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* corresponding author: tingke.shen@tuebingen.mpg.de

Abstract

Novelty is a double-edged sword for agents and animals alike: they might benefit from
untapped resources or face unexpected costs or dangers such as predation. The
conventional exploration/exploitation tradeoff is thus coloured by risk-sensitivity. A
wealth of experiments has shown how animals solve this dilemma, for example using
intermittent approach. However, there are large individual differences in the nature of
approach, and modeling has yet to elucidate how this might be based on animals’
differing prior expectations about reward and threat and degrees of risk aversion. To
capture these factors, we built a Bayes adaptive Markov decision process model with
three key components: an adaptive hazard function capturing potential predation, an
intrinsic reward function providing the urge to explore, and a conditional value at risk
(CVaR) objective, which is a contemporary measure of trait risk-sensitivity. We fit this
model to a coarse-grain abstraction of the behaviour of 26 animals who freely explored a
novel object in an open-field arena (Akiti et al. Neuron 110, 2022). We show that the
model captures both quantitative (frequency, duration of exploratory bouts) and
qualitative (stereotyped tail-behind) features of behavior, including the substantial
idiosyncrasies that were observed. We find that “brave” animals, though varied in their
behavior, generally are more risk neutral, and enjoy a flexible hazard prior. They begin
with cautious exploration, and quickly transition to confident approach to maximize
exploration for reward. On the other hand, “timid” animals, characterized by risk
aversion and high and inflexible hazard priors, display self-censoring that leads to the
sort of asymptotic maladaptive behavior that is often associated with psychiatric
illnesses such as anxiety and depression. Explaining risk-sensitive exploration using
factorized parameters of reinforcement learning models could aid in the understanding,
diagnosis, and treatment of psychiatric abnormalities in humans and other animals.

Author summary

Animals face a dilemma when they encounter novel objects in their environment.
Approaching and investigating an object could lead to reward in the form of food, play,
etc. but it also exposes the animal to dangers such as predation. Experiments have
shown that animals solve this exploration dilemma by using intermittent strategies
(alternately approaching the object and then retreating to a safe location) that
gradually increase their level of risk. We built an abstract model of these exploration
strategies and fit the model to the behavior of 26 mice freely exploring a novel object in
an arena. Our model accounts for the high-level physical and mental states of the mice,
the actions the mice can take, and beliefs about the uncertain consequences of those
actions. Our model provides a rational explanation for individual differences seen in
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experiments: individuals maximize their utility given different prior beliefs about the
dangers and the rewards in the environment, and different tendencies to overestimate
the probability of bad outcomes. Modeling individual differences in risk-sensitivity
during exploration could aid in the understanding, diagnosis, and treatment of
psychiatric diseases such as anxiety and depression in humans and animals.

1 Introduction 1

Novelty is a double-edged sword for agents and animals alike: they might benefit from 2

untapped resources or face unexpected costs or dangers such as predation (Corey, 1978). 3

The conventional exploration/exploitation trade-off (Mehlhorn et al., 2015) is thus 4

coloured by risk (Kacelnik and Bateson, 1997); a factor to which different individuals 5

may be differentially sensitive. Despite these duelling aspects, investigations of novelty 6

in reinforcement learning (RL) have mostly focused on neophilia driven by optimism in 7

the face of uncertainty, and so information-seeking (Dayan and Sejnowski, 1996; Duff, 8

2002b; Gottlieb et al., 2013; Wilson et al., 2014). Neophobia has attracted fewer 9

computational studies, apart from some interesting evolutionary analyses (Greggor 10

et al., 2015). 11

Both excessive novelty seeking and excessive novelty avoidance can be maladaptive – 12

they are flip sides of a disturbed balance. Here, we seek to examine potential sources of 13

such disturbances, for instance, in distorted priors about the magnitude or probabilities 14

of rewards (which have been linked to mania; Bennett and Niv, 2020; Eldar et al., 2016; 15

Radulescu and Niv, 2019) or threats (linked to anxiety and depression; Bishop and 16

Gagne, 2018; Paulus and Angela, 2012), or in extreme risk attitudes (Gagne and Dayan, 17

2022). 18

To do this, we take advantage of a recent study by Akiti et al. (2022) on the 19

behaviour of mice exploring a familiar open-field arena after the introduction of a novel 20

object near to one corner. The mice could move freely and interact with the object at 21

will. Akiti et al. (2022) performed detailed analyses of how individual animals’ 22

trajectories reflected the novel object, including using MOSEQ (Wiltschko et al., 2020) 23

to extract behavioural ’syllables’ whose prevalence was affected by it. The animals 24

differed markedly in both how they approached the object, and in what pattern. For 25

the former, Akiti et al. (2022) observed two characteristic positionings of the animals 26

when near to the object: ’tail-behind’ and ’tail-exposed’, associated respectively with 27

cautious risk-assessment and engagement. For the latter, there was substantial 28

heterogeneity along a spectrum of timidity, with all animals initially performing 29

tail-behind approach, but some taking much longer (or failing altogether) to transition 30

to tail-exposed approach. 31

We model an abstract depiction of the behaviour of individual mice by combining 32

two reinforcement learning (RL) frameworks: the Bayes-adaptive Markov Decision 33

Process (BAMDPs) treatment of rational exploration (Dearden et al., 2013; Duff, 2002b; 34

Guez et al., 2013), and the conditional value at risk (CVaR) treatment of risk sensitivity 35

(Artzner et al., 1999; Bellemare et al., 2023; Chow et al., 2015; Gagne and Dayan, 2022). 36

In a BAMDP, the agent maintains a belief about the possible rewards, costs and 37

transitions in the environment, and decides upon optimal actions based on these beliefs. 38

Since the agent can optionally reuse or abandon incompletely known actions based on 39

what it discovers about them, these actions traditionally enjoy an exploration bonus or 40

“value of information”, which generalizes the famous Gittins indices (Gittins, 1979; 41

Weber, 1992). These exploration bonuses are dependent on prior expectations about the 42

environment; and so are readily subject to individual differences. 43

However, in a conventional BAMDP, agents are assumed to optimize the long run 44

expected value implied by their beliefs – implying risk neutrality. We consider 45
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optimizing the CVaR, in which agents concentrate on the average value within lower 46

(risk-averse) or upper (risk-seeking) quantiles of the distribution of potential outcomes 47

(Rigter et al., 2021). In the context of a BAMDP, this can force agents to pay particular 48

attention to hazards. More extreme quantiles are associated with more extreme 49

risk-sensitivity; and again are a potential locus of individual differences (as examined in 50

regular Markov decision processes in the context of anxiety disorders in Gagne and 51

Dayan, 2022). 52

Here, we present a behavioral model of risk sensitive exploration. Our agent 53

computes optimal actions using the BAMDP framework under the CVaR objective. 54

This acts on both aleatoric and epistemic uncertainty, with the latter coming from 55

ignorance about how longer times spent at the object might lead to increases in the 56

probability of predation. This model provides a normative explanation of individual 57

variability – the agent makes decisions by trading off potential reward and threat in a 58

principled way. Different priors and risk sensitivities lead to different exploratory 59

schedules, from timid (indicative of neophilia) to brave. The model captures differences 60

in duration, frequency, and type of approach (risk-assessment versus engagement) across 61

animals, and through time. We report features of the different behavioural trajectories 62

the model is able to capture, providing mechanistic insight into how the trade-off 63

between potential reward and threat leads to rational exploratory schedules. 64

2 Results 65

2.1 Behavior Phases and Animal Groups 66

Fig 1. Left: detailed visualization of minute-to-minute statistics of animal 1 (in the
sessions after the introduction of the novel object). Orange lines are the box-car
functions fitted to segment phases and illustrate the change in time, duration, and
frequency statistics across phases. The transition points t1 and t2 as well as the initial
cautious gcaui , final cautious gcaus , peak confident gconp and steady-state confident gcons

approach times are shown. Right: examples of minute-to-minute and phase-averaged
approach time, duration, and frequency for brave (top), intermediate (middle), and
timid (bottom) animals. Green indicates cautious and blue indicates confident approach.
Darker colors indicate higher values. Averaging statistics over phases ignores
idiosyncracies of behavior to provide a high-level summary of learning dynamics.

Our goal is to provide a computational account of the exploratory behavior of 67
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individual mice under the assumption that they have different prior expectations and 68

risk sensitivities. We start from Akiti et al. (2022)’s observation that the animal 69

approaches and remains within a threshold distance (determined by them to be 7cm) of 70

the object in “bouts” which can be characterized as “cautious” or tail-behind (if the 71

animal’s nose lies between the object and tail) or otherwise “confident” or tail-exposed. 72

We sought to capture both these qualitative differences (cautious versus confident) and 73

aspects of the quantitative changes in bout durations and frequencies as the animal 74

learns about their environment. 75

In order to focus narrowly on interaction with the object, we abstracted away from 76

the details of the spatial interaction with the object, rather fitting boxcar functions to 77

the percentage of its time gcau(t), gcon(t) that the animal spends in cautious and 78

confident bouts around time t in the apparatus. We can then well encompass the 79

behaviour of most animals via four coarse phases of behaviour that arise from two 80

binary factors: whether the animal is mainly performing cautious or confident 81

approaches, and whether bouts happen frequently, at a peak rate, or at a lower, 82

steady-state rate. The time g(t) an animal spends near the object in one of these phases 83

reflects the product of how frequently it visits the object, and how long it stays per visit. 84

We average these two factors across the phases. 85

Consider the behaviour of the animal in the (left panel) of Fig 1. Here, gcau(t) (top 86

graph) makes a transition from an initial level gcaui (during the “cautious” phase) to a 87

final steady-state level gcaus (which we simplify as being gcaus = 0) at a transition point 88

t = t1. At the same timepoint, gcon(t) (second row) makes a transition from 0 to a peak 89

level gconp of confident approach (defining the “peak confident” phase). Finally, there is 90

another transition at time t2 from peak to a steady-state confident approach time gcons 91

(in the “steady-state confident” phase). The lower two rows of figure 1 left panel show 92

the duration of the bouts in the relevant phases, and the frequency per unit time of 93

such bouts. 94

The top right panel of Fig 1 renders the actual and abstracted behaviour of this 95

animal in an integrated form, showing how we generate “phase-level” statistics from 96

minute-to-minute statistics. The colours in the top row indicate the type of approach 97

(green is cautious; blue is confident). The second and third rows indicate the duration 98

and frequency of approach. Darker colours represent higher values. Averaging statistics 99

over phases ignores idiosyncrasies of behavior and allows us to fit the high-level 100

statistics of behavior: phase-transiton times, phase-averaged durations and frequencies. 101

We consider animal 1 to be a “brave” animal because of its transition to peak and then 102

steady-state confident approach. There were 12 brave mice out of the 26 in total. 103

The middle panels on the right of Fig 1 show an example of another characteristic 104

animal. They make a transition from cautious to confident approach (where both 105

duration and frequency of visits can change), but the approach time during the confident 106

phase gcons does not decrease. Hence, intermediate animals do not have a transition 107

from peak to steady-state confident phase. There were 9 such “intermediate” mice. 108

The bottom panels in the right of Fig 1 show the last class of animals an example of 109

another characteristic animal. This animal never makes a transition to confident 110

approach. Hence, for it, gcon(t) = 0. However, the cautious approach time makes a 111

transition to a non-zero steady state (gcaus > 0), often via a change in frequency, 112

defining the fourth phase (“steady-state cautious”). There were 5 such “timid” mice. 113

Fig 2 summarizes our categorization of the animals into the three groups: brave, 114

intermediate, and timid based on the phases identified in the animal’s exploratory 115

trajectories. Timid animals spend no time in confident approach. Brave animals differ 116

from intermediate animals in that their approach time during the first ten minutes of 117

the confident phase is greater than the last ten minutes (steady-state phase). Fig 7 118

(top-left) shows that our categorization is different but correlated with the ranking of 119
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animals in Akiti et al. (2022) based on the total time spent near the object. 120

Fig 2. Separating the three animal groups. The x-axis is the ratio of total time spent
in confident versus cautious bouts. The y-axis is the ratio of bout time in the first 10
minutes of confident approach and the last 10 minutes of confident approach (set to 0
for timid animals that do not have a confident phase). The horizontal line indicates
y = 1.0. All timid animals are close to the origin. We separate brave and intermediate
animals according to the y = 1 line.

2.2 A Bayes-adaptive Model-based Model for Exploration and 121

Timidity 122

2.2.1 State description 123

We use a model-based Bayes-adaptive reinforcement learning model to provide a 124

mechanistic account of the behavior of the mice under threat of predation. This extends 125

the model-free description of threat in Akiti et al. (2022) by constructing various 126

mechanisms to explain additional facets of the dynamics of the behavior. 127

Underlying the BAMDP is a standard multi-step decision-making problem of the 128

sort that is the focus of a huge wealth of studies (Russell and Norvig, 2016). We 129

cartoon the problem with the four real and four counterfactual states shown in Fig 3. 130

The nest is a place of safety, (modelling all places in the environment away from the 131

object, ignoring, for instance, the change to thigmotactic behaviour that the mice 132

exhibit when the object is introduced. The animal can choose to stay at the nest 133

(possibly for multiple steps) or choose to make a cautious or confident approach. 134

At an approach state, the modelled agent can either stay, or return to the nest via 135

the retreat state; the latter happens anyhow after four steps. The animal also imagines 136

the (in reality, counterfactual) possibility of being detected by a potential predator. It 137

can then either manage to escape back to the nest, or alternatively expire. We 138

parameterize costs associated with the various movements; and also the probability of 139

unsuccessful escape starting from confident (p1) or cautious (p2 < p1) approach. 140

We describe the dilemma between cautious and confident approach as a calculation 141

of the risk and reward trade-off between the two types of approaches. Cautious 142

approach (the “cautious object” state) has a lower (informational) reward (e.g. because 143

in the cautious state the animal spends more cognitive effort monitoring for lurking 144

predators rather than exploring the object). But cautious approach leads to a lower 145

probability of expiring if detected than does confident approach (the “cautious object” 146

state) (e.g. because in the cautious state the animal is better poised to escape). Risk 147

aversion modulates the agent’s choice of approach type. 148
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Fig 3. Markov decision process underlying the BAMDP model. Four real (nest,
cautious object, confident object, retreat) and three imagined (cautious detect,
confident detect, dead) states. Agent actions are italicized. Blue arrows indicate
(possibly stochastic) transitions caused by agent actions. Green arrows indicate
(possibly stochastic) forced transitions. Cautious approach provides less informational
reward r2 < r1 but has a smaller chance of death p2 < p1 compared to confident
approach. Travel and dying costs are not shown.

The next sections describe the characterization of the time-dependent risk of 149

predation, the informational reward for exploration, the method of handling risk 150

sensitivity, the way we fitted individual mice, and finally the full analysis of their 151

behaviour. We report on recovery simulations in the supplement. 152

2.2.2 Modeling Threat with a Bayesian, Generalizing Hazard Function 153

Whilst exploring the novel object in the “object” state, we consider the animal as 154

imagining that it might be detected, and then attacked, by a predator, whose 155

appearance is governed by a temporal hazard function (see Fig 4). 156

Formally, the probability of detection given either cautious or confident approach is 157

modelled using the hazard function hτ , where τ is the number of steps the animal has 158

so far spent at the object in the current bout. In a key simplification, this probability 159

resets back to baseline upon a return to the nest. We treat the hazard function as being 160

learned in a Bayesian manner, from the experience (in this case, of not being detected). 161

We assume that the animal has the inductive bias that the hazard function is increasing 162

over time, reflecting a potential predator’s evidence accumulation process about the 163

prey. Therefore, we derive it from a succession of independent Beta-distributed random 164

variables θ1 = 0; θτ ∼ Beta(aτ , bτ ), τ > 1 as: 165

hτ = 1−
τ∏

t=1

(1− θt) (1)

= hτ−1 +
(
1− hτ−1

)
θτ , for τ > 1 (2)

rather as in what is known as a stick-breaking process. 166

Eq 2 shows that the hazard function is always increasing. As we will see, the 167

duration of bouts at the object depend on the slope of the hazard function, with steep 168

hazard functions leading to short bouts. In our model, the agent can stay at the object 169
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Fig 4. Hazard function learning for brave (top) and timid (bottom) animals. Brave
animals start with a flexible hazard prior with a low mean for θ1. This leads to longer
bouts (first length 2, then 3 and 4), which imply that the hazard posterior quickly
approaches zero (here, after 10 bouts). Timid animals start with an inflexible hazard
prior with a higher mean θ1, and are limited to length 2 bouts. The hazard posterior
only changes slightly after 10 bouts.

2, 3 or 4 turns (we take θ1 = 0 as a way of coding actual approach).1 Hence the 170

collection of random variables, hτ , is derived from six parameters (the mean µτ and the 171

standard deviation στ of the Beta distribution for the turn). These start at prior values 172

(which we fit to the individual mice), and are subject to an update from experience, 173

which, given the exclusively negative experience from the lack of actual appearance of a 174

predator, has a closed form (see Methods). The animals’ initial ignorance, which is 175

mitigated by learning, makes the problem a BAMDP, whose solution is a risk-averse 176

itinerant policy. 177

A particular characteristic of the noisy-or hazard function of Eq 1 is that the derived 178

bout duration increases progressively. This is because not being detected at τ = 2, say, 179

provides information that θ2 is small, and so reduces the hazard function for longer 180

bouts τ > 2. 181

Fig 4 shows the fitted priors of a brave (top) and timid (bottom) animal, as well as 182

the posteriors at the end of model simulations. The brave animal starts with a high 183

variance prior. This flexibility allows it to transition from short, cautious bouts 184

(duration τ = 2) to longer confident bouts (duration τ = 3, 4), reducing the hazard 185

function to near zero. The timid animals has a low variance prior, and does not stay 186

long enough at the object to build sufficient confidence (only performing duration τ = 2 187

bouts). As a result, its posterior hazard function remains similar to its prior. 188

2.2.3 Modeling the Motivation to Approach 189

We model the mouse’s drive to approach the object using an exploration bonus G(t) as 190

an approximation to the value of information that would be derived from a fully 191

Bayesian treatment. In the absence of actual reward, the model mouse will move from 192

1We therefore sometimes refer to cautious−k or confident−k bouts in which the model animal spends
k = {2, 3, 4} steps at the object.
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the “nest” state to the “object” state when these informational rewards exceed the costs 193

implied by the risk of being attacked. The exploration bonus is implemented using an 194

heuristic model with an initial bonus pool G0 that becomes depleted, but is also 195

replenished (through forgetting or potential change) at a steady rate f . We consider the 196

animal to harvest the exploration bonus pool faster under confident than cautious 197

approaches, for instance since it can pay more attention to the object. This underpins 198

the transition between the two types of approach for non-timid animals. In simulations, 199

when G(t) is high, the agent has a high motivation to explore the object. In other 200

words, the depletion from G0 substantially influences the time point at which approach 201

makes a transition from peak to steady-state; the steady-state time then depends on the 202

dynamics of depletion (during time spent at the object) and replenishment (during time 203

spent at the nest). 204

Finally, the animal is also motivated to approach by informational reward from the 205

hazard function (which can be used exploited to collect more future reward) – according 206

to a standard Bayes-adaptive bonus mechanism (Duff, 2002b). 207

2.2.4 Conditional Value at Risk Sensitivity 208

Along with varying degrees of pessimism in their prior over the hazard function, the 209

mice could have different degrees of risk sensitivity in the aspect of the return that they 210

seek to optimize. There are various ways in which the mice might be risk sensitive. 211

Following Gagne and Dayan (2022), we consider a form called nested conditional value 212

at risk (nCVaR). In general, CVaRα, for risk sensitivity 0 ≤ α ≤ 1, measures the 213

expected value in the lower α quantile of returns – thus over-weighting the worse 214

outcomes. The lower α, the more extreme the risk-aversion; with α = 1 being associated 215

with the conventional, risk-neutral, expected value of the return. Section 5.2 details the 216

optimization procedure concerned – it operates by upweighting the probabilities of 217

outcomes with low returns – here, from detection and expiration. Thus, when α is low, 218

confident and longer bouts are costly, inducing shorter, cautious ones. nCVaRα affects 219

behavior in a similar manner to pessimistic hazard priors, except that nCVaRα acts on 220

both the aleatoric uncertainty of expiring and epistemic uncertainty of detection, while 221

priors only affect the latter. As we will see, despite this difference, we were not able to 222

differentiate pessimistic priors from risk sensitivity using the data in (Akiti et al., 2022). 223

2.2.5 Model Fitting 224

The output of each simulation is a sequence of states from which we derive the statistics 225

to fit the abstract mice data. The transition point from cautious to confident approach 226

happens when the agent first ventures a confident approach; this switch is rarely 227

reversed. Peak to steady-state transition points occur when the model mouse decreases 228

its frequency of bouts, which tends to happen abruptly in the model. We fit the 229

transition points in mouse data by mapping the length of a step in the model to 230

wall-clock time. As in the abstraction of the experimental data, we average the duration 231

(number of turns at the object) and frequency statistics in each phase. We characterize 232

the relative frequencies of the bouts across phase transitions. Frequency mainly governs 233

the total time at or away from the object and is formally defined as the inverse of the 234

number of steps the model spends at the object and the nest. 235

We use a form of Approximate Bayesian computation Sequential Monte Carlo 236

(ABCSMC; Toni et al. (2009)) to fit the elements of our abstraction of the approach 237

behaviour of the mice (section 2.1), namely change points, peak and steady-state 238

durations as well as relative frequencies of bouts. See the Methods section 5.5 for details 239

on the fitted statistics. At the core of ABCSMC is the ability to simulate the behaviour 240

of model mice for given parameters. We do this by solving the underlying BAMDP 241
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problem approximately using receding horizon tree search with a maximum depth of 5 242

steps (which covers the longest allowable bout, defined as a subsequence of states where 243

the model mouse goes from the nest to the object and back to the nest). 244

The full set of parameters includes 6 for the prior over the hazard function (given 245

that we limit to four the number of time steps the model mouse can stay at the object), 246

the risk sensitivity parameter α for CVaRα, the initial reward pool G0 and the 247

forgetting rate f . 248

2.2.6 A Spectrum of Risk-Sensitive Exploration Trajectories 249

Fig 5. Summary of model fit. Left panels: minute-to-minute time the animals spend
within 7cm of the novel object (top), duration (middle), and frequency (bottom). There
are 26 animals (one per row) sorted by the animal ranking (see main text Section 2.2.6).
Central panels: the same values averaged over behavioral phases. Right panels: time,
duration and frequency of bouts generated as sample trajectories from the individual
fits of the BAMDP model. Legend: green/blue distinguishes cautious and confident
bouts. The intensity of colors indicates higher values, and gray indicates zeros.

Fig 5 shows model fits on the 26 mice from Akiti et al. (2022). The animal ranking is 250

sorted firstly on animal group and secondly on total time spent near the object. We call 251

this ranking the group-timidity animal index - it differs from the timidity index used in 252

Akiti et al. (2022) which is only based on total time spent near the object. The model 253

captures many details of the data across the entire spectrum of courage to timidity. The 254

model explains the behavior of animals mechanistically. Differing schedules of 255

exploration emerge because of the battle between learning about threat and reward. 256

All animals initially assess risk with cautious approach, since potential predation 257

significantly outweighs potential rewards. Brave animals assess risk either with short 258

(length 2 bouts) or medium (length 3 bouts) depending on the hazard priors (Fig 6, left 259

panel). If E[h3] is high, then the animal performs cautious length 2 bouts, otherwise, it 260

performs cautious length 3 bouts. With more bout experience, the posterior hazard 261

function becomes more optimistic (since there is no actual predator to observe; Fig 4), 262

empowering it to take on more risk by staying even longer at the object and performing 263

confident approach. How long brave animals spend assessing risk depends on hazard 264

priors and the risk sensitivity nCVaRα. 265

Fig 7 shows that the fitted hazard priors and nCVaRα relate to the timidity of 266

animals (as defined in Akiti et al. (2022) by time spent at the object). Brave animals 267

are fitted by higher nCVaRα and low slope and high variance (flexibility) hazard prior. 268

In other words, the model brave mouse believes that the hazard probability for long 269

bouts is low in its environment. Timid animals are fitted by lower nCVaRα and high 270

January 7, 2024 9/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.07.574574doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.07.574574
http://creativecommons.org/licenses/by/4.0/


Fig 6. The bout durations of brave animals depend on the hazard prior. Top-left:
brave animals that initially perform cautious-3 bouts, then confident-3 bouts. These
animals are fitted with a low t=3 prior and high t=4 prior because they never perform
duration-4 bouts. Blue indicates individual animals and black indicates the mean.
Bottom-left: cautious-2 then confident-3 animals. The prior for t=3 is higher because
there is some hazard to overcome before the animal does a duration-3 bout. Top-right:
cautious-2 then confident-4 animals. Both t=3 and t=4 priors are low. Once the animal
overcomes the t=2 hazard, it quickly transitions from duration 2 to 4. Bottom-right:
cautious-3 then confident-4 animals. Because the t=3 prior is low, the animals begins
with duration-3 bouts.

slope, inflexible hazard prior. Intermediate animals’ parameters are between brave and 271

timid animals’. 272

For brave animals, G0 determines how much time brave animals spend in the 273

peak-confident exploration phase, or the peak to steady-state change point. Animals 274

with larger G0 tend to have high bout frequency for a longer period (see Fig 8). Finally, 275

how often brave animals revisit the object, which is related to the relative steady-state 276

frequency, is determined by the forgetting rate. 277

Timid animals have short bouts and continue to assess risk with cautious approach 278

in the steady-state. According to Fig 7, the reasons are the hazard prior is inflexible 279

(low variance) and has a high slope and low nCVaRα. The priors are slow to update and 280

risk sensitivity causes timid agents to overestimate the probability of bad outcomes, 281

leading to prolonged cautious behavior. Hence, the reward exploration pool is depleted 282

(i.e. the agent transitions to the steady-state phase) before the agent overcomes its 283

priors. This particular dynamic of approach-drive and hazard function updating leads 284

to self-censoring and neophobia. In the steady-state phase, the agent stays long periods 285

at the nest (how long depends again on the forgetting rate). As a result, the animal 286

(during the course of the experiment) never accumulates sufficient evidence to learn the 287

safety of the object or if the object yields rewards. However, Akiti et al’s experiment 288

did not last long enough to answer the question of whether all animals, even the 289

timidest ones eventually perform confident approach. Our model predicts that they will 290

since the agent only accumulates negative evidence for the hazard function. However, 291

with sufficient low CVaR or pessimistic priors, this may take a very long time. 292

Intermediate animals, like brave animals, eventually switch to confident approach to 293

maximize information gained about potential rewards. Similar to brave animals, the 294

cautious to confident transition tends to be later with lower nCVaRα and steeper, less 295

flexible priors. Intermediate animals perform both cautious and confident bouts with 296
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Fig 7. (Top-left) nCVaR versus the animal ranking defined in Section 2.2.6. Color
indicates the animal group. More timid animals are generally fitted by a lower nCVaRα.
(Top-right, bottom-left, bottom-right) Prior hazard parameter for t=2, 3, 4 respectively
versus timidity ranking. Dots indicate the mean; the probability density is represented
by color where darker means higher density regions. The t=2 prior mean is similar
across all animals explaining the short, cautious bouts all animals initially use to assess
risk. However, timid animals are best fit with lower variance (inflexible) and higher t=3
and t=4 prior means. This leads to shorter, cautious bouts in the long run. Brave
animals are fitted by a low slope (indicated by lower mean for t=3 and t=4) and high
variance (flexible) hazard prior. This allows them to perform longer bouts over time.
t=4 mean is low (panel d) for brave animals that perform length 4 bouts. Like brave
animals, most intermediate animals have flexible, gradual hazards up to t=3.

medium duration. This is captured by a hazard prior with smaller E[h3] and larger 297

E[h4]. The percentage of time spent at the object is relatively constant throughout the 298

experiment for intermediate animals. This can be explained by either large G0 or a high 299

forgetting rate. In other words, the animal is either slow to update its belief about the 300

potential reward at the object, or it expects the reward probability to change quickly. 301

Fig 5 also illustrates several limitations of the model. In particular, the duration of 302

bouts can only increase, whereas a few animals exhibit decreasing bout duration 303

between confident-peak and confident-steady-state phases. Furthermore, the model has 304

trouble capturing abrupt changes in duration (from 2 turns to 4) coinciding with an 305

animal’s transition from cautious to confident approach. 306

2.2.7 Risk Sensitivity versus Prior Belief Pessimism 307

We found that risk sensitivity and prior pessimism could not be teased apart in our 308

model fits. This is illustrated in Fig 9. In the ABCSMC posterior distributions, 309

nCVaRα is correlated with θ2-mean for timid and intermediate animals, θ3-mean for 310

cautious-2/confident-4 and cautious-2/confident-3 animals, and θ4-mean for 311

cautious-2/confident-4 and cautious-3/confident-4 animals. In other words, lower 312

nCVaRα (higher risk-sensitivity) can be traded off against lower (more optimistic) 313

priors to explain the observed risk-aversion in animals. 314

In ablation studies (not shown), we found that hazard priors with a risk-neutral 315

nCVaR1.0 is capable of fitting the full range of animals equally well. The only 316

advantage of fitting both nCVaRα and hazard priors to each animal is greater diversity 317
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Fig 8. Top-left: the relationship between G0 and the peak to steady-state change point
for brave animals. The best fit line is shown in black. Higher G0 means the agent
explores longer, hence postponing the change point. Bottom-left: forgetting rate versus
steady-state turns at the nest state for brave animals. A higher forgetting rate leads to
quicker replenishment of the exploration pool and hence fewer turns at the nest before
approaching the object. Top-right: G0 versus peak to steady-state change point for
timid animals. Bottom-right: forgetting rate versus turns at nest timid animal. All
correlations are significant with p < 0.002.

in the particles discovered by ABCSMC. While the model with nCVaR1.0 is simpler, 318

one might suspect, on general grounds, that both risk sensitivity and belief pessimism 319

affect mice behavior. 320

We also found that nCVaRα alone, with the same hazard prior for all animals, is 321

incapable of fitting the full range of animal behavior (results not shown). This can be 322

explained by the fact that nCVaRα cannot model the different slopes in the hazard 323

function. For example, a cautious-2/confident-3 animal must be modeled using a high 324

θ4-mean. Starting with the parameters for a cautious-2/confident-4 animal and 325

decreasing nCVaRα will not create a cautious-2/confident-3 animal. Instead, decreasing 326

nCVaRα will delay the cautious-to-confident transition of the cautious-2/confident-4 327

animal and eventually create a cautious-2 timid animal. This is unsurprising since 328

nCVaRα is a single free parameter while six hazard prior parameters are required to 329

produce the different hazard functions that capture the full range of animal behavior. 330

This illustrates that in general, structured prior beliefs are required in addition to 331

nCVaRα to model detailed behavior in complex environments. 332

3 Discussion 333

We combined a Bayes adaptive Markov decision process framework with a conditional 334

value at risk objective to capture many facets of an abstraction of the substantially 335

different risk-sensitive exploration of individual animals reported by Akiti et al. (2022). 336

In the model, behaviour reflects a battle between learning about potential threat and 337

potential reward. Individual variability in the schedules of exploratory approach was 338

explained by different risk sensitivities, forgetting rates, exploration bonuses and prior 339

beliefs about an assumed hazard associated with a novel object. Neophilia arises from a 340

form of optimism in the face of uncertainty, and neophobia from the hazard. Critically, 341

the hazard function is generalizing (reducing the t = 2 hazard reduces the t = 4 hazard) 342

and monotonic. The former property induces an increasing approach duration over time 343
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Fig 9. Non-identifiability of nCVaRα against the hazard prior. Top-left: the scatter
plot shows the t=2 prior mean (θ2-mean) versus nCVaRα for ABCSMC particles of
timid animal 19. The ellipse indicates one standard deviation in a Gaussian density
model. Animal 19 (and timid animals generally) can be either fit with a higher nCVaRα

and a higher θ2-mean, or a lower nCVaRα and a lower θ2-mean. The box-and-whisker
plot illustrates the correlation between θ2-mean and nCVaRα across all timid animals.
Top-right: the scatter plot shows an example intermediate animal 12; the
box-and-whisker plot shows θ2-mean versus nCVaRα for the intermediate population.
Bottom-left: the scatter plot shows an example cautious-2/confident-4 and
cautious-2/confident-3 animal 17. This group of animals starts with duration= 2 bouts
and hence must overcome the prior θ3-mean. The box-and-whisker plot shows θ3-mean
versus nCVaRα for the population. Bottom-right: the scatter plot shows an example
cautious-2/confident-4 and cautious-3/confident-4 animal 1. This group of animals
eventually performs duration= 3 bouts and hence must overcome the prior θ4-mean.
The box-and-whisker plot shows θ4-mean versus nCVaRα for the population. nCVaRα

and θ-mean are correlated in the ABCSMC posterior for all animals and hence
non-identifiable. p < 0.05 for all correlations.

(Arsenian, 1943). Furthermore, the exploration bonus associated with the object 344

regenerates, as if the subjects consider its affordance to be non-stationary (Dayan et al., 345

2000). This encourages even the most timid animals to continue revisiting it. 346

A main source of persistent timidity is a sort of path-dependent self-censoring 347

(Dayan et al., 2020). That is, the agents could be so pessimistic about the object that 348

they never visit it for long enough to overturn their negative beliefs. This can in 349

principle arise from either excessive risk-sensitivity or overly pessimistic priors. We 350

found that it was not possible to use the model to disentangle the extent to which these 351

two were responsible for the behavior of the mice, since they turn out to have very 352

similar behavioural phenotypes. One key difference is that risk aversion continues to 353

affect behaviour at the asymptote of learning; something that might be revealed by due 354

choice of a series of environments. Certainly, according to the model, forced exposure 355

Huys et al. (2022) would hasten convergence to the true hazard function and the 356

transition to confident approach. 357

Due to the complexity of the dataset, we made several rather substantial simplifying 358

assumptions. First, we adopted a particular set of state abstractions, for instance 359

representing thigmotaxis as a notional “nest” (Simon et al., 1994). Second, we only 360

allowed the agent to stay for a maximum of four turns at the object. In reality, the mice 361

could stay arbitrarily long near the object. Third, instead of maintaining appropriately 362

Bayesian beliefs about potential rewards and deriving an exploration bonus accordingly, 363

we used an heuristic regenerating exploration pool. Fourth, the model only allows the 364

frequency of approach, and not its duration, to decrease during the steady-state phase. 365
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However, for some animals, duration or both decrease. Fifth, the probability of being 366

detected was the same between cautious and confident approaches, which may not be 367

true in general. Note that the agent decides the type of approach before the bout, and 368

is incapable of switching from cautious to confident mid-bout or vice versa. This is 369

consistent with behavior reported in Akiti et al. (2022). Sixth, we restricted ourselves to 370

a monotonic hazard function for the predator. It would be interesting to experiment 371

with a non-monotonic hazard function instead, as would arise, for instance, if the agent 372

believed that if the predator has not shown up after a long time, then there actually is 373

no predator. Of course, a sophisticated predator would exploit the agent’s inductive 374

bias about the hazard function – by waiting until the agent’s posterior distribution has 375

settled. In more general terms, the hazard function is a first-order approximation to a 376

complex game-theoretic battle between prey and predator, which could be modeled, for 377

instance using an interactive IPOMDP (Gmytrasiewicz and Doshi, 2005). How the 378

predator’s belief about the whereabouts of the prey diminishes can also be modeled 379

game-theoretically, leading to partial hazard resetting rather than the simplified 380

complete resetting in our model. 381

Our account is model-based, with the mice assumed to be learning the statistics of 382

the environment and engaging in prospective planning (Mobbs et al., 2020). By 383

contrast, Akiti et al. (2022) provide a model-free account of the same data. They 384

suggest that the mice learn the values of threat using an analogue of temporal difference 385

learning (Sutton, 1988), and explain individual variability as differences in value 386

initialization (Akiti et al., 2022). The initial values are generalizations from previous 387

experiences with similar objects, and are implemented by activity of dopamine in the 388

tail of the striatum (TS) responding to stimuli salience (Akiti et al., 2022). By contrast, 389

our model encompasses extra features of behavior such as bout duration, frequency, and 390

type of approach – ultimately arriving at a different mechanistic explanation of 391

neophobia. In the context of our model, TS dopamine could still respond to the physical 392

salience of the novel object but might then affect choices by determining the potential 393

cost of the encountered threat (a parameter we did not explore here) or perhaps the 394

prior on the hazard function. An analogous mechanism may set the exploration pool or 395

the prior belief about reward - perhaps involving projections from other dopamine 396

neurons, which have been implicated in novelty in the context of exploration bonuses 397

(Kakade and Dayan, 2002) and information-seeking for reward (Bromberg-Martin and 398

Hikosaka, 2009; Ogasawara et al., 2022). 399

Of course, agents do not need to be fully model-free or model-based. They can 400

truncate model-based planning using model-free values at leaf nodes (Keramati et al., 401

2016). Furthermore, prioritized model-based updates can update a model-free policy 402

when environmental contingencies change (Antonov and Dayan, 2023). Finally, while 403

online BAMDP planning can be computationally expensive, a model-based agent may 404

simply amortize planning into a model-free policy which it can reuse in similar 405

environments or even precompile model-based strategies into an efficient model-free 406

policy using meta-learning (Wang et al., 2017). Agents may have faced many different 407

exploration environments with differing reward and threat trade-offs through their 408

lifetimes and across evolutionary scales that they have used to create fast, instinctive 409

model-free policies that resemble prospective, model-based behavior (Mattar and Daw, 410

2018; Rusu et al., 2016). In turn, TS dopamine might reflect aspects of MF values or 411

prediction errors that had been trained by a MB system following the precepts we 412

outlined. 413

In Akiti et al. (2022), ablating TS-projecting dopamine neurons made mice “braver”. 414

They spent more time near the object, performed more tail-exposed approach and 415

transitioned faster to tail-exposed approach compared to control. In Menegas et al. 416

(2018) TS ablation affected the learning dynamics for actual, rather than predicted 417
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threat. Both ablated and control animals initially demonstrated retreat responses 418

towards airpuffs but only control mice maintained this response (Menegas et al., 2018). 419

After airpuff punishment, ablated individuals surprisingly did not decrease their choices 420

of water ports associated with airpuffs (while controls did). One possibility is that this 421

additional exposure could have caused acclimatization to the airpuffs in the same way 422

that brave animals in our study acclimatize to the novel object by approaching more, 423

and timid animals fail to acclimatize because of self-censoring. Indeed, future 424

experiments might investigate why punishment-avoidance does not occur in ablated 425

animals and whether the same holds in risk-sensitive exploration settings (Menegas 426

et al., 2018). In other words, would mice decrease approach after reaching the “detected” 427

state, as expected by our model, or would they maladaptively continue the same rate of 428

approach? Finally, while our study has focused on threat, Menegas et al. (2017) showed 429

that TS also responds to novelty and salience in the context of rewards and neutral 430

stimuli. That TS ablated animals spend more, rather than less time near the novel 431

object suggests that the link from novelty to neophilia and exploration bonuses might 432

not be mediated by this structure. 433

The behaviour of the mice in Akiti et al. (2022) somewhat resembles attachment 434

behaviour in toddlers (Ainsworth, 1964; Bowlby, 1955), albeit with the care-giver’s 435

trusty leg (a secure base from which to explore) replaced by thigmotaxis (or, in our case, 436

the notional ’nest’). Characteristic to this behaviour is an intermittent exploration 437

strategy, with babies venturing away from the leg for a period before retreating back to 438

its safety. Through the time course of the experiment, the toddler progressively 439

ventures out longer and farther away, spending more time actively playing with the toys 440

rather than passively observing them in hesitation (Arsenian, 1943). This is another 441

example of a dynamic exploratory strategy, putatively arising again from differential 442

updates to beliefs about threats and the rewards in the environment (Ainsworth, 1964; 443

Arsenian, 1943). 444

Variability in timidity during exploration has been reported in other animal species 445

and can be caused by differences in both prior experience and genotype. Fish from 446

predator-dense environments tend to make more inspection approaches but stay further 447

away, avoid dangerous areas (attack-cone avoidance) and approach in larger shoals 448

compared to fish from predator-sparse environments (Dugatkin, 1988; Magurran, 1986; 449

Magurran and Seghers, 1990). Dugatkin (1988) and Magurran (1986) report significant 450

within-population differences in the inspection behavior of guppies and minnows 451

respectively. Brown and Dreier (2002) directly manipulates the predator experience of 452

glowlight tetras, leading to changes to inspection behavior. Similar inter- and 453

intra-population differences in timidity have been reported in mammals. In Coss and 454

Biardi (1997), the squirrel population sympatric with the tested predators stayed 455

further away and spent less time facing the predator compared to the allopatric 456

population. Furthermore, the number of inspection bouts differed between litters, 457

between individuals within the same litter, and even between the same individuals at 458

different times during development (Coss and Biardi, 1997). In Kemp and Kaplan 459

(2011), marmosets differed in risk-aversion when inspecting a potential (taxidermic) 460

predator but risk-aversion was not stable across contexts for some individuals. 461

FitzGibbon (1994) reports age differences in inspection behavior - adolescent gazelles 462

inspected cheetahs more than adults or half-growns. Finally, Eccard et al. (2020); 463

Mazza et al. (2019) report substantial individual differences in the foraging behavior of 464

voles in risky environments. 465
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4 Conclusion 466

In conclusion, our model shows that risk-sensitive, normative, reinforcement learning 467

can account for individual variability in exploratory schedules of animals, providing a 468

crisp account of the competition between neophilia and neophobia that characterizes 469

many interactions with an incompletely known world. 470

5 Materials and methods 471

5.1 BAMDP Hyperstate 472

A Bayes-Adaptive Markov Decision Process (BAMDP; Duff, 2002a; Guez et al., 2013) is 473

an extension of model-based MDP and a special case of a Partially Observable Markov 474

Decision Process (POMDP; Kaelbling et al., 1998) in which the agent models its 475

uncertainty about the (unchanging) transition dynamics. In a BAMDP, the agent 476

extends its state representation into a hyperstate consisting of the original MDP state s, 477

and the belief over the transition dynamics b(T ). 478

In our model s is the conjunction of the “physical state” (the location of the agent, 479

as shown in Fig 3) and the number of turns the agent has spent at the object so far τ . 480

b(T ) is the agent’s posterior belief over the hazard function. In this simple case, b(T ) is 481

parameterized as a vector of beta distributions, with parameters η⃗1 and η⃗0. 482

b(T ) = p(T ; η⃗1, η⃗0) (3)

Our hyperstate additionally contains the nCVaR static risk preference ᾱ, and the 483

parameters of the heuristic exploration bonus G,n1, n0 (see Section 5.4). 484

5.2 Bellman Updates for BAMDP nCVaR 485

As for a conventional MDP, the nCVaR objective for a BAMDP can be solved using 486

Bellman updates. We use Eq 4 which assumes a deterministic, state-dependent, reward. 487

V ∗(b(T ), s, ᾱ) = max
a

[
r(s) + γ min

ξ∈U(ᾱ)

∑
s′

ξ(b′(T ), s′)T̄ (s, a, s′)V ∗(b′(T ), s′, ᾱ)

]
(4)

s′ is the next state and b′(T ) is the posterior belief over transition dynamics after 488

observing the transition (s, a, s′). T̄ (s, a, s′) is the expected transition probability. 489

T̄ (s, a, s′) =

∫
T (s, a, s′)b(T )dT (5)

Proof of Eq 4. 490

V ∗(b(T ), s, ᾱ) = max
a

{r(x) + γ min
ξ∈U(ᾱ)

∫
b̂(T ),s′

ξ(b̂(T ), s′) · p([b(T ), s], a, [b̂(T ), s′]) · V ∗(b̂(T ), s′, ᾱ)d[b̂(T ), s′]}

where U(ᾱ) = {ξ : ξ(b̂(T ), s′) ∈ [0, 1
ᾱ ],

∫
b̂(T ),s′

ξ(b̂(T ), s′)p([b(T ), s], a, [b̂(T ), s′]) = 1} 491

is the risk envelope for CVaR (Chow et al., 2015). But p([b(T ), s], a, [b̂(T ), s′]) is only 492
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non-zero when b̂(T ) = b′(T ). 493

p([b(T ), s], a, [b̂(T ), s′]) =

∫
T

p(b̂(T ), s′|T, s, a)b(T )dT

=

∫
T

δ(b̂(T )− b′(T ))T (s′|s, a)b(T )dT

=

{
T̄ (s, a, s′) =

∫
T
T (s′|s, a)b(T )dT, for b̂(T ) = b′(T )

0, otherwise

Hence we can drop the independent integration over b̂(T ), and only integrate over s′. 494

V ∗(b(T ), s, ᾱ) = max
a

{r(s) + γ min
ξ∈U(ᾱ)

∫
s′
ξ(b′(T ), s′) · T̄ (s, a, s′) · V ∗(b′(T ), s′, ᾱ)ds′}

= max
a

{r(s) + γ min
ξ∈U(ᾱ)

∑
s′

ξ(b′(T ), s′) · T̄ (s, a, s′) · V ∗(b′(T ), s′, ᾱ)}

□

Epistemic uncertainty about the transitions only generates risk in as much as it 495

affects the probabilities of realizable transitions in the environment. 496

5.3 Noisy-Or Hazard Function 497

xi
τ

ztθt

t = 1 : τ i data

Fig 10. Bayes-net showing the relationship between the random variables in the
noisy-or model. Only xτ is shown. xτ+1 depends on zt=1:τ+1, and so on.

Xτ = Z1 ∪ Z2 ∪ . . . Zτ (6)

In our model, the hazard function defines a binary detection event Xτ for each 498

number of turns the agent spends at the object τ = 2, 3, 4. The predator detects the 499

agent when Xτ = 1. We use a noisy-or hazard function which defines Xτ as the union 500

of Bernoulli random variables Zt ∼ Bernoulli(θt) (Eq 6) with priors θt ∼ Beta(η1t , η
0
t ) 501

for t = 2, 3, 4. Fig 10 shows the relationships between the random variables in plate 502

notation. 503

Posterior inference for the noisy-or model is intractable in the general case (Jaakkola 504

and Jordan, 1999). However, there is a closed-form solution for the posterior when the 505

agent only makes negative observations, meaning xi
τ = 0 ∀i (in our case, since there is 506

no actual predator). For example, given a single observation xτ = 0, 507

p(θt=1:τ |xτ = 0) =
p(xτ = 0|θt=1:τ )p(θt=1:τ )

p(xτ = 0)

=

∏
t=1:τ p(zt = 0|θt)p(θt)

p(xτ = 0)

=

∏
t=1:τ (1− θt)Beta(θt; η

1
t , η

0
t )

p(xτ = 0)
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By conjugacy, 508

p(θt=1:τ |xτ = 0) ∼
∏

t=1:τ

Beta(θt; η
1
t , η

0
t + 1) (7)

Hence the posterior update simply increments the Beta pseudocounts for the ’0’ 509

outcomes. The hazard probability is the posterior predictive distribution 510

h(τ) = p(xτ = 1|D) where D are a set of observations of X1, X2, . . . Xτ . 511

p(xτ = 1|D) = 1−
τ∏

t=1

(1− µt) (8)

Where µt = E[θt] is the expected value of the posterior on θt. 512

Proof of Eq 8. 513

p(xτ = 1|D) = 1− p(xτ = 0|D)

= 1−
∫

p(xτ = 0|θt=1:τ )P (θt=1:τ |D)dθt=1:τ

= 1−
∫ τ∏

t=1

p(zt = 0|θt)P (θt|D)dθt

= 1−
∫ τ∏

t=1

(1− θt)Beta(θt; η
1
t , η̃

0
t )dθt

= 1−
τ∏

t=1

∫
(1− θt)Beta(θt; η

1
t , η̃

0
t )dθt

= 1−
τ∏

t=1

(1− µt)

□

where η̃0t are the pseudocounts of negative observations after updating the Beta prior 514

with D using Eq 7. It can be shown that h(τ) is recursive. 515

h(τ) = h(τ − 1) + [1− h(τ − 1)]µτ (9)

This recursion has two implications. First, the hazard function is monotonic since 516

(1− h(τ − 1)) > 0 and µτ > 0. Second, the hazard function generalizes. From Eq 9 it is 517

clear if h(τ − 1) increases, then h(τ) increases. It is this generalization that allows the 518

agent to progressively spend more turns at the object. 519

5.4 Heuristic Exploration Bonus Pool 520

The heuristic reward function approximates the sort of exploration bonus (Gittins, 1979) 521

that would arise from uncertainty about potential exploitable benefits of the object. It 522

incentivizes approach and engagement. In the experiment, there is no actual reward so 523

the motivation is purely intrinsic (Oudeyer and Kaplan, 2007). The exploration bonus 524

depletes as the agent learns about the object; but regenerates if the agent believes that 525

the object can change over time (or, equivalently, if the agent forgets what it has learnt). 526

Since we imagine the agent as finding more out about the object through confident than 527

cautious approach, the former generates a greater bonus per step, but also depletes it 528

more quickly. 529

We model the exploration-based reward as an exponentially decreasing resource. 530

G(t) is the “exploration bonus pool” and can be interpreted as the agent’s remaining 531
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motivation to explore in the future. We fit the size of the initial exploration pool 532

G(0) = G0 to the behavior of each animal. During planning, the agent imagines 533

receiving rewards at the cautious and confident object states proportional to G(t). 534

r̂cautious = ωcautious ·G(t) (10)

r̂confident = ωconfident ·G(t) (11)

r̂cautious < r̂confident (12)

On every turn at the cautious or confident object states, the agent extracts reward 535

r̂cautious or r̂confident from its budget G, depleting G at rates ωcautious or ωconfident. This 536

leads to an exponential decrease in G(t) with turns spent at the object which is clear 537

from Eq 13. For example, at the cautious object state the update to G(t) is, 538

G(t+ 1) = G(t)− r̂cautious = (1− ωcautious)G(t) (13)

However, a secondary factor affects the update to G(t). G linearly regenerates back to 539

G0 at the forgetting rate f which we also fit for each animal. The full update to the 540

reward pool for spending one turn at the cautious object state is, 541

G(t+ 1) = min{(1− ωcautious)G(t) + f,G0} (14)

Note that G(t) regenerates by f in all states, not only at the object states. We use 542

linear forgetting for its simplicity although other mechanisms such as exponential 543

forgetting are possible. 544

Finally, for completeness in other environments, the reward the agent imagines 545

receiving also depends on the actual reward it has received in the past. Let n1 and n0
546

be the number of times the agent has received one or zero reward at the object state, 547

analogous to the pseudocounts of a Beta posterior in a fully Bayesian treatment of 548

reward. Furthermore, let n1
0 and n0

0 be the (fitted) values at t = 0. We use n1
0 = 1 and 549

n0
0 = 1. The agent imagines receiving reward 550

rcautious = r̂cautious +
n1

n1 + n0
(15)

after spending one turn in the cautious object state. A similar equation applies to the 551

confident object state. 552

We define the depletion rates as ωconfident =
R
G0

and ωcautious = K · ωconfident with 553

constants R = 1.1 and K = 0.89 < 1.0. These values were fitted to capture the full 554

range of behavior of the 26 animals. 555

5.5 Data Fitting 556

Data fitting aims to elucidate individual differences and population patterns in behavior 557

by searching for the model parameters that best describe the behavior of each animal. 558

We map the behavior of model and animals to a shared abstract space using a common 559

set of statistics and then fit the model to data using ABCSMC. 560

5.5.1 Animal Statistics 561

To extract animal statistics, we first coarse-grain behavior into phases and subsequently 562

classify the animals into three groups: brave, intermediate, and timid (as described in 563

the main text). This allows us to maintain the temporal dynamics of the behavior while 564

reducing the dimension of the data. We average the approach type, duration, and 565

frequency over each phase and fit a subset of statistics that capture the high-level 566

temporal dynamics of behavior of animals in each group. 567
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The behavior of brave animals comes in three phases: cautious, confident-peak and 568

confident-steady-state. We fit five statistics: the transition time from cautious to 569

confident-peak phase tcautious-to-confident, the transition time from confident-peak to 570

confident-steady-state phase tpeak-to-steady, the average durations during the cautious 571

and confident-peak phases dcautious, dpeak-confident, and the ratio of confident-peak and 572

confident-steady-state phases’ frequencies fconfident-peak

fconfident-steady . 573

Intermediate animals only exhibit two phases: cautious and confident. We fit four 574

statistics: the transition time from cautious to confident phase tcautious-to-confident, the 575

durations of the two phases dcautious, dconfident, and the ratio of the cautious and 576

confident phases frequencies fcautious

fconfident . However, one limitation of the model is that 577

frequency can only decrease, not increase, because of the dynamics of depletion and 578

replenishment of the exploration bonus pool. Hence we instead fit max{ fcautious

fconfident , 1.0}. 579

Timid animals also only exhibit two phases, albeit different ones from the 580

intermediate animals: cautious-peak and cautious-steady-state. We fit four statistics: 581

the transition time from cautious-peak to cautious-steady-state phase tpeak-to-steady, the 582

durations of the two phases dcautious-peak, dcautious-steady, and the ratio of the frequencies 583

of the two phases fcautious-peak

fcautious-steady . 584

5.5.2 Model Statistics 585

By design, our BAMDP agent also enjoys a notion of bouts and behavioral phases. We 586

map the behavior of the agent to the same abstract space of duration, frequency, and 587

transition time statistics as the animals to allow the fitting. 588

We consider the agent as performing a bout when it leaves the nest, stays at the 589

object state for some turns, and finally returns to the nest. We parse bouts and 590

behavioral phases from the overall state trajectory of the agent which, like the animals, 591

has what we can describe as contiguous periods of cautious or confident approach and 592

low or high approach frequency. 593

The transition from cautious to confident phase (measured in the number of turns) 594

is when the model begins visiting the confident-object state rather than the 595

cautious-object state (this transition never happens for low ᾱ). The transition from 596

peak to steady-state phase is when the model starts spending > 1 consecutive turns at 597

the nest (to regenerate G), which happens when G reaches its steady-state value 598

determined by the forgetting rate. We linearly map the agent’s transition times (in 599

units of turns) to the space of animals’ transition times (units of minutes) using the 600

relationship: 2 turns to 1 minute. Therefore, agent is simulated for 200 turns 601

corresponding to 100 minutes in the experiment. 602

Bout duration is naturally defined as the number of consecutive turns the agent 603

spends at the object. Because the agent lives in discrete time, we map its duration 604

(units of turns) to the space of animal duration (units of seconds) using the formula, 605

danimal = 0.75 + 1.5(dagent − 2) (16)

Hence the agent is capable of having durations from 0.75 to 3.75 seconds. This captures 606

a large range of the animals’ phase-averaged durations. 607

We define the momentary frequency with which the agent visits the object as the 608

inverse of the period, which is the number of turns between two consecutive bouts (sum 609

of turns at nest and object states). Frequency ratios are computed by dividing the 610

average periods of two phases (in units of turns) and are unitless. Hence, no mapping 611

between agent and animal frequency ratios is necessary. 612
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5.5.3 Approximate Bayesian Computation 613

We fit each of the 26 animals from Akiti et al. (2022) separately using an Approximate 614

Bayesian Computation Sequential Monte Carlo (ABCSMC) algorithm (Toni et al., 615

2009). We use an adaptive acceptance threshold schedule that sets ϵt to the lowest 616

30-percentile of distances d(x, x0) in the previous population. We use a Gaussian 617

transition kernel Kt(θ|θ∗) = N (0,Σ), where the bandwidth of Σ is set using the 618

Silverman heuristic. We ran ABC-SMC for T = 30 populations for each animal but 619

most animals converged earlier. We used uniform priors. Table 1 contains a list of 620

ABCSMC parameters. 621

Table 1. Table of ABCSMC Parameters

Parameter Description Value
T Number of populations 30
B Population size 100
ϵt Set adaptively to lowest 30-percentile

π(θ) Prior distributions for fitted parameters Uniform
Kt(θ|θ∗) Transition kernel N (0,Σ)
d(x, x0) Distance function L1 distance

Given agent statistics x and animal statistics x0 in a joint space, we compute the 622

ABC distance d(x,x0) using the a normalized L1 distance function. 623

d(x,x0) =
1

n

n∑
i=1

1

Ci(xi)

∣∣xi − xi
0

∣∣ (17)

where i indexes the statistics. Ci(xi) is a normalization constant that depends on the 624

statistic and possibly the value xi. Normalization is necessary because the statistics 625

have different units and value ranges. 626

We normalize durations using a constant Ci(xi) = 4.0 seconds. We normalize the 627

transition times using a piece-wise linear function to prevent extremely small or large 628

values from dominating the distance. 629

Ci(xi) = min(30, 10 + 0.8max(xi − 5, 0)) (18)

We also normalize the frequency ratio using a piece-wise linear function. 630

Ci(xi) = min(20, 2 +
18

19
max(xi − 1, 0)) (19)

6 Acknowledgments 631

We are grateful to Chris Gagne, Mitsuko Watabe-Uchida, Vikki Neville, Mike Mendel, 632

Elizabeth S. Paul, and Richard Gao for their helpful discussion and feedback. Funding 633

was from the Max Planck Society and the Humboldt Foundation. PD is a member of 634

the Machine Learning Cluster of Excellence, EXC number 2064/1 – Project number 635
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