP7, the ApoE receptor SORL1, 335 

and GLIS1, a component of the Notch signaling pathway. MmNMFd21-F14hi C0 showed activation of oxidative 336 

stress and inflammation regulators including as HIF1A, IL4, YAP1, and NFE2L2 (NRF2). Contrary to our 337 

previous findings in the human samples suggesting a role for apolipoprotein signaling acting upon hsNMF-338 

F14hi C0 (Fig. 3f-h), APOE and its receptor LDLR were predicted as inhibited regulators for the mouse 339 

mmNMFd21-F14hi C0 spots in this analysis.  340 

Next, we examined the histological context of the mmNMFd21-F14hi C0 cluster and found it primarily situated at 341 

the junction between healthy and fibrotic tissue, comparable to the localization along the FF border seen for 342 

hsNMF-F14hi C0 in the IPF samples. Placement at the remodeling tissue interface supports a transitional 343 

niche role for these clusters (Fig. 5e). 344 

 345 
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  346 

Figure 5. Translational dissection of the fibrotic niche and cellular dynamics. a) Correlated activity, per individual, of 347 
the human (hs) NMF-F14hi and mouse (mm) NMF-F14hi factors with the 15 highest correlated inferred cell types using the 348 
Habermann (human) and Strunz (mouse) scRNA-seq data sets. b) Distribution of selected cell densities within 349 
subclustered mmNMFd21-F14hi spots, demonstrating high abundance of Krt8+ ADI cells within mmNMFd21-F14hiC0 while 350 
high AT2 cell abundance in mmNMFd21-F14hi C1 and C2. c) Integrated IPF and BLM-d21 data sets by converting 351 
orthologous gene names, allowed identification of marker genes for hsNMF-F14hiC0 and mmNMFd21-F14hiC0. Heatmap 352 
with scaled and centered marker gene expression, grouped based on whether significant marker genes were elevated in 353 
IPF samples, shared, or higher in mouse BLM tissues. A total of 74 genes were found to be shared, while 39 were seen 354 
significant in the IPF and 157 in the d21 BLM cluster (adj. p < 0.01, avg. log2FC > 0). d) Comparative network plot 355 
showing the most significant regulators (p value < 10−7, right-tailed Fisher's exact test) based on IPA upstream analyses of 356 
marker genes (adj. p < 0.05) from hsNMF-F14hiC0 and mmNMFd21-F14hiC0. Inner nodes illustrate groups of regulators 357 
sharing genetic influences, and outer nodes represent contributing marker genes. e) Spatial mapping of the hsNMF-358 
F14hiC0 and mmNMFd21-F14hiC0 spots within the tissue sections illustrating the relationship with fibrotic regions, providing 359 
a visual correlation with areas of disease pathology. f) Radial distribution line graphs for inferred cell densities around the 360 
mmNMFd21-F14hiC0 niche mapped out a gradient of alveolar cell composition. Smoothed lines produced using local 361 
polynomial regression fitting (“loess”), where gray shading corresponds to 95% confidence interval. g) Spatial trajectory 362 
analysis was carried out by selecting spots containing high inferred densities of the selected cell types AT2, activated or 363 
transitional AT2, Krt8+ADI or KT5-/KRT17+, and AT1 cells. Trajectories and pseudotime were thereafter inferred using the 364 
Slingshot methodology based on UMAP embeddings of the cell type densities for the selected spots, where AT2 cells 365 
were defined as the starting cluster. Deviating trajectories were seen between IPF and BLM-induced lung fibrosis, where 366 
in the BLM mouse (i) a single trajectory was observed along the proposed AT2-Krt8+ADI-AT1 lineage, while two divergent 367 
trajectories were seen in human IPF (ii) in which aberrant basaloid KRT5-/KRT17+ cells were spatially disconnected from 368 
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AT1 cells. h) Spatial co-localization visualization of the AT2-to-Krt8+ADI (red) and ADI-to-AT1 (blue) inferred cell densities 369 
in mouse and the transitional AT2-to-KRT5-/KRT17+ (red) and AT2-to-AT1 (blue) densities in human, by computing cell 370 
density products and visualizing their intensities along a red-blue axis. A mixture of the density products will appear purple, 371 
and the brightness corresponds to value intensity (black = 0). Spots with values of zero are excluded. Tissue outlines and 372 
areas of fibrosis (gray) illustrated for guidance. In mouse, signals along the entire AT2–AT1 trajectory is found mixed near 373 
borders of fibrosis, while in human, spatially isolated regions display high co-localization intensities of cells from the two 374 
inferred trajectories. ADI, alveolar differentiation intermediate; IPA, Ingenuity Pathway Analysis. 375 

The BLM Krt8+ADI transitional cell population is predicted to originate from either AT2 cells or club cells and 376 

differentiate into AT1 cells11. By assessing the cell type densities in relation to their radial distance from the 377 

borders of the mmNMFd21-F14hi C0 niche, we identified high densities of AT2 cells, activated AT2 cells, and 378 

AT1 cells close to the mmNMFd21-F14hi C0 niche (Fig. 5f). These observations shared similarities with the 379 

corresponding IPF hsNMF-F14hi C0 analysis (Fig. 3c), highlighting the absence of AT1 cells around the 380 

human AbBa niche.  381 

A spatial trajectory analysis of the alveolar epithelial cell types/states (Fig. 5g; ‘Methods’) identified a single 382 

spatial trajectory from AT2 cells to activated AT2 cells, ADI cells, and culminating in AT1 cells, in the BLM 383 

mouse data. In contrast, the cell composition in the IPF lungs displayed a branching trajectory from AT2 cells 384 

through transitional AT2 cells, subsequently diverging into either KRT5-/KRT17+ AbBa or AT1 cells. 385 

Visualizing these trajectories spatially, we observed a separation between transitional AT2–AbBa (fibrosis-386 

associated) and AT2–AT1 (alveoli-associated) niches (Fig. 5h). 387 

Uncovering immune cell dynamics in pulmonary fibrosis. Our NMF analysis revealed factors in the IPF 388 

and the d7 and d21 BLM datasets that shared key marker genes indicative of macrophages (SPP1, CD68, 389 

APOE). SPP1+ profibrotic macrophages, displaying an M2 polarization phenotype, have previously been 390 

implicated in ECM remodeling and fibrosis development6,54. The activity of the selected macrophage factors 391 

was largely localized near fibrosis-associated bronchial regions. 392 

A shared histological feature between the IPF lungs and the mouse BLM-injured lungs was the presence of 393 

dense immune cell infiltrates embedded within the fibrotic tissue (Fig. 6a). In the timepoint-separated mouse 394 

NMF analyses, mmNMFd7 and mmNMFd21, we identified factors prevalent in regions of immune infiltrates. In 395 

the human NMF, a similar histological feature was not consistently detected, therefore more targeted donor-396 

specific NMF analyses were performed. Factors in three of the donors (IPF 1-3) were seen to overlap spatially 397 

with the observed immune infiltrates. A closer examination of the gene contributions (Fig. 6b) and inferred cell 398 

type composition (Fig. 6c) within these immune-dense regions revealed notable differences. In the BLM 399 

mouse model, enrichment of genes such as Cd74 and Coro1a indicated presence of antigen-presenting cells 400 

and lymphocytes55. Additionally, a distinct factor was identified in proximity to the d21 BLM immune-dense 401 

structures (Fig. 6a), characterized by a plasma cell signature strongly driven by expression of the IgA heavy 402 

chain (Igha). Overall, the BLM regions demonstrated a relatively balanced mixture of B, T, and dendritic cells, 403 

in contrast to the human IPF samples which showed a pronounced expression of chemokine CXCL13, 404 

suggesting a B cell-driven immune mechanism56. Indeed, B cells were found to dominate, with T cells and 405 

plasma cells playing a lesser role, within the lymphocyte-dense regions in IPF lungs. In accordance with 406 

recent descriptions of their presence in both healthy and diseased lungs57, lymphocytes and plasma cells may 407 

have a modulatory role in the progression of fibrosis. 408 
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Taken together, our analyses delineate distinct cellular trajectories and molecular mechanisms in the fibrotic 409 

niche of human IPF and the BLM mouse model (Fig. 6d). We highlight the arrested alveolar cell regeneration 410 

in IPF versus the active repair in the BLM model, alongside distinct signaling molecules such as TGF-β,  411 

ApoE, YAP1, and TEAD, and differences in immune cell presence. These comparative insights underscore 412 

the unique aspects of fibrosis in human IPF. 413 

  414 

Figure 6. Immune cell signatures and comparative overview of fibrotic mechanisms in human IPF and the 415 
bleomycin mouse model. a) Spatial visualization of NMF factors overlapping dense lymphocyte / immune cell 416 
aggregates in selected human and mouse samples. Scale bars: 500 µm. Imaged at 20X magnification. b) Heatmap 417 
displays the top contributing factor genes across condition, filtered to show genes with a summed scaled weight above 0.5 418 
across the groups. c) Dot plot with inferred cell type densities, for selected immune cell types from the Habermann (2020) 419 
and Strunz (2020) data sets, in the most active spots of the selected human and mouse factors. d) Schematic summary of 420 
the fibrotic niche in human IPF lungs and in mouse BLM-injured lungs, illustrating the proposed cellular interplay within the 421 
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fibrotic lungs. A key distinction between IPF and the BLM mouse model was centered around the diverging regenerative 422 
properties of the IPF-associated AbBa cells versus the mouse Krt8+ ADI cells. While both populations exhibit signs of 423 
senescence (p53), the mouse ADI state appears to maintain a functional balance that still prompts it to differentiate into 424 
AT1 cells. TGF-beta and Wnt-related (TEAD, YAP1) signaling pathways were central within the fibrotic niche, and the 425 
presence of immune cells in proximity to, or within, the severely remodeled tissue implies active fibrogenic modulatory 426 
roles. Pro-fibrotic M2-polarized (“resolution”) macrophages with similar gene signatures, expressing SPP1 (Spp1) and 427 
APOE (Apoe), were detected in both human IPF and mouse BLM-injured lungs. In contrast to human IPF AbBa regions, a 428 
predicted negative APOE upstream signaling was identified in mouse ADI regions. In mouse, the recruited pro-429 
inflammatory macrophages seen at the early timepoint post BLM-installation were absent by day 21. Establishment of 430 
plasma cells adjacent to TLS-like areas in the BLM-injured mice occurred at the later timepoint. AbBa, aberrant basaloid; 431 
ADI, alveolar differentiation intermediate; DCs, dendritic cells; IMs, interstitial macrophages; NK cells, natural killer cells; 432 
TLS, tertiary lymphoid structure. 433 

Discussion 434 

Our study presents a comprehensive comparative genome-wide spatial transcriptome map of the diverse 435 

cellular ecosystems and distinct molecular signatures in the human IPF lung and the BLM mouse model.  436 

We propose a central involvement of TGF-β signaling in IPF, alongside other mediators such as TP53, 437 

SMAD3, BMP7, MRTFB, TEAD, GLIS1, and APOE, which are linked to senescence, myofibroblast activation 438 

and differentiation, Notch and Wnt signaling, apoptosis, and cell migration.  439 

Using data factorization, we identified KRT5-/KRT17+ AbBa and Krt8+ ADI cell populations and their 440 

proximate neighborhoods, delineating a critical region within the fibrotic landscape. The complex cross-441 

directional signaling network illustrated within the AbBa niche suggests these cells serve as a transitional core 442 

in the IPF lung, whereby AbBa cells orchestrate the fibrotic response, signaling to neighboring cells and 443 

modulating the local microenvironment. 444 

TGF-β, a pro-fibrotic cytokine with a significant role in IPF pathogenesis28,36, and SMAD3, integral to the TGF-445 

β signaling pathway58, were predicted as upstream regulators in human AbBa and mouse ADI fibrotic niches, 446 

pointing to a shared TGF-β-driven fibrotic signaling pathway. Furthermore, our data suggest that the role of 447 

APOE signaling within the IPF fibrotic niche is more substantial than previously appreciated. This warrants 448 

further exploration into the potential regulatory function of APOE in IPF, given its well-documented function in 449 

lipid metabolism and its emerging role in immunomodulation and fibrosis59,60. 450 

Through tracing the alveolar epithelial cell spatial trajectory, we observe a AT2-ADI-AT1 lineage in the mouse 451 

model that is preserved in situ, supporting previous single cell and in vitro studies11-13 and indicating an 452 

ongoing post-injury repair mechanism. In contrast, human IPF lungs depicted a divergent path, with AT2 cells 453 

branching into either AbBa cells or AT1 cells. The apparent disruption in the IPF lung regenerative process is 454 

in line with descriptions of AbBa cell persistence as an intermediate, non-regenerative state5 potentially driving 455 

the progressive, irreversible fibrosis in IPF, as opposed to the resolution of fibrosis following acute injury in the 456 

mouse model. These findings highlight key challenges in translating animal models to human disease and 457 

suggest that the acute BLM mouse model might offer valuable insight into alveolar regeneration. Application 458 

of SRT to the repeat BLM instillation model61, in which a more persistent, senescent Krt8+ transitional alveolar 459 

cell state has been identified53, could provide more insights into disease progression in the IPF lung. 460 

Our study illustrates the potential for spatial transcriptomics to deepen our understanding of IPF pathology 461 

and offers rich datasets to further probe the complex cellular interplay in lung fibrosis. This work provides 462 

resolution of key mechanisms underpinning IPF and proposes a divergent cellular trajectory towards arrested 463 
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regeneration in the human IPF lung, as a potential target for the discovery of novel disease modifying 464 

therapies. 465 

 466 

Methods 467 

Experimental methods 468 

Human lung tissues and ethics declaration. IPF lung tissue was obtained from lung transplant patients. 469 

Human samples were acquired with approval by the local human research ethics committee (Gothenburg, 470 

Sweden; permit number 1026-15) and participants gave written informed consent prior to inclusion. Healthy 471 

lung tissue was obtained from deceased donors with no known lung disease, where samples were acquired 472 

with approval by the local human research ethics committee (Lund, Sweden; permit number Dnr 2016/317). 473 

All investigations were performed in accordance with the declaration of Helsinki.  474 

All human tissues selected for analysis were collected from the peripheral lung. Fresh-frozen tissues were 475 

obtained from four HC subjects and from four IPF patients. For each IPF patient, three different tissues were 476 

collected representing areas of mild (“B1”), moderate (“B2") or severe (“B3”) fibrosis within the same donor, as 477 

determined by histological inspection of H&E-stained samples. 478 

Mice and bleomycin challenge. Female C57BL/6NCrl mice (Charles River, Germany) were 8 weeks old on 479 

the day of arrival at AstraZeneca R&D Gothenburg (Sweden). After an acclimatization period of 5 days, mice 480 

were challenged with 30 μl bleomycin (Apollo Scientific, BI3543, Chemtronica Sweden; 40 µg/mouse) 481 

dissolved in saline or saline via oropharyngeal route administration. Lung samples were collected at day 7 or 482 

day 21 following bleomycin challenge. The timepoints were selected to encompass the early phase of 483 

inflammation and tissue remodeling (d7), and the subsequent phase of established tissue damage (d21). The 484 

mice were housed in Macrolon III cages with poplar chips (Rettenmeier & Söhne) as bedding material, 485 

shredded paper, gnaw sticks and a paper house. They were kept in a facility with 12 h/12 h light/dark cycle at 486 

21 ± 1 °C, 55 ± 15 % relative humidity and had free access to food (R70, Lantmännen AB, Vadstena, 487 

Sweden) and tap water. Animal handling conformed to standards established by the Council of Europe 488 

ETS123 AppA, the Helsinki Convention for the Use and Care of Animals, Swedish legislation, and 489 

AstraZeneca global internal standards. All mouse experiments were approved by the Gothenburg Ethics 490 

Committee for Experimental Animals in Sweden and conformed to Directive 2010/63/EU. The present study 491 

was approved by the local Ethical committee in Gothenburg (EA000680-2017) and the approved site number 492 

is 31-5373/11. 493 

Mouse tissue collection. Mice were anesthetized with isoflurane (5%, air flow ~2 L/min), placed on the 494 

operating table, and maintained with 3% isoflurane (air flow ~0.7 L/min). An incision was made in the skin 495 

from the middle of the stomach up to the chin. 0.1 mL heparin was injected through the diaphragm to the 496 

heart, and the abdomen aorta was cut to bleed the mice, followed by a cut in the apex of the heart. The heart 497 

and right lung lobes were tied off. The left lobes were collected and snap frozen for downstream analyses. 498 

The pulmonary circulation was perfused via the pulmonary artery with 0.8 mL 37˚C saline followed by 0.6 mL 499 

37˚C low-temperature melt agarose (SeaPlaque) solution. The lung was then inflated with 0.4-0.5 mL 37˚C 500 
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low melt agarose solution via the trachea and tied off. The lung was collected and snap frozen in pre-chilled 501 

NaCl over dry-ice, and stored at -80C for further analyses. 502 

Generation of spatially resolved transcriptomics. OCT-embedded human lung tissue-blocks and agarose-503 

inflated mouse lung tissues were cryosectioned at 10 µm (mouse) or 12 µm (human) thickness with the 504 

cryostat temperature set to -20°C and -10°C (mouse) or -15°C (human) for the specimen head. For the human 505 

lung samples, RNA quality was estimated through total RNA extraction from 10 tissue sections with a RNeasy 506 

Plus Mini kit (Qiagen). Thereafter RNA integrity number (RIN) was measured using a 2100 Bioanalyzer 507 

Instrument (Agilent) and ranged between 5.4 and >8, except for one sample (IPF donor 2, B3) with a RIN of 3. 508 

Despite lower RIN values for some tissues, after taking histological integrity into account they were chosen to 509 

be included for further analysis. For the mouse sections, 10 sections were stored in -80°C prior to RNA 510 

extraction using the Rneasy micro kit (Qiagen). RNA quality was assessed using a 5300 Fragment Analyzer 511 

(Agilent) and the RIN values were >9 for all mouse samples. 512 

The lung tissue samples were cryosectioned onto the Visium Gene Expression slide. All slides were stored at 513 

-80°C until further processing. Tissue fixation and staining followed the Methanol Fixation, H&E Staining, and 514 

Imaging Visium protocol (10X Genomics). Stained human lung sections were imaged using the Axio 515 

Imager.Z2 (ZEISS) light microscope at 20X magnification, and thereafter stitched using Vslide (MetaSystems). 516 

Mouse lung sections were imaged at 20X magnification using an Aperio Digital Pathology Slide Scanner 517 

(Leica Biosystems). 518 

Sequencing libraries were prepared according to the Visium Spatial Gene Expression User Guide (10X 519 

Genomics, Rev C). The human tissue sections were permeabilized for 15 min and amplification of cDNA was 520 

performed with 15-17 cycles and indexing with 12-14 cycles. The mouse lung sections were permeabilized for 521 

15 min, and cDNA amplification and indexing were performed with 16-17 cycles and 8-15 cycles, respectively. 522 

Permeabilization times had been optimized prior to the experiments using the Visium Tissue Optimization kit. 523 

The human sample libraries and the mouse sample libraries were pooled separately and sequenced. A 1% 524 

PhiX spike-in was included. The pooled libraries were loaded at 300pM onto a NovaSeq 6000 (Illumina) 525 

machine and sequenced on the S4 flowcell using the following set-up: Read1: 28 bp, Index 1: 10 bp, Index 2: 526 

10 bp, Read2: 90 bp. A total of 255-444 M reads (avg. 349 M) and 151-571 M reads (avg. 325 M) per sample 527 

were generated for human and mouse, respectively. 528 

Histopathology annotations. Histopathological assessments were performed on the Visium H&E-stained 529 

tissue sections using the Loupe Browser (10X Genomics) software. The data was manually annotated into 530 

major tissue compartments based on tissue morphology. The human lung data was classified into “blood 531 

vessel”, “large airway”, “diseased (remodeled) tissue”, “fibroblastic foci / fibrous tissue”, “inflammation”, and 532 

“within normal limits” (alveolar), where “inflammation” was distinguished as areas with large aggregations of 533 

immune cells and “diseased tissue” largely corresponded to clearly recognizable changes in normal lung 534 

architecture. The “fibroblastic foci / fibrous tissue” was distinguished based on their microscopic appearance, 535 

characterized by the density and shape of nuclei present, and increased amounts of collagenous matrix, 536 

consistent with the appearance of the fibroblastic foci found in IPF lungs. The mouse data was categorized 537 

into similar groups of “blood vessel”, “large airway”, “within normal limits” (alveolar), “inflammation (d7)”, 538 

“inflammation (d21)”, and “suspect fibrosis / fibroplasia (d21)”. The areas annotated as “inflammation (d7)” in 539 
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lungs collected at day 7 were composed of both inflammatory and fibrotic tissue as they were 540 

indistinguishably mixed, while “inflammation (d21)” labelled dense immune cell aggregates. Thus, the spots 541 

labeled as both “inflammation (d7)” and “suspect fibrosis/fibroplasia (d21)” contains fibrotic tissue. 542 

Computational processing and analysis 543 

Processing Visium sequencing data. Raw human and mouse sequencing data FastQ files were processed 544 

using the Space Ranger 1.2.2 (10x Genomics) pipeline. Sequencing reads were mapped to their respective 545 

reference genomes GRCh38 (human) and mm10 (mouse). H&E images were manually aligned to the fiducial 546 

frame and tissue-covered spots were identified using the Loupe Browser (v.6, 10X Genomics) software.  547 

Mapping single cell types spatially with cell2location. In the human samples, spatial deconvolution was 548 

performed using cell2location31 against a previously published pulmonary fibrosis scRNA-seq dataset (GEO 549 

accession GSE135893)5 (referred to as the Habermann (2020) dataset). The cell2location method uses 550 

signatures from the provided scRNA-seq data to infer absolute numbers (density) of cell types within each 551 

spatial spot. The single-cell regression model was trained with max_epochs = 250 after selecting genes with 552 

parameters nonz_mean_cutoff = 1.25, cell_count_cutoff = 5, and cell_percent_cutoff = 0.05. The cell2location 553 

model was thereafter obtained with parameters max_epochs = 10000, detection_alpha = 20, and n = 7. 554 

For the mouse data, a scRNA-seq dataset produced from the bleomycin-induced lung fibrosis mouse model 555 

collected at multiple time points (including d7 and d21) was used (GEO accession GSE141259)11 (referred to 556 

as the Strunz (2020) dataset). For spatial deconvolution, we used max_epochs = 400 for single-cell model 557 

generation using the parameters nonz_mean_cutoff = 1.10, cell_count_cutoff = 4, and cell_percent_cutoff = 558 

0.02 for gene selection. For model training, max_epochs = 15000, detection_alpha = 20, and n = 7 was 559 

applied. 560 

Downstream quality control and processing of Visium data. Data filtering, processing, and analyses of 561 

the Visium data were performed in R (v.4.0.5) using the STUtility (v.1.1.1)62 and Seurat (v.4.1.1)63 packages. 562 

For the human IPF and HC samples, spots under the tissue were selected for downstream analysis, and the 563 

data was imported into R using the STUtility function ‘InputFromTable’ where initial gene and spot data 564 

filtering was performed by setting the minimum UMI count per spot to 350, minimum UMI count per gene to 565 

100, minimum number of genes per spot to 10, and minimum number of spots per gene to 5. Spots were 566 

thereafter further filtered by content of mitochondria-associated genes, where spots with less than 30% was 567 

allowed, and content of blood contamination detected using hemoglobin gene expression, where spots < 30% 568 

were kept. Gene information was retrieved via biomaRt64 and used to select for “protein coding”, “IG” 569 

(immunoglobulin), and “TR” (T cell receptor) gene biotypes, as well as to flag genes positioned on the X and Y 570 

chromosomes for removal to avoid gender biases in the analyses. Post-quality control, an average of 4,043 571 

spots per tissue section and across all sections was obtained, which yielded over 100,000 spots in total with 572 

data from over 15,000 genes for the human Visium dataset. Normalization and scaling of the data was 573 

performed using the ‘SCTransform’ function65 (Seurat package), specifying sample ID and donor as variables 574 

to regress out, to remove the major effects of technical and interindividual differences. 575 

Visium data generated from mouse lungs was filtered in a similar manner, apart from omitting the number of 576 

genes per spot (“minGenesPerSpot”) cutoff when loading the data using ‘InputFromTable’, and an adjusted 577 
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spot filtering for number of UMIs per spot set to 300. The final mouse Visium dataset included information of 578 

more than 15,000 genes in over 90,000 spots across all samples. ‘SCTransform’ was thereafter applied to the 579 

data, specifying the animal ID as a variable to regress out. All thresholds for filtering were set based on initial 580 

examination of the raw data to exclude low quality spots (or spots outside of tissue areas) and genes with low 581 

expression. 582 

Differential expression analysis on Visium pseudo-bulk data. For initial differential gene expression 583 

analysis (DEA) between conditions, pseudo-bulk datasets were generated from the Visium gene count 584 

matrices. For the general condition comparison (HC vs IPF for human and vehicle control vs BLM d7 or d21 585 

for mouse), this was achieved by aggregating the raw counts per gene across all spots belonging to a donor 586 

or animal. Thereafter, DESeq266 was used for the differential gene testing by specifying “condition”, with 587 

“control” as reference, in the design. For the bulk comparison of fibrotic regions between IPF and BLM d7 or 588 

d21, pseudo-bulk data on a donor/animal level was obtained from the annotated tissue sections by pooling the 589 

counts from spots labelled as diseased (fibrotic, FF, remodeled, or inflamed (BML d7)) in the disease 590 

condition samples. Combined counts from the fibrotic regions were compared against the pseudo-bulk data 591 

from entire control samples using DESeq2 (with “condition” set as the design), for each species and/or 592 

timepoint separately. To compare results between species, orthogene67 was used to identify mouse gene 593 

orthologues of the human genes, and the DESeq results were filtered to include only genes with available 594 

orthologues and present in all datasets (total of 12611 genes). 595 

Non-negative matrix factorization (NMF). Deconvolution through NMF was applied to the Visium gene 596 

expression data using the ‘RunNMF’ function in STUtility. The factorization method decomposes the data into 597 

a set number of factors that are expressed as non-negative values (activity) within each data point (spot) 598 

along with a feature (gene) loading matrix, describing the contribution (weight) of each gene to the factors. 599 

The full human (HC and IPF) dataset was deconvolved into 30 factors (“hsNMF”), while the mouse data 600 

(vehicle control and BLM) was split by timepoint (d7, d21) before each subset was deconvolved into 30 factors 601 

(mmNMFd7, mmNMFd21). To describe each factor, functional enrichment analysis of the top 25 most 602 

contributing genes for each factor was performed using the ‘gost’ function in the gprofiler2 (v. 0.2.1) R 603 

package68, with the “hsapiens” (human) or “mmusculus” (mouse) organism specified. All factors were further 604 

annotated by examining the top contributing genes, the spatial localization of factor activity, and their 605 

abundance in different samples (diseased or control). 606 

To compare hsNMF and mmNMFd21 factors across species, the R package orthogene was first used for gene 607 

symbol conversion between human and mouse, and then the top 100 contributing genes for each factor was 608 

compared using Jaccard similarity index computation. Jaccard index was calculated as the intersection over 609 

the union of each gene set pair. 610 

The distribution of each hsNMF factor within the human samples were estimated by counting the number of 611 

spots belonging to the 99th percentile of factor-active (Fhi) spots and computing their frequency versus the total 612 

number of spots in each biopsy category (B0-3). 613 

Spatial co-localization of factors and cell types was estimated by computing the pairwise Pearson correlation 614 

coefficient between spot factor activity and inferred cell type density. To identify donor variability in co-615 
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localization, the human Visium data was split into groups of HC (all HC donors), IPF donor 1, IPF donor 2, IPF 616 

donor 3, and IPF donor 4, before computing the correlation scores.  617 

The most active (99th quantile) hsNMF F14 spots (denoted F14hi) were subclustered by conducting a principal 618 

component (PC) analysis and using PCs 1-8 as inputs for ‘FindNeighbors’ and ‘FindClusters’ (resolution = 619 

0.4), which generated five clusters. The mmNMFd21 F14hi spots were subclustered using the same approach, 620 

but with PCs 1-14 as input and clustering resolution set to 0.5, obtaining three clusters. 621 

Radial distance analysis. Fluctuations in gene expression and cell type densities along a radial distance 622 

from the hsNMF F14hiC0 or mmNMFd21 F14hiC0 regions (region of interest; ROI) were computed. The 623 

distance information from each section containing the ROI was extracted using the semla R package69 (v. 624 

1.1.6; R v. 4.2.3; Seurat v. 4.3.0.1) with the ‘RadialDistance’ function, where singletons were excluded in the 625 

human analysis. In the human IPF data, distance correlation coefficients were computed for the 1000 most 626 

variable genes at a 500 µm distance from the ROI border using Pearson correlation. P-values were corrected 627 

using the Benjamini-Hochberg (BH) method and used to filter for significant (adj. p < 0.01) genes. Cell type 628 

density correlation was obtained using Pearson correlation and BH-corrected p-values at a radial distance of 629 

500 µm. Since a linear relationship may not be present in all cases, cell density and gene expression 630 

fluctuation as a function of radial distance was visualized using the ‘geom_smooth’ function (ggplot2) with 631 

method set to “gam” (generalized additive model) and formula “y ~ s(x, bs = ‘cs’)”. For the mouse BLM d21 632 

data, the cell type density across radial distance from the ROI was visualized using ‘geom_smooth’ with the 633 

“loess” (Locally Estimated Scatterplot Smoothing) method. 634 

IPF fibrotic niche regulators and cell-cell communication. In the human IPF Visium data, the 635 

microenvironment surrounding hsNMF F14hiC0 spots was investigated by first identifying the nearest 636 

neighbors (using the ‘RegionNeighbours’ STUtility function) over two rounds, thereby including spots located ≤ 637 

2 spot distances from hsNMF F14hiC0. Next, the selected neighboring (nb.) spots were clustered by first 638 

running PCA and then using PC 1-9 as input for ‘FindNeighbors’ and thereafter ‘FindClusters’ (resolution = 639 

0.2), obtaining 6 clusters (nb. clusters 0-5). Marker genes were identified using ‘FindAllMarkers’ on the 640 

neighboring spot data subset and comparing each cluster against the remaining clusters. Due to their low 641 

abundancies, nb. clusters 3-5 were omitted in some of the downstream analyses.  642 

Upstream regulators and active pathways for the nb. clusters (0-2) were predicted with Ingenuity Pathway 643 

Analysis (IPA; version 90348151, Ingenuity Systems, Qiagen), using the cluster marker gene lists (adj. p < 644 

0.01). As a reference, marker genes for the hsNMF F14hiC0 cluster was also included in the analysis. These 645 

markers were generated by comparing hsNMF F14hiC0 spots against all other spots in the IPF Visium subset, 646 

using ‘FindMarkers’ with arguments “min.pct = 0.25” and “min.diff.pct = 0.1”. The output was thereafter 647 

compared using the R package multienrichjam (v. 0.0.72.900)70 and the top 20 upstream regulators and top 648 

10 enriched pathways and diseases/functions were plotted.  649 

Directional cell-cell communication analysis was employed within the spatially constrained nb. clusters using 650 

NicheNet (v. 1.1.1)44, a method in which ligand-target links are predicted using gene expression and a prior 651 

model that incorporates intracellular signaling. Information containing ligand-receptor interactions 652 

(“lr_network.rds”), ligand-target gene regulatory potential scores (“ligand_target_matrix.rds”), and weighted 653 

ligand-signaling and gene regulatory network (“weighted_networks.rds”) were retrieved from the NicheNet 654 
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data repository (DOI: 10.5281/zenodo.3260758). Analyses were performed in four rounds based on which 655 

cluster(s) were specified as receiver and sender populations, 1) receiver: F14hiC0, senders: nb. clusters 0-5, 656 

2) receiver: nb. cluster 0, sender: F14hiC0, 3) receiver: nb. cluster 1, sender: F14hiC0, and 4) receiver: nb. 657 

cluster 2, sender: F14hiC0. In all rounds, receiver genes were identified by setting the condition reference as 658 

data from all other spots not included in the analysis (of IPF and HC origin). The results from all four analyses 659 

were compiled and the top prioritized ligands (avg. correlation value > 0.075) sorted based on the round 1 660 

results were used to visualize the corresponding results in the other analysis rounds and the gene expression 661 

levels across all selected clusters. 662 

Spatial cell type compartmentalization in mouse. Cell type co-localization compartments were identified in 663 

the mouse Visium data using the Strunz (2020) cell2location results. Cell types annotated as “NA” and 664 

“low.quality.cells” were excluded and the Visium spot data was subset into groups of vehicle (d7 and d21), 665 

BLM d7, and BLM d21, before pair-wise correlations (Pearson) for each cell type across all spots within each 666 

subset were computed. Hierarchical clustering was performed, and compartments were defined based on a 667 

generally applied tree height (h) cut-off of 1.5. A Sankey diagram was drawn based on the cell types falling 668 

into each compartment for each data subset. To visualize the spatial localization of the BLM d21 669 

compartments F, H, and G, spot-wise compartment scores were computed by summing the inferred cell type 670 

densities for all cell types belonging to each compartment. 671 

Translational analyses of human and mouse aberrant basaloid clusters in a shared gene-space. 672 

Selected IPF and BLM d21 samples were chosen for the integrated analysis (IPF 3 B1-B3, IPF 4 B1-B3, BLM 673 

d21 animals 1-5), based on having more pronounced fibrosis and presence of identified AbBa cell-dense 674 

regions. Raw count data were filtered to include only genes with orthologous name conversions, identified by 675 

orthogene67. Subsequently, a new assay was created from this filtered data for separate normalization of 676 

human and mouse datasets. The two data sets were then integrated based on the shared genes using the 677 

anchor integration approach in Seurat (‘FindIntegrationAnchors’ followed by ‘IntegrateData’. Default 678 

parameters), with specified anchor features identified using ‘SelectIntegrationFeatures’. Marker genes for the 679 

hsNMF F14hiC0 or mmNMFd21 F14hiC0 clusters were thereafter identified separately with ‘FindMarkers’ and 680 

comparing against all other same-species spots, using the integrated genes.  681 

The identified hsNMF F14hiC0 and mmNMFd21 F14hiC0 marker genes (Bonferroni adj. p < 0.05) were analyzed 682 

for upstream regulator and canonical pathway enrichment prediction in IPA. Results were compared across 683 

species using the R package multienrichjam (v.0.0.72.900)70 to pinpoint shared and unique upstream 684 

regulators and pathways. The most significant regulators (p value < 10−7, right-tailed Fisher's exact test) and 685 

pathways (p value < 10-4) were visualized in clustered network (cnet) plots, which groups predicted molecules 686 

into clusters (“Nodes”), based on shared contributing marker genes. 687 

Lymphocyte aggregate comparison. The human IPF Visium data was split based on donor, and processed 688 

separately by running SCTransform() and NMF, producing 30 new and more refined subject-specific factors 689 

for each IPF donor. Examining the spatial factor activity and gene contribution, it was possible to identify one 690 

factor for IPF donors 1-3 that corresponded to histological findings of lymphocyte aggerates. For IPF donor 4, 691 

no corresponding factor could be identified. The selected factors that exhibited a signature for dense 692 

lymphocyte accumulations were factors 10 (IPF donor 1), 15 (IPF donor 2), and 17 (IPF donor 3). For the 693 
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mouse data, the NMF results produced for each time point was used, and factors 11 (day 7) and 12 (day 21) 694 

were identified as corresponding to tertiary structure-like (TLS-like) features. In the mouse day 21 NMF 695 

analysis, we moreover identified factor 13 adjacent to the activity of NMFd21 factor 12. 696 

The top 100 most contributing genes for each of the identified factors were selected and their gene loadings 697 

were scaled between 0 and 1 (each factor separately). Only genes which were found to have orthologous 698 

gene names in both species (based on conversion using ‘orthogene’) were selected, and to reduce the set of 699 

genes for the visualization in Fig. 6b, genes with a summed scaled loading of > 0.5 were used.  700 

Cell densities and detection rates were estimated in the spots with the highest (99th percentile) factor activity. 701 

The inferred cell type densities produced using cell2location with the Habermann et al. (human)5 and Strunz et 702 

al. (mouse)11 datasets were used. All immune cell types were selected for evaluation, however, for mouse, the 703 

following cell types were excluded from the visualization as they did not exhibit a relevant signal and lacked 704 

comparable human cell types: “AM (BLM)”, “AM (PBS)”, “Non classical monocytes (Ly6c2-)”, “Fn1+ 705 

macrophages”, “M2 macrophages”, “Themis T cells”, and “T cell subset”. For each subject, the average cell 706 

density was measured as the average inferred cell density among the selected spots and the detection rate 707 

was calculated as the percentage of spots displaying a density score higher than 0.5. 708 

Spatial cell co-localization trajectory analysis. Cell type densities, inferred using the Habermann (human 709 

IPF) or Strunz (mouse BLM) scRNA-seq datasets, for “AT2 cells”, “Activated AT2 cells”, “Krt8+ADI”, and “AT1 710 

cells” (mouse) or “AT2”, “Transitional AT2”, “KRT5-/KRT17+”, “AT1” (human) were used. Spots with the 711 

highest abundancies (95th percentile) of these cell types were selected and used as input for dimensionality 712 

reduction with UMAP (n.neighbors = 30, min.dist = 0.1, for both the mouse and human analyses). In parallel, 713 

the cell type densities were used to produce low resolution clusters using ‘FindNeighbors’ and ‘FindClusters’ 714 

(mouse: resolution = 0.2, human: resolution = 0.1), to identify a cluster that corresponded to the AT2-dense 715 

spots (AT2-cluster). Trajectory analyses using the Slingshot approach71 (v. 1.8) were then applied to each set 716 

of UMAP spot embeddings with the ‘getLineages’ function and assigning the AT2-clusters as starting points. 717 

Curves were extrapolated using ‘getCurves’ (approx_points = 300, thresh = 0.01, stretch = 0.8, allow.breaks = 718 

FALSE, shrink = 0.99), and thereafter visualized on top of the UMAP embeddings. Pseudo-time was 719 

estimated by passing filtered gene count data (genes detected (>5 transcripts) in at least 1% of the total 720 

number of spots) and Slingshot curves into a Negative Binomial Generalized Additive Model using the 721 

‘fitGAM’ function from the tradeSeq R package (v. 1.4.0)72. In the human data, two curves were identified, and 722 

the visualized pseudo-time is the max value of the two pseudo-time curves.  723 
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