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Abstract  
The de novo design of small-molecule-binding proteins has seen exciting recent progress; 
however, the ability to achieve exquisite affinity for binding small molecules while tuning 
specificity has not yet been demonstrated directly from computation. Here, we develop a 
computational procedure that results in the highest affinity binders to date with predetermined 
relative affinities, targeting a series of PARP1 inhibitors. Two of four designed proteins bound with 
affinities ranging from < 5 nM to low µM, in a predictable manner. X-ray crystal structures 
confirmed the accuracy of the designed protein-drug interactions. Molecular dynamics simulations 
informed the role of water in binding. Binding free-energy calculations performed directly on the 
designed models are in excellent agreement with the experimentally measured affinities, 
suggesting that the de novo design of small-molecule-binding proteins with tuned interaction 
energies is now feasible entirely from computation. We expect these methods to open many 
opportunities in biomedicine, including rapid sensor development, antidote design, and drug 
delivery vehicles.  
 
One Sentence Summary   
We use informatic sampling to design low nM drug-binding proteins, and physics-based 
calculations to accurately predict affinities. 
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Main Text 
Molecular recognition underlies the binding and catalysis of small molecules by protein 

receptors and enzymes (1–5). While we have an advanced understanding of both protein design 
and molecular interactions, the rational design of de novo proteins that specifically bind small 
molecules with low nM to pM affinity is a major challenge that has not been achieved in de novo 
proteins without experimental screening of large libraries of variants (4–12). The few successful 
examples of micromolar binders have relied on structural informatics to guide sampling of protein 
structure, sequence, and interactions, and scoring functions that rely on a mix of statistical and 
physical terms without explicit representation of dynamics, conformational entropy or water (6–
11). From a practical perspective, the reliance on imperfect empirical and statistical information 
has limited the success of the process, and more fundamentally leaves open the question of whether 
our understanding is grounded in physical forces or limited exclusively to advanced pattern 
recognition (13–17). Here, we show how fully physics-based methods can be used to evaluate 
small molecule binders. We also introduce enhancements on existing sampling methods to better 
account for molecular complementarity between the ligand and protein. Finally, we show that all-
atom molecular dynamics simulations are sufficient to describe the conformations, dynamics, 
binding interactions and free energies of association of a de novo protein designed to bind a series 
of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) (18). These studies show the 
feasibility of combining informatics-based approaches for sampling and physics-based approaches 
for evaluation of top-scoring designs. 

Inhibitors of PARP are a recently developed class of clinically useful anticancer drugs.  De 
novo designed binders of PARPi drugs might serve as components in detectors, delivery agents, 
or detoxification agents for these cytotoxic drugs. The predominant class of PARPi drugs share a 
tripartite pharmacophore consisting of a fused 5,6-bicyclic core, an amide and a phenyl group 
bearing a positively charged alkylamine (Fig. 1A).  We chose to target rucaparib, the most 
structurally complex of several related drugs, as our primary target (Fig.1A), as well as a series 
PARPi analogues.  By considering a series of drugs, we at once provide reagents that might be 
widely useful, while simultaneously testing our understanding of the essential features required 
for binding.   
De novo design of high-affinity drug-binding proteins. 

We used a new recursive version of the COMBS algorithm to design rucaparib-binding 
sites in a family of mathematically generated four-helix bundle proteins into which key binding 
residues were introduced using van der Mers (vdMs) (10, 19, 20).  A vdM is an element of protein 
structure that identifies the preferred positions of interacting chemical groups relative to a residue’s 
backbone atoms (10). The COMBS algorithm finds positions on a given protein backbone that can 
simultaneously form favorable van der Waals, aromatic, and/or hydrogen-bonded interactions with 
the chemical groups of a target small molecule (Fig. 1B, 1C). To initiate the design process, we 
used COMBS to identify sidechains to bind rucaparib’s key polar groups, which included H-
bonded interactions involving the indole NH, and the carboxamide’s C=O and NH2 groups (Fig. 
1C). Additionally, COMBS identified Asp131 as a second-shell interaction to the carboxamide of 
rucaparib (Fig. 1C).  It is important to design binding interactions with these groups with sub-Å 
accuracy to engender specificity and a favorable free energy of association. Next, the remainder 
of the sequence was designed using flexible backbone design (Fig. 1D) (10, 21, 22) while retaining 
the identity of the keystone residues (identified in the COMBS step). The mainchain moved 1 Å 
rmsd during this step (Fig. S1), so a second round of vdM sampling was performed on the relaxed 
backbone.  This procedure identified three mutants involving drug-contacting residues, including 
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N29D, W90L and N131D (Fig.1E). A second round of flexible backbone sequence design using 
this backbone and the newly fixed vdMs resulted in converged sequence/structure combinations 
(Fig. 1E, 2A-B), as a third round of COMBS showed the vdMs were now optimal. The final 
designs include numerous CH-π and hydrophobic interactions interspersed with specific polar 
interactions, including four H-bonds (an H-bond donor to the drug’s carboxamide oxygen as well 
as three H-bond acceptors to the drug’s carboxamide NH, indole NH and charged ammonium 
group), as well as second shell interactions. (Fig. 2C, Fig. S2).  

Throughout the design process, we ensured that the designs would also retain favorable 
interactions with most of the common pharmacophores of the three other drugs (see supplementary 
methods for details). However, we predicted that the protein would have lower affinity for 
niraparib and mefuparib, because they lack the H-bonding group indole NH of rucaparib.  Also, 
we expected veliparib to bind weakly, because it lacks a hydrophobic phenyl group and the position 
of its charged ammonium group differs significantly from that found in the other three drugs.  

The final models were chosen based on multiple criteria: 1) low Rosetta energy (lowest 50 
of the 1000 total designs); 2) favorable vdMs (highest total vdM cluster scores); 3) satisfaction of 
all buried H-bond donors in the protein and ligand; and 4) avoidance of clashes with the three other 
PARP inhibitors, which show significant structural variability near the amine end of the molecule.    

Four designs were selected for expression: two designated as PiB (PARPi binder) and PiB’, 
respectively, are closely related (Table. S1, Fig. S3).  PiB’ differs from PiB only by the substitution 
of five solvent-exposed charged residues with Ala to enhance the crystallinity of the protein for X-
ray crystallography.  The other two (PiB-1 and PiB-2) were less closely related to PiB in structure 
and sequence (Fig. S4). Circular dichroism spectroscopy showed all four had substantial alpha-
helical character (Fig. S5). However, PiB-1 and PiB-2 failed to induce large changes in the 
fluorescence emission spectrum of rucaparib (Fig. S6). Therefore, we focused our efforts on PiB 
and PiB’ (Fig. S7 - S11).  

Spectral titrations showed that PiB and PiB’ bound the PARPi drugs with high affinity. 
Incubation of PiB with equimolar concentrations of rucaparib led to a marked blue shift and an 
increase in intensity of its fluorescence spectrum, as expected if its indole core were bound in a 
rigid, solvent-inaccessible site (Fig. S6, S7). NMR spectroscopy of PiB showed that it folded into 
a well-defined structure, and the addition of a single equivalent of rucaparib led to a new set of 
peaks, consistent with a stoichiometric, specific complex (Fig. S10, S11).  Fluorescently monitored 
titrations of protein into a solution of rucaparib showed that PiB and PiB’ bound with very low to 
sub-nM affinity (Fig. 2D, 2E, 3A).  Even at the lowest experimentally feasible rucaparib 
concentration, the binding isotherms show a linear increase in intensity with respect to protein 
concentration until a single equivalent is added, followed by an abrupt leveling at higher protein 
concentrations. This behavior is indicative of a dissociation constant that is much lower than the 
total rucaparib concentration.  A non-linear least-squares fit to the data returned a KD of 2.2 nM 
for PiB and 0.37 nM For PiB’, and a sensitivity analysis showed that the KD was less than 5 nM 
for both proteins (Fig. 2D, 2E) (10).  Thus, PIB and PiB’ are the first reported de novo protein that 
bind a small molecule with very low, single digit nM to pM binding affinity prior to extensive 
experimental optimization. 
 UV/visible absorption titrations showed that PiB and PiB’ also bound to the remaining 
ligands with affinities that grew increasingly weaker as the drugs’ structures diverged from 
rucaparib (Fig. 3A, Fig. S12). PiB retained sub-µM affinity for mefuparib (KD = 190 nM and 350 
nM for PiB and PiB’, respectively) and niraparib (600 and 550 nM).  The corresponding KD values 
were 14 µM and 24 µM, respectively for the structurally divergent drug veliparib, and no binding 
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was detected for the most divergent drug, Olaparib (Fig. S13).  This observed trend in binding 
affinity matches our hypothesized order.  
 We next examined the in vitro stability and potency of PiB and PiB’ in serum and cellular 
assays. PiB and PiB’ were highly stable in human serum, as are other de novo proteins designed 
for medical applications (Fig. S14, S15) (10, 23, 24).  PARP inhibitors potently inhibit the viability 
of cells with certain DNA repair deficiencies, including loss-of-function mutations in BRCA2. To 
determine whether PiB and PiB’ could attenuate the lethal effects of PARPi drugs, we measured 
their effects on the growth of BRCA2 mutated DLD-1 cells and SUM149 cells (25) over after an 
8-day incubation. Dose-response curves were first established in the absence of PiB, then the 
titration was repeated with PiB or PiB’, at varying [protein]/[drug] ratios for each PARPi drug 
concentration. Addition of a single equivalent of PiB or PiB’ resulted in a 4-fold increase in the 
half maximal inhibitory concentration (IC)50 value for rucaparib.  Thus, PiB competes effectively 
for binding of rucaparib to human PARP1, an enzyme reported to bind rucaparib with a 
dissociation constant of 0.1 to 1 nM in biochemical assays (26, 27) (Fig. 3A, 3B, 3D, Fig S16, S17, 
S18). The potency of PiB and PiB’ in the cell viability assay generally tracks with the spectroscopic 
assays, with the protein showing effects on mefuparib and niraparib intermediate between that for 
rucaparib and veliparib (26) (Fig. 3B, 3D, Fig. S16, S17, S18). Moreover, PiB and PiB’ did not 
significantly change the cellular response to olaparib (Fig. 3C, 3D, Fig. S16, S17, S18) in line with 
spectroscopic data that indicated that PiB and PiB’ does not bind this drug.  
 
High-resolution crystal structures of complexes are in remarkable agreement with the 
designs. 

The crystallographic structures of PiB’ were solved in the absence and presence of the four 
active compounds at 1.3-1.6 Å resolution (Table S2). The protein’s conformation is in excellent 
agreement with the predicted AlphaFold2 model (Table. S3), particularly near the binding site (Cα 
RMSD of the 60 surrounding residues was 0.2- 0.5 Å, Fig. 2A, 4A-B, S19, Table. S3).  The binding 
pocket of PiB’ is very well pre-organized, and the binding of the drugs leads to only 0.2 – 0.5 Å 
Cα RMSD changes in the binding-site residues (Fig. 4A-4C, S20, Table. S3). The conformations 
of the sidechains in the unbound structure are almost entirely as in the design, and they interact 
precisely as predicted in the design of the rucaparib complex (Fig. 4B, S20): Asp29 makes a direct 
H-bonded salt bridge to the drug’s charged ammonium group. Rucaparib’s carboxamide forms a 
two-coordinate hydrogen bond with Gln54, which in turn is stabilized by a second-shell network 
of H-bonds predicted in the design; Asp131 formed a solvent mediated H-bond to rucaparib’s 
indole NH group (Fig. 4B, S20). Interestingly, a search of water-mediated Asp sidechains with 
related indole and imidazole sidechains showed this bridging interaction is frequently found in the 
PDB (Fig. S21).  

The structures of mefuparib and niraprib bound to PiB’ show a similar set of interactions 
as rucaparib (Fig. S22).  However, their aromatic 5-membered azole ring lacks a H-bonding group 
to interact with Asp131, explaining their decreased affinity for the protein. As expected from its 
divergent structure, veliparib has a less favorable fit with PiB’s binding site, and it lacks a salt 
bridge to its ammonium group as in other complexes (Fig. S22, S23). In summary, the structures 
are in excellent agreement with the design and confirm our structural prediction of the affinity 
differences between drugs.  

Three residues were changed to improve binding during the second round of COMBS 
design of PiB.  To determine whether these substitutions indeed increased affinity, we evaluated 
mutants with the second-round substitutions reverted to their identities in the first round of design.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.23.573178doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573178
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

These changes each led to one to two orders of magnitude weaker binding affinity for rucaparib 
Asp29Asn (KD = 13 nM), Leu90Trp (KD = 24 nM) and Asp131Asn (KD = 50 nM) (Fig. 4D, S24A). 
Thus, iterative vdM selection successfully identified interactions with improved binding affinity. 
We suggest that vdM guided amino acid optimization might provide a useful alternative to other 
methods of affinity optimization. We also conducted an alanine scan to probe the energetic 
contribution of each of the residues that lined the pocket in the rucaparib complex (Fig. 4E, S24B). 
Each mutation was unfavorable with values of DDG ranging from 1.7 to 3.0 kcal/mol. These values 
are within the range observed for substitutions of critical binding residues in natural protein 
binding sites (28).  
Molecular dynamics and free energy calculations confirm mode of binding and accurately 
predict binding thermodynamics.   

We performed 2.0-microsecond all-atom molecular dynamics (MD) simulations to 
compare the structural stability of PiB, PiB’, PiB1, and PiB2 in complex with rucaparib.  The 
simulations were performed on the designed models (instead of the crystallographic structures) to 
assess the usefulness of incorporating MD into a design pipeline. The protein backbone 
conformations were very stable for all three complexes. However, rucaparib’s designed binding 
pose was stable only in PiB and PiB’ (Fig. S23) (as PiB and PiB’ behave similar in MD, we only 
use PiB to illustrate later): it retained its bivalent hydrogen bonding interaction to Gln54 (Fig 5A), 
and Asp29 and Asp131 showed stable interactions with rucaparib’s indole NH and ammonium 
groups through direct and water-mediated hydrogen bonds, respectively (Fig. 5A).  By contrast, 
PiB-1 and PiB-2 simulations exhibited significant deviation from rucaparib’s designed pose, and 
their key buried H-bonds to Gln54 were broken within 50 nanoseconds in each of three 
independent calculations (Fig. S25).  Moreover, PiB shielded the apolar atoms in rucaparib more 
efficiently in PiB than PiB1 and PiB2, as determined from solvent-accessible surface area 
calculations (29)  within individual MD trajectories (Fig. S26).  Furthermore, MD simulations of 
PiB in complex with niraparib, veliparib, and mefuparib show similar binding-site stability as PiB 
: rucaparib over 2.0 microseconds (Fig. 5A, S27). Thus, MD appears to be a useful tool in assessing 
the stability of interactions in designed complexes.  

We next turned to alchemical and physical-pathway methods to calculate absolute binding 
free energies to determine whether the dissociation constants for binding of the drugs to PiB and 
PiB’ might be predicted directly from molecular dynamics simulations. The alchemical transfer 
method (29–31) was carried out starting with the design models by two of the authors, who had no 
knowledge of the experimental results. This method has been shown to be comparable to other 
alchemical methodologies such as Schrodinger’s FEP+ (30) or Amber’s thermodynamic 
integration (31) given comparable sampling of the configurational space.  An initial absolute 
binding free energy calculation was used to evaluate the energetic contributions of the fused-ring 
cores of the drugs and to ensure convergence of the calculations. An additional relative binding 
free energy calculation was performed to transform each core into the target ligand to estimate the 
contribution from non-core regions (Fig. S28).  Universally, the alchemical transfer method tended 
to overestimate the binding energy, possibly due to having two sets of restraint potentials. 
However, this procedure correctly predicted the relative affinities of the four ligands (Table. S4).  

We next used potential of mean force calculations, an orthogonal physical-pathway 
methodology (32), to compute absolute binding energies, and found that the results were in 
remarkably good agreement with experiment (Fig. S29). The RMS error between the predicted 
and experimental values is 1.3 kcal/mol, and the correct rank order of affinities was observed. This 
error is close to the experimental error in the measurement of KD for rucaparib (Fig. 5B, 5C, Fig. 
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S30-S33, Table. S5).  We also obtained very good agreement between computation and experiment 
for a set of four mutants of PiB (Fig. 5B, 5C, Table. S5). This agreement bodes well for the use of 
alchemical and physical-pathway-based binding free energy calculations to evaluate potential 
binding energies of de novo small-molecule binding proteins.  

 
Conclusion 

The de novo design of proteins with very high affinity for small-molecule ligands has been 
a challenging endeavor, because the design process generally relies on sampling and scoring 
functions that are optimized for predicting protein structure rather than binding to the diversity of 
functionality encountered in small molecules. In this work we enhanced the COMBS method, 
which uses van der Mers to sample realistic binding poses and key interactions within a protein 
framework. In this procedure, vdMs are used to identify binding-site residues capable of forming 
key interactions such as hydrogen bonds and aromatic interactions to enable binding of a small 
molecules, in much the same way that natural proteins bind a wide diversity of small molecules 
using a set of 20 amino acids. While the energetics of these interactions can vary depending on the 
specific small molecule bound, the fundamental geometries required to achieve optimal binding 
remain relatively constant. Thus, a common set of vdMs should serve to bind a wide range of 
compounds.  
 A number of other methods for designing ligand-binding proteins are appearing in the 
recent literature (12).  However, at the end of any design procedure, the designer is presented with 
a list of candidates for further consideration. With sufficient resources it is feasible to synthesize 
genes encoding thousands of candidates and evaluate them individually using robotics or yeast 
display to identify a few binders.  Additionally, because so many variants are screened, the 
characterization of the binders has relied on organic synthesis of fluorescently labeled or 
biotinylated versions of the ligand, again increasing the barriers to widespread economical use of 
computational design. 

Here we identify a series of physically grounded steps to help identify the tightest binders 
in a computational library of potential proteins (Fig. S34).  1) We prioritized the principle of 
preorganization:  AlphaFold2 predicted a preorganized site, and we find greater discrimination 
using all-atom MD simulations. Even in the absence of the drug, the conformation of the backbone 
and binding-site residues of PiB were stable on the nanosecond/microsecond timescale. While we 
conducted relatively long 2 µsec simulations, we found that 100 nsec simulations were sufficient 
to identify the successful binder. 2) We focus on designs that maximize burial of apolar atoms 
based on calculation of solvent-accessible surface area in the bound versus free state. 3) 
Importantly, the H-bond potential of buried polar atoms should be maximized for both the bound 
drug as well as the interacting sidechains, as the loss of water interactions have to be recouped by 
drug–protein H-bonding, a highly unfavorable process (33).  This is apparent if we compare PiB 
to ABLE, the first COMBS-designed drug binder (10). The PiB:rucaparib (app. 1 nM) binding site 
maximizes the H-bonding potential of both the drug and the first-shell liganding sidechains, 
whereas the ABLE:apixaban (5 µM) binding site has four unsatisfied hydrogen-bonding sites  (Fig. 
S35). Water-bridging H-bonds can also be identified by vdMs (that include explicit bridging 
waters) and MD simulations. 4) We placed the charged ammonium group of rucaparib and 
interacting sidechains at a surface location that minimizes the Born solvation energy (34), 
simplifying the task of recognizing charged groups.  

Finally, while MD simulations of de novo proteins  (14, 34–36) can help screen designs 
(14, 34–36), free energy calculations have not previously been applied to designed proteins.  
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Although they are more computationally intensive and require more user-specified parameters, we 
obtained excellent quantitative agreement between computed and experimentally measured 
binding free energies using the designed models as the starting structures. These data demonstrate 
for the first time the possibility of designing proteins with high affinity (< 5 nM) to small molecules 
using fully rational criteria for design and “physics-based” force fields to evaluate the complex. 
 It is interesting to compare the mode of interaction and interaction energy of rucaparib for 
PiB versus the natural protein PARP1. Although we designed PiB without considering the natural 
binding-site interactions in RARP1, COMBS identified a very similar set of interactions to bind 
rucaparib (Fig. S36): a ligand-Asp salt bridge, solvent-mediated hydrogen bond to rucparib’s 
indole NH, and a two-coordinate H-bond to the drug’s amide.  This commonality likely reflects 
the fact that proteins have only a limited repertoire of functional groups, and COMBS is capable 
of identifying highly favorable interactions, similar to those used in nature.   

Rucaparib binds to the human PARP1 enzyme with a KD ranging from 0.1 to 1.5 nM, 
depending on the experimental conditions, within the range observed for PiB and PiB’(26, 27).  
Rucaparib is a third-generation drug that was discovered only after synthesizing hundreds of 
analogues in multiple groups.  Thus, it is noteworthy that we were able to design a protein with 
similar affinity to rucaparib as PARP1 after screening only a few proteins. Ligand efficiency is 
often used as a guiding rule in drug discovery to determine whether the affinity of a molecule of a 
given size is within a range typically seen in highly optimized developed small-molecule drugs 
and natural organic ligands for proteins (37, 38). As ligands become larger, they have more 
opportunities to form favorable interactions with their target proteins.  Thus, the maximal affinity 
possible roughly scales with the size of a small molecule, and the ligand efficiency is defined as 
the free energy of binding (1 M standard state) divided by the number of heavy atoms in the ligand.  
Most drugs have ligand efficiency around 0.3 kcal/(mol * heavy atom count) (37, 38), although 
higher values are observed for highly optimized drugs such as rucaparib, which has a ligand 
efficiency of 0.5 kcal/(mol*heavy atom count). The ligand efficiency of a drug is similarly a good 
measure of how well optimized a de novo protein is for binding to a small molecule.  The 0.5 
kcal/(mol * heavy atom count) ligand efficiency of PiB is an considerable improvement over the 
0.21 to 0.26 ligand efficiency of the first COMBS-designed apixaban binders, demonstrating the 
significance of incorporating the design principles discussed.   

In nature, small molecule-binding proteins serve a range of functions, and we might expect 
a similarly broad spectrum of practical applications of designed binders for sensing and 
pharmaceutical applications.  For example, de novo proteins might be used as antidotes to 
neutralize drugs that have accumulated to toxic levels, or to reverse the action of anti-coagulants 
prior to surgery to reverse the risk of bleeding.  In other cases, proteins could be used as drug 
carriers to tune their pharmacokinetic properties.  Drugs might also be released in the vicinity of 
tumors or sites of infection by introducing proteolytic sites into flexible loops that allow cleavage 
by proteases enriched in these environments (39). Furthermore, de novo proteins might be targeted 
to tumor environments by fusing sequences (e.g., disulfide-linked cyclic RGD peptides (40) or 
peptide hormones such as somatostatin (41) to bind to proteins enriched on the surface of cancer 
cells.  Finally, designed proteins can be used to sequester environmental toxins or as components 
in detection devices. 
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Figures 

 
Figure 1. The computational design of poly(ADP-ribose) polymerase inhibitors (PARPi) 
protein binders. (A) The PARPi analogues. The shared chemical features are marked in orange.  
Olaparib is used as a negative control in the design and binding assay. (B – E) The overall design 
strategy. (B, C) We first define the pharmacophore and use COMBS to sample vdMs on the 
selected protein backbones. We initially targeted the indole and carboxamide of the drug, and used 
COMBS to discover sidechains that would form first and second-shell hydrogen bonds to both of 
these chemical groups. We discovered a solution in which the carboxamide formed bidentate 
hydrogen bonds with sidechain of Gln54, and the drug’s indole NH interacted with the Asn131 (C, 
carbon atoms of protein green, those of rucaparib are purple).  A second-shell interaction to Q54 
that was discovered by COMBS was Asp58 (carbons brown). (D) We applied flexible backbone 
sequence design with a custom Rosetta script while fixing the interactions selected from COMBS. 
(E) Then we search vdM again based on the design output from the previous sequence step. The 
slightly different (~ 1 A Ca RMSD) backbone now preferred different vdMs at some locations 
(higher cluster scores) and these mutations were made.  Three residues at 29, 90, 131 (deep blue) 
were changed based on COMBS results.  
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.23.573178doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573178
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 
Figure 2.  Assessing the computational model and  experimental binding of PiB to rucaparib. 
(A) The AlphaFold2 model agrees with the designed PiB very well, with the binding site Cα RMSD 
of 0.41 Å, the upper fold Cα RMSD of 0.49 Å and overall Cα RMSD of 0.67 Å. (B) The predicted 
local distance difference test scores (pLDDTs) concur with the trend of RMSD difference of the 
design model. For example, the N-terminal, C-terminal and the middle loop with low pLDDTs 
(<90) showed higher Cα RMSD. (C) The design model showing the polar groups of rucaparib are 
all hydrogen-bonded. (D) (E) A fluorescence titration shows that PiB and PiB’ bind rucaparib with 
KD < 5 nM. The fluorescence emission intensity at 420 nm of rucaparib (excitation wavelength 
355 nm) was measured after titrating aliquots of PiB (D) or PiB’ (E) to a final concentration 
indicated in the abscissa.  The data are well described by a single-site protein-ligand binding 
model, and a non-linear least squares fit to the data returned values of KD of 2.2 (± 0.9) nM for 
PIB, and 0.37 (± 0.29) nM for PIB’.  Although the fitting error was relatively small, a sensitivity 
analysis, in which the value of KD was held constant at various values, showed that the data for 
both proteins were fit within experimental error so long as the KD is less than 5 nM.  Therefore, 
while the most probable binding constants were 2 and 0.4 nM, respectively, we can confidently 
conclude that the values for PiB and PiB’ are less than 5 nM. The titration was carried out in in 
buffer containing 50 mM Tris, 100 mM NaCl (pH 7.4). 
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Figure 3. Spectral titrations and cell viability assay of PiB with PARPi. (A) The values of KD 
of various drugs for PiB as obtained from global fit of a single-site binding model to the 
fluorescence changes (A, from Fig. 3) or absorbance changes as a function of the concentration of 
PiB. Indicated wavelengths for the titration were chosen to maximize the difference in absorption 
for the free versus bound drug.  (B) Seven-day growth assays in DLD-1 BRCA2 mutated cells 
show that PiB alleviates the effects of rucaparib, mefuparib, niraparib and veliparib toxicity in a 
dose-dependent manner. The PARP inhibitors were pre-incubated with PiB in media at room 
temperature for 5 minutes at multiple concentration ratios (ligand : protein) of 1:0, 1:0.2, 1:1, 1:2.5, 
1:5 and 1:10. (C) Cell viability assay as in Figure 4B showing that PiB had no effect on the olaparib 
dose response. (D) Table showing IC50 values for the inhibition of cell proliferation by PARPi 
drugs in the presence of increasing mole ratios of added PiB protein.  
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Figure 4. The structure of drug-bound PiB’ agrees with the design. (A) The design model 
agrees well with the rucaparib-bound PiB’ crystal structure, with binding site (Fig. 3A) Cα RMSD 
range between 0.38-0.46 Å for the three monomers in the asymmetric unit. (B) The binding site of 
PiB’. A 2mFo-DFc composite omit map contoured at 1.6 σ. The map was generated from a model 
that omitted coordinates of rucaparib. Overlay of the design (gray) and the structure (protein in 
orange, rucaparib in pink). The sidechains of the binding pocket in rucaparib-bound PiB’ agrees 
with the design. Asp131 interacts with the indole NH via a bridging water as in MD simulations. 
(C) The structure of apo-PiB’ shows a preorganized open pocket filled with multiple waters, which 
are displaced in holo structure. (D) Reversal of the three designed substitutions from the vdM 
optimization procedure led to lower binding affinity (higher KD) for rucaparib by fluorescence 
emission titrations. (E) Alanine mutations of the direct binding residues decreased binding 
affinities confirmed by fluorescence emission titrations.  
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Figure 5. The MD simulations of PiB, PiB’, and mutants. (A) Using unbiased molecular 
dynamics simulations in Amber, we calculated (in triplicate) the frequency with which the 
intermolecular hydrogen bonds formed between the protein scaffold and the bound drug 
molecule.  PiB was found to form a hydrogen bond between Gln54 and the targeted drug 
carboxamide in 100% of all simulations for each drug complex. The charged ammonium groups 
of rucaparib and mefuparib interacted with Asp29 through a combination of direct and water-
mediated hydrogen bonds, totaling to more than half of the full simulation time, which contrasts 
niraparib and veliparib’s inabilities to form equivalent hydrogen bonds (due to changes in chemical 
structure around the ammonium tail of the ligand).  In a small fraction of each rucaparib and 
veliparib trajectory, Asp131 engaged in water-mediated hydrogen bonds to the drugs. (B) Using 
biased simulations in GROMACS, we calculated binding free energies for each ligand and found 
that ranked affinity for each drug is consistent with experimental results. (C) Comparison of ΔG 
binding from the GROMACS calculation with the experimental value from spectral titrations.   
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