FINAL_010424

ATVB 2023/319710_R1

1 2 3 4 5	Endothelial cell flow-me	ediated quiescence is temporally regulated and utilizes the cell cycle inhibitor p27
6 7		
8	Natalie T Tanke ^a , Zigin	g Liu ^b , Michaelanthony T Gore ^b , Pauline Bougaran ^b , Mary B
9		^p , Arya Sharma ^b , Morgan Oatley ^b , Tianji Yu ^b , Kaitlyn Quigley ^b ,
10	Sarah Vest ^b ,	Jeanette Gowen Cook ^c , and Victoria L Bautch ^{a,b,d,#}
11 12	^a Curriculum in Cell Biolog	gy and Physiology, The University of North Carolina at Chapel
13	Hill, Chapel Hill, North Ca	
14	^b Department of Biology,	The University of North Carolina at Chapel Hill, Chapel Hill,
15	North Carolina 27599, U	
16 17	•	istry and Biophysics, The University of North Carolina at North Carolina 27599, USA
18		e, The University of North Carolina at Chapel Hill, Chapel Hill,
19	North Carolina 27599, US	• • •
20		
21 22		
23	#Corresponding author:	Victoria L Bautch, PhD
24		Professor of Biology
25		Department of Biology, CB#3280
26 27		University of North Carolina at Chapel Hill Chapel Hill, NC 27599 USA
27		Email: bautch@med.unc.edu
29		
30		
31	Running head: Regulation	n of flow-induced endothelial quiescence depth
32 33		
34	Words 7,195	
35	Figures: 8	
36	Supplemental Figures: 6	Key Bessymess Table
37 38	Supplemental Tables: 2 + References: 65	Rey Resources Table
39	Abstract: 265 words	
40		
41		
42 43	Keywords: Endothelial or	ell, laminar shear stress, quiescence depth, p27, cell cycle,
43 44	zebrafish, <i>HES1</i> , <i>ID3</i>	β ,
45		

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

46 **ABSTRACT**

47

48 Background: Endothelial cells regulate their cell cycle as blood vessels remodel and

49 transition to quiescence downstream of blood flow-induced mechanotransduction.

50 Laminar blood flow leads to quiescence, but how flow-mediated quiescence is

51 established and maintained is poorly understood.

52

53 *Methods:* Primary human endothelial cells were exposed to laminar flow regimens and

54 gene expression manipulations, and quiescence depth was analyzed via time to cell

55 cycle re-entry after flow cessation. Mouse and zebrafish endothelial expression patterns

were examined via scRNA seq analysis, and mutant or morphant fish lacking p27 were

57 analyzed for endothelial cell cycle regulation and *in vivo* cellular behaviors.

58

59 *Results:* Arterial flow-exposed endothelial cells had a distinct transcriptome, and they

60 first entered a deep quiescence, then transitioned to shallow quiescence under

- 61 homeostatic maintenance conditions. In contrast, venous-flow exposed endothelial cells
- 62 entered deep quiescence early that did not change with homeostasis. The cell cycle
- 63 inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated

64 guiescence, and expression levels positively correlated with guiescence depth. p27 loss

in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with

loss of quiescence. *HES1* and *ID3*, transcriptional repressors of p27 upregulated by

- arterial flow, were required for quiescence depth changes and the reduced p27 levels
- 68 associated with shallow quiescence.
- 69

70 *Conclusions:* Endothelial cell flow-mediated quiescence has unique properties and

temporal regulation of quiescence depth that depends on the flow stimulus. These

findings are consistent with a model whereby flow-mediated endothelial cell quiescence

depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and

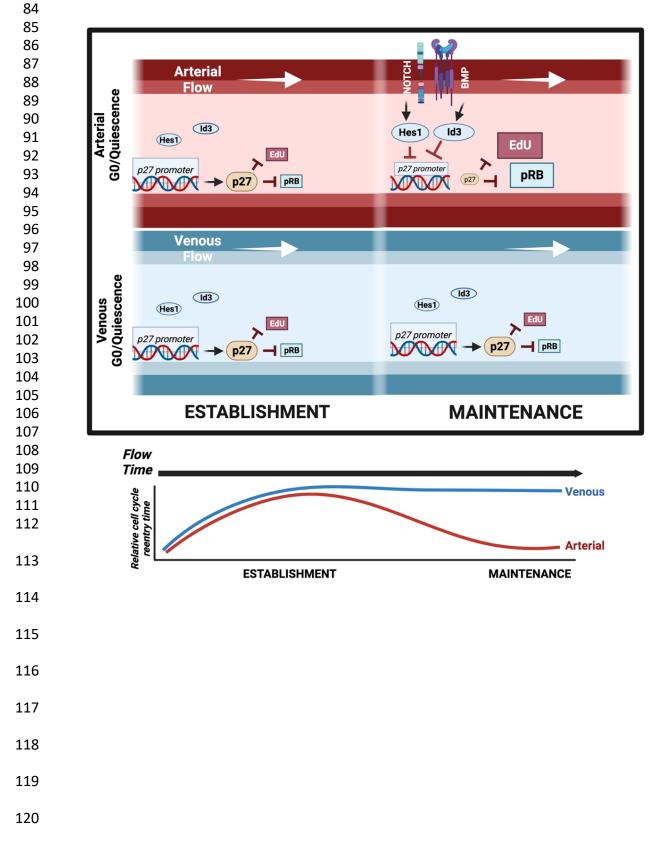
74 ID3. The findings are important in understanding endothelial cell quiescence mis-

regulation that leads to vascular dysfunction and disease.

76

77

78


79

80

81

Tanke et al_ATVB 2023/319710_R1

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

121 HIGHLIGHTS

- Different quiescence stimuli lead to distinct transcriptional and functional
- 123 quiescence profiles in endothelial cells
- p27 is required for endothelial cell quiescence and depth is temporally regulated
- in a flow stimulus-dependent manner that correlates with p27 levels and flow-
- regulated repressors *HES1* and *ID3*
- p27 is expressed in endothelial cells according to flow magnitude *in vivo* and is
- 128 functionally required for cell cycle regulation and sprouting *in vivo*

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

129 INTRODUCTION

130

131	Developmental blood vessel network expansion via sprouting angiogenesis leads
132	to remodeling and homeostasis; this transition depends on endothelial cell responses to
133	incoming signals, including laminar shear stress provided by blood flow. Laminar flow
134	leads to endothelial cell cytoskeletal realignment and dramatically reduces
135	proliferation ^{1–6} . Transcriptional profiles change with flow exposure ^{7,8} , and signaling
136	pathways such as Notch and BMP are upregulated to promote alignment and vascular
137	homeostasis ^{9,10} . Vascular homeostasis significantly represses endothelial cell
138	proliferation and sets up a quiescent (G_0) state that can be released by angiogenic
139	growth factors such as VEGF-A ^{7,11,12} ; ^{13–15} . How flow-mediated vascular quiescence is
140	established and maintained is poorly understood, yet it is critical to blood vessel
141	function.
142	
143	Quiescence is influenced by cell type in non-endothelial cells ^{16,17} , and
144	quiescence stimuli such as growth factor deprivation or contact inhibition also influence
145	quiescence parameters ¹⁸ . Different quiescence stimuli lead to transcriptional profiles
146	that are partially overlapping but have strong unique signatures ^{16,18} ; however, how
147	these differences affect quiescence properties is poorly understood, and it is not known
148	how endothelial cells differentially respond to quiescence cues.
149	
1.0	

promote and CDK inhibitors that block cell cycle progression¹⁹. In cycling cells, proteins

are post-translationally modified and/or carry destabilization sequences that lead to

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

153	rapid gain and loss of function required for passage through the cell cycle ^{20,21} . In
154	contrast, quiescence is characterized by transcriptional repression of cell cycle
155	activators and often by upregulation of cell cycle inhibitors ^{18,19} . Thus, cell cycle reentry
156	is delayed upon removal of the stimulus, and reentry time is used as a proxy for
157	quiescence depth ^{22,23} . Quiescence depth is variable; for example, quiescent fibroblasts
158	have delayed cell cycle reentry that positively correlates with temporal exposure to the
159	quiescence stimulus ^{22,23} . Non-homogeneous quiescence depth is associated with
160	muscle stem cells that respond to injury-induced circulating cues by entering a shallow
161	quiescence called "G $_0$ alert" that allows for prompt proliferation in response to a
162	subsequent injury ²⁴ . Moreover, spontaneous quiescence was recently described,
163	whereby epithelial cells enter quiescence absent obvious environmental or
164	pharmacological cues, suggesting that quiescence entry has a stochastic component
165	and/or complex inputs ^{16,25} . Thus, how quiescence is established, maintained, and exited
166	is complex.

167

We examined properties of flow-induced endothelial cell guiescence and found 168 that arterial laminar flow-induced endothelial cell guiescence had a distinct 169 170 transcriptional profile and functionally exhibited dynamic temporal regulation of 171 quiescence depth, while venous flow did not exhibit the same temporal regulation of 172 quiescence depth. Temporal changes in endothelial cell quiescence depth positively 173 correlated with expression of the cell cycle inhibitor p27, and p27 repression and temporal regulation of guiescence depth under arterial flow reguired HES1 and ID3, 174 175 targets of the Notch and BMP signaling pathways. A requirement for p27 for endothelial

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

176	quiescence in vivo and correlation of p27 expression with flow magnitude was revealed.
177	Thus, flow-mediated endothelial cell quiescence is novel and complex, and regulation of
178	quiescence depth correlates with flow stimulus and likely influences physiological and
179	pathological vascular quiescence responses.
180 181 182 183 184	MATERIALS AND METHODS Data availability
185	Data associated with this study are available from the corresponding author upon
186	reasonable request. Key Resources Table is in Supplementary File.
187	
188	Cell culture
189	HUVEC and HAEC were cultured according to the manufacturer's
190	recommendations in EBM2 (Lonza#CC-3162) with growth factors (Lonza#CC-3162,
191	EGM2) at 37°C, 5% CO ₂ and used between passages 2-4 (Key Resources Table, cell
192	culture). Critical experiments were replicated with multiple lots of HUVEC and with
193	HAEC.
194	
195	Microscopy
196	Imaging was performed using confocal microscopy (Olympus Fluoview FV3000,
197	IX83) and a UPlanSApo 40x silicone-immersion objective (NA 1.25), UPlanSApo 60x
198	oil-immersion objective (NA 1.40), or UPIanSApo 100x oil-immersion objective (NA
199	1.40). Images were acquired with Fluoview FV31S-SW software and imaging analysis

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

200	was completed in FIJI ²⁶ . For each replicate within an experiment, images were acquired
201	at the same settings.

202

- 203 Endothelial Cell Transfection
- 204 HUVEC were grown to sub-confluency and treated with siRNAs (Key Resources
- Table, siRNA information) diluted in OptiMem (Gibco, #11058021) and Lipofectamine
- 206 3000 (ThermoFisher, #L3000015) according to manufacturer's protocol
- 207 (https://www.thermofisher.com/us/en/home/references/protocols/cell-
- 208 <u>culture/transfection-protocol/lipofectamine-2000.html</u>). Briefly, siRNA at 0.48 µM in Opti-
- MEM (31985-070, Gibco) and a 1:20 dilution of Lipofectamine in Opti-MEM were
- incubated separately at RT for 5 min, then combined and incubated at RT for 15 min.
- HUVEC were transfected at 80% confluency with siRNA at 37°C for 24h, then in 10 mL
- of fresh EGM-2. All experiments were initiated 48h following siRNA exposure.
- 213

214 Immunofluorescence and EdU labeling

Endothelial cells were fixed in 4% PFA (15713 (100504-940), VWR) at 37°C for 215 216 10 min, permeabilized in 0.1% Triton (T8787-100ML, Sigma) in PBS for 10 min at RT, 217 then blocked for 1h at RT in 5% NBCS (Gibco, #16010-159), antibiotic-antimycotic (Gibco, #15240062), 0.1% sodium azide (Sigma s2002-100G). Following 3X PBS 218 219 washes, cells were incubated in primary antibody/blocking solution and incubated for 220 24h at 4°C (Key Resources Table, antibodies), washed 3X with PBS and incubated in secondary antibody/blocking solution for 3h at RT in the dark (Key Resources Table, 221 222 antibodies). Slides were mounted with coverslips using Prolong Diamond Antifade

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

223	mounting media (P36961, Life Technology), sealed with nail polish, and stored at 4°C.
224	Glass-bottom Ibidi slides or well dishes were stored in 1X PBS. For all nuclear stains,
225	The DAPI channel was used as a nuclear mask, and nuclear fluorescence intensity was
226	measured for each cell per image field. Positive cells were defined as those above the
227	sensitivity threshold.
228	
229	EdU labeling was performed according to the Click-IT EdU 488, 594, or 647
230	protocol (Invitrogen, C10337). Cells were incubated in EdU for 30 min (quiescence
231	depth) or 1h at 37°C in 5% CO ₂ and fixed with 4% PFA for 10 min at RT.
232	
233	Quiescence Depth
234	Flow: HUVEC were cultured in EBM2 supplemented with 2% FBS, 1% antibiotic-
234 235	<u>Flow:</u> HUVEC were cultured in EBM2 supplemented with 2% FBS, 1% antibiotic- antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed
235	antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed
235 236	antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed to laminar flow for indicated times and shear levels using an Ibidi pump system (CC-
235 236 237	antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed to laminar flow for indicated times and shear levels using an Ibidi pump system (CC- 1090, Ibidi). Static (non-flow) control slides were seeded at lower densities and
235 236 237 238	antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed to laminar flow for indicated times and shear levels using an Ibidi pump system (CC- 1090, Ibidi). Static (non-flow) control slides were seeded at lower densities and incubated for 48h prior to fixation with 4% PFA. For western blot experiments, an orbital
235 236 237 238 239	antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed to laminar flow for indicated times and shear levels using an Ibidi pump system (CC- 1090, Ibidi). Static (non-flow) control slides were seeded at lower densities and incubated for 48h prior to fixation with 4% PFA. For western blot experiments, an orbital shaker (Hoefer Red Rotor Mixer Platform Shaker PR70-115V) was used as previously
235 236 237 238 239 240	antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed to laminar flow for indicated times and shear levels using an Ibidi pump system (CC- 1090, Ibidi). Static (non-flow) control slides were seeded at lower densities and incubated for 48h prior to fixation with 4% PFA. For western blot experiments, an orbital shaker (Hoefer Red Rotor Mixer Platform Shaker PR70-115V) was used as previously described ²⁷ . Flow-mediated quiescence depth experiments were performed after 16h or
235 236 237 238 239 240 241	antimycotic (Gibco, #15240062), and 1% Nystatin (Sigma, #N1638-20ML) and exposed to laminar flow for indicated times and shear levels using an Ibidi pump system (CC-1090, Ibidi). Static (non-flow) control slides were seeded at lower densities and incubated for 48h prior to fixation with 4% PFA. For western blot experiments, an orbital shaker (Hoefer Red Rotor Mixer Platform Shaker PR70-115V) was used as previously described ²⁷ . Flow-mediated quiescence depth experiments were performed after 16h or 72h of laminar flow exposure by incubation for 30 min with EdU, fixation at indicated

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

245	Contact: HUVEC were seeded in a 6-well plate at 1.2 X 10 ⁶ cells/well (high
246	density) or 0.2 X 10^6 cells/well (low density) and incubated for 24h. A p1000 pipette tip
247	was used to scrape the cell monolayer and create a gap, as previously described ²⁸ ,
248	cells were incubated with EdU for 30 min or fixed at 0h, 2h, 5h, or 8h post-scratching in
249	4% PFA for 10 min at RT, then visualized for EdU and/or stained for antibodies as
250	described (Supp. Table S2, S3). Cells within $1000\mu m$ of the scratch edge were imaged
251	(Supp. Fig. 2a).
252	
253	Cell Axis Ratio
254	Cell shape and alignment were measured as described previously ⁷ . Cells were
255	stained for VE-cadherin upon fixation, and measured at the longest axis of cell divided
256	by shortest axis to calculate the cell axis ratio, with the longest cell axis being the
257	direction of flow.
258	
259	Western Blot Analysis
260	Western blot analysis was performed according to ²⁹ with modifications. Briefly,
261	cells were scraped into PBS, centrifuged at 13000 rpm (4°C, 20 min), resuspended in
262	RIPA buffer with protease/phosphatase inhibitor (5872S, Cell Signaling), then added to
263	sample loading buffer with dithiothreitol (R0861, Thermo Fisher) and boiled for 10 min.
264	Samples (10ug) were separated on 10% SDS-PAGE gel (161-0183, BioRad), then

transferred to a membrane, incubated in primary antibodies (overnight, 4° C) (**Key**

266 **Resources Table, antibodies**), washed 3X in PBST and stained with secondary

antibody in One-Block (RT, 1h) (Key Resources Table, antibodies). Immobilon Forte

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

268	HRP Substrate (WBLUF0100, 769 Millipore Sigma) was added for 30 sec, and blots
269	were exposed for 2 sec ChemiDoc XRS with Chemi High Resolution setting.
270	
271	RNA
272	RT-qPCR: Scraped cell pellets were resuspended in TRIzol (15596018,
273	Invitrogen). cDNA was generated from 1ug RNA using iScript reverse transcription kit
274	(Bio-Rad, #1708891) and diluted 1:3 in water. qRT–PCR was performed using iTaq
275	Universal SYBR Green SuperMix (Bio-Rad, #1725121). SYBR Green real-time PCR
276	was performed in triplicate on the Applied Biosystems QuantStudio 6 Flex Real-Time
277	PCR System (Key Resources Table, qPCR primers). For quantification, relative
278	expression of each gene to $\beta\mbox{-actin}$ in each sample was calculated by 2^ (CT of
279	gene–CT of β -actin). Statistical significance was determined by unpaired Student's T-
280	test.
281	
282	Bulk RNA seq: 3 Ibidi slides/condition were pooled, and stranded libraries were

prepared using KAPA mRNA HyperPrep Kit (7961901001, Roche) and sequenced 283 using NovaSeq S1 at the UNC Sequencing Core. Data was analyzed as described 284 285 previously ³⁰. Briefly, 2–3×10⁷ 50 bp paired-end reads per sample were obtained and 286 mapped to the human genome GRCh38 with STAR using default settings³¹. Quality of 287 sequencing reads was confirmed with FastQC before mapping. Mapping rate was over 288 87% for all samples (Supp. Table S2), and gene (GEO GSE213323) expression was determined with Htseq-count using the union mode³². Genes with low expression were 289 filtered out (total raw counts in all samples <10), differential expression analysis was 290

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

291	performed with DESeq2 ³³ using default settings in R, and lists of differentially
292	expressed genes were obtained (p adjusted <0.1). Gene ontology analysis was
293	performed using enrichGO function in the R package clusterProfiler. All gene ontology
294	terms shown in this study have a corrected P value <0.1.
295	
296	Mouse scRNAseq: A mouse scRNAseq dataset (Liu et al, in preparation) (GEO
297	GSE216594) previously generated using enriched endothelial cells from the mouse ear
298	at P8 (postnatal day 8) was analyzed for Cdkn1b levels in endothelial cells.
299	
300	Quiescence Score
301	The endothelial quiescence score was calculated using the formula: QS =
302	$1/n\sum_{i=1}^{n} QSUi - 1/m\sum_{j=1}^{m} QSDj$ (QS = Quiescence Score, QSU = QS of upregulated genes
303	under quiescence (total n genes), QSD = QS of downregulated genes under quiescence
304	(total m genes)). Selected genes were upregulated or downregulated relative to static
305	
	samples. All genes were normalized for sequencing depth and scaled for expression as
306	samples. All genes were normalized for sequencing depth and scaled for expression as previously described ⁸ . To generate the gene list used for endothelial quiescence score
306 307	

in scRNAseq HUVEC (accession code GSE151867)⁸, and genes that were upregulated

310 with different quiescence stimuli in non-endothelial cells¹⁸ and upregulated with flow in

311 scRNAseq data. The epithelial quiescence score was developed by the Barr lab as

312 previously described, and utilized an independent gene list generated using non-

transformed human epithelial cell data^{16,34}.

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

314 Zebrafish

- 315 Zebrafish (*Danio rerio*) were housed in an IACUC approved facility³⁰.
- 316 *Tg(fli:LifeAct-GFP*) was a gift from Dr. Wiebke Herzog (Key Resources Table,
- 317 animals). The *cdkn1bb* CRISPR line was designed as previously described (Key
- 318 **Resources Table**, genetically modified animals)³⁵. One-cell stage zebrafish embryos
- 319 were injected with 1nl injection solution into the cytoplasm. Fin clips were used to
- 320 identify possible founders with gene-flanking primers PCR (F-

321 CTCAATAACTGCTGCGAGTG, R- GATGAAGGGGGGAAAGAGG, R-

- 322 GCCATCGAGTCAAACCAG).
- 323

Morphant fish were obtained by randomly injecting 2.5–5 ng of non-targeting

325 (NT) (5'-CCTCTTACCTCAGTTACAATTTATA-3', GeneTools, LLC) or cdkn1bb (5'-

326 ACGGTCAAAATTCAAAGCACATACC 3', GeneTools, LLC) MO into *Tg(fli:LifeAct-GFP*)

- embryos at the one-cell stage. Fish were grown in E3 medium at 28.5°C to 36hpf.
- 328

329 Embryos were prepared for imaging as previously described³⁰. Briefly,

dechorionated embryos were fixed overnight in ice-cold 4% PFA at 4 °C, rinsed 2X in

PBS, mounted using Prolong Diamond Antifade mounting medium (P36961, Life

332 Technology), and coverslip sealed with petroleum jelly.

333

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

335 Zebrafish FACs Sorting

336	FACs sorting was as previously described ³⁶ . Briefly, embryos were euthanized in
337	1X Tricaine, dissociated with 100mg/mL collagenase in 1X PBS and 0.25% trypsin and
338	harsh mechanical pipetting, and incubated (30°C, 10 min). The dissociation reaction
339	was neutralized with DMEM + 10% FBS and cells were centrifuged (5000 rcf, 5 min).
340	Pellets were resuspended in 500 μL DMEM/FBS and filtered using a 30 μm cell strainer.
341	Samples were analyzed on the AttuneX (UNC Flow Cytometry Core), and GFP+ cells
342	from <i>fli:LifeAct-GFP</i> embryos were collected into TRIzol.
343	
344	Statistics
345	Unpaired Students T-Test was used to determine statistical significance with two
346	experimental groups, and One-Way ANOVA with Tukey correction was used for
347	experimental groups \geq 3. X ² test was performed to compare distribution across 2 groups.
348	All statistical tests and graphs were made using the Prism 9.4.1 software (GraphPad
349	Software) and are described in relevant Figure Legends.
350	
351 352	RESULTS
352 353	Laminar flow-exposed endothelial cells have a distinct transcriptional profile
354	Endothelial cells exposed to laminar shear stress exhibit alignment to the flow
355	vector and reduced proliferation, hallmarks of vascular homeostasis or quiescence ^{1,2,5} .
356	To determine whether endothelial cells exposed to laminar flow were transcriptionally
357	quiescent, we utilized a published quiescence score formula generated in non-
358	endothelial epithelial cells ³⁴ and applied it to a scRNAseq dataset we previously

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

359	generated in primary endothelial cells (HUVEC, human umbilical vein endothelial cells)
360	exposed to laminar flow ⁸ . This analysis revealed that endothelial cells exposed to
361	homeostatic laminar flow (here called Flow-Maintenance (Flow-M) (15d/cm ² , 72h)) had
362	a significantly higher score than non-flowed control endothelial cells (Fig. 1A). Previous
363	transcriptional characterization revealed 9 clusters primarily separated by flow condition,
364	and the cluster containing the majority of cells exposed to flow (Flow Cluster 1) had a
365	significantly higher epithelial quiescence score compared to the equivalent control
366	cluster (Static Cluster 1), indicating that this quiescence score positively correlates with
367	flow-exposed endothelial cells predicted to be quiescent. Quiescence score
368	comparisons among minor flow clusters showed heterogeneity relative to Flow Cluster
369	1, and a similar comparison of static clusters also revealed heterogeneity relative to
370	Static Cluster 1, indicating that distinct clusters exhibit quiescence heterogeneity. As
371	predicted, Flow Cluster 2, Static Cluster 2, and Mix Cluster (endothelial cells from flow
372	and static conditions), previously defined as proliferative populations ⁸ , had a
373	significantly reduced quiescence score (Fig. 1A).
374	
375	We next used the scRNA sea dataset to generate an independent endothelial

We next used the scRNA seq dataset to generate an independent endothelial quiescence score algorithm. Since a hallmark of cellular quiescence is downregulation of proliferation markers and upregulation of cell cycle inhibitors¹⁸, this score was primarily generated using expression levels of cell cycle genes that were down- or upregulated in endothelial cells exposed to homeostatic laminar flow (Flow-M) (**Supp. Table 1**). The endothelial quiescence score was then applied to the dataset to verify that the score predicted the relationships. Consistent with the epithelial score, Flow

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

Cluster 1 had a significantly higher quiescence score compared to Static Cluster 1, and the proliferation-associated clusters associated had significantly lower scores (Fig. 1B). These findings indicate that endothelial cells exposed to homeostatic laminar flow (Flow-M) are in a transcriptionally quiescent cell cycle state.

386

387 Non-endothelial cells exposed to different guiescence stimuli have unique transcriptional profiles^{16,18}, so we hypothesized that the mode of guiescence induction 388 affects the guiescence score of endothelial cells. Application of the endothelial 389 390 quiescence score algorithm to HUVEC bulk RNAseq data showed significant increases 391 under flow and high density compared to static and low-density conditions, respectively 392 (Fig. 1C), and these relationships held when the epithelial guiescence score algorithm 393 was applied (Supp. Fig. 1A). Venn diagrams revealed that homeostatic laminar flow 394 (Flow-M) and contact inhibition have both distinct and shared transcriptional changes in 395 endothelial cells, with approximately 25% of regulated genes shared for up- and down-396 regulated categories (upregulated: 21.7% (494/2272) flow and 24.3% (494/2030) density shared genes; down-regulated 25.1% (573/2282) flow and 23.7% (573/2415) 397 398 density shared genes) (Supp. Fig. 1B). Further analysis of highly differentially 399 expressed genes revealed only one overlapping gene (CCDC190) that was 400 downregulated between flow and high-density conditions, and no genes were highly 401 upregulated with both flow and high density conditions, indicating that the guiescence profiles of endothelial cells exposed to extended laminar flow or high density are largely 402 403 distinct (Supp. Fig. 1C-F). Further analysis revealed that expression of cell cycle 404 activators was down-regulated regardless of guiescence induction stimulus, while cell

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

405	cycle inhibitor expression showed an increased trend with high density but not with
406	homeostatic flow (Fig. 1D-E). Thus, endothelial cells respond to homeostatic laminar
407	flow exposure with a distinct quiescence transcriptional profile compared to high
408	density-induced quiescence that includes differences in how cell cycle inhibitors are
409	regulated, suggesting unique properties of flow-mediated endothelial cell quiescence.
410	
411	Shallow quiescence depth characterizes endothelial cells exposed to extended
412	laminar flow
413	Quiescence depth, as defined by time to cell cycle reentry upon stimulus
414	removal, varies in non-endothelial cells ^{22–24} . Because cell cycle inhibitor expression was
415	not upregulated in endothelial cells exposed to laminar flow, we hypothesized that they
416	are in a relatively shallow quiescence state. We assessed quiescence depth by
417	measuring cell cycle reentry time after quiescence stimulus removal, via EdU labeling
418	and pRB (phospho-retinoblastoma protein) expression (Supp. Fig. 2A) ^{37,38} . EdU labels
419	cells in S-phase, and phosphorylation releases RB from E2F and permits progression
420	through the G_1 -S checkpoint and proliferation ^{38,39} . Endothelial cells exposed to
421	homeostatic laminar flow (Flow-M) or contact inhibition had significantly reduced EdU-
422	labeled (Fig. 2A-B, D-E) and pRB+ cells (Fig. 2A, C, D, F; Supp. Fig 2B-C) at the end
423	of the flow or contact inhibition period, consistent with previously published work ^{7,12,40} .
424	HUVEC released from homeostatic flow (Flow-M) significantly increased EdU-labeled
425	and pRB+ cells within 2h of flow cessation, while release from contact inhibition only
426	showed significant increases in EdU-labeling and pRB reactivity 8h post-release (Fig.
427	2A-F, Supp. Fig. 2B-C), and HAEC (human aortic endothelial cells) showed similar

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

428	stimulus-dependent differences in quiescence depth (Supp. Fig. 2D-G). Thus,
429	endothelial cells exposed to homeostatic laminar flow (Flow-M) are less deeply
430	quiescent compared to contact-inhibited cells, independent of endothelial subtype.
431	
432	Cell cycle inhibitor p27 expression correlates with quiescence depth and is
433	required for flow-mediated quiescence
434	The cell cycle inhibitor p27 (CDKN1B) is often upregulated with quiescence in
435	non-endothelial cells ^{41–43} , so we analyzed endothelial p27 expression and found a
436	highly significant decrease in CDKN1B RNA expression and p27+ HUVEC after
437	exposure to homeostatic Flow-M (Fig. 3A-C; Supp. Fig 3A,C). In contrast, we
438	confirmed that p27 RNA and protein levels significantly increased in contact inhibited
439	HUVEC ⁴⁰ (Fig. 3D-F; Supp. Fig. 3B-C), and HAEC also had reduced p27+ cells after
440	exposure to homeostatic Flow-M (Supp. Fig. 3D-E). Taken together, these findings
441	show that p27 expression positively correlates with quiescence depth in endothelial
442	cells, independent of endothelial subtype.
443	
444 445	We interrogated p27 function in endothelial flow-mediated quiescence via siRNA
446	knockdown (KD) and found that p27 depletion and exposure to homeostatic flow (Flow-
447	M) significantly increased EdU-labeling and staining for Ki67, a marker of cells in
448	S/G ₂ /M ⁴⁴ , over controls (Fig. 4A-B; Supp. Fig. 3F-H). Transcriptional profiling of
449	quiescent endothelial cells depleted for p27 under homeostatic flow or high density
450	revealed little overlap in the profiles of genes up- or down-regulated between conditions
451	(upregulated: 9.0% (12/133) flow and 8.6% (12/139) density shared genes; down-

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

452	regulated 13.4% (18/134) flow and 0.4% (18/313) density shared genes) (Supp. Fig.
453	4A). Further analysis of highly differentially expressed genes revealed no overlap
454	between p27 depleted cells and controls in either condition, and gene ontology (GO)
455	comparison revealed no shared terms in either condition (Supp. Fig. 4B-I). These
456	findings indicate that p27 is required for endothelial cell flow-mediated quiescence and
457	affects transcriptional quiescence programs in a quiescence stimulus-dependent
458	manner.

459

460 p27 regulates endothelial quiescence parameters in vivo

461 We asked whether p27 affects vascular processes in vivo and hypothesized that 462 p27 loss would deregulate the endothelial cell cycle and angiogenic expansion. We 463 generated a *cdkn1bb* (zebrafish p27 gene) mutant zebrafish line and found significant increases in expression of cell cycle regulators Ki67 (miKi67), PCNA (pcna) and 464 CyclinD1 (ccnd1) in enriched endothelial cell populations from mutant embryos that had 465 466 reduced p27 (*cdkn1bb*) (Fig. 4C-F). Analysis of vascular sprouting in *cdkn1bb*^{-/-} fish 467 revealed increased ectopic sprouts in the trunk vasculature that was phenocopied by 468 morphant fish depleted for *cdkn1bb* (Fig. 4G-H, K-L). Regional quantification of ectopic sprouts along the anterior-posterior axis revealed that mutant or morphant embryos had 469 more ectopic sprouts in the anterior position (Fig. 4I-J, M), suggesting that effects of 470 471 p27 loss are more associated with mature vascular regions that are likely transitioning to homeostasis. Thus, p27 is required for endothelial cell cycle regulation and proper 472 473 sprouting *in vivo* and likely affects guiescence establishment.

474

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

475	Flow-mediated quiescence depth is temporally regulated in endothelial cells
476 477	Since p27 is required for flow-mediated endothelial cell quiescence despite very
478	low expression at 72h (Flow-M), we hypothesized that p27 levels temporally fluctuated
479	with flow and found that p27+ cells significantly increased 16h after flow initiation,
480	consistent with another study ⁴⁵ , and then decreased over time to almost undetectable
481	levels at 72h (Fig. 5A-B, Supp. Fig. 5A). Another CIP-KIP family cell cycle inhibitor,
482	p21, showed a similar decrease in expression even earlier in the flow time course (Fig.
483	5A,C, Supp. Fig. 5B), and Ki67+ cells decreased to almost undetectable levels over
484	flow time (Fig. 5A,D; Supp. Fig. 5C), consistent with the conclusion that endothelial
485	cells leave the cell cycle and become quiescent by 16-24h of laminar flow, then
486	subsequently down-regulate p27 levels while maintaining quiescence.
487	
488	We then asked whether endothelial cell quiescence depth was temporally

We then asked whether endothelial cell quiescence depth was temporally 488 regulated under laminar flow. After 16h of flow (flow establishment (Flow-E)), HUVEC 489 490 only showed significant EdU-labeling and pRB reactivity 8h post-flow, similar to cells released from contact inhibition and longer than the 2h cell cycle reentry time exhibited 491 492 by cells exposed to homeostatic flow (Flow-M) (Fig. 5E-G; Supp. Fig. 5D). HAEC also 493 displayed delayed cell cycle reentry post Flow-E, as measured by EdU+ labeling (Supp. 494 Fig. 5E-F). These findings correlate with temporal regulation of p27 levels over the flow 495 period and indicate that endothelial cells initially respond to laminar flow with p27 496 upregulation and establishment of a relatively "deep" guiescence (Flow-E) that over time becomes shallower, along with reduced levels of cell cycle inhibitors p27 and p21. 497

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

498	Consistent with this idea, endothelial cells were not aligned after 16h flow (Flow-E) but
499	were aligned by 72h (Flow-M) under our flow conditions (Supp. Fig. 5G-H).
500	
501	We further analyzed the relationship of endothelial quiescence and p27, via
502	single-cell image analysis of endothelial cells exposed to Flow-E or high density and
503	labeled with EdU and p27 reactivity at time points post-flow. Using a threshold for each
504	label, no EdU+/p27+ cells were observed. With time post-flow, p27+/EdU- cells
505	increased and then decreased while p27-/EdU+ cells increased, and with release from
506	contact inhibition similar trends showed that p27+/EdU- cells were replaced by p27-
507	/EdU+ cells over time (Fig. Supp. 5I-J). Functionally, endothelial cells with p27
508	depletion had elevated EdU labeling after 16h flow (Flow-E) (Fig. 5H-I), consistent with
509	a previous report ⁴⁵ . These findings indicate that endothelial cell quiescence depth
510	positively correlates with p27 levels during the transition from deep to shallow
511	quiescence, and that individual cells with low p27 expression become competent to
512	reenter the cell cycle.
513	
514	Transcriptional targets of flow-mediated endothelial cell signaling regulate p27
515	levels under laminar flow
516 517	To better understand how endothelial cell p27 may regulate quiescence depth,
518	we examined genes upregulated by laminar flow whose encoded proteins
519	transcriptionally repress p27. Both Notch and BMP signaling are upregulated with
520	laminar flow ^{2,9,10} , and HES1 and ID3 are downstream targets of these pathways that
521	transcriptionally repress CDKN1B expression via direct and indirect promoter

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

522	interactions ^{46,47} . Homeostatic flow (Flow-M) led to HES1 and ID3 RNA accumulation in
523	HUVEC (Supp. Fig. 6A-B), and depletion of either HES1 or ID3 RNA prevented the
524	normal decrease in p27+ cells under homeostatic laminar flow (Flow-M) in both HUVEC
525	and HAEC (Fig. 6A-B; Supp. Fig. 6C-E), indicating that these repressors are required
526	for flow-mediated reduction of p27 levels over time. Notch signaling is required for
527	endothelial flow-mediated quiescence ^{45,48} , and consistent with this relationship,
528	NOTCH1 or DLL4 depletion led to increased EdU+ cells after 16h flow (Flow-E)
529	compared to control (Supp. Fig. 6F-G).
530	
531	We hypothesized that HES1 and ID3 mediate the temporal changes to
532	endothelial cell quiescence depth and predicted that HES1 or ID3 depletion would
533	prevent transition from deep to shallow quiescence. HES1 and ID3 expression were
534	significantly increased in cells exposed to Flow-M vs. Flow-E (Fig. 6C-D), and either
535	HES1 or ID3 depletion significantly extended the time required for significant increases
536	in EdU+ and pRB+ endothelial cells after Flow-M (Fig. 6E-J, Supp. Fig. 6H-I),
537	suggesting that the normal temporal change to shallow quiescence was prevented
538	when these p27 repressors were depleted. These findings are consistent with the idea
539	that endothelial quiescence depth is temporally regulated from deep to shallow over
540	time in conjunction with laminar flow-mediated changes, and that p27 regulates the
541	transition downstream of the transcriptional repressors HES1 and ID3.
542 543	Endothelial cells exposed to venous laminar flow maintain deep quiescence
544	We asked whether temporal flow-mediated quiescence depth changes depended

on the flow vector (shear stress) magnitude, and we predicted that a lower magnitude of

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

546	flow characteristic of venous flow would be insufficient to repress p27 levels over time.
547	In contrast to arterial laminar flow (15d/cm ²), endothelial cell exposure to venous
548	laminar flow (5d/cm ²) for 72h (Flow-MV) did not decrease p27+ cells and had increased
549	p27 RNA expression over flow time (Flow-EV) (Fig. 7A-C). Consistent with p27 levels,
550	endothelial cells exposed to venous flow required extended time (8h) to significantly
551	increase EdU+ cells associated with cell cycle reentry (Fig. 7D-G) at both 16h (Flow-
552	EV) and 72h (Flow-MV), indicating that temporal quiescence depth regulation depends
553	on the magnitude of the flow stimulus.
554	
555	Since guiescence depth is linked to p27 levels in flow-exposed cultured cells, and
556	since flow manipulations are imprecise <i>in vivo</i> , we used p27 levels as a proxy for
556 557	
	since flow manipulations are imprecise <i>in vivo</i> , we used p27 levels as a proxy for
557	since flow manipulations are imprecise <i>in vivo</i> , we used p27 levels as a proxy for quiescence depth <i>in vivo</i> and hypothesized that venous vs. arterial comparisons would
557 558	since flow manipulations are imprecise <i>in vivo</i> , we used p27 levels as a proxy for quiescence depth <i>in vivo</i> and hypothesized that venous vs. arterial comparisons would reveal elevated venous p27 levels. Two endothelial scRNAseq datasets, one from
557 558 559	since flow manipulations are imprecise <i>in vivo</i> , we used p27 levels as a proxy for quiescence depth <i>in vivo</i> and hypothesized that venous vs. arterial comparisons would reveal elevated venous p27 levels. Two endothelial scRNAseq datasets, one from neonatal mouse skin generated by our lab and one from 24hpf zebrafish generated by

563 highly significantly increased in zebrafish venous clusters (Fig 7L-M, p=0.0001). These

564 findings show that p27 levels correlate with flow magnitude *in vivo* and suggest that

565 quiescence depth differs with flow magnitude in arteries vs. veins (**Fig. 8**).

566

567

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

568 **DISCUSSION**

Flow-mediated endothelial cell quiescence is important for vascular homeostasis 569 570 and proper barrier function, but how it is set up and maintained is not well-understood. 571 Here we show that endothelial cell quiescence varies with stimulus and flow magnitude 572 and is temporally regulated under flow. We also confirm a functional requirement for the 573 cell cycle inhibitor p27 and find that expression positively correlates with quiescence depth in cells and varies with flow magnitude in vivo. Temporal guiescence depth 574 575 changes under arterial flow require flow-regulated p27 repressors that are targets of 576 flow-mediated pathways such as Notch, suggesting complex regulation of endothelial 577 cell quiescence depth and a model of quiescence regulation (Fig. 8), and they reveal new critical control points for vascular homeostasis⁵⁰⁻⁵². 578

579

A newly generated endothelial quiescence score tracked well with endothelial 580 581 cells made quiescent via contact inhibition or homeostatic laminar flow (Flow-M), and 582 application of a published quiescence score developed using different cells and criteria³⁴ revealed similar trends, indicating that some aspects of vascular guiescence 583 584 are shared among cell types and conditions. However, further transcriptome analysis 585 revealed stimulus-dependent differences in guiescent endothelial cells, and only contact 586 inhibition broadly stimulated expression of cell cycle inhibitor genes. Further analysis 587 revealed that most differentially regulated genes were unique to the guiescence 588 stimulus, and comparison of highly regulated genes supported that transcriptional 589 profiles are largely unique to the stimulus used to induce guiescence in endothelial 590 cells, similar to patterns in fibroblasts¹⁸.

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

591	Endothelial cells under homeostatic arterial flow (Flow-M) reentered the cell cycle
592	shortly after flow cessation while contact released cells took significantly longer,
593	indicating distinct quiescence depths associated with quiescence stimulus. Temporal
594	analysis revealed that under Flow-M, that simulates arterial levels of shear stress,
595	endothelial cells first set up a deep quiescence that becomes shallow over flow time,
596	while under Flow-MV, that simulates venous flow, deep quiescence was established in
597	the same time frame but not changed over flow time. This provocative finding suggests
598	that deep quiescence may be important in venous vascular beds that are more poised
599	to proliferate ^{53,54} , to prevent inappropriate cell cycle reentry absent an angiogenic
600	stimulus. It is also in line with a recent study showing that injury-induced collateral
601	vessel expansion originates from arterial endothelial cells ⁵⁵ , and that the inverse
602	correlation of quiescence depth at homeostasis and flow magnitude is linked to
603	interstitial flow where elevated levels are associated with shallower quiescence in
604	fibroblasts ⁵⁶ . Taken together, these findings suggest complex regulation of quiescence
605	depth relative to flow stimulus.

606

Expression of the cell cycle inhibitor p27 positively correlated with quiescence
depth in all scenarios, including between homeostatic Flow-M (p27 levels low) vs.
contact inhibition (p27 levels high)⁴⁰; between arterial Flow-E (establishment) vs. FlowM (maintenance) flow times; and between flow magnitude, with lower magnitude
venous-type flow associated with elevated p27 levels and deep quiescence across time.
This strong correlation was mirrored *in vivo*, as p27 expression was elevated in
endothelial cells identified as venous vs. arterial in neonatal mouse ears and zebrafish

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

614	embryos. We confirmed that p27 is required to establish quiescence in cultured
615	endothelial cells ⁴⁵ independent of flow magnitude, and we found that p27 loss leads to
616	cell cycle mis-regulation and expanded sprouting in vivo, indicating that p27 regulates
617	quiescence establishment and depth in physiological angiogenesis.
618	
619	The temporal fluctuations in quiescence depth and p27 levels under arterial flow
620	link to <i>HES1</i> and <i>ID3</i> , flow-regulated ^{9,10} transcriptional repressors of p27 ^{57–59}
621	downstream of Notch and BMP signaling, respectively. Both repressors are functionally
622	required non-redundantly to dampen p27 expression as endothelial cells move from
623	quiescence establishment to maintenance and vascular homeostasis, and their
624	expression increases with flow time as cells transition from establishment to
625	maintenance. Quiescence depth under arterial flow is more profound in the absence of
626	either repressor, suggesting that increased Notch and BMP signaling during
627	establishment, and subsequent upregulation of these repressors leads to reduced p27
628	expression levels and a change from a deep to shallow endothelial quiescence depth
629	(Fig. 8). This model suggests that in addition to p27-mediated cell cycle regulation in
630	early vascular development to promote arterio-venous differentiation ^{45,60} , p27 is
631	important for subsequent modulation of endothelial quiescence depth.
632	
633	What might be an advantage to endothelial cells in a shallow quiescence state
634	under arterial flow maintenance (homeostasis) conditions? One possibility is protection

635 from premature permanent arrest, called senescence⁶¹. Quiescent fibroblasts eventually

636 undergo senescence⁶², and fibroblast *HES1* expression prevents premature

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

637	senescence63. Senescent arterial endothelial cells often express a senescence-
638	associated secretory phenotype (SASP) ⁶⁴ characterized by inflammatory cytokine
639	expression that contributes to endothelial dysfunction, leading to cardiovascular
640	disease ⁶⁵ . Thus, arterial endothelial cells in a shallow quiescence state may be
641	protected from inappropriate senescence, while the deeper quiescence of venous
642	endothelial cells may help prevent inappropriate cell cycle reentry. Thus, our findings
643	that endothelial flow-mediated quiescence regulation is linked to p27 suggest potential
644	new therapeutic targets for vascular dysfunction.
645	

646 **ACKNOWLEDGMENTS**

647

648 We thank members of the Bautch and Cook labs for their support and feedback, the

649 UNC High Throughput Sequencing Core for technical help, and the UNC Flow

650 Cytometry Core for FACs sorting. We thank BioRender for figure model generation.

651

652 AUTHOR CONTRIBUTIONS

653 Natalie T Tanke (NTT), Jeanette Gowen Cook (JGC), Victoria L Bautch (VLB)

654 conceptualized the work; NTT, Ziqing Liu (ZL), Michaelanthony T Gore (MTG), Pauline

Bougaran (PB), Allison Marvin (AM), Mary B Linares (MBL), Arya Sharma (AS), Morgan

656 Oatley (MO), Tianji Yu (TY), Kaitlyn Quigley (KQ), and Sarah Vest (SV) performed and

analyzed experiments. NTT and VLB wrote and edited the manuscript; VLB and JGC

658 provided study supervision and oversight.

659

660

661

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

662 FUNDING

- 663
- 664 This work was supported by grants from the National Institutes of Health (R35
- 665 HL139950 and GM129074 to VLB), the MiBioX T32 Training Grant (T32 GM 119999-
- 666 03), a Ruth L. Kirschstein Predoctoral Fellowship (1F31HL156527-01 to NTT), and an
- 667 American Heart Association Postdoctoral Fellowship (AHA829371 to MO).

668

669 **DECLARATION OF INTERESTS:** none

670

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

672 **REFERENCES**

- 673
- Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity.
 Cell Tissue Res. 2014;355(3):607-619. doi:10.1007/s00441-013-1779-3
- Baeyens N, Schwartz MA. Biomechanics of vascular mechanosensation and
 remodeling. *Mol Biol Cell*. 2016;27(1):7-11. doi:10.1091/mbc.E14-11-1522
- Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. *Biol Cell*.
 2017;109(4):139-161. doi:10.1111/boc.201600075
- Levesque MJ, Sprague EA, Schwartz CJ, Nerem RM. The Influence of Shear
 Stress on Cultured Vascular Endothelial Cells: The Stress Response of an
 Anchorage-Dependent Mammalian Cell. *Biotechnol Prog.* 1989;5(1):1-8.
 doi:10.1002/btpr.5420050105
- 5. Levesque MJ, Nerem RM, Sprague EA. Vascular endothelial cell proliferation in
 culture and the influence of flow. *Biomaterials*. 1990;11(9):702-707.
 doi:10.1016/0142-9612(90)90031-k
- 6. Ziegler T, Nerem RM. Effect of flow on the process of endothelial cell division.
 689 Arterioscler Thromb J Vasc Biol. 1994;14(4):636-643. doi:10.1161/01.atv.14.4.636
- Ruter DL, Liu Z, Ngo KM, X S, Marvin A, Buglak DB, Kidder EJ, Bautch VL.
 SMAD6 transduces endothelial cell flow responses required for blood vessel
 homeostasis. *Angiogenesis*. 2021;24(2):387-398. doi:10.1007/s10456-021-09777-7
- Liu Z, Ruter DL, Quigley K, Tanke NT, Jiang Y, Bautch VL. Single-Cell RNA
 Sequencing Reveals Endothelial Cell Transcriptome Heterogeneity Under
 Homeostatic Laminar Flow. *Arterioscler Thromb Vasc Biol.* 2021;41(10):2575 2584. doi:10.1161/ATVBAHA.121.316797
- 9. Yang J, Li X, Li Y, Southwood M, Ye L, Long L, Al-Lamki RS, Morrell NW. Id
 proteins are critical downstream effectors of BMP signaling in human pulmonary
 arterial smooth muscle cells. *Am J Physiol Lung Cell Mol Physiol*.
 2013;305(4):L312-L321. doi:10.1152/ajplung.00054.2013
- Jouve C, Palmeirim I, Henrique D, Beckers J, Gossler A, Ish-Horowicz D, Pourquie
 O. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in
 the presomitic mesoderm. *Development*. 2000;127(7):1421-1429.
 doi:10.1242/dev.127.7.1421
- 11. Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo
 Evans Blue uptake in the pig aorta. *Atherosclerosis*. 1973;17(3):401-417.
 doi:10.1016/0021-9150(73)90031-2

Tanke et al_ATVB 2023/319710_R1

- Schlereth K, Weichenhan D, Bauer T, Heumann T, Giannakouri E, Lipka D, Jaeger
 S, Schlesner M, Aloy P, Eils R, Plass C, Augustin HG. The transcriptomic and
 epigenetic map of vascular quiescence in the continuous lung endothelium. *eLife*.
 2018;7:e34423. doi:10.7554/eLife.34423
- Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NPH, Risau W,
 Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1
 as a major regulator of vasculogenesis and angiogenesis. *Cell*. 1993;72(6):835846. doi:10.1016/0092-8674(93)90573-9
- Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A,
 Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic
 sprouting utilizing endothelial tip cell filopodia. *J Cell Biol.* 2003;161(6):1163-1177.
 doi:10.1083/jcb.200302047
- Bernatchez PN, Soker S, Sirois MG. Vascular Endothelial Growth Factor Effect on Endothelial Cell Proliferation, Migration, and Platelet-activating Factor Synthesis Is
 Flk-1-dependent *. *J Biol Chem*. 1999;274(43):31047-31054.
 doi:10.1074/jbc.274.43.31047
- Min M, Spencer SL. Spontaneously slow-cycling subpopulations of human cells
 originate from activation of stress-response pathways. *PLoS Biol.* 2019;17(3):e3000178. doi:10.1371/journal.pbio.3000178
- Johnson MS, Cook JG. Cell cycle exits and U-turns: Quiescence as multiple
 reversible forms of arrest. *Fac Rev.* 2023;12:5. doi:10.12703/r/12-5
- 18. Coller HA, Sang L, Roberts JM. A New Description of Cellular Quiescence. *PLOS Biol.* 2006;4(3):e83. doi:10.1371/journal.pbio.0040083
- Hartwell LH, Culotti J, Pringle JR, Reid BJ. Genetic Control of the Cell Division
 Cycle in Yeast. *Science*. 1974;183(4120):46-51. doi:10.1126/science.183.4120.46
- 733 20. Tarn WY, Lai MC. Translational control of cyclins. *Cell Div.* 2011;6:5.
 734 doi:10.1186/1747-1028-6-5
- Minshull J, Pines J, Golsteyn R, Standart N, Mackie S, Colman A, Blow J,
 Ruderman JV, Wu M, Hunt T. The role of cyclin synthesis, modification and
 destruction in the control of cell division. *J Cell Sci*. 1989;1989(Supplement_12):7797. doi:10.1242/jcs.1989.Supplement_12.8
- Kwon JS, Everetts NJ, Wang X, Wang W, Croce KD, Xing J, Yao G. Controlling
 Depth of Cellular Quiescence by an Rb-E2F Network Switch. *Cell Rep.*2017;20(13):3223-3235. doi:10.1016/j.celrep.2017.09.007
- Fujimaki K, Li R, Chen H, Croce KD, Zhang HH, Xing J, Bai F, Yao G. Graded
 regulation of cellular quiescence depth between proliferation and senescence by a

Tanke et al_ATVB 2023/319710_R1

- Iysosomal dimmer switch. *Proc Natl Acad Sci*. Published online October 21, 2019.
 doi:10.1073/pnas.1915905116
- Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C,
 Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA. mTORC1 controls the adaptive
 transition of quiescent stem cells from G0 to GAlert. *Nature*. 2014;510(7505):393396. doi:10.1038/nature13255
- Min M, Rong Y, Tian C, Spencer SL. Temporal integration of mitogen history in
 mother cells controls proliferation of daughter cells. *Science*. 2020;368(6496):12611265. doi:10.1126/science.aay8241
- 26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,
 Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein
 V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biologicalimage analysis. *Nat Methods*. 2012;9(7):676-682. doi:10.1038/nmeth.2019
- 27. Dardik A, Chen L, Frattini J, Asada H, Aziz F, Kudo FA, Sumpio BE. Differential
 effects of orbital and laminar shear stress on endothelial cells. *J Vasc Surg.*2005;41(5):869-880. doi:10.1016/j.jvs.2005.01.020
- Liang D, Chang JR, Chin AJ, Smith A, Kelly C, Weinberg ES, Ge R. The role of
 vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and
 hematopoiesis in zebrafish development. *Mech Dev*. 2001;108(1):29-43.
 doi:10.1016/S0925-4773(01)00468-3
- 764 29. Mahmood T, Yang PC. Western Blot: Technique, Theory, and Trouble Shooting.
 765 North Am J Med Sci. 2012;4(9):429-434. doi:10.4103/1947-2714.100998
- Buglak DB, Bougaran P, Kulikauskas MR, Liu Z, Monaghan-Benson E, Gold AL,
 Marvin AP, Burciu A, Tanke NT, Oatley M, Ricketts SN, Kinghorn K, Johnson BN,
 Shiau CE, Rogers S, Guilluy C, Bautch VL. Nuclear SUN1 stabilizes endothelial
 cell junctions via microtubules to regulate blood vessel formation. Koh GY,
 Akhmanova A, eds. *eLife*. 2023;12:e83652. doi:10.7554/eLife.83652
- 31. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson
 M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. *Bioinforma Oxf Engl.*2013;29(1). doi:10.1093/bioinformatics/bts635
- Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput
 sequencing data in Python with HTSeq 2.0. *Bioinforma Oxf Engl.*2022;38(10):2943-2945. doi:10.1093/bioinformatics/btac166
- 33. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion
 for RNA-seq data with DESeq2. *Genome Biol*. 2014;15(12):550.
 doi:10.1186/s13059-014-0550-8

Tanke et al_ATVB 2023/319710_R1

- 34. Wiecek AJ, Cutty SJ, Kornai D, Parreno-Centeno M, Gourmet LE, Tagliazucchi
 GM, Jacobson DH, Zhang P, Xiong L, Bond GL, Barr AR, Secrier M. Genomic
 hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. *Genome Biol.* 2023;24(1):128. doi:10.1186/s13059-023-02963-4
- 35. Hoshijima K, Jurynec MJ, Klatt Shaw D, Jacobi AM, Behlke MA, Grunwald DJ.
 Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. *Dev Cell*. 2019;51(5):645657.e4. doi:10.1016/j.devcel.2019.10.004
- 36. Bresciani E, Broadbridge E, Liu PP. An efficient dissociation protocol for generation
 of single cell suspension from zebrafish embryos and larvae. *MethodsX*.
 2018;5:1287-1290. doi:10.1016/j.mex.2018.10.009
- 37. Pereira PD, Serra-Caetano A, Cabrita M, Bekman E, Braga J, Rino J, Santus R,
 Filipe PL, Sousa AE, Ferreira JA. Quantification of cell cycle kinetics by EdU (5ethynyl-2'-deoxyuridine)-coupled-fluorescence-intensity analysis. *Oncotarget*.
 2017;8(25):40514-40532. doi:10.18632/oncotarget.17121
- 38. Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH. The retinoblastoma gene
 product regulates progression through the G1 phase of the cell cycle. *Cell*.
 1991;67(2):293-302. doi:10.1016/0092-8674(91)90181-w
- Buck SB, Bradford J, Gee KR, Agnew BJ, Clarke ST, Salic A. Detection of S-phase
 cell cycle progression using 5-ethynyl-2'-deoxyuridine incorporation with click
 chemistry, an alternative to using 5-bromo-2'-deoxyuridine antibodies. *BioTechniques*. 2008;44(7):927-929. doi:10.2144/000112812
- 40. Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, Karsan A. Notch
 activation induces endothelial cell cycle arrest and participates in contact inhibition:
 role of p21Cip1 repression. *Mol Cell Biol*. 2004;24(20):8813-8822.
 doi:10.1128/MCB.24.20.8813-8822.2004
- 41. Oesterle EC, Chien WM, Campbell S, Nellimarla P, Fero ML. p27(Kip1) is required
 to maintain proliferative quiescence in the adult cochlea and pituitary. *Cell Cycle Georget Tex.* 2011;10(8):1237-1248. doi:10.4161/cc.10.8.15301
- 809 42. Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ, Roberts JM. A
 810 pathway in quiescent cells that controls p27Kip1 stability, subcellular localization,
 811 and tumor suppression. *Genes Dev.* 2006;20(1):47-64. doi:10.1101/gad.1384406
- 43. Levenberg S, Yarden A, Kam Z, Geiger B. p27 is involved in N-cadherin-mediated
 contact inhibition of cell growth and S-phase entry. *Oncogene*. 1999;18(4):869-876.
 doi:10.1038/sj.onc.1202396
- 44. Miller I, Min M, Yang C, Tian C, Gookin S, Carter D, Spencer SL. Ki67 is a Graded
 Rather than a Binary Marker of Proliferation versus Quiescence. *Cell Rep.*2018;24(5):1105-1112.e5. doi:10.1016/j.celrep.2018.06.110

Tanke et al_ATVB 2023/319710_R1

- 45. Fang JS, Coon BG, Gillis N, Chen Z, Qiu J, Chittenden TW, Burt JM, Schwartz MA,
 Hirschi KK. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to
 enable arterial specification. *Nat Commun.* 2017;8. doi:10.1038/s41467-01701742-7
- 46. Chassot AA, Turchi L, Virolle T, Fitsialos G, Batoz M, Deckert M, Dulic V,
- 823 Meneguzzi G, Buscà R, Ponzio G. Id3 is a novel regulator of p27kip1 mRNA in
- early G1 phase and is required for cell-cycle progression. *Oncogene*.
- 825 2007;26(39):5772-5783. doi:10.1038/sj.onc.1210386
- 47. Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, Sakai T, Minato
 N. Hes1 directly controls cell proliferation through the transcriptional repression of
 p27Kip1. *Mol Cell Biol*. 2005;25(10):4262-4271. doi:10.1128/MCB.25.10.42624271.2005
- 48. Sun JX, Dou GR, Yang ZY, Liang L, Duan JL, Ruan B, Li MH, Chang TF, Xu XY,
 Chen JJ, Wang YS, Yan XC, Han H. Notch activation promotes endothelial
 quiescence by repressing MYC expression via miR-218. *Mol Ther Nucleic Acids*.
 2021;25:554-566. doi:10.1016/j.omtn.2021.07.023
- 49. Gurung S, Restrepo NK, Chestnut B, Klimkaite L, Sumanas S. Single-cell
 transcriptomic analysis of vascular endothelial cells in zebrafish embryos. *Sci Rep.*2022;12(1):13065. doi:10.1038/s41598-022-17127-w
- 50. Herrera MD, Mingorance C, Rodríguez-Rodríguez R, Alvarez de Sotomayor M.
 Endothelial dysfunction and aging: an update. *Ageing Res Rev.* 2010;9(2):142-152.
 doi:10.1016/j.arr.2009.07.002
- 51. Seals DR, Jablonkski KL, Donato AJ. Aging and vascular endothelial function in
 humans. *Clin Sci Lond Engl 1979*. 2011;120(9):357-375.
- doi:10.1042/CS2010047652. Donato ÅJ, Machin DR, Lesniewski LA.
 Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related
 Disease. *Circ Res.* 2018;123(7):825-848. doi:10.1161/CIRCRESAHA.118.312563
- 845 53. Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by
 846 developmental reprogramming of venous cells. *Nature*. 2010;464(7288):549-553.
 847 doi:10.1038/nature08873
- 54. Ehling M, Adams S, Benedito R, Adams RH. Notch controls retinal blood vessel
 maturation and quiescence. *Dev Camb Engl*. 2013;140(14):3051-3061.
 doi:10.1242/dev.093351
- 55. Arolkar G, Kumar SK, Wang H, Gonzalez KM, Kumar S, Bishnoi B, Rios Coronado
 PE, Woo YJ, Red-Horse K, Das S. Dedifferentiation and Proliferation of Artery
 Endothelial Cells Drive Coronary Collateral Development in Mice. *Arterioscler Thromb Vasc Biol.* 2023;43(8):1455-1477. doi:10.1161/ATVBAHA.123.319319

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

- 56. Liu B, Wang X, Jiang L, Xu J, Zohar Y, Yao G. Extracellular Fluid Flow Induces
 Shallow Quiescence Through Physical and Biochemical Cues. *Front Cell Dev Biol*.
 2022;10:792719. doi:10.3389/fcell.2022.792719
- Mack JJ, Mosqueiro TS, Archer BJ, Jones WM, Sunshine H, Faas GC, Briot A,
 Aragón RL, Su T, Romay MC, McDonald AI, Kuo CH, Lizama CO, Lane TF, Zovein
 AC, Fang Y, Tarling EJ, Vallim TQ de A, Navab M, Fogelman AM, Bouchard LS,
 Iruela-Arispe ML. NOTCH1 is a mechanosensor in adult arteries. *Nat Commun.*2017;8(1):1620. doi:10.1038/s41467-017-01741-8
- 58. Helle E, Ampuja M, Antola L, Kivelä R. Flow-Induced Transcriptomic Remodeling of
 Endothelial Cells Derived From Human Induced Pluripotent Stem Cells. *Front Physiol.* 2020;11. Accessed April 7, 2023.
 https://www.frontiersin.org/articles/10.3389/fphys.2020.591450
- SP. Zhang MJ, Pisco AO, Darmanis S, Zou J. Mouse aging cell atlas analysis reveals
 global and cell type-specific aging signatures. Han JDJ, Tyler JK, Hou L, eds. *eLife*.
 2021;10:e62293. doi:10.7554/eLife.62293
- Acharya BR, Fang JS, Jeffery ED, Chavkin NW, Genet G, Vasavada H, Nelson EA,
 Sheynkman GM, Humphries MJ, Hirschi KK. Connexin 37 sequestering of
 activated-ERK in the cytoplasm promotes p27-mediated endothelial cell cycle
 arrest. *Life Sci Alliance*. 2023;6(8). doi:10.26508/lsa.202201685
- 61. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. *Exp Cell Res.* 1961;25(3):585-621. doi:10.1016/0014-4827(61)90192-6
- 876 62. Marthandan S, Priebe S, Hemmerich P, Klement K, Diekmann S. Long-Term
 877 Quiescent Fibroblast Cells Transit into Senescence. *PLOS ONE*.
 878 2014;9(12):e115597. doi:10.1371/journal.pone.0115597
- 879 63. Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by
 880 the transcriptional repressor HES1. *Science*. 2008;321(5892):1095-1100.
 881 doi:10.1126/science.1155998
- 64. Han Y, Kim SY. Endothelial senescence in vascular diseases: current
 understanding and future opportunities in senotherapeutics. *Exp Mol Med*.
 2023;55(1):1-12. doi:10.1038/s12276-022-00906-w
- 65. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial
 Cell Senescence in Human Atherosclerosis. *Circulation*. 2002;105(13):1541-1544.
 doi:10.1161/01.CIR.0000013836.85741.17

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

889 Nonstandard Abbreviations and Acronyms

- 890
- 891 HUVEC: Human Umbilical Vein Endothelial Cells
- 892 HAEC: Human Aortic Endothelial Cells
- 893 Flow-M: Flow maintenance; 72 hr 15d/cm²
- 894 Flow-E: Flow establishment; 16 hr 15d/cm²
- 895 Flow-EV, Flow establishment venous; 16h, 5d/cm²
- 896 Flow-MV, Flow maintenance, venous; 16h, 5d/cm²
- 897 siRNA: Small interfering RNA
- 898 KD: Knockdown
- 899 A.U.: Arbitrary unit
- 900 pRB: Phospho retinoblastoma protein
- 901 EdU: 5-Ethynyl-2'-deoxyuridine
- 902 HES1: Hes Family BHLH Transcription Factor 1
- 903 ID3: Inhibitor of DNA Binding 3
- 904

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

905	FIGURE LEGENDS
906 907	Figure 1. Laminar flow-mediated quiescence is transcriptionally distinct.
908	(A) Quantification of epithelial quiescence score in HUVEC scRNA dataset by cluster
909	(previously defined ⁸). Flow-M, flow maintenance (laminar flow (15d/cm ² /72h)). Static
910	cells were visually checked for subconfluence and collected 48h post-seeding. (B)
911	Quantification of endothelial quiescence score in HUVEC scRNA dataset by cluster. (C)
912	Endothelial quiescence score on bulk RNA seq data of HUVEC exposed to indicated
913	stimuli, n= 3 replicates. (D-E) Heatmaps showing relative expression of cell cycle
914	proliferation markers (green font) and inhibitors (red font) plotted using bulk RNAseq
915	data of HUVEC under indicated conditions, n=3 replicates. Statistics, one-way ANOVA
916	with Tukey's multiple comparison test.
917	
918	

Figure 2. Endothelial cell flow maintenance quiescence stimulus leads to shallow quiescence depth.

(A) Representative images of HUVEC under static (non-flow) or Flow-M (flow 921 922 maintenance) conditions with EdU incorporation and fixation at indicated times post 923 Flow-M release. Cultures stained for DAPI (white, nuclear mask) and EdU (red, S-924 phase) or pRB (blue, interphase). Scale bar, 50 µm, White arrow, flow direction, (B) 925 Quantification of percent EdU+ cells with indicated conditions. n=3 replicates, 5 images 926 per condition per replicate. (C) Quantification of percent pRB+ cells with indicated 927 conditions. n=3 replicates, 5 images per condition per replicate. (D) Representative 928 images of HUVEC under indicated density conditions with EdU incorporation and fixation at indicated times post high-density release. Cultures stained for DAPI (white, 929

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

930	nuclear mask) and EdU (red, S-phase) or pRB (blue, interphase). Scale bar, 50 μ m. (E)
931	Quantification of percent EdU+ cells with indicated conditions. n=3 replicates, 6 images
932	per condition per replicate. (F) Quantification of percent pRB+ cells with indicated
933	conditions. n=3 replicates, 6 images per condition per replicate. Statistics, one-way
934	ANOVA with Tukey's multiple comparisons test.
935	
936 937	Figure 3. Cell cycle inhibitor p27 expression levels vary with endothelial
938	quiescence stimulus.
939	(A) RT-qPCR for CDKN1B levels under indicated conditions. n=3 replicates. (B)
940	Representative images of HUVEC under indicated conditions stained for p27 (green)
941	and DAPI (white, nuclear mask). Scale bar, 50 μ m. White arrow, flow direction. (C)
942	Quantification of HUVEC p27+ cells under indicated conditions. n=3 replicates, 5
943	images per condition per replicate. (D) RT-qPCR for CDKN1B levels under indicated
944	conditions. n=3 replicates. (E) Representative images of HUVEC under indicated
945	conditions stained for p27 (green) and DAPI (white, nuclear mask). Scale bar, 50 $\mu m.$
946	(F) Quantification of HUVEC p27+ cells under indicated conditions. n=3 replicates, 5
947	images per condition per replicate. Statistics, student's two-tailed t-test.
948	
949	Figure 4. p27 establishes quiescence in endothelial cells and regulates cell cycle
950	and vascular expansion <i>in vivo</i> .
951	(A) Representative images of HUVEC with indicated siRNA treatments and conditions.
952	after EdU incorporation (red, S-phase) and staining with DAPI (white, nuclear mask).
953	Scale bar, 50 μ m. White arrow, flow direction. (B) Quantification of EdU+ cells with

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

954	indicated conditions. n=3 replicates, 5 images per condition per replicate. (C-F) RT-
955	qPCR of FACs sorted 24 hpf zebrafish endothelial cells from <i>Tg(fli:LifeAct-GFP</i>) (green,
956	endothelial cell marker) embryos of indicated genotypes for cdkn1bb (C), mki67 (D),
957	pcna (E), and ccnd1 (F) levels. n=3 replicates. (G) Representative images of 36hpf
958	Tg(fli:LifeAct-GFP) (green, endothelial cell marker) embryos that were also WT or
959	<i>cdkn1bb^{-/-}</i> . Yellow arrows, ectopic sprouts. Scale bar, 50 µm. (H) Quantification of
960	ectopic sprouts per embryo. n=3 replicates, 5 images per condition per replicate. (I)
961	Diagram defining regions for ectopic sprout quantification in embryonic zebrafish. (J)
962	Quantification of % ectopic sprouts in <i>Tg(fli:LifeAct-GFP</i>) (green, endothelial cell
963	marker) embryos and of indicated genotypes per region. n=3 replicates, 5 images per
964	condition per replicate. (K) Representative images of 36hpf Tg(fli:LifeAct-GFP) embryos
965	injected with control (NT) or cdkn1bb MO at the one-cell stage. Yellow arrows, ectopic
966	sprouts. Scale bar, 50 μ m. (L) Quantification of ectopic sprouts per embryo. n=3
967	replicates, 5 images per condition per replicate. (M) Quantification of % ectopic sprouts
968	in Tg(fli:LifeAct-GFP) (green, endothelial cell marker) and with indicated MO injection
969	per region. n=3 replicates, 5 images per condition per replicate. Statistics, student's two-
970	tailed <i>t</i> -test (C-F, H, L), one-way ANOVA with Tukey's multiple comparisons test (B),
971	and X ² test (J, M).

972

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

- 974 Figure 5. Endothelial quiescence depth varies with laminar flow exposure time
- 975 and positively correlates with p27 expression levels.
- 976 (A) Representative images of HUVEC with indicated conditions and stained for p27
- 977 (inhibitor), p21 (inhibitor), Ki67 (proliferation marker), and DAPI (nucleus) in white. Scale
- bar, 50 μm. White arrow, flow direction. (B-D) Quantification of percent p27+ (B), p21+
- 979 cells (C), or Ki67+ cells (D). n=3 replicates, 5 images per condition per replicate. (E)
- 980 Representative images of HUVEC under indicted conditions and after EdU incorporation
- 981 (red, S-phase) and stained for pRB (blue, interphase) and with DAPI (white, nuclear
- mask), Flow-E, flow establishment (15d/cm², 16h); Flow-M, flow maintenance (15d/cm²,
- 983 72h). Scale bar, 50 μm. White arrow, flow direction. (F) Quantification of EdU+ cells
- under indicated conditions. n=3 replicates, 5 images per condition per replicate. (G)
- 985 Quantification of pRB+ cells under indicated conditions. n=3 replicates, 5 images per
- 986 condition per replicate. (H) Representative images of HUVEC with indicated siRNA
- 987 treatments and conditions after EdU incorporation (red, S-phase) and staining with
- 988 DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (I)
- 989 Quantification of EdU+ cells with indicated conditions. n=3 replicates, 5 images per
- 990 condition per replicate. Statistics, one-way ANOVA with Tukey's multiple comparisons
- 991 test.
- 992

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

994 Figure 6. BMP and NOTCH regulated p27 repressors HES1 and ID3 regulate p27

995 levels and flow-mediated quiescence depth.

996 (A) Representative images of HUVEC under indicated conditions and with indicated 997 siRNA treatment. Cells stained for p27 (green) and DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (B) Quantification of p27+ cells under indicated 998 999 conditions and treatments. n=3 replicates, 5 images per condition per replicate. (C-D) RT-gPCR for HES1 (C) and ID3 (D) levels under indicated conditions. n=3 replicates. 1000 (E) Representative images of HUVEC under indicated conditions and siRNA treatments. 1001 1002 Cells were labeled with EdU (red, S-phase) and stained for pRB (blue, interphase) and 1003 DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (F) Quantification of EdU+ cells with indicated conditions. n=3 replicates, 5 images per 1004 1005 condition per replicate. (G) Quantification of pRB+ cells with indicated conditions. n=3 replicates, 5 images per condition per replicate. (H) Representative images of HUVEC 1006 under indicated conditions and siRNA treatments. Cells were labeled with EdU (red, S-1007 1008 phase) and stained for pRB (blue, interphase) and DAPI (white, nuclear mask). Scale 1009 bar, 50 µm. White arrow, flow direction. (I) Quantification of EdU+ cells under indicated 1010 conditions. n=3 replicates, 5 images per condition per replicate. (J) Quantification of pRB+ cells under indicated conditions. n=3 replicates, 5 images per condition per 1011 1012 replicate. Statistics, student's two-tailed *t*-test (C-D) and one-way ANOVA with Tukey's 1013 multiple comparisons test (B, F-G, I-J).

1014

1015

1016

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

1017 Figure 7. Endothelial cells establish and maintain deep quiescence under venous

1018 flow and express elevated p27 levels in vivo.

- 1019 (A) Representative images of HUVEC under indicated conditions (Flow-MV (5d/cm²,
- 1020 72h)) stained for p27 (green) and DAPI (white, nuclear mask). Scale bar, 50 µm. White
- 1021 arrow, flow direction. (B) Quantification of HUVEC p27+ cells under indicated
- 1022 conditions, n=3 replicates, 5 images per condition per replicate. (C) RT-qPCR for
- 1023 CDKN1B levels in indicated conditions. n=3 replicates. (D) Representative images of
- 1024 HUVEC under static (non-flow) or Flow-EV (5d/cm², 16h) conditions with EdU
- 1025 incorporation and fixation at indicated times post Flow-EV release. Cells stained for
- 1026 DAPI (white, nuclear mask) and EdU (red, S-phase), Scale bar, 50 µm. White arrow,
- 1027 flow direction. (E) Quantification of EdU+ cells with indicated conditions. n=3 replicates,
- 1028 5 images per condition per replicate. (F) Representative images of HUVEC under static
- 1029 (non-flow) or Flow-MV conditions (5d/cm², 72h) with EdU incorporation and fixation at
- 1030 indicated times post Flow-MV release. Cells stained for DAPI (white, nuclear mask) and
- 1031 EdU (red, S-phase), Scale bar, 50 µm. White arrow, flow direction. (G) Quantification of
- 1032 EdU+ cells with indicated conditions. n=3 replicates, 5 images per condition per
- 1033 replicate. (H) UMAP grouping of artery, vein, and capillary endothelial cell clusters
- 1034 enriched from neonatal mouse ear skin. (I) UMAP overlaid with *Cdkn1b* (*p27*)
- 1035 expression. (J) Dot plot of *Cdkn1b* expression by endothelial sub-type. (K) UMAP
- 1036 grouping of endothelial artery, vein, and capillary clusters reanalyzed from 24hpf
- 1037 embryonic zebrafish. (L) UMAP overlaid with *cdkn1bb* (*p27*) expression. (M) Dot plot of
- 1038 *Cdkn1b* expression by endothelial sub-type. Statistics, student's two-tailed *t*-test (B-C,
- 1039 J-M) and one-way ANOVA with Tukey's multiple comparisons test (E, G).

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

1040 Figure 8	Model of	[:] endothelial	cell flow-me	diated q	uiescence de	oth.
---------------	----------	--------------------------	--------------	----------	--------------	------

- Proposed model for dynamic regulation of endothelial cell flow-mediated guiescence 1041 1042 depth with flow exposure time and magnitude. In the first 16h (Flow-E, arterial flow establishment) of laminar flow, a deep quiescence is established accompanied by high 1043 1044 levels of cell cycle inhibitor p27, independent of flow magnitude. With time under arterial 1045 flow (Flow-M, flow maintenance), HES1 and ID3 transcription factors are upregulated 1046 downstream of flow-mediated Notch and BMP signaling, and they repress p27 1047 transcription leading to a shallow quiescence depth. Deep quiescence and high p27 1048 levels characterize venous flow establishment at 16h (Flow-EV, venous flow 1049 establishment), and this deep guiescence perdures with time under venous flow (Flow-1050 MV). 1051 SUPPLEMENTARY FIGURE LEGENDS 1052
 - 1053

Supplemental Figure 1. Endothelial cell quiescence transcriptional profiles are

- 1055 stimulus-dependent.
- 1056 (A) Quantification using an epithelial quiescence score³⁴ on HUVEC bulk RNAseq
- 1057 dataset under different conditions. n=3 replicates. Flow-M, flow maintenance (15d/cm²,
- 1058 72h). (B) Venn diagrams showing bulk RNA seq analysis of genes up- and down-
- 1059 regulated in HUVEC under indicated conditions. (C-F) Heatmaps showing relative
- 1060 expression levels of differentially regulated genes (top 50 by fold change and p-value) in
- 1061 bulk RNA seq from HUVEC under indicated conditions. Statistics, one-way ANOVA with
- 1062 Tukey's multiple comparisons test.
- 1063

Tanke et al_ATVB 2023/319710_R1

FINAL 010424

1064 Supplemental Figure 2. Quiescence depth is replicated in HAEC (human arterial endothelial cells). 1065

(A) Schematic showing areas of scratch wound used for imaging post-scratch for 1066 contact inhibition guiescence depth experiments. (B) Quantification of HUVEC pRB 1067 1068 nuclear fluorescence intensity under indicated conditions. n=3 replicates, 5 images 1069 averaged per condition per replicate. (C) Quantification of HUVEC nuclear fluorescence intensity of pRB in low vs. high density release timepoints. n=3 replicates, 5 averaged 1070 images per condition per replicate. (D) Representative images of HAEC under static 1071 1072 (non-flow) or Flow-M (flow maintenance) conditions with EdU incorporation and fixation at indicated times post Flow-M release. Cells stained for DAPI (white, nuclear mask) 1073 and EdU (red, S-phase). Scale bar, 50 µm. White arrow, flow direction. (E) 1074 1075 Quantification of percent EdU+ cells with indicated conditions, n=3 replicates, 5 images per condition per replicate. (F) Representative images of HAEC under indicated density 1076 conditions with EdU incorporation and fixation at indicated times post density release. 1077 Cells stained for DAPI (white, nuclear mask) and EdU (red, S-phase). Scale bar, 50 µm. 1078 (G) Quantification of percent EdU+ cells with indicated conditions. n=3 replicates, 5 1079 1080 images per condition per replicate. Statistics, one-way ANOVA with Tukey's multiple 1081 comparisons test. 1082

1083

Supplemental Figure 3. Cell cycle inhibitor p27 expression differs with

1084 quiescence stimulus.

1085

(A) Quantification of p27 nuclear fluorescence intensity in indicated conditions. n=3 1086 1087 replicates, 5 images averaged per condition per replicate. (B) Quantification of p27

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

1088	nuclear fluorescence intensity in indicated conditions. n=3 replicates, 5 images
1089	averaged per condition per replicate. (C) Western blot of p27 expression under
1090	indicated conditions, and with indicated antibodies. p27 Ab #1 (Cell Signaling) and p27
1091	Ab #2 (Santa Cruz). (D) Representative images of HAEC under indicated conditions
1092	stained for p27 (green) and DAPI (white, nuclear mask). Scale bar, 50 μ m. White arrow,
1093	flow direction. (E) Quantification of HAEC p27+ cells under indicated conditions, n=3
1094	replicates, 5 images per condition per replicate. (F) Representative images of HUVEC
1095	with indicated siRNA and treatments. Endothelial cells stained with Ki67 (yellow,
1096	proliferation marker) and DAPI (gray, nucleus mask). Scale bar 50 μ m. White arrow,
1097	flow direction. (G) Quantification of percent Ki67+ cells. n=3 replicates, 5 images per
1098	condition per replicate. (H) Quantification of nuclear fluorescence intensity of Ki67. n=3
1099	replicates, 5 averaged images per condition per replicate. Statistics, student's two-tailed
1100	<i>t</i> -test (A-B, E) and one-way ANOVA with Tukey's multiple comparisons test (G-H).
1101	

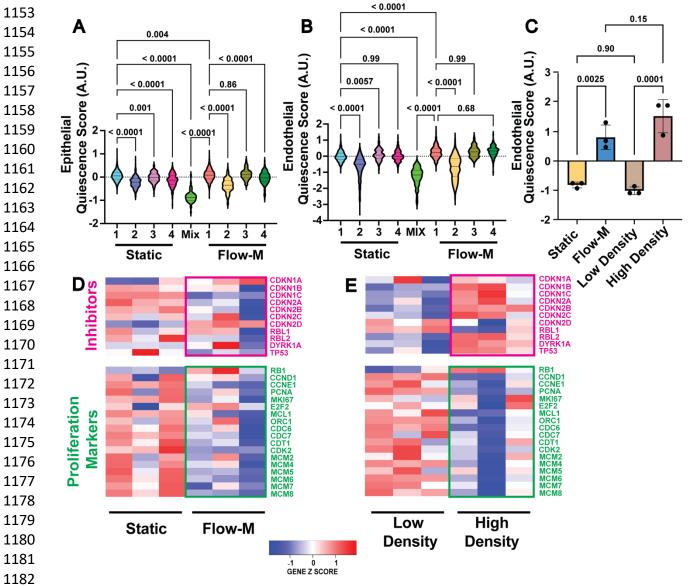
Supplemental Figure 4. p27 depletion leads to distinct transcriptional changes dependent on guiescence stimulus.

(A) Venn diagrams showing overlap of HUVEC genes differentially regulated in
indicated conditions and for *CDKN1B* KD compared to NT. (B-E) Heatmaps showing
relative expression levels of genes differentially regulated (top 50 by fold change and pvalue) in response to indicated conditions. (F-I) GO analysis performed on differentially
expressed genes from bulk RNA-seq data comparing indicated conditions/treatments.
Representative biological processes GO terms significantly enriched (P adjusted < 0.1)
in differentially regulated genes are shown.

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

1111	Supplemental Figure 5. Cell cycle inhibitor and Ki67 expression intensity varies
1112	with flow and correlates with flow-mediated endothelial cell alignment.
1113	(A) Quantification of p27 nuclear fluorescence intensity under indicated conditions. n=3
1114	replicates, 5 averaged images per condition per replicate. (B) Quantification of p21
1115	nuclear fluorescence intensity under indicated conditions. n=3 replicates, 5 averaged
1116	images per condition per replicate. (C) Quantification of Ki67 nuclear fluorescence
1117	intensity under indicated conditions. n=3 replicates, 5 averaged images per condition
1118	per replicate. (D) Quantification of pRB nuclear fluorescence intensity under indicated
1119	conditions. n=3 replicates, 5 averaged images per condition per replicate. (E)
1120	Representative images of HAEC under static (non-flow) or Flow-E conditions with EdU
1121	incorporation and fixation at indicated times post Flow-E release. Cells stained for DAPI
1122	(white, nuclear mask) and EdU (red, S-phase), Scale bar, 50 μm . White arrow, flow
1123	direction. (F) Quantification of EdU+ cells under indicated conditions. n=3 replicates, 5
1124	images per condition per replicate. (G) Representative images of HUVEC stained with
1125	VE-cadherin (white, junction marker) and DAPI (blue, nucleus) under indicated
1126	conditions. Scale bar, 50 μ m. White arrow, flow direction. (H) Cell axis ratio
1127	quantification under indicated conditions. n=3 replicates, 5 images per condition per
1128	replicate. (I) % HUVEC under Flow-E release with p27-/EdU-, p27+/EdU-, and p27-
1129	/EdU+ incorporation. (J) % HUVEC under high density release with p27-/EdU-,
1130	p27+/EdU-, and p27-/EdU+ incorporation. Statistics, one-way ANOVA with Tukey's
1131	multiple comparisons test (A-D, F, H) and X^2 test (I-J).
1132	


Tanke et al_ATVB 2023/319710_R1

FINAL_010424

1133 Supplemental Figure 6. Nuclear fluorescence intensity of markers and changes with HES1 or ID3 depletion. 1134 (A) RT-qPCR for HES1 expression under indicated conditions. n=3 replicates. (B) RT-1135 gPCR for ID3 expression under indicated conditions, n=3 replicates. (C) Quantification 1136 1137 of p27 nuclear fluorescence intensity with indicated siRNA treatments and conditions. 1138 n=3 replicates, 5 averaged images per condition per replicate. D) Representative images of HAEC under indicated conditions and with indicated siRNA treatment. Cells 1139 1140 stained for p27 (green) and DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, 1141 flow direction. (E) Quantification of p27+ cells under indicated conditions and 1142 treatments. n=3 replicates, 5 images per condition per replicate. (F) Representative images of HUVEC under indicated conditions and siRNA treatments. Cells were labeled 1143 with EdU (red, S-phase) and stained for DAPI (white, nuclear mask). Scale bar, 50 µm. 1144 White arrow, flow direction. (G) Quantification of EdU+ cells with indicated conditions. 1145 n=3 replicates, 5 images per condition per replicate. (H) Quantification of pRB nuclear 1146 1147 fluorescence intensity under indicated siRNA treatments and conditions. n=3 replicates, 5 averaged images per condition per replicate. (I) Quantification of pRB nuclear 1148 1149 fluorescence intensity under indicated siRNA treatments and conditions. n=3 replicates, 5 averaged images per condition per replicate. Statistics, student's two tailed t-test (A-1150 B) and one-way ANOVA with Tukey's multiple comparisons test (C, E, G-I). 1151 1152

FINAL_010424

Tanke et al_ATVB 2023/319710_R1

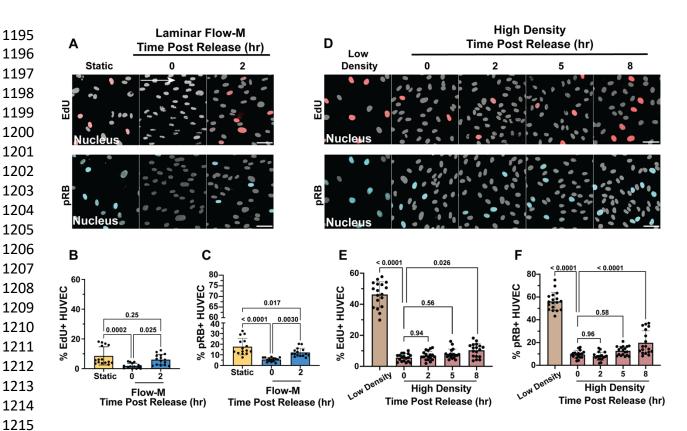
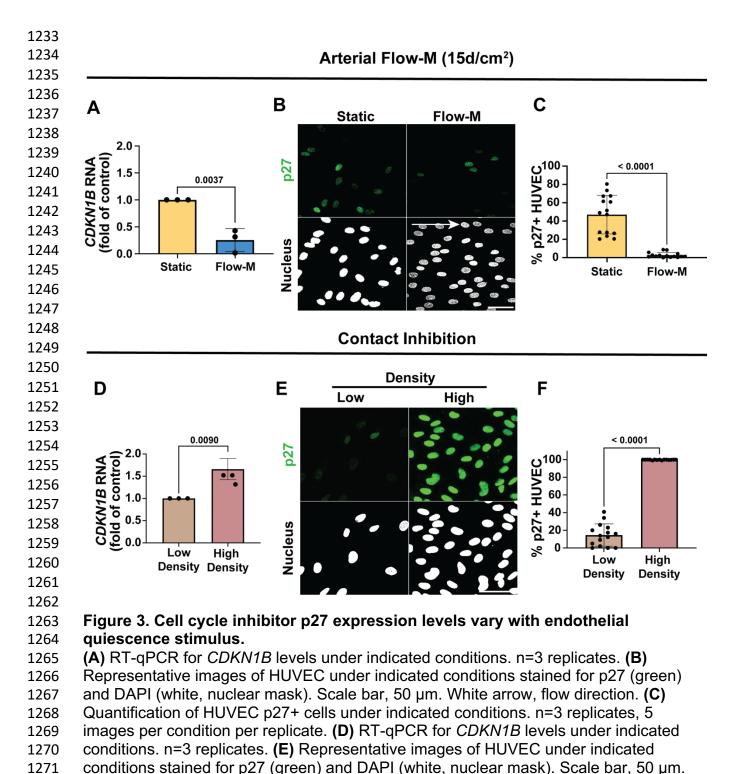

1182 1183

Figure 1. Laminar flow-mediated quiescence is transcriptionally distinct.

(A) Quantification of epithelial guiescence score in HUVEC scRNA dataset by cluster 1185 (previously defined⁸). Flow-M, flow maintenance (laminar flow (15d/cm²/72h)). Static 1186 cells were visually checked for subconfluence and collected 48h post-seeding. (B) 1187 Quantification of endothelial quiescence score in HUVEC scRNA dataset by cluster. (C) 1188 Endothelial guiescence score on bulk RNA seg data of HUVEC exposed to indicated 1189 1190 stimuli, n= 3 replicates. (D-E) Heatmaps showing relative expression of cell cycle 1191 proliferation markers (green font) and inhibitors (red font) plotted using bulk RNAseq data of HUVEC under indicated conditions, n=3 replicates. Statistics, one-way ANOVA 1192 with Tukev's multiple comparison test. 1193

FINAL 010424

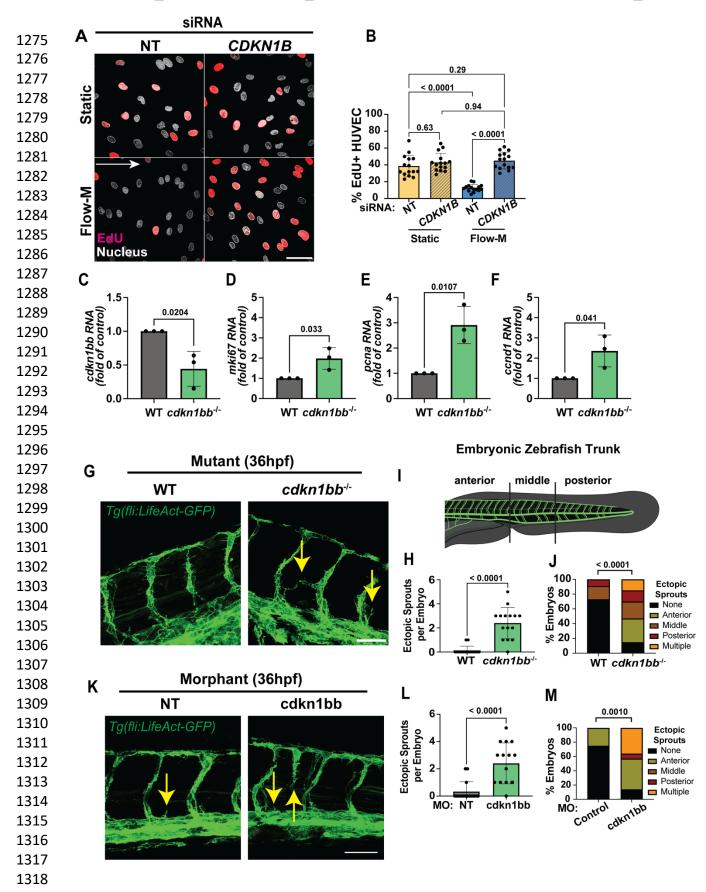
Tanke et al_ATVB 2023/319710_R1



1216 Figure 2. Endothelial cell flow maintenance quiescence stimulus leads to shallow 1217 quiescence depth.

(A) Representative images of HUVEC under static (non-flow) or Flow-M (flow 1218 maintenance) conditions with EdU incorporation and fixation at indicated times post 1219 Flow-M release. Cultures stained for DAPI (white, nuclear mask) and EdU (red, S-1220 phase) or pRB (blue, interphase). Scale bar, 50 µm. White arrow, flow direction. (B) 1221 Quantification of percent EdU+ cells with indicated conditions. n=3 replicates, 5 images 1222 per condition per replicate. (C) Quantification of percent pRB+ cells with indicated 1223 conditions. n=3 replicates, 5 images per condition per replicate. (D) Representative 1224 1225 images of HUVEC under indicated density conditions with EdU incorporation and fixation at indicated times post high-density release. Cultures stained for DAPI (white, 1226 1227 nuclear mask) and EdU (red, S-phase) or pRB (blue, interphase). Scale bar, 50 µm. (E) 1228 Quantification of percent EdU+ cells with indicated conditions, n=3 replicates, 6 images per condition per replicate. (F) Quantification of percent pRB+ cells with indicated 1229 1230 conditions. n=3 replicates, 6 images per condition per replicate. Statistics, one-way 1231 ANOVA with Tukey's multiple comparisons test.

FINAL 010424

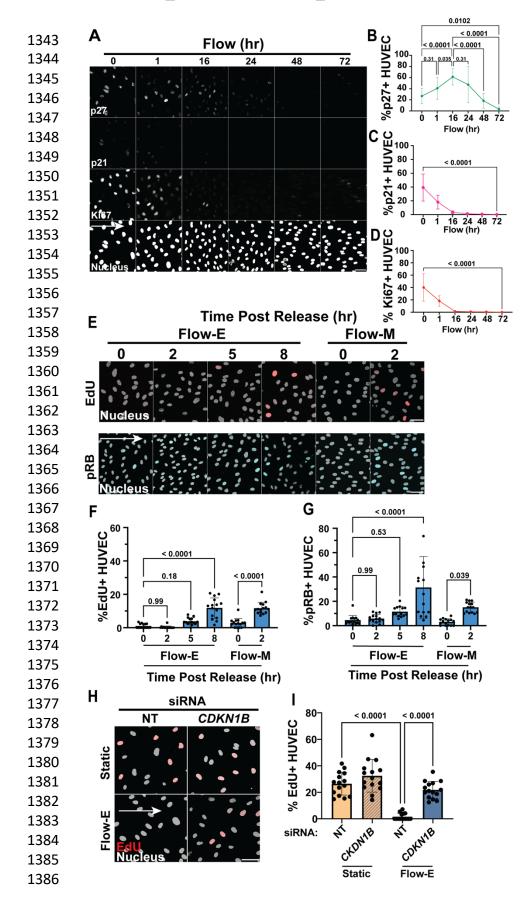

Tanke et al_ATVB 2023/319710_R1

- 1272 (F) Quantification of HUVEC p27+ cells under indicated conditions. n=3 replicates, 5
- 1273 images per condition per replicate. Statistics, student's two-tailed *t*-test.
- 1274

FINAL_010424

Tanke et al_ATVB 2023/319710_R1

Tanke et al_ATVB 2023/319710_R1

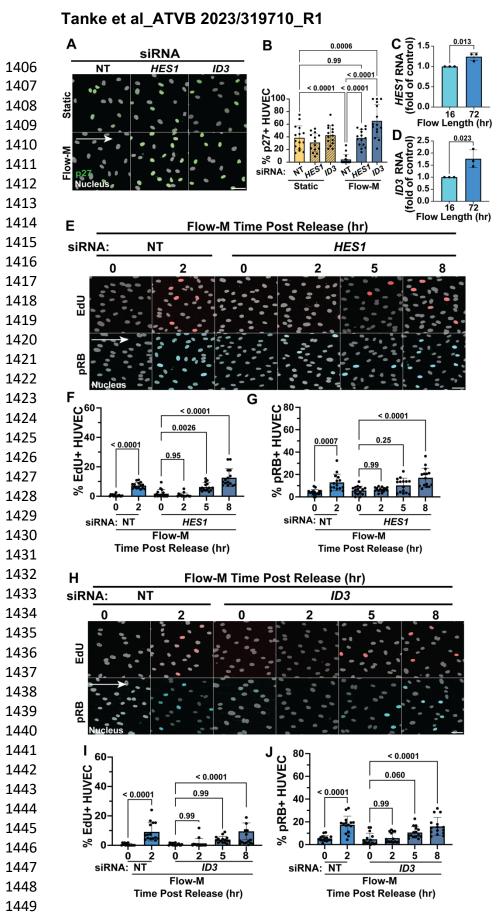

FINAL_010424

1319 Figure 4. p27 establishes quiescence in endothelial cells and regulates cell cycle 1320 and vascular expansion *in vivo*.

(A) Representative images of HUVEC with indicated siRNA treatments and conditions. 1321 1322 after EdU incorporation (red, S-phase) and staining with DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (B) Quantification of EdU+ cells with 1323 1324 indicated conditions. n=3 replicates, 5 images per condition per replicate. (C-F) RT-1325 gPCR of FACs sorted 24 hpf zebrafish endothelial cells from Tq(fli:LifeAct-GFP) (green, 1326 endothelial cell marker) embryos of indicated genotypes for *cdkn1bb* (C), *mki67* (D), pcna (E), and ccnd1 (F) levels. n=3 replicates. (G) Representative images of 36hpf 1327 1328 *Tg(fli:LifeAct-GFP)* (green, endothelial cell marker) embryos that were also WT or *cdkn1bb*^{-/-}. Yellow arrows, ectopic sprouts. Scale bar, 50 µm. (H) Quantification of 1329 ectopic sprouts per embryo. n=3 replicates, 5 images per condition per replicate. (I) 1330 Diagram defining regions for ectopic sprout quantification in embryonic zebrafish. (J) 1331 1332 Quantification of % ectopic sprouts in *Tg(fli:LifeAct-GFP*) (green, endothelial cell marker) embryos and of indicated genotypes per region. n=3 replicates, 5 images per 1333 condition per replicate. (K) Representative images of 36hpf *Tg(fli:LifeAct-GFP*) embryos 1334 1335 injected with control (NT) or cdkn1bb MO at the one-cell stage. Yellow arrows, ectopic sprouts. Scale bar, 50 µm. (L) Quantification of ectopic sprouts per embryo. n=3 1336 replicates, 5 images per condition per replicate. (M) Quantification of % ectopic sprouts 1337 1338 in *Tg(fli:LifeAct-GFP*) (green, endothelial cell marker) and with indicated MO injection per region. n=3 replicates, 5 images per condition per replicate. Statistics, student's two-1339 tailed *t*-test (C-F, H, L), one-way ANOVA with Tukey's multiple comparisons test (B), 1340 1341 and C^2 test (J. M).

Tanke et al_ATVB 2023/319710_R1

FINAL_010424



Tanke et al_ATVB 2023/319710_R1

FINAL_010424

Figure 5. Endothelial quiescence depth varies with laminar flow exposure time and positively correlates with p27 expression levels.

(A) Representative images of HUVEC with indicated conditions and stained for p27 1389 1390 (inhibitor), p21 (inhibitor), Ki67 (proliferation marker), and DAPI (nucleus) in white. Scale bar, 50 µm. White arrow, flow direction. (B-D) Quantification of percent p27+ (B), p21+ 1391 cells (C), or Ki67+ cells (D). n=3 replicates, 5 images per condition per replicate. (E) 1392 1393 Representative images of HUVEC under indicted conditions and after EdU incorporation 1394 (red, S-phase) and stained for pRB (blue, interphase) and with DAPI (white, nuclear mask), Flow-E, flow establishment (15d/cm², 16h); Flow-M, flow maintenance (15d/cm², 1395 1396 72h). Scale bar, 50 µm. White arrow, flow direction. (F) Quantification of EdU+ cells under indicated conditions. n=3 replicates, 5 images per condition per replicate. (G) 1397 Quantification of pRB+ cells under indicated conditions. n=3 replicates, 5 images per 1398 condition per replicate. (H) Representative images of HUVEC with indicated siRNA 1399 treatments and conditions after EdU incorporation (red, S-phase) and staining with 1400 DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (I) 1401 Quantification of EdU+ cells with indicated conditions. n=3 replicates, 5 images per 1402 1403 condition per replicate. Statistics, one-way ANOVA with Tukey's multiple comparisons 1404 test. 1405

FINAL_010424

Tanke et al_ATVB 2023/319710_R1

FINAL_010424

Figure 6. BMP and NOTCH regulated p27 repressors *HES1* and *ID3* regulate p27 levels and flow-mediated quiescence depth.

(A) Representative images of HUVEC under indicated conditions and with indicated 1452 1453 siRNA treatment. Cells stained for p27 (green) and DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (B) Quantification of p27+ cells under indicated 1454 conditions and treatments. n=3 replicates, 5 images per condition per replicate. (C-D) 1455 1456 RT-qPCR for *HES1* (C) and *ID3* (D) levels under indicated conditions. n=3 replicates. 1457 (E) Representative images of HUVEC under indicated conditions and siRNA treatments. Cells were labeled with EdU (red, S-phase) and stained for pRB (blue, interphase) and 1458 1459 DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (F) Quantification of EdU+ cells with indicated conditions. n=3 replicates, 5 images per 1460 condition per replicate. (G) Quantification of pRB+ cells with indicated conditions. n=3 1461 replicates, 5 images per condition per replicate. (H) Representative images of HUVEC 1462 under indicated conditions and siRNA treatments. Cells were labeled with EdU (red, S-1463 phase) and stained for pRB (blue, interphase) and DAPI (white, nuclear mask). Scale 1464 bar, 50 µm. White arrow, flow direction. (I) Quantification of EdU+ cells under indicated 1465 1466 conditions. n=3 replicates, 5 images per condition per replicate. (J) Quantification of pRB+ cells under indicated conditions. n=3 replicates, 5 images per condition per 1467 replicate. Statistics, student's two-tailed t-test (C-D) and one-way ANOVA with Tukey's 1468 1469 multiple comparisons test (B, F-G, I-J).

FINAL_010424

Tanke et al_ATVB 2023/319710_R1

Venous Flow (5d/cm²) 1471 Static Flow-MV С Α в 1472 1473 0.104 0.040 p27 2.5 80 CDKN1B RNA (fold of control) 0.0 0.2 0.0 1474 %p27+ HUVEC 60 1475 40 1476 20 1477 Nucleus 0 Static Flow-MV 16 72 1478 Length of flow (hr) 1479 1480 Laminar Flow-EV Ε 1481 < 0.0001 Time Post Release (hr) D < 0.0001 1482 Static 0 8 2 5 0.18 %EdU+ HUVEC 1483 0.99 1484 1485 1486 0 Static Ó 2 1487 Flow-EV Time Post Release (hr) Laminar Flow-MV Time Post Release (hr) F 1488 G Static 8 0 5 1489 260 200 40 0.024 1490 0.62 0.0006 0.85 1491 EdU+ 1492 % 0 1493 Static ò Flow-MV Time Post Release (hr) 1494 1495 **Neonatal Mouse (P8)** 1496 Cdkn1b I н J 1497 Expression Artery Capillary Vein Low 1498 High Percent Expressed 27.5 30.0 32.5 1499 Vein 32.535.0 1500 ² = 0.130 Capillary 1501 Average Expression 1.0 0.5 1502 0.0 IMAP IMAP Artery 1503 -0.5 UMAP_1 UMAP_1 1504 Cdkn1b 1505 Zebrafish (24 hpf) 1506 L Μ Κ cdkn1bb 1507 Expression Artery Capillary Vein Percent Expressed Low 1508 High 40 50 60 70 80 Vein 1509 1510 < 0.0001 Capillary Average Expression 1511 0.5 1512 0.0 Artery -0.5 JMAP 1513 UMAP UMAP_1 cdkn1bb 1514

Tanke et al_ATVB 2023/319710_R1

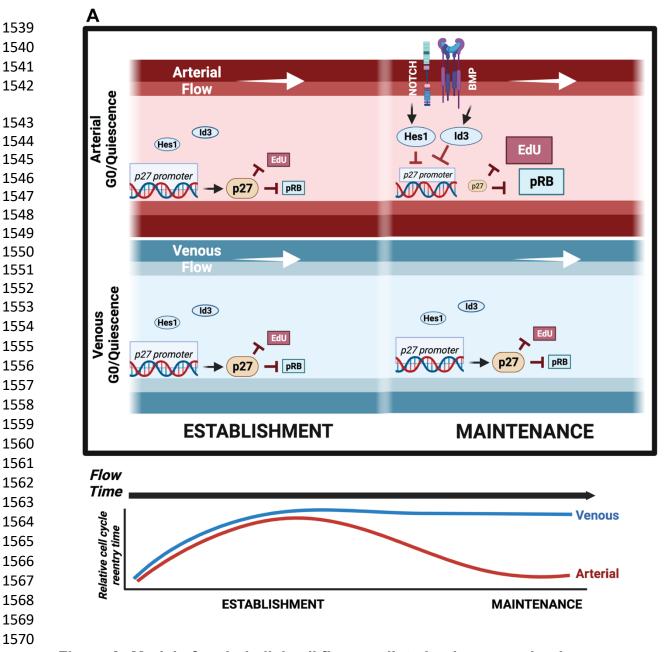

FINAL_010424

Figure 7. Endothelial cells establish and maintain deep quiescence under venous flow and express elevated p27 levels *in vivo*.

(A) Representative images of HUVEC under indicated conditions (Flow-MV (5d/cm²). 1517 1518 72h)) stained for p27 (green) and DAPI (white, nuclear mask). Scale bar, 50 µm. White arrow, flow direction. (B) Quantification of HUVEC p27+ cells under indicated 1519 1520 conditions, n=3 replicates, 5 images per condition per replicate. (C) RT-gPCR for CDKN1B levels in indicated conditions. n=3 replicates. (D) Representative images of 1521 1522 HUVEC under static (non-flow) or Flow-EV (5d/cm², 16h) conditions with EdU incorporation and fixation at indicated times post Flow-EV release. Cells stained for 1523 1524 DAPI (white, nuclear mask) and EdU (red, S-phase), Scale bar, 50 µm. White arrow, flow direction. (E) Quantification of EdU+ cells with indicated conditions. n=3 replicates, 1525 5 images per condition per replicate. (F) Representative images of HUVEC under static 1526 (non-flow) or Flow-MV conditions (5d/cm², 72h) with EdU incorporation and fixation at 1527 indicated times post Flow-MV release. Cells stained for DAPI (white, nuclear mask) and 1528 EdU (red, S-phase), Scale bar, 50 µm. White arrow, flow direction. (G) Quantification of 1529 1530 EdU+ cells with indicated conditions. n=3 replicates, 5 images per condition per 1531 replicate. (H) UMAP grouping of artery, vein, and capillary endothelial cell clusters enriched from neonatal mouse ear skin. (I) UMAP overlaid with Cdkn1b (p27) 1532 expression. (J) Dot plot of Cdkn1b expression by endothelial sub-type. (K) UMAP 1533 1534 grouping of endothelial artery, vein, and capillary clusters reanalyzed from 24hpf embryonic zebrafish. (L) UMAP overlaid with *cdkn1bb* (*p27*) expression. (M) Dot plot of 1535 Cdkn1b expression by endothelial sub-type. Statistics, student's two-tailed t-test (B-C, 1536 1537 J-M) and one-way ANOVA with Tukey's multiple comparisons test (E, G).

FINAL 010424

Tanke et al_ATVB 2023/319710_R1

1571 Figure 8. Model of endothelial cell flow-mediated quiescence depth.

1572 Proposed model for dynamic regulation of endothelial cell flow-mediated guiescence depth with flow exposure time and magnitude. In the first 16h (Flow-E, arterial flow 1573 establishment) of laminar flow, a deep guiescence is established accompanied by high 1574 1575 levels of cell cycle inhibitor p27, independent of flow magnitude. With time under arterial flow (Flow-M, flow maintenance), HES1 and ID3 transcription factors are upregulated 1576 downstream of flow-mediated Notch and BMP signaling, and they repress p27 1577 1578 transcription leading to a shallow quiescence depth. Deep quiescence and high p27 levels characterize venous flow establishment at 16h (Flow-EV, venous flow 1579 1580 establishment), and this deep quiescence perdures with time under venous flow (Flow-1581 MV). 1582