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Abstract 

Individualized phenotypic prediction based on structural MRI is an important goal in 

neuroscience. Prediction performance increases with larger samples, but small-scale datasets 

with fewer than 200 participants are often unavoidable. We have previously proposed a 

“meta-matching” framework to translate models trained from large datasets to improve the 

prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits 

correlations between phenotypes, yielding large improvement over classical machine learning 

when applied to prediction models using resting-state functional connectivity as input 

features. Here, we adapt the two best performing meta-matching variants (“meta-matching 

finetune” and “meta-matching stacking”) from our previous study to work with T1-weighted 

MRI data by changing the base neural network architecture to a 3D convolution neural 

network. We compare the two meta-matching variants with elastic net and classical transfer 

learning using the UK Biobank (N = 36,461), Human Connectome Project Young Adults 

(HCP-YA) dataset (N = 1,017) and HCP-Aging dataset (N = 656). We find that meta-

matching outperforms elastic net and classical transfer learning by a large margin, both when 

translating models within the same dataset, as well as translating models across datasets with 

different MRI scanners, acquisition protocols and demographics. For example, when 

translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune 

yielded a 136% improvement in variance explained over transfer learning, with an average 

absolute gain of 2.6% (minimum = -0.9%, maximum = 17.6%) across 35 phenotypes. 

Overall, our results highlight the versatility of the meta-matching framework. 
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1. Introduction 

An important goal in systems neuroscience is to understand how variation in brain structure 

relates to individual differences in behavior (Genon et al., 2022). Structural T1-weighted 

magnetic resonance imaging (MRI) is a non-invasive technique for examining the anatomy of 

the human brain, providing high contrast between gray and white matter (Gifford et al., 

2020). Structural MRI is widely used to predict behavioral traits, clinical symptoms and 

diagnostic categories in both healthy individuals and individuals with neuropsychiatric 

disorders (Sabuncu et al., 2015; Arbabshirani et al., 2017; Bhagwat et al., 2019; Cohen et al., 

2021; Ooi et al., 2022). However, most prediction studies use datasets with fewer than a few 

hundred participants, leading to low reproducibility and inflated performance (Arbabshirani 

et al., 2017; Bzdok et al., 2018; Masouleh et al., 2019; Poldrack et al., 2020; Marek et al., 

2022). Studies have shown that prediction performance increases with larger sample sizes 

(Chu et al., 2012; Cui & Gong, 2018; He et al., 2020; Schulz et al., 2020), but for 

investigations of certain clinical populations or focused neuroscience inquiries, small-scale 

datasets remain unavoidable. Here, to address this fundamental issue, we seek to establish a 

framework to translate prediction models from large-scale datasets to predict new non-brain-

imaging phenotypes in small-scale datasets based on anatomical T1-weighted images.  

 

More specifically, given a large-scale anatomical MRI dataset (N > 10,000) with multiple 

phenotypes, we seek to translate models trained from the large dataset to new unseen 

phenotypes in a small independent dataset (N ≤ 200). In machine learning, this problem is 

often referred to as meta-learning, lifelong learning, learning-to-learn or few-shot learning 

(Fei-Fei et al., 2006; Andrychowicz et al., 2016; Finn et al., 2017; Ravi & Larochelle, 2016; 

Vanschoren, 2019), and is closely related to transfer learning (Weiss et al., 2016; Hospedales 

et al., 2021). Broadly speaking, meta-learning and transfer learning methods usually train a 

model on abundant data on a related problem, called the source dataset, and seek to translate 

knowledge learned from the large-scale dataset to the small dataset, called the target dataset. 

During the translation, a subset of the target dataset is typically used to adapt the pre-trained 

model to the new sample. One distinction between meta-learning and transfer learning is that 

in transfer learning, the prediction problem in the target dataset can be same (Ghafoorian et 

al., 2017; Aderghal et al., 2018; Wee et al., 2019) or different (Dawud et al., 2019; Talo et al., 

2019; Mehmood et al., 2021) from the source dataset. On the other hand, meta-learning 

always involves the translation of the prediction model to perform a new prediction problem 
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in the target dataset – providing the imaging neuroscience community with a versatile 

modeling framework that, once established, can be applied to a diversity of research goals. 

 

In our previous study (He et al., 2022), we developed a simple “meta-matching” approach to 

translate prediction models from large datasets to improve the prediction of new phenotypes 

in small datasets. Meta-matching is grounded in the observation that many phenotypes are 

correlated, as demonstrated by previous studies identifying a small number of factors linking 

brain imaging data to various non-brain-imaging traits like cognition, mental health, 

demographics, and other health attributes (Smith et al., 2015; Miller et al., 2016; Xia et al., 

2018; Kebets et al., 2019). As a result, a phenotype X in a smaller-scale study is likely 

correlated, sharing a latent relationship, with a phenotype Y present in a larger population 

dataset. Therefore, a model trained to predict phenotype Y from the larger dataset might be 

predisposed to features useful for predicting phenotype X. Consequently, the predictive 

model of Y can be more effectively translated to predict phenotype X in the smaller study. As 

a demonstration of meta-matching (He et al., 2022), we trained a simple fully-connected 

feedforward neural network to predict 67 non-brain-imaging phenotypes from resting-state 

functional connectivity (RSFC) in the UK Biobank. The neural network was then translated 

using meta-matching to predict non-brain-imaging phenotypes in the Human Connectome 

Project Young Adult (HCP-YA) dataset, yielding large improvements in prediction 

accuracies over classical kernel ridge regression (without meta-learning or transfer learning). 

 

In the current study, we investigated whether the two best performing meta-matching variants 

(“meta-matching finetune” and “meta-matching stacking”) from our previous study (He et al., 

2022) can be adapted to work with T1 MRI data. More specifically, given the different 

modalities (RSFC versus T1), the base neural network architecture was changed from a fully-

connected feedforward neural network to the simple fully convolutional network (SFCN; 

Peng et al., 2021). The SFCN was chosen because of its simplicity and top performance in 

the Predictive Analysis Challenge 2019 of brain age prediction (Peng et al., 2021). We 

compared the two meta-matching variants with classical elastic net and classical transfer 

learning using the UK Biobank (Sudlow et al., 2015; Miller et al., 2016), Human 

Connectome Project Young Adults (HCP-YA) dataset (Van Essen et al., 2013) and HCP-

Aging dataset (Harms et al., 2018; Bookheimer et al., 2019).  
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It is worth mentioning that it is not obvious that meta-matching will confer great benefits in 

anatomical MRI, compared with RSFC (He et al., 2022). The reason is that RSFC-based 

prediction typically utilizes high dimensional features derived from N × N RSFC matrices, 

where N is the number of brain parcels (or independent component analysis components). On 

the other hand, T1-based prediction can utilize low dimensional N × 1 volumetric and/or 

thickness measures. Therefore, classical machine learning techniques (e.g., elastic net) might 

work really well in the small sample regime (≤ 200 participants). Nevertheless, we found that 

meta-matching significantly outperformed classical elastic net and transfer learning, 

highlighting the versatility of the meta-matching framework.  
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2. Methods 

2.1. Datasets and preprocessing 

In this section, we describe the datasets and preprocessing used in the current study. Table 1 

summarizes the demographics and acquisition parameters of the three datasets we considered. 

We will evaluate meta-matching based on prediction accuracy when translating prediction 

models within the same dataset (UK Biobank), as well as across datasets, i.e., from UK 

Biobank to HCP-YA and HCP-Aging datasets. The very different age ranges between HCP-

YA and UK Biobank served as a strong test of the generalizability of meta-matching. All data 

collection and analysis procedures were approved by the respective institutional review 

boards (IRBs), including the National University of Singapore IRB for the analysis presented 

in this paper. 

 

 Age Sex (M/F) Scanner(s) Resolution 

UK Biobank 45-82 53%/47% Siemens Skyra 

3T scanner 

1mm 

HCP-YA 22-35 47%/53% Customized 

Skyra 3T scanner 

0.7mm 

HCP-Aging 36-100 44%/56% Siemens Prisma 

3T scanner 

0.8mm 

Table 1. Summary of demographics and acquisition parameters of the three datasets used in 

the current study. 

 

2.1.1. UK Biobank 

The UK Biobank (UKBB) dataset is a large-scale epidemiology study of over 500,000 adults 

from the United Kingdom (Alfaro-Almagro et al., 2018). The volunteers were recruited 

between 2006 and 2010 from 22 centers across the UK. Participants were asked to answer a 

variety of questionnaires about different aspects of health and lifestyle. In addition, a range of 

physiological measurements was also collected. We considered the same set of 36,848 

participants and 67 non-brain-imaging phenotypes (referred to as phenotypes henceforth; 

Table S1) from our previous study (He et al., 2022).  

 

As part of the UK Biobank pipeline (Alfaro-Almagro et al., 2018), FreeSurfer recon-all was 

used to derive thickness and volume measures with the Desikan-Killiany-Tourville (DKT40) 
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cortical atlas (Klein et al., 2012) and subcortical segmentation (Fischl et al., 2002). We 

considered the subset of regions present in most participants, yielding 164 morphometric 

measures, comprising intracranial volume (ICV) and thickness measures of 62 cortical 

regions, as well as volumes of 62 cortical regions and 39 subcortical regions (Tables S4 and 

S5). After excluding participants who have dropped out since our previous study (He et al., 

2022) and excluding participants without all 164 morphometric measures, we ended up with 

36,461 participants. As a baseline, these 164 measures will be utilized by the elastic net 

algorithm for phenotypic prediction (see Section 2.3).  

 

Furthermore, we used FMRIB's Linear Image Registration Tool (FLIRT) to transform the 

bias-field-corrected version of the brain-extracted T1 (from the UK Biobank provided 

preprocessing outputs) to MNI152 standard-space T1 template with 1 mm resolution 

(Jenkinson et al., 2001; Jenkinson et al., 2002). Each T1 image was cropped to dimensions 

160 x 192 x 160, and then divided by the mean value within each image following Peng et al. 

(2021). The normalized T1 images will be used by a convolutional neural network for 

phenotypic prediction (Section 2.2).  

 

2.1.2. HCP Young Adult (HCP-YA) dataset 

We utilized the Human Connectome Project Young Adult (HCP-YA) dataset (Van Essen et 

al., 2013), which included healthy young adults. We considered 1,019 participants and 35 

non-brain-imaging phenotypes, consistent with our previous study  (He et al., 2022). The 

phenotypes are found in Table S2. 

 

FreeSurfer recon-all from the HCP pipeline was used to derive thickness and volume 

measures with the DKT40 cortical atlas (Klein et al., 2012) and ASEG subcortical 

segmentation (Fischl et al., 2002). We considered the subset of regions present in most 

participants, yielding 166 morphometric measures, comprising intracranial volume (ICV) and 

thickness measures of 62 cortical regions, as well as volumes of 62 cortical regions and 41 

subcortical regions (Tables S4 and S5). We note that the difference in the number of 

morphometric measures between UK Biobank and HCP-YA datasets (164 vs 166) arose 

because the 5th-Ventricle and non-WM-hypointensities were missing in most participants 

from the UK Biobank dataset. As a baseline, these 166 measures will be utilized by the 

elastic net algorithm for phenotypic prediction (see Section 2.2).  
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Moreover, we considered T1 images of 0.7 mm resolution which had been transformed to 

MNI152 space by FLIRT from the HCP PreFreesurfer pipeline. We noted the files of two 

participants were missing in the HCP filesystem, so we ended up with 1,017 participants. 

Each T1 image was downsampled to 1mm, cropped to dimensions 160 x 192 x 160, and then 

divided by the mean value within each image following Peng et al. (2021). The processed T1 

images will be used by a convolutional neural network for phenotypic prediction (Section 

2.2).  

 

2.1.3. HCP-Aging dataset 

Besides the HCP-YA dataset, we also used the Human Connectome Project Aging (HCP-

Aging) dataset (Harms et al., 2018; Bookheimer et al., 2019) consisting of healthy 

participants. We manually selected commonly used non-brain-imaging phenotypic measures 

across cognition, emotion, motor, sensor, and life experience, resulting in 45 phenotypes 

(Table S3). By only considering participants with at least 90% of the phenotypes, we ended 

up with 656 participants (out of 725 participants). Similar to the HCP-YA dataset, we used 

the same 166 morphometric measures generated by the FreeSurfer recon-all procedure from 

the HCP pipeline. Moreover, we considered T1 images of 0.8 mm resolution, which had been 

transformed to MNI152 space by FLIRT from the HCP PreFreesurfer pipeline. Each T1 

image was downsampled to 1mm, cropped to dimensions 160 x 192 x 160, and then divided 

by the mean value within each image following Peng et al. (2021). The processed T1 images 

will be used by a convolutional neural network for phenotypic prediction (Section 2.2). 

 

2.2. Data split for different analyses 

We performed two sets of analyses. First, we benchmarked meta-matching within the UK 

Biobank. Second, we translated predictive models from the UK Biobank to the HCP-YA and 

HCP-Aging datasets.  

 

2.2.1. Data split within UK Biobank  

For the UK Biobank analysis, we considered 36,461 participants with T1 structural MRI and 

67 phenotypes. As illustrated in Figure 1, we randomly split the data into a meta-training set 

comprising 26,573 participants with 33 phenotypes, as well as a meta-test set comprising 
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9,888 participants with 34 phenotypes. There was no overlap between the participants and 

phenotypes across the meta-training set and meta-test set.  

 

We further randomly split the meta-training set into a training set with 21,258 participants 

(80% of 26,573 participants) and a validation set with 5,315 participants (20% of 26,573 

participants). The validation set was used for tuning hyperparameters of the predictive 

models. 

 

For the meta-test set, we randomly split 9,888 participants into K participants (K-shot) and 

9,888− K participants, where K had a value of 10, 20, 50, 100, and 200. The group of K 

participants mimicked traditional small-N studies. Various trained models from the meta-

training set were translated to the meta-test set using the K participants. The models were 

then evaluated using the remaining N – K participants. Each random K-shot split was 

repeated 100 times to ensure stability.  

 

2.2.2. Data split scheme for cross-dataset analyses 

To translate predictive models from the UK Biobank to other datasets, we considered HCP-

YA and HCP-Aging datasets. As illustrated in Figure 2, the meta-training set comprised all 

36,461 participants with all 67 phenotypes from the UK Biobank dataset. The first meta-test 

set consisted of 1,017 participants with 35 phenotypes from the HCP-YA dataset. The second 

meta-test set consisted of 656 participants with 45 phenotypes from the HCP-Aging dataset. 

There was no overlap between the participants and phenotypes across the meta-training and 

meta-test sets because they were from totally different datasets. For the meta-training set, we 

further randomly split it into a training set with 29,169 participants (80% of 36,461 

participants) and a validation set with 7,292 participants (20% of 36,461 participants). The 

validation set was used for tuning hyperparameters of the predictive models. 

 

For the HCP-YA dataset, we randomly split 1,017 participants into K participants (K-shot) 

and 1,017− K participants, where K had a value of 10, 20, 50, 100, and 200. Various trained 

models from the meta-training set were translated to the meta-test set using the K 

participants. The models were then evaluated using the remaining N – K participants. Each 

random K-shot split was repeated 100 times to ensure stability. The same procedure was 

applied to the HCP-Aging dataset.  
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Figure 1. Data split scheme for within-UK Biobank analysis. The UK Biobank dataset 

was divided into a meta-training set comprising 26,573 participants and 33 phenotypes, as 

well as a meta-test set comprising 9,888 participants and 34 other phenotypes. There was no 

participant or phenotype overlap between meta-training and meta-test sets. The meta-test set 

was, in turn, split into K participants (K = 10, 20, 50, 100 and 200) and remaining 9,888 − K 

participants. The group of K participants mimicked studies with traditionally common sample 

sizes. Various trained models from the meta-training set were translated to the meta-test set 

using the K participants. The models were then evaluated using the remaining N – K 

participants. This random split was repeated 100 times for robustness. 

 

 

Figure 2. Data split scheme for cross-dataset analysis. The meta-training set comprised 

36,461 UK Biobank participants and 67 phenotypes. The first meta-test set comprised 1,017 

HCP-YA participants and 35 phenotypes. The second meta-test set comprised 656 HCP-

Aging participants and 45 phenotypes. Each meta-test was, in turn, split into K participants 

(K = 10, 20, 50, 100 and 200) and remaining participants. The group of K participants 

mimicked studies with traditionally common sample sizes. Various trained models from the 

meta-training set were translated to the meta-test set using the K participants. The models 
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were then evaluated using the remaining N – K participants. This random split was repeated 

100 times for robustness. 

 

 

2.3. Predictive models 

Figure 3 provides an overview of the different approaches we will compare. Across all 

approaches, we z-normalize each non-imaging phenotype to have zero mean and unit 

variance across participants. More specifically, in the case of the meta-training set, the mean 

and standard deviation were computed using all the participants to apply the z-normalization. 

In the case of the meta-test set, for each phenotype, the mean and standard deviation were 

computed from the K participants and subsequently carried over to the full meta-test set 

comprising the K participants and the remaining N – K test participants. 

 

Following our previous study (He et al., 2022), statistical difference between algorithms was 

evaluated using a bootstrapping approach (more details in Supplementary Methods S2). More 

specifically, we will compare both meta-matching variants (Sections 2.3.3 and 2.3.4) with the 

two baselines (Sections 2.3.1 and 2.3.2). Multiple comparisons were corrected using a false 

discovery rate (FDR) of q < 0.05. FDR was applied to all K-shots, across all comparisons and 

both evaluation metrics (Pearson’s correlation and COD). 

 

2.3.1. Baseline 1: Elastic net 

As a baseline, we used thickness and volumetric measures as input features to predict 

individuals’ phenotypes using elastic net (Figure 3). Elastic net is a linear regression model 

with an L1 lasso and L2 ridge regularization terms (Zou et al., 2005). Here, we chose elastic 

net as a baseline because previous studies have suggested that elastic net yielded strong 

prediction performance in phenotypic prediction for brain MRI data (Pervaiz et al., 2020; 

Peng et al., 2021; Ooi et al., 2022).  

 

Given K participants from the meta-test set, the morphometric (volumetric and thickness) 

measures were z-normalized based on the mean and standard deviation computed from the K 

participants. We note that the morphometric measures of the N – K participants were also z-

normalized using the mean and standard deviation computed from the K participants. The z-

normalized morphometric measures were used as input to train the elastic net model on the K 

participants. 
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More specifically, we performed five-fold cross-validation on the K participants with 

different combinations of the hyperparameters 𝜆1 and 𝜆2 (which controlled the strength of the 

L1 and L2 regularizations). We used coefficient of determination (COD) to evaluate 

prediction performance to choose the best hyperparameters for 𝜆1 and 𝜆2 across the 5-fold 

cross-validation.  

 

The best hyperparameters 𝜆1 and 𝜆2 were then used to train the elastic net model using all K 

participants. The trained elastic net model was then applied to the remaining N – K test 

participants in the meta-test set. Pearson’s correlation and the COD were used to evaluate 

prediction performance. This procedure was repeated for each of the 100 random splits.  

 

 

 

Figure 3. Overview of different approaches. We considered two baselines: elastic net and 

classical transfer learning. We proposed two meta-matching variants: meta-matching finetune 

and meta-matching stacking. 
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2.3.2. Baseline 2: Classical transfer learning 

To perform classical transfer learning, we first trained a simple fully convolutional network 

(SFCN) introduced by Peng et al., (2021) in the meta-training set to jointly predict all the 

available meta-training phenotypes.  

 

The input to the SFCN is the mean-normalized T1 image affine transformed to MNI152 

standard space (Section 2.1). The SFCN’s convolutional neural network (CNN) architecture 

was based on VGG (Simonyan et al., 2014) and used a fully convolutional structure (Long et 

al., 2015). We chose the SFCN given its simplicity and top performance in the Predictive 

Analysis Challenge 2019 of brain age prediction (Peng et al., 2021). In the original study 

(Peng et al., 2021), the last layer comprised 40 nodes that represented the predicted 

probability of the age interval that a participant's age falls into. Here, we modified the last 

layer to predict P phenotypes simultaneously. P is equal to 33 in the within-UK Biobank 

analysis (Figure 1) and P is equal to 67 in the cross-dataset analysis (Figure 2). 

 

Figure 4 shows the overall network architecture. The 3D CNN consisted of several 

convolutional blocks for feature extraction. Each feature extraction block (except the last 

block) consisted of a 3D convolutional layer, a batch normalization layer, a max pooling 

layer, and a ReLU activation layer. The last block was similar to the previous blocks but 

without the max pooling layer. The feature maps from the last block were fed into an average 

pooling layer (green in Figure 4).  

 

Since the elastic net utilized ICV as one of the features, while affine registration of T1 to 

MNI152 space removed this information, for the comparison to be comparable, we 

concatenated z-normalized ICV with the outputs of the average pooling layer. More 

specifically, for both meta-training and meta-test sets, ICV of each participant was z-

normalized using the mean and standard deviation computed from the participants of the 

training set within the meta-training set. The concatenated features were then fed into a 

dropout layer and then went through a 3D convolution layer with 1x1x1 kernel size to 

produce the final outputs.  

 

The hyperparameters of the CNN were empirically determined based on the meta-training set 

from the within UK Biobank analysis (Figure 1A). Both within-UK Biobank and cross-

dataset analyses used the same set of hyperparameters. More details about model architecture 
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and hyperparameters (for example, the number of blocks, number of channels per block, and 

kernel size per block) can be found in Supplementary Methods S1. 

 

 
 

Figure 4. Network architecture of the Simple Fully Convolutional Neural Network 

(SFCN) model (Peng et al., 2021) adapted to the current study. In the original study (Peng 

et al., 2021), the last layer comprised 40 nodes that represented the predicted probability of 

the age interval that a participant's age falls into. Here, we modified the last layer to predict P 

phenotypes simultaneously. 

 

The same transfer learning procedure was used for both within-UK Biobank analysis and 

cross-dataset analysis (Figure 3). The only difference is that the within-UK Biobank analysis 

used a CNN model trained on 26,573 participants and 33 phenotypes, while the cross-dataset 

analysis used a CNN model trained on 36,461 participants and 67 phenotypes. 

 

To perform transfer learning, we first replaced the last layer of the 3D CNN model (trained 

on the meta-training set) with a new convolutional layer with 1x1x1 kernel size and one 

output node. The new convolutional layer was initialized with random weights. For each 

meta-test phenotype, the last two layers of the CNN model were then finetuned on K 

participants in the meta-test set, while the weights of the remaining layers were frozen.  

 

The optimal learning rate was determined using grid search and five-fold cross-validation on 

the K participants. The optimal learning rate was then used to perform fine-tune a final model 

using all K participants. For both the five-fold cross validation and the final round of fine-

tuning, the maximum fine-tuning epochs was set to be 50 with 80% of K participants used for 

training and 20% used to evaluate validation loss for early stopping, to reduce the possibility 

of overfitting. This final trained model was evaluated in the remaining N – K participants in 

the meta-test set. Pearson’s correlation and COD were used to evaluate the prediction 

performance. This procedure was repeated for each of the 100 random splits.  
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2.3.3. Meta-matching finetune 

As an alternative to transfer learning, we considered the “meta-matching finetune” approach 

(Figure 3) introduced in our previous study (He et al., 2022). To explain the meta-matching 

finetune procedure in the current study, we will focus on the experimental setup for the 

within-UK Biobank analysis.  

 

Recall from Section 2.3.2 that we have trained a 3D CNN model to predict 33 phenotypes in 

the meta-training set from the UK Biobank. Given K participants from the meta-test set, we 

applied the CNN yielding 33 predictions. For each meta-test phenotype (out of 34 

phenotypes), we calculated the accuracy (COD) with each of the 33 predictions for the K 

participants. The output node of the CNN model with the best COD was chosen, while the 

remaining 32 nodes were removed. The last two layers of the CNN model were finetuned 

using the K participants, while the weights of the remaining layers were frozen.  

 

Therefore, the difference between meta-matching finetune and classical transfer learning 

(Section 2.3.2) is the initialization of the last layer. Classical transfer learning randomly 

initialized the last layer, while meta-matching finetune initialized the last layer by choosing 

the “closest” phenotypic prediction model from the meta-training set.  

 

The optimal learning rate for finetuning was determined using grid search and five-fold 

cross-validation on the K participants. The optimal learning rate was then used to perform 

fine-tune a final model using all K participants. For both the five-fold cross validation and the 

final round of fine-tuning, the maximum fine-tuning epochs was set to be 50 with 80% of K 

participants used for training and 20% used to evaluate validation loss for early stopping, to 

reduce the possibility of overfitting.  

 

This final trained model was evaluated in the remaining N – K participants in the meta-test 

set. Pearson’s correlation and COD were used to evaluate the prediction performance. This 

procedure was repeated for each of the 100 random splits. The same procedure was used for 

both within-UK Biobank analysis and cross-dataset analysis (Figure 3). The only difference 

was that the within-UK Biobank analysis used a CNN model trained on 26,573 participants 

and 33 phenotypes, while the cross-dataset analysis used a CNN model trained on 36,461 

participants and 67 phenotypes. 
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2.3.4. Meta-matching stacking 

We also considered the meta-matching stacking approach (Figure 3) introduced in our 

previous study (He et al., 2022). To explain the meta-matching stacking procedure in the 

current study, we will again focus on the experimental setup for the within-UK Biobank 

analysis.  

 

Recall from Section 2.3.2 that we have trained a 3D CNN model to predict 33 phenotypes in 

the meta-training set from the UK Biobank. Given K participants from the meta-test set, we 

applied the CNN yielding 33 predictions. For each meta-test phenotype (out of 34 

phenotypes), we calculated the accuracy (COD) with each of the 33 predictions for the K 

participants, and selected the top M predictions. The value of M was set to be the minimum 

of K and 33 to reduce overfitting. For example, when K = 20, then M was set to be 20. When 

K = 50, then M was set to be 33.  

 

A stacking procedure was then performed (Wolpert, 1992; Breiman, 1996), in which a kernel 

ridge regression (KRR) model was trained on K participants using the M predictions as input 

to predict the meta-test phenotype. Similar to our previous study (He et al., 2022), we used 

the correlation kernel. The hyperparameter λ was tuned using grid search and five-fold cross-

validation on the K participants. The optimal λ was then used to train a final KRR model 

using all K participants.  

 

The trained KRR model was then applied to the remaining N – K participants in the meta-test 

set. Pearson’s correlation and the COD were used to evaluate the prediction performance. 

This procedure was repeated for each of the 100 random splits.  

 

2.4. Deep neural network implementation 

The deep neural network was implemented using PyTorch (Paszke et al., 2017) and 

computed on NVIDIA RTX 3090 GPUs with CUDA 11.0. More details can be found in 

Supplementary Methods S1. 

 

2.5. Model interpretation 

To illustrate how meta-matching models can be interpreted, similar to our previous study  

(He et al., 2022), we utilized Haufe transform (Haufe et al., 2014) to interpret the meta-
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matching stacking prediction of Rey Auditory Verbal Learning Test (RAVLT) score and 

Montreal Cognitive Assessment (MOCA) in the HCP-Aging dataset for K = 100 participants. 

 

For a predictive model with T1 structural MRI as input and phenotype as output, Haufe 

transform produces a feature importance value for each voxel. A positive (or negative) 

predictive feature value implied that higher T1 intensity was related to predicting greater (or 

lower) phenotypic score. 

 

More specifically, for each phenotype, Haufe transform was calculated as the covariance 

between the phenotype’s prediction based on the meta-matching stacking model and the 

intensity value of each T1 voxel (across the 100 participants), yielding a 3D volume. The 3D 

volumes were averaged across the 100 random sampling of 100 participants, and were then 

visualized in MNI152 space. 

 

2.6. Data and code availability 

The code can be found here (https://github.com/ThomasYeoLab/CBIG/XXX). Two co-

authors (Lijun An and Chen Zhang) reviewed the code before merging it into the GitHub 

repository to reduce the chance of coding errors. The trained models for meta-matching are 

also publicly available 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/N

WULAN2024_MMS). 

 

This study used publicly available data from the UK Biobank 

(https://www.ukbiobank.ac.uk/), as well as the HCP-YA and HCP-Aging datasets 

(https://www.humanconnectome.org/). Data can be accessed via data use agreements.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.12.31.573801doi: bioRxiv preprint 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/NWULAN2024_MMS
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/NWULAN2024_MMS
https://www.ukbiobank.ac.uk/
https://www.humanconnectome.org/
https://doi.org/10.1101/2023.12.31.573801
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. Results 

3.1. Meta-matching outperforms elastic net and transfer learning within the UK Biobank 

Four approaches (elastic net, classical transfer learning, meta-matching finetune, and meta-

matching stacking) were applied to the UK Biobank to predict 34 meta-test phenotypes. The 

models were trained or adapted based on K participants and then evaluated on the remaining 

9,888 – K participants (Figure 1).  

 

Figures 5A and 6A show the Pearson’s correlation and COD respectively, averaged across all 

34 meta-test phenotypes. Each boxplot represents 100 random samplings of K participants. 

Figures 5B and 6B show the outcomes of the statistical tests obtained by a bootstrapping 

procedure (Supplementary Methods S2). The actual p values are reported in Table S6. Colors 

indicate effect sizes of differences (Cohen’s D) between approaches. 

 

In the case of Pearson’s correlation (Figure 5), both meta-matching finetune and meta-

matching stacking greatly outperformed elastic net and classical transfer learning for all 

values of K. Meta-matching stacking was statistically better than meta-matching finetune for 

K ≥ 100. 

 

In the case of COD (Figure 6), both meta-matching finetune and meta-matching stacking 

greatly outperformed elastic net for all values of K. For K ≤ 20, classical transfer learning 

was numerically better but not statistically better than meta-matching stacking. From K ≥ 50, 

meta-matching stacking was numerically better than transfer learning with statistical 

significance from K = 100 onwards.  

 

On the other hand, for K = 10, classical transfer learning was numerically better than meta-

matching finetune, while meta-matching finetune was better than classical transfer learning 

for remaining other values of K with large effect sizes (light green in Figure 6B). We note 

that there was no statistical test between meta-matching finetune and classical transfer 

learning because of the huge computational cost of the two approaches, so no bootstrapping 

was performed for either approach. 

 

Another relevant point is that COD for all approaches were negative for K = 10. COD was 

positive for meta-matching finetune for K = 20 onwards, and positive for meta-matching 
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stacking for K = 50 onwards. This suggests that absolute prediction accuracy (i.e., COD) is 

difficult even with meta-learning or transfer learning, when the sample size is very small.  

 

Overall, meta-matching was better than elastic net for all values of K for both evaluation 

metrics (Pearson’s correlation and COD). On the other hand, meta-matching compared 

favorably with respect to transfer learning for all values of K for Pearson’s correlation and for 

larger values of K for COD.  
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Figure 5. Meta-matching compared favorably with elastic net and direct transfer 

learning in terms of Pearson’s correlation within the UK Biobank. (A) Phenotypic 

prediction performance (Pearson’s correlation) averaged across 34 meta-test phenotypes in 

the UK Biobank. X-axis is the number of participants in the meta-test set of the UK Biobank 

used to train an elastic net or adapt the pretrained model from the meta-training set of the UK 

Biobank. Each boxplot shows the distribution of performance over 100 repetitions of 

sampling K participants. (B) Statistical difference between the prediction performance 

(Pearson’s correlation) of baseline methods and meta-matching algorithms. P values were 

calculated based on a two-sided bootstrapping test. ‘*’ indicates statistical significance after 

multiple comparisons correction (FDR q < 0.05). ‘ns’ indicates statistical test did not survive 

FDR correction. We note that there was no statistical test between meta-matching finetune 
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and classical transfer learning because the bootstrapping procedure was too expensive for the 

two methods. Colors indicate effect sizes of differences (Cohen’s D) between approaches. 

Light green color indicates effect size ≥ 0.8. Dark green color indicates 0 ≤ effect size < 0.8. 

Dark pink indicates -0.8 < effect size < 0. Light pink color indicates effect size ≤ -0.8. There 

is no color for the comparison between meta-matching finetune and stacking since they are 

both our proposed methods.  

 

 

 
 

Figure 6. Meta-matching compared favorably with elastic net and direct transfer 

learning in terms of coefficient of determination (COD) within the UK Biobank. (A) 
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Phenotypic prediction performance (COD) averaged across 34 meta-test phenotypes in the 

UK Biobank. X-axis is the number of participants in the meta-test set of the UK Biobank 

used to train an elastic net or adapt the pretrained model from the meta-training set of the UK 

Biobank. Each boxplot shows the distribution of performance over 100 repetitions of 

sampling K participants. (B) Statistical difference between the prediction performance (COD) 

of baseline methods and meta-matching algorithms. P values were calculated based on a two-

sided bootstrapping test. ‘*’ indicates statistical significance after multiple comparisons 

correction (FDR q < 0.05). ‘ns’ indicates statistical test did not survive FDR correction. We 

note that there was no statistical test between meta-matching finetune and classical transfer 

learning because the bootstrapping procedure was too expensive for the two methods. Colors 

indicate effect sizes of differences (Cohen’s D) between approaches. Light green color 

indicates effect size ≥ 0.8. Dark green color indicates 0 ≤ effect size < 0.8. Dark pink 

indicates -0.8 < effect size < 0. Light pink color indicates effect size ≤ -0.8. There is no color 

for the comparison between meta-matching finetune and stacking since they are both our 

proposed methods.  

 

3.2. Meta-matching outperforms baselines in the HCP-YA dataset 

The previous experiment results (Figures 5 and 6) suggest that meta-matching can perform 

well when transferring within the same dataset (UK Biobank). We now evaluate the 

generalizability of meta-matching across datasets, using the HCP-YA and HCP-Aging 

datasets (Figure 2) in the following section and next section respectively.  

 

Figures 7A and 8A show the Pearson’s correlation and COD respectively, averaged across all 

35 meta-test phenotypes in the HCP-YA dataset. Each boxplot represents 100 random 

samplings of K participants. Figures 7B and 8B show the outcomes of the statistical tests 

obtained by a bootstrapping procedure (Supplementary Methods S2). The actual p values are 

reported in Table S7. Colors indicate effect sizes of differences (Cohen’s D) between 

approaches. 

 

In the case of Pearson’s correlation (Figure 7), both meta-matching finetune and meta-

matching stacking were better than elastic net and classical transfer learning for all values of 

K with large effect sizes (light green in Figure 7B). Meta-matching finetune was statistically 

better than elastic net for K = 20 and 50.  Meta-matching stacking was statistically better than 

classical transfer learning for K ≥ 20. For this cross-dataset analysis, meta-matching finetune 

was generally numerically better, but not statistically better than meta-matching stacking.   

 

In the case of COD (Figure 8), both meta-matching finetune and meta-matching stacking 

greatly outperformed elastic net for K ≤ 100. For K ≤ 50, classical transfer learning was 
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numerically better than meta-matching stacking with large effect sizes (light pink in Figure 

8B), but the differences were not significant. From K ≥ 100, meta-matching stacking was 

numerically better, but not statistically better than transfer learning.  

 

On the other hand, for all values of K, meta-matching finetune was numerically better than 

classical transfer learning with large effect sizes (light green in Figure 8B). We note that there 

was no statistical test between meta-matching finetune and classical transfer learning because 

of the huge computational cost of the two approaches, so no bootstrapping was performed for 

either approach. 

 

Another relevant point is that COD for all approaches were negative (or almost zero) for K = 

10, and only positive for meta-matching finetune for K ≥ 20, suggesting that absolute 

prediction accuracy (i.e., COD) is difficult even with meta-learning or transfer learning when 

the sample size is very small.  

 

Overall, meta-matching compared favorably with respect to elastic net for all values of K for 

both evaluation metrics (Pearson’s correlation and COD). On the other hand, meta-matching 

compared favorably with respect to transfer learning for all values of K for Pearson’s 

correlation and for K ≥ 100 for COD.  
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Figure 7. Meta-matching compared favorably with elastic net and direct transfer 

learning in terms of Pearson’s correlation when translating models from UK Biobank to 

HCP-YA dataset. (A) Phenotypic prediction performance (Pearson’s correlation) averaged 

across 35 meta-test phenotypes in the HCP-YA dataset. X-axis is the number of participants 

from the HCP-YA dataset used to train an elastic net or adapt the pretrained model from the 

meta-training set. Each boxplot shows the distribution of performance over 100 repetitions of 

sampling K participants. (B) Statistical difference between the prediction performance 

(Pearson’s correlation) of baseline methods and meta-matching algorithms. P values were 

calculated based on a two-sided bootstrapping test. ‘*’ indicates statistical significance after 
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multiple comparisons correction (FDR q < 0.05). ‘ns’ indicates statistical test did not survive 

FDR correction. We note that there was no statistical test between meta-matching finetune 

and classical transfer learning because the bootstrapping procedure was too expensive for the 

two methods. Colors indicate effect sizes of differences (Cohen’s D) between approaches. 

Light green color indicates effect size ≥ 0.8. Dark green color indicates 0 ≤ effect size < 0.8. 

Dark pink indicates -0.8 < effect size < 0. Light pink color indicates effect size ≤ -0.8. There 

is no color for the comparison between meta-matching finetune and stacking since they are 

both our proposed methods.  
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Figure 8. Meta-matching compared favorably with elastic net and direct transfer 

learning in terms of coefficient of determination (COD) when translating models from 

UK Biobank to HCP-YA dataset. (A) Phenotypic prediction performance (COD) averaged 

across 35 meta-test phenotypes in the HCP-YA dataset. X-axis is the number of participants 

from the HCP-YA dataset used to train an elastic net or adapt the pretrained model from the 

meta-training set. Each boxplot shows the distribution of performance over 100 repetitions of 

sampling K participants. (B) Statistical difference between the prediction performance (COD) 

of baseline methods and meta-matching algorithms. P values were calculated based on a two-

sided bootstrapping test. ‘*’ indicates statistical significance after multiple comparisons 

correction (FDR q < 0.05). ‘ns’ indicates statistical test did not survive FDR correction. We 

note that there was no statistical test between meta-matching finetune and classical transfer 

learning because the bootstrapping procedure was too expensive for the two methods. Colors 

indicate effect sizes of differences (Cohen’s D) between approaches. Light green color 

indicates effect size ≥ 0.8. Dark green color indicates 0 ≤ effect size < 0.8. Dark pink 

indicates -0.8 < effect size < 0. Light pink color indicates effect size ≤ -0.8. There is no color 

for the comparison between meta-matching finetune and stacking since they are both our 

proposed methods.  

 

 

3.3. Meta-matching outperforms baselines in the HCP-Aging dataset 

Figures 9A and 10A show the Pearson’s correlation and COD respectively, averaged across 

all 45 meta-test phenotypes in the HCP-Aging dataset. Each boxplot represents 100 random 

samplings of K participants. Figures 9B and 10B show the outcomes of the statistical tests 

obtained by a bootstrapping procedure (Supplementary Methods S2). The actual p values are 

reported in Table S8. Colors indicate effect sizes of differences (Cohen’s D) between 

approaches. 

 

In the case of Pearson’s correlation (Figure 9), both meta-matching finetune and meta-

matching stacking greatly outperformed elastic net and classical transfer learning for most 

values of K. Meta-matching stacking was statistically better than elastic net for K ≥ 20. Meta-

matching stacking was statistically better than classical transfer learning for all values of K. 

For this cross-dataset analysis, meta-matching stacking was numerically better, but not 

statistically better than meta-matching finetune.   

 

In the case of COD (Figure 10), both meta-matching finetune and meta-matching stacking 

greatly outperformed elastic net for all values of K. For K ≤ 20, classical transfer learning 

was numerically better, but not statistically better than meta-matching stacking. From K ≥ 50, 

meta-matching stacking was numerically better than transfer learning with statistical 

significance achieved for K ≥ 100. 
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On the other hand, for all values of K, meta-matching finetune was numerically better than 

classical transfer learning with large effect sizes (light green in Figure 10B). We note that 

there was no statistical test between meta-matching finetune and classical transfer learning 

because of the huge computational cost of the two approaches, so no bootstrapping was 

performed for either approach. 

 

Another relevant point is that COD for all approaches were negative (or almost zero) for K = 

10, and only positive for meta-matching finetune for K ≥ 20, suggesting that absolute 

prediction accuracy (i.e., COD) is difficult even with meta-learning or transfer learning when 

the sample size is very small.  

 

Overall, meta-matching was better than elastic net for all values of K for both evaluation 

metrics (Pearson’s correlation and COD). On the other hand, meta-matching compared 

favorably with respect to transfer learning for all values of K for Pearson’s correlation and for 

K ≥ 50 for COD. 
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Figure 9. Meta-matching compared favorably with elastic net and direct transfer 

learning in terms of Pearson’s correlation when translating models from UK Biobank to 

HCP-Aging dataset. (A) Phenotypic prediction performance (Pearson’s correlation) 

averaged across 45 meta-test phenotypes in the HCP-Aging dataset. X-axis is the number of 

participants from the HCP-Aging dataset used to train an elastic net or adapt the pretrained 

model from the meta-training set. Each boxplot shows the distribution of performance over 

100 repetitions of sampling K participants. (B) Statistical difference between the prediction 

performance (Pearson’s correlation) of baseline methods and meta-matching algorithms. P 

values were calculated based on a two-sided bootstrapping test. ‘*’ indicates statistical 

significance after multiple comparisons correction (FDR q < 0.05). ‘ns’ indicates statistical 

test did not survive FDR correction. We note that there was no statistical test between meta-
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matching finetune and classical transfer learning because the bootstrapping procedure was 

too expensive for the two methods. Colors indicate effect sizes of differences (Cohen’s D) 

between approaches. Light green color indicates effect size ≥ 0.8. Dark green color indicates 

0 ≤ effect size < 0.8. Dark pink indicates -0.8 < effect size < 0. Light pink color indicates 

effect size ≤ -0.8. There is no color for the comparison between meta-matching finetune and 

stacking since they are both our proposed methods.  

 

 

Figure 10. Meta-matching compared favorably with elastic net and direct transfer 

learning in terms of coefficient of determination (COD) when translating models from 

UK Biobank to HCP-Aging dataset. (A) Phenotypic prediction performance (COD) 
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averaged across 45 meta-test phenotypes in the HCP-Aging dataset. X-axis is the number of 

participants from the HCP-Aging dataset used to train an elastic net or adapt the pretrained 

model from the meta-training set. Each boxplot shows the distribution of performance over 

100 repetitions of sampling K participants. (B) Statistical difference between the prediction 

performance (COD) of baseline methods and meta-matching algorithms. P values were 

calculated based on a two-sided bootstrapping test. ‘*’ indicates statistical significance after 

multiple comparisons correction (FDR q < 0.05). ‘ns’ indicates statistical test did not survive 

FDR correction. We note that there was no statistical test between meta-matching finetune 

and classical transfer learning because the bootstrapping procedure was too expensive for the 

two methods. Colors indicate effect sizes of differences (Cohen’s D) between approaches. 

Light green color indicates effect size ≥ 0.8. Dark green color indicates 0 ≤ effect size < 0.8. 

Dark pink indicates -0.8 < effect size < 0. Light pink color indicates effect size ≤ -0.8. There 

is no color for the comparison between meta-matching finetune and stacking since they are 

both our proposed methods.  

 

 

3.4. Different improvements on different phenotypes 

Overall, meta-matching improved prediction on average across multiple phenotypes. 

However, we note that the improvement was not uniform across phenotypes. Figure 11 

illustrates the prediction performance (Pearson’s correlation) of three non-brain-imaging 

phenotypes for K = 100 participants.  In the case of the HCP-YA dataset (Figure 11A), meta-

matching finetune compared favorably with other approaches for predicting dexterity and 

language, but only achieved similar prediction accuracy on emotion. In the case of HCP-

Aging dataset (Figure 11B), meta-matching stacking compared favorably with other 

approaches for predicting fear somatic and anger aggression, but only achieved similar 

prediction accuracy on perceived rejection.  

 

Given that meta-matching exploits correlations among phenotypes, we hypothesized that 

variability in prediction improvements was driven by inter-phenotype correlations between 

the meta-training and meta-test sets. Figure 12 shows the performance improvement 

(Pearson’s correlation) of meta-matching stacking as a function of the maximum correlation 

between each meta-test phenotype and meta-training phenotype in the within-UK Biobank 

analysis. As expected, meta-test phenotypes with stronger correlations with at least one meta-

training phenotype led to greater prediction improvement with meta-matching. We note that 

this analysis required meta-training and meta-test phenotypes to be present in the same 

participants, so could only be performed for the within-UK Biobank analysis.  
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Figure 11. Examples of prediction performance (Pearson’s correlation) for different 

non-brain-imaging phenotypes in the (A) HCP-YA and (B) HCP-Aging datasets in the case 

of K = 100 participants. 
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Figure 12. Prediction improvements were driven by correlations between meta-training 

and meta-test phenotypes. Vertical axis shows the prediction improvement of meta-

matching stacking with respect to elastic net baseline under the 100-shot scenario. Prediction 

performance was measured using Pearson’s correlation. Each dot represents a meta-test 

phenotype. Horizontal axis shows each test phenotype’s top absolute Pearson’s correlation 

with phenotypes in the meta-training set. Test phenotypes with stronger correlations with at 

least one training phenotype led to greater prediction improvement with meta-matching. 

 

3.5. Interpreting meta-matching stacking with Haufe transform 

Figure 13 illustrates the feature importance maps obtained from the Haufe transform for 

predicting the Rey Auditory Verbal Learning Test (RAVLT) score and Montreal Cognitive 

Assessment (MOCA) in the HCP-Aging dataset for K = 100. We note that a higher RAVLT 

or MOCA scores indicated better cognition. 

 

Since we are using T1 intensity for prediction, linking the feature importance values to the 

underlying biology needs to be done with care. For both RAVLT and MOCA, positive 

feature importance values were observed in the ventral diencephalon and the third ventricle 

(left panels of Figures 9A and 9B), which suggested that higher T1 value led to prediction of 

better cognition (higher RAVLT and MOCA scores). By observing participants who 

performed poorly (right panels of Figures 9A and 9B) and participants who performed well 

(middle panels of Figures 9A and 9B), we inferred that the prediction might be partially 

driven by enlarged ventricles in participants with worse cognition (arrows in Figure 9), 

yielding a lower T1 value in the region.    

 

Similarly, we observed negative feature importance values at or near the left and right 

hippocampi, which suggested that higher T1 value led to prediction of worse cognition (lower 

RAVLT and MOCA scores). By observing participants who performed poorly (right panels 
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of Figures 9A and 9B) and participants who performed well (middle panels of Figures 9A 

and 9B), we inferred that the prediction might be partially driven by gray matter loss at or 

near the hippocampi, yielding a higher T1 value in the region, consistent with the aging 

literature (Apostolova et al., 2012; Ritter et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Feature importance of meta-matching stacking in the HCP-Aging dataset for 

K = 100 participants. (A) Feature importance map of meta-matching stacking from 

predicting Rey Auditory Verbal Learning Test (RAVLT) score. Left panel shows the feature 

importance map on the MNI152 template. A positive (or negative) feature importance value 
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indicates that higher intensity was associated with predicting greater (or lower) phenotypic 

values. Middle panel shows an example participant with high RAVLT score. Right panel 

shows an example participant with low RAVLT score. (B) Feature importance map of meta-

matching stacking from predicting the Montreal Cognitive Assessment (MOCA) score. Left 

panel shows the feature importance map on the MNI152 template. Middle panel shows an 

example participant with high MOCA score. Right panel shows an example participant with 

low MOCA score. 
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4. Discussion 

In this study, we adapted two meta-matching variants from our previous study (He et al., 2022) 

to translate prediction models trained from large-scale T1-weighted anatomical MRI datasets 

to predict new non-brain-imaging phenotypes in small-scale T1-weighted anatomical MRI 

datasets. We demonstrated that meta-matching finetune and meta-matching stacking greatly 

outperformed classical elastic net and classical transfer learning when the number of 

participants ≤ 200. Meta-matching performed well even when translating from a large-scale 

dataset (UK Biobank) to a small dataset (HCP-YA or HCP-Aging) with different scanners, 

acquisition, demographics, and pre-processing.  

 

Across all analyses in the UK Biobank, HCP-YA and HCP-Aging datasets (Figures 5 to 10), 

meta-matching consistently outperformed elastic net across both evaluation metrics 

(correlation and COD). It is worth noting that the elastic net utilized thickness and volumetric 

measures generated by FreeSurfer, instead of the intensity values of T1 images (like meta-

matching and transfer learning). Given that we are working in the small sample regime with K 

≤ 200 training participants, we believe that the small number of less than 200 pre-defined 

morphometric features together with elastic net provides a powerful classical baseline.  

 

When using Pearson’s correlation as an evaluation metric, transfer learning performed poorly 

with substantially worse performance than both meta-matching variants and even elastic net 

(Figures 5, 7 and 9). On the other hand, when using COD as an evaluation metric, transfer 

learning was more competitive with respect to the other approaches (Figures 6, 8 and 10). More 

specifically, transfer learning was numerically better (but not statistically better) than meta-

matching stacking for small values of K, while meta-matching stacking was numerically better 

(and sometimes statistically better) than transfer learning for larger values of K.  

 

On the other hand, meta-matching finetune outperformed transfer learning for most values of 

K even in the case of COD. We note that meta-matching finetune is similar to classical transfer 

learning in the sense that the last two layers of the CNN were finetuned. However, while 

transfer learning initialized the last layer of the CNN from scratch (Section 2.3.2), meta-

matching finetune retained the weights leading to the output node that predicted the K meta-

test participants the best (for each meta-test phenotype). This further supported the importance 

of the meta-matching approach. 
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Overall, meta-matching stacking was the best for the Pearson’s correlation metric, while meta-

matching finetune was the best for COD. Pearson’s correlation is a measure of relative 

prediction performance, while COD is a measure of absolute prediction performance (Finn et 

al., 2015; Scheinost et al., 2019; Poldrack et al., 2020). Therefore, researchers more focused on 

relative prediction performance might consider using meta-matching stacking, while 

researchers more focused on absolute prediction performance might consider using meta-

matching finetune. Furthermore, all approaches achieved negative or close to zero COD when 

K ≤ 20, suggesting that absolute prediction remains out of reach in the very small sample 

regime. 

 

Meta-matching models can be interpreted at the level of imaging features by using the Haufe 

transform (Haufe et al., 2014). To illustrate this procedure, we applied the Haufe transform 

(Haufe et al., 2014) to the translated meta-matching stacking models in the HCP-Aging dataset 

(Figure 13). For a given meta-test phenotype, Haufe transform was calculated as the covariance 

between the phenotype’s prediction based on the meta-matching stacking model and the 

intensity value of each T1 voxel (across K participants), yielding a 3D volume. We found that 

poorer cognitive performance in terms of worse RAVLT and MOCA scores were related to 

greater gray matter atrophy and larger ventricular size, which is consistent with the aging 

literature (Apostolova et al., 2012; Ritter et al., 2017). Meta-matching finetune can be 

interpreted in a similar fashion. 

 

In addition to interpreting meta-matching models at the level of brain-imaging features, the 

meta-matching models can also be interpreted at the level of phenotypic traits. In the case of 

meta-matching stacking, this can again be achieved using the Haufe transform. To illustrate 

this, let us consider the pretrained 3D CNN model from the UK Biobank with 67 prediction 

outputs. This 3D CNN model can be translated to predict a new meta-test phenotype using K 

participants from the meta-test set using the stacking procedure. The Haufe transform can then 

be calculated as the covariance (across the K participants) between the phenotype’s prediction 

from the final stacking model and the 67 inputs to the stacking model, yielding a vector of 

length 67, which indicates the relative importance of the original 67 meta-training phenotypes 

for predicting the meta-test phenotype. 
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Because meta-matching exploits correlations between the phenotypes of meta-training and 

meta-test sets, the amount of prediction improvement strongly relied on the strongest 

correlations between the meta-test phenotype and meta-training phenotypes (Figure 12). 

Consequently, not all phenotypes might benefit from meta-matching. However, we note that 

this limitation exists for all meta-learning and transfer learning algorithms – model transfer is 

easier if the source and target domains are more similar; performance will degrade if source 

and target domains are very different.  

 

In future work, we seek to aggregate more and diverse large-scale population-level datasets 

targeting different populations, including children, lifespan and a variety of disorders. These 

additional datasets will not only provide a larger diversity of phenotypic measures but will 

also allow greater sampling of different MRI scanners, acquisition parameters and 

demographics. By pretraining on a wider range of datasets, we hope to see further 

improvements in the meta-matching approaches. 
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5. Conclusion 

In this study, we showed that meta-matching can be used to translate T1-based phenotypic 

prediction models from large source datasets to predict new phenotypes in small target 

datasets. By exploiting correlations between phenotypes, meta-matching greatly 

outperformed elastic net and classical transfer learning, both when translating models within 

the same dataset, as well as translating models across datasets with different MRI scanners, 

acquisition protocols and demographics. Overall, our results demonstrated the versatility of 

the meta-matching framework.   
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