Appendix - Numerical Simulation of (IITa)—(I1Ib)

1 Finite-volume discretization

The numerical simulation of the system (IIIa)—(IIIb) given by
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is based on a finite volume scheme described below. Here p = p(z,t) , n = n(x,t)
denote the densities of the open and closed channels on the cell respectively. E
denotes the elastic modulus of the substratum, i.e. it is larger for a stiffer
material. The function q accounts for the cell’s strength of sensing the gradient
of E due to the relative number of open versus closed channels. R(p,n) describes
the combined opening and closing of the channels. In our mathematical model
we defined R(p,n) = aE - n — Bp.

The proposed numerical scheme to solve the above system is based on the
Scharfetter—-Gummel flux approximation originating from (13), where the au-
thors construct a numerical scheme for a system modelling semiconductor de-
vices. Their objective was to develop a robust scheme for discontinuities or
rapid variations in the potential. Independently, the same type of flux was in-
troduced in (10) for finite-difference schemes. The Scharfetter-Gummel scheme
became one of the preferred finite-volume scheme for drift-diffusion equations.
While the original scheme deals with the spatially one-dimensional problem, it
has been generalized to higher dimensions (8; 9) and the flux discretization is
the basis for numerous other generalizations, e.g. for equations with nonlinear
diffusion (11; 3; 5) and to systems with source terms (4; 16). In the context of
chemotaxis and aggregation models the Schafetter—Gummel flux approximation
was recently used in (17; 12; 1; 15; 14) see also the review (2).

First we generalize our problem to

dp=- (pinJ[pm]) T R(p.n) (1Va)
o= (pZnJ[pm]) ~ R(p.n), (1VD)



which is in flux-form. The we set J[u] = Vu + uW for some given (possibly
time-dependent) vectorfield W. This will later be defined as a numerical ap-
proximation of —q(p(z,t))VE(x). Hence, the above driving flux J depends only
on the sum v = p + n and space and time.

The notation for finite volume schemes is as follows (see e.g. (6)). Consider a
polyhedral tesselation 7 of the domain 2 with volumes K € T and centers z .
Neighboring cells are denoted by L ~ K with common face K|L := K N L.
Note: here cells are a technical expression for so-called numerical cells in finite
volume schemes, which have nothing to do with the biological cells we are con-
sidering in this paper.

The distance between cell centers is denoted with dgp, := |zr — 21].

The transmission coefficient is 7x7, = | dKI‘L‘ =TLK.

We use |K| to denote the d-dimensional volume and by slight abuse of notation
we denote by |K|L| the d — 1-dimensional surface area.

We use pg,ng for the cell-averages of densities and set ux = px + Nk -

PK = Z i and g = Z—’; denote the relative weights of the two densities.

For 7 € [0,1], p"*™ denotes the linear-interpolation between p™ and p"*+!.
This allows to define the full range of explicit to implicit schemes at the same
time. Given some flux-approximation Jg,[u™"7] which will be specified later,
we introduce the scheme
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where (a); = max{a,0} and (a)— = (—a)+ denote the positive and negative

part, respectively. Our reaction term is explicitly given by

Rk (p,n) = a(Ex)n — Bp,

with Fx being the cell-average of the elastic module F.

It is left to find approximations for the normal fluxes J}?ET across boundary
faces. If we assume that some discretization W}?L'T of W (depending in our case
on pitT) is given, then the normal component of the flux J[u] in (IVa)—(IVb)
can be approximated by the cell problem (see e.g. (13; 11; 7; 14))

n—+1 n—+1
Jrpi = 0u+uWii’,

where u is the unknown along the line segment [z, z1] := {(1 — s)xk + sy, :

s € [0,1]} with boundary conditions u(zy) = uj™ and u(zy) = u}™



This is the classical Scharfetter-Gummel interpolation, and by setting
dixr = |tx — x| we obtain the flux J = J[u}; nrT "+T W;ET/CZKL] given by

aeW/2 _pe=W/2 .
JSG[GJ, b, W] — W €W/2 2 w/2 W # 07 (VI)
a—0b), W =0.
(a—b)
Hence, we can close the scheme by setting
JKL[ n+‘r} _ JSG[ n+7' n+7' W]?—ET/dKL] (VII)
with W;}:T = Wkilp "+T} given by
Wiz [p"* "] = q(i ") (B — Ex)y — a(py ") (Er — Ex)_ (VIII)

2 Simulation

For the simulation in Figure 4, we implemented an explicit version (7 = 0) of
the scheme (Va)—(Vb) on the interval [0, 1] with a uniform tesselation. That is
for given h = 1/N, we set Tp, = {[0,kh] : k =1,...,N} and zx = (k + 1/2)h

for k=0,...,N — 1. We have the two discrete continuity equations
Pt = o
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where we impose no-flux boundary condition, that is Jo; = 0 = Jy n41 and
the sum over I K consists of the two addends K — 1 and k + 1. Hereby in one
dimension 7k, = h~! and
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For the implementation, we choose
Ri(p,n) = aExn — Bp with Ex = E(zk).

For the simulation we use an elasticity profile on [0, 1] resembling the elasticity
module of the experimental made substrate given by

E(.’E) = 2(-Ehard - Esoft)B(fE - ]./2, 8) + Fhard

where B(y, s) = y/(exp(—sy) — 1). In the simulations in Figure 4, Eyaq = 0.1,
FEsory = 0.01 and the scale parameter s = 30. We use the Scharfetter-Gummel
flux interpolation (VII) in explicit form

Jrplu"] = Jsaluf, ul; Wi /di L]



with Jsg given in (VI) and upwind discretization of the chemical potential given
in (VIII) by

Wkilp"] == apk)(EL — Ex) —a(pL)(EL — Ex)_

Hereby, the discrete mobility is ¢} = ¢(p’y) with the continuous mobility func-
tion given in terms of a bell-shaped function with compact support by

exp(—%), xz € (—1,1);

q() =v(3(x—05))+0.1  with v(z)= {
0, |z| > 1.
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