
Appendix - Numerical Simulation of (IIIa)–(IIIb)

1 Finite-volume discretization

The numerical simulation of the system (IIIa)–(IIIb) given by

∂

∂t
ρ = ∇ ·

(
ρ

ρ+ η
∇(ρ+ η)− ρq

(
ρ

ρ+ η

)
∇E

)
+R(ρ, η) (IIIa)

∂

∂t
η = ∇ ·

(
η

ρ+ η
∇(ρ+ η)− ηq

(
ρ

ρ+ η

)
∇E

)
−R(ρ, η), (IIIb)

is based on a finite volume scheme described below. Here ρ = ρ(x, t) , η = η(x, t)
denote the densities of the open and closed channels on the cell respectively. E
denotes the elastic modulus of the substratum, i.e. it is larger for a stiffer
material. The function q accounts for the cell’s strength of sensing the gradient
of E due to the relative number of open versus closed channels. R(ρ, η) describes
the combined opening and closing of the channels. In our mathematical model
we defined R(ρ, η) = αE · η − βρ.

The proposed numerical scheme to solve the above system is based on the
Scharfetter–Gummel flux approximation originating from (13), where the au-
thors construct a numerical scheme for a system modelling semiconductor de-
vices. Their objective was to develop a robust scheme for discontinuities or
rapid variations in the potential. Independently, the same type of flux was in-
troduced in (10) for finite-difference schemes. The Scharfetter–Gummel scheme
became one of the preferred finite-volume scheme for drift-diffusion equations.
While the original scheme deals with the spatially one-dimensional problem, it
has been generalized to higher dimensions (8; 9) and the flux discretization is
the basis for numerous other generalizations, e.g. for equations with nonlinear
diffusion (11; 3; 5) and to systems with source terms (4; 16). In the context of
chemotaxis and aggregation models the Schafetter–Gummel flux approximation
was recently used in (17; 12; 1; 15; 14) see also the review (2).

First we generalize our problem to

∂tρ = ∇ ·
(

ρ

ρ+ η
J [ρ+ η]

)
+R(ρ, η) (IVa)

∂tη = ∇ ·
(

η

ρ+ η
J [ρ+ η]

)
−R(ρ, η), (IVb)
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which is in flux-form. The we set J [u] = ∇u + uW for some given (possibly
time-dependent) vectorfield W . This will later be defined as a numerical ap-
proximation of −q(p(x, t))∇E(x). Hence, the above driving flux J depends only
on the sum u = ρ+ η and space and time.

The notation for finite volume schemes is as follows (see e.g. (6)). Consider a
polyhedral tesselation T of the domain Ω with volumes K ∈ T and centers xK .
Neighboring cells are denoted by L ∼ K with common face K |L := K ∩ L.
Note: here cells are a technical expression for so-called numerical cells in finite
volume schemes, which have nothing to do with the biological cells we are con-
sidering in this paper.
The distance between cell centers is denoted with dKL := |xk − xL|.
The transmission coefficient is τKL = |K|L|

dKL
= τLK .

We use |K| to denote the d-dimensional volume and by slight abuse of notation
we denote by |K |L| the d− 1-dimensional surface area.
We use ρK , ηK for the cell-averages of densities and set uK = ρK + ηK .
pK = ρK

uK
and qK = ηK

uK
denote the relative weights of the two densities.

For τ ∈ [0, 1], ρn+τ denotes the linear-interpolation between ρn and ρn+1.
This allows to define the full range of explicit to implicit schemes at the same
time. Given some flux-approximation JKL[u

n+τ ] which will be specified later,
we introduce the scheme

ρn+1
K − ρnK

δ
= (Va)∑

L∼K

τKL

(
pn+τ
L JKL[u

n+τ ]− − pn+τ
K JKL[u

n+τ ]+
)
+RK(ρn+τ

K , ηn+τ
K )

ηn+1
K − ηnK

δ
= (Vb)∑

L∼K

τKL

(
qn+τ
L JKL[u

n+τ ]− − qn+τ
K JKL[u

n+τ ]+
)
−RK(ρn+τ

K , ηn+τ
K ),

where (a)+ = max{a, 0} and (a)− = (−a)+ denote the positive and negative
part, respectively. Our reaction term is explicitly given by

RK(ρ, η) = α(EK)η − βρ,

with EK being the cell-average of the elastic module E.
It is left to find approximations for the normal fluxes Jn+τ

KL across boundary
faces. If we assume that some discretization Wn+τ

KL of W (depending in our case
on pn+τ

K ) is given, then the normal component of the flux J [u] in (IVa)–(IVb)
can be approximated by the cell problem (see e.g. (13; 11; 7; 14))

Jn+τ
KL = ∂xu+ uWn+τ

KL ,

where u is the unknown along the line segment [xk, xL] := {(1 − s)xk + sxL :
s ∈ [0, 1]} with boundary conditions u(xk) = un+τ

K and u(xL) = un+τ
L .

2



This is the classical Scharfetter-Gummel interpolation, and by setting
dKL = |xK − xL| we obtain the flux J = J [un+τ

K , un+τ
L ;Wn+τ

KL /dKL] given by

JSG[a, b;W ] =

{
W aeW/2−be−W/2

eW/2−e−W/2 , W ̸= 0;

(a− b), W = 0.
(VI)

Hence, we can close the scheme by setting

JKL[u
n+τ ] := JSG[u

n+τ
K , un+τ

L ;Wn+τ
KL /dKL] (VII)

with Wn+τ
KL := WKL[p

n+τ
K ] given by

WKL[p
n+τ ] := q(pn+τ

K )(EL − EK)+ − q(pn+τ
L )(EL − EK)− (VIII)

2 Simulation

For the simulation in Figure 4, we implemented an explicit version (τ = 0) of
the scheme (Va)–(Vb) on the interval [0, 1] with a uniform tesselation. That is
for given h = 1/N , we set Th = {[0, kh] : k = 1, . . . , N} and xK = (k + 1/2)h
for k = 0, . . . , N − 1. We have the two discrete continuity equations

ρn+1
K − ρnK

δ
=

∑
L∼K

τKL(p
n
LJKL[u

n]− − pnKJKL[u
n]+) +RK(ρnK , ηnK)

ηn+1
K − ηnK

δ
=

∑
L∼K

τKL(q
n
LJKL[u

n]− − qnKJKL[u
n]+)−RK(ρnK , ηnK),

where we impose no-flux boundary condition, that is J0,1 = 0 = JN,N+1 and
the sum over L K consists of the two addends K − 1 and k + 1. Hereby in one
dimension τKL = h−1 and

pnK =
ρnK

ρnK + ηnK
and qnK =

ηnK
ρnK + ηnK

.

For the implementation, we choose

RK(ρ, η) = αEKη − βρ with EK = E(xK).

For the simulation we use an elasticity profile on [0, 1] resembling the elasticity
module of the experimental made substrate given by

E(x) = 2(Ehard − Esoft)B(x− 1/2, s) + Ehard

where B(y, s) = y/(exp(−s y)− 1). In the simulations in Figure 4, Ehard = 0.1,
Esoft = 0.01 and the scale parameter s = 30. We use the Scharfetter-Gummel
flux interpolation (VII) in explicit form

JKL[u
n] := JSG[u

n
K , un

L;W
n
KL/dKL]
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with JSG given in (VI) and upwind discretization of the chemical potential given
in (VIII) by

WKL[p
n] := q(pnK)(EL − EK)+ − q(pnL)(EL − EK)−

Hereby, the discrete mobility is qnK = q(pnK) with the continuous mobility func-
tion given in terms of a bell-shaped function with compact support by

q(x) = ν(3(x− 0.5)) + 0.1 with ν(x) =

{
exp

(
− x2

1−x2

)
, x ∈ (−1, 1);

0, |x| ≥ 1.

References

[1] L. Almeida, , F. Bubba, B. Perthame, and C. Pouchol. Energy and im-
plicit discretization of the Fokker-Planck and Keller-Segel type equations.
Networks & Heterogeneous Media, 14(1):23–41, 2019.

[2] G. Bärwolff and D. Walentiny. Numerical and analytical investigation
of chemotaxis models. In Computational Science and Its Applications –
ICCSA 2018, pages 3–18. Springer International Publishing, 2018.

[3] M. Bessemoulin-Chatard. A finite volume scheme for convection–diffusion
equations with nonlinear diffusion derived from the Scharfetter–Gummel
scheme. Numerische Mathematik, 121(4):637–670, 2012.

[4] H. M. Cheng and J. H. M. ten Thije Boonkkamp. A generalised com-
plete flux scheme for anisotropic advection-diffusion equations. Advances
in Computational Mathematics, 47(2):1–26, 2021.

[5] R. Eymard, J. Fuhrmann, and K. Gärtner. A finite volume scheme for
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