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ABSTRACT 16 
 17 
The transcriptome of porcine peripheral blood mononuclear cells (PBMC) at single cell (sc) 18 
resolution is well described, but little is understood about the cis-regulatory mechanism behind 19 
scPBMC gene expression. Here, we profiled the open chromatin landscape of porcine PBMC 20 
using single nucleus ATAC sequencing (snATAC-seq). Approximately 22% of the identified 21 
peaks overlapped with annotated transcription start sites (TSS). Using clustering based on open 22 
chromatin pattern similarity, we demonstrate that cell type annotations using snATAC-seq are 23 
highly concordant to that reported for sc RNA sequencing (scRNA-seq). The differentially 24 
accessible peaks (DAPs) for each cell type were characterized and the pattern of accessibility of 25 
the DAPs near cell type markers across cell types was similar to that of the average gene 26 
expression level of corresponding marker genes. Additionally, we found that peaks identified in 27 
snATAC-seq have the potential power to predict the cell type specific transcription starting site 28 
(TSS). We identified both transcription factors (TFs) whose binding motif were enriched in cell 29 
type DAPs of multiple cell types and cell type specific TFs by conducting transcription factor 30 
binding motif (TFBM) analysis. Furthermore, we identified the putative enhancer or promoter 31 
regions bound by TFs for each differentially expressed gene (DEG) having a DAP that 32 
overlapped with its TSS by generating cis-co-accessibility networks (CCAN). To predict the 33 
regulators of such DEGs, TFBM analysis was performed for each CCAN. The regulator TF-34 
target DEG pair predicted in this way was largely consistent with the results reported in the 35 
ENCODE Transcription Factor Targets Dataset (TFTD). This snATAC-seq approach provides 36 
insights into the chromatin accessibility landscape of porcine PBMCs and enables discovery of 37 
TFs predicted to control DEG through binding regulatory elements whose chromatin 38 
accessibility correlates with the DEG promoter region. 39 
 40 
1. INTRODUCTION 41 
 42 

The pig is of great economic importance since it is a crucial source of protein and meat world-43 
wide. Pigs are also a valuable model for translational biomedical research resulting from their 44 
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high similarity to human in size, genomics, immunology and physiology (Groenen et al., 2012; 45 
Dawson et al., 2013; Lunney et al., 2021). Benchmark epigenetic studies analyzing multiple 46 
tissues have characterized porcine cis-regulatory elements (Kern et al., 2021; Zhao et al 2021), 47 
and cis-regulatory elements were reported to have higher conservation with human than between 48 
human and mouse (Zhao et al., 2021). Peripheral blood mononuclear cells (PBMCs) are an 49 
extensively studied sample in -omics and biomedicine since they are easy to collect and express 50 
numerous functional markers (Vandiedonck, 2018). In addition, PBMCs include many of the 51 
major cells in porcine immunity. Thus, PBMCs can serve as a great resource to monitor 52 
individual immune homeostasis.  53 

Transcriptomes of porcine PBMCs at both bulk and single cell resolution using RNA-seq and 54 
single-cell RNA sequencing (scRNA-seq), respectively, have been reported (Herrera-Uribe et al., 55 
2021). But gene expression alone provides limited information in terms of gene regulation. The 56 
chromatin accessibility of human hematopoietic cells was profiled by applying transposase-57 
accessible chromatin sequencing in single nuclei (snATAC-seq) (Buenrostro et al., 2018). But 58 
such single cell/nuclei epigenomic landscapes in porcine PBMCs has not been reported. 59 
Genome-wide chromatin accessibility can reflect not only the transcription factor (TF) binding 60 
but also the regulatory capacity at the open chromatin region (Klemm et al. 2019). snATAC-seq 61 
allows inference of gene expression for genes with low RNA abundance that are hard to detect 62 
by scRNA-seq methods.  snATAC-seq also makes it possible to predict future transcription since 63 
the openness of chromatin likely happens prior to any transcription. It has been reported that 64 
snATAC-seq has comparable ability to scRNA-seq in terms of cell type annotation and may be 65 
able to detect more distinct cell types compared to scRNA-seq (Miao et al. 2021). Moreover, by 66 
calculating co-accessibility, snATAC can predict long-range chromatin interaction which is 67 
unique compared to scRNA (Pliner et al. 2018). Therefore, elucidating the chromatin 68 
accessibility of porcine PBMCs can provide necessary information to identify the cell type 69 
specific cis-regulatory elements that, through chromatin interactions, have the capacity to 70 
regulate transcription. Such identified regulomes can enhance the understanding of the epigenetic 71 
mechanisms governing the establishment of cell differentiation and cell functionality.  72 

Here, to elucidate the genome-wide epigenetic landscape of porcine PBMCs and identify the cis-73 
regulatory mechanism governing the known cell type specific gene expression of porcine 74 
peripheral immune cells, we profiled the chromatin accessibility of porcine PBMCs by applying 75 
snATAC-seq.  Cell types were annotated by manual gene marker-based annotation using 76 
snATAC alone or by integration with our published PBMC scRNAseq data (Herrera-Uribe et al., 77 
2021). Differentially accessible peaks (DAPs) for genes in each annotated cell type were 78 
identified, and TFs enriched in annotated cell type DAPs were predicted. Cis-co-accessibility 79 
networks (CCANs) were generated to predict the long-range chromatin interaction regulating 80 
nearby genes, and TF binding motif (TFBM) enrichment analysis on the DAPs in each CCAN 81 
was performed.  82 
 83 
 84 
2. RESULTS 85 
 86 
2.1 Single-cell chromatin landscape of healthy porcine immune cells 87 
 88 
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The chromatin accessibility landscape of PBMCs collected from two healthy 6-month male pigs 89 
was profiled by performing a microfluidics-based snATAC-seq via 10x Genomics 90 
Chromium platform. We generated 4 snATAC-seq libraries from two replicate samples per pig 91 
and sequenced them via Illumina Novaseq 6000 sequencing runs. We generated chromatin 92 
accessibility profiles from 20,861 nuclei.  93 
 94 
The expected fragment size distribution periodicity and TSS enrichment in each of the four 95 
datasets were identified (Supplementary Fig 1A). The average median TSS enrichment score 96 
across the four snATAC-seq datasets was 17.99 (16.56-19.20) (Supplementary Fig 1B-E). Nuclei 97 
doublets from each dataset were detected and filtered out (1,466 doublets) using ArchR 98 
(Supplementary Fig 2A-L) (Granja et al. 2021). A set of 110,444 high quality peaks with an 99 
average length of 1,086 bp were identified and used for quantifying Tn5 transposase cut sites for 100 
each dataset. 78.3% of snATAC peaks (86,494) overlapped with peaks derived from ATAC-seq 101 
of bulk sorted porcine PBMC populations (Corbett et al., manuscript in prep), demonstrating 102 
high concordance of chromatin accessibility between ATAC-seq on a bulk population and 103 
snATAC-seq (Supplementary Fig 3A). To further characterize identified peaks, the proportion of 104 
detected peaks in each genomic region was calculated (Fig 1A). Briefly, 22% of peaks were 105 
within 3kb of the TSS of a gene. The Tn5 insertion frequency was re-quantified for each of the 106 
snATAC-seq datasets to create a feature matrix and Seurat object. To check consistency across 107 
the four datasets, we randomly selected one region and noted that the peaks across different 108 
datasets were highly uniform with each other (Supplementary Fig 4 A-D). Then low-quality 109 
nuclei were filtered out based on total number of fragments in the nuclei, number of peaks in the 110 
nuclei, nucleosome signal and TSS enrichment score for each dataset.  The four datasets were 111 
then merged and integrated to generate an evenly distributed snATAC dataset comprising 17,207 112 
nuclei (Supplementary Fig 5A-B). The 2nd to 30th latent semantic indexing (LSI) component 113 
was used for clustering analysis since the first LSI component is highly correlated with 114 
sequencing depth (Supplementary Fig 5C)(Stuart et al., 2021). Consequently, 35 clusters of 115 
nuclei, with at least 1,444 differentially accessible peaks (DAPs) in all pairwise clusters, were 116 
identified using a shared nearest neighbor clustering algorithm (Seurat/Signac) and visualized on 117 
Uniform Manifold Approximation and Projection (UMAP) (Fig 1B, Supplementary Table 1-2). 118 
Overall, there was no obvious dataset-specific clusters though there were a few clusters (cluster 119 
10, 21, 23, 25, 28 and 34) mainly composed of nuclei from either 6798.2x or 6800.2x dataset 120 
likely due to the fact that the number of nuclei in those two datasets were approximately four 121 
times that of the other two datasets (Supplementary Fig 5D-H). This demonstrated that the batch 122 
effect was effectively removed. 123 
 124 
 125 
Figure 1 Major porcine peripheral blood mononuclear cell types identified through single 126 
nucleus chromatin accessibility profiles  127 
 128 
A: Pie chart showing the proportion of indicated genomic regions detected as peaks in snATAC-129 
seq dataset 130 
B. UMAP plot of 17,207 nuclei isolated from PBMC subjected to snATAC-seq and separated 131 
into 35 clusters based on similarity of the chromatin accessibility pattern. Each point represents a 132 
single nucleus. 133 
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C: UMAP plot of estimated CD86 gene activity by counting the Tn5 transposase cutting sites in 134 
all fragments near CD86 gene (< 2000bp of TSS). 135 
D: UMAP plot of the chromatin accessibility at a cluster differentially accessible peak (DAP) 136 
(13-138488083-138490791) whose nearest gene is monocyte cell marker CD86. 137 
 138 
 139 
2.2 Cell type annotation of porcine PBMC using chromatin accessibility landscape  140 
 141 
The cell type of each cluster was manually classified by estimating the gene activity from the 142 
number of Tn5 transposase cutting sites within the identified peaks of +/-2kb of TSS of well-143 
defined canonical marker genes. A series of marker genes (Herrera-Uribe et al., 2021) for 144 
specific cell types were investigated for their overall gene activity in each cluster (see example of 145 
CD86, a myeloid cell marker, in Fig 1C, other marker gene activity patterns are shown in 146 
Supplementary Figs 6-11). We also identified differentially accessible peaks (DAPs) for each 147 
cluster (average log2FC>0.25, p_val_adj < 0.05) and  approximately 18% (20,070 of 110,444) of 148 
the unique cis-elements were found to be differentially accessible in at least one cluster 149 
(Supplementary Table 3 DE.pig.resol2.4.2.30.findallmarker.onlypos.p0.05.txt). These DAPs 150 
whose nearest gene was a known cell-type-marker gene used in Herrera-Uribe et al., 2021 were 151 
annotated and used to estimate gene activity (Fig 1D, Supplementary Fig 12, Supplementary 152 
Table 4,). (see “Method” section). A cell was predicted to express a cell type functional gene if it 153 
demonstrated measurable gene activity. Consequently, clusters were assigned into 12 cell types 154 
(Fig 2A-2B). Seven clusters (0, 3, 4, 8, 11, 18, 20) were identified as B cells, one cluster (27) as 155 
antibody-secreting cells (ASCs), three clusters as monocytes (5, 7, 9), one cluster (29) as 156 
plasmacytoid dendritic cells (pDCs), one cluster (26) as conventional dendritic cells (cDCs), 157 
three clusters (2, 6, 12) as CD4+ αβ T cells (CD4posab), six clusters (13, 19, 23, 24, 30, 32) as 158 
CD8αβ+ αβ T cells (CD8abPOSab), one cluster (10) as natural killer cells (NK), three clusters 159 
(17, 21, 34) as T cells, two clusters (25, 33) as a mixture of CD8abPOSab  and NK cells 160 
(CD8abPOSabT_NK), four clusters (1, 14, 16, 28) as CD2- γδ T cells (CD2negGD), and one 161 
cluster (22) as CD2+ γδ T-cells (CD2posGD). The latter two cell types (CD2- γδ T cells and 162 
CD2+ γδ T-cells) were annotated based on a collection of marker genes (see “Methods”). Finally, 163 
two clusters (15, 31) were classified as unknown cells and no further analysis completed.  164 
 165 
Interestingly, leveraging some cluster-specific cis-elements near known gene markers provided 166 
equivalent or even better cell type classification than using only overall gene activity (Fig 1C-1D, 167 
Supplementary Fig 12, see “Methods”). For instance, cluster 0, 3, 4, 8, 11, 18 and 20, which 168 
were annotated as B cells, demonstrated relatively high CD19 gene activity measured using all 169 
cis-elements nearby yet almost exclusive chromatin accessibility at a cis-element near this 170 
known B cell marker CD19 (Supplementary Fig 12A-B). Similarly, the chromatin accessibility 171 
of a potential cis-element near monocyte marker CSF1R in monocyte clusters 5, 7 and 9 was 172 
more unique to monocytes than the estimated CSF1R gene activity (Supplementary Fig 12C-173 
12D). Likewise, a possible cis-element near CD3E, a known T cell marker, was more specific to 174 
all 16 T cells clusters compared to non-T cell clusters than the overall CD3E gene activity 175 
(Supplementary Fig 12E-12F). Finally, there is a cis-element near the CD4 gene in CD4+ αβ T 176 
cells, which enabled annotation of cluster 2, 6 and 12 as CD4+ αβ T cells more confidently and 177 
specifically than utilizing the overall gene activity of CD4 (Supplementary Fig 12G-12H).  178 
 179 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.09.574769doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574769
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3 Integration of porcine PBMC snATAC dataset with comparable scRNA dataset 180 
 181 
To further validate the cell type annotation and/or possibly revise it, the estimated gene activity 182 
from the snATAC dataset was integrated with our previously published scRNA-seq dataset 183 
(Supplementary Fig 13A) from porcine PBMCs (Herrera-Uribe et al., 2021) by identifying cross-184 
modality pairwise “anchors” between the two datasets and transferring the scRNAseq annotation 185 
label (Stuart et al. 2019) to the snATACseq clusters. Most of the clusters (26 out of 35 clusters) 186 
had a median prediction score over 70% (Supplementary Fig 14, Supplementary Table 5 187 
celltype.prediction.score.table). For further functional comparisons, 1,164 nuclei with a 188 
prediction score lower than 0.5 were filtered out from the snATAC-seq dataset, leaving 16,043 189 
nuclei (93%) for final annotation and characterization.  190 
 191 
 192 
The resulting cluster annotations assigned using gene expression from scRNAseq dataset and 193 
estimated gene activity of canonical genes for different immune cell types (Fig 2B) was almost 194 
identical to the predicted cell type labels in the scRNA dataset (Fig 2C) with the exception of 195 
clusters 17, 21 and 34. We decided to annotate the snATAC-seq clusters based on the cell type 196 
predicted after integration with scRNA-seq for the following reasons. First, the cell types 197 
predicted for cluster 17, 21 and 34 using the integrated analysis (Fig 2C) were more specific than 198 
cell types annotated using only cluster DAPs near known cell type markers (Fig 2B). Second, we 199 
compared chromatin accessibility of clusters annotated based on predicted cell types (Fig 2C) in 200 
peaks shared with those obtained from bulk ATAC-seq of bulk-sorted porcine PBMCs using 201 
principal component analysis and found they demonstrated high consistency with each other 202 
(Supplementary Fig 3B-C). In addition, an erythrocyte cluster was identified, but this will not be 203 
further discussed since there was only one cell predicted to be in this group. Finally, the 204 
integration did not resolve the two clusters annotated as a mixture of CD8αβ+ αβ Τ/NK, nor 205 
provide further annotation of the two unknown clusters. Overall, the annotation obtained from 206 
integrating snATAC-seq with scRNA-seq clustering of matched cell populations across datasets 207 
provided additional biological support for assignment of the snATACseq clusters using only 208 
snATACseq data.  209 
 210 
Figure 2 Cluster annotations delineated through integration snATAC-seq estimated gene 211 
activity and scRNA-seq gene expression was highly concordant with annotations derived 212 
from snATAC-seq data alone  213 
 214 
A: Dotplot visualizing the chromatin accessibility at 26 cluster differentially accessible peaks 215 
(DAP) near canonical genes indicative of cell type in the 35 clusters derived from snATAC-seq 216 
(Fig 1B). The genomic coordinates of the DAP genes on x-axis are listed in Supplementary 217 
Table 6.  The size of the dot represents the fraction of nuclei having chromatin accessibility at 218 
the matching DAP on x- axis in each cluster. The larger dot indicates a higher percentage of 219 
nuclei with the region accessible in respective cluster. The color of the dot denotes the average 220 
chromatin accessibility level across all nuclei in the respective cluster (red is high).  221 
B:  UMAP plot of the snATAC-seq dataset with cell types annotated from Fig 2A.  Estimated 222 
gene activity score was calculated using two criteria described in materials and methods and cells 223 
in clusters were annotated into 13 cell types: B cells, CD2- γδ T-cells (CD2negGD), CD4+ αβ T 224 
cells (CD4posab), Monocytes, natural killer cells (NK), CD8αβ+ αβ T cells (CD8abPOSab), T 225 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.09.574769doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574769
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells (T), CD2+ γδ T-cells (CD2posGD), CD8abPOSa/NK cells (CD8abPOSabT_NK), 226 
conventional dendritic cells (cDCs), antibody secreting cells (ASCs), plasmacytoid dendritic 227 
cells (pDCs) and unknown cells (not shown).  228 
 229 
C: UMAP plot of the snATAC-seq dataset labeled with cell types predicted by integrating gene 230 
activity scores from snATAC-seq dataset (Fig 2A) and previously published porcine PBMC 231 
expression levels from scRNA-seq dataset. Clusters were classified into 12 cell types: B cells, 232 
CD2negGD, CD4posab, Monocytes, NK, CD8abPOSab, CD2posGD, CD8abPOSabT_NK, 233 
cDCs, ASC, pDCs and unknown cells (not shown).  234 
 235 
 236 
2.4 Characterization of cell type specific cis-regulatory elements 237 
 238 
To identify the cell type specific regulatory genomic regions, DAPs more accessible in specific 239 
cell types were detected by performing a Wilcoxon Rank Sum test in Seurat (logfc > 0.25, 240 
p_val_adj < 0.05). Consequently, we identified 11,872 unique cell type-specific DAPs across 11 241 
cell types (Table 1; Supplementary Table 7 celltype.DAP.summary) and these DAPs were 242 
significantly enriched for DAPs in comparable bulk-sorted porcine PBMC cell populations 243 
(Supplementary Fig 3D). Such identified DAPs can be used to identify cis regulatory elements 244 
that are associated with specific cell type expression patterns and potentially contribute to the 245 
differential expression (DE) of nearby genes in the respective cell. We found that the cell type 246 
predicted by the accessibility pattern of identified cis-elements near marker genes in each cell 247 
type (Fig 3A) was similar to that predicted by the gene expression pattern of matching marker 248 
genes (Fig 3B).  For example, we identified a cis-element region that overlaps the TSS of CSF1R, 249 
a monocyte marker gene, that is significantly more accessible in monocytes which potentially 250 
govern DE  of CSF1R in monocyte cells in scRNA-seq dataset (1st column in Fig 3B). The fact 251 
that this cis-element is also accessible in the cDCs might explain the moderate expression of 252 
CSF1R in cDCs cells (1st column in Fig 3B). Interestingly, when this CSF1R DAP is plotted 253 
based on the frequency of Tn5 insertion events, this DAP is in the middle of CSF1R (Fig 3C). 254 
There are five CSF1R transcripts sharing three TSSs identified in pigs on Ensembl (Fig 3D), and 255 
two of them (for CSF1R-201 and CSF1R-202) have TSSs overlapping with this CSF1R DAP. 256 
Then, we extended the evaluation to all DAPs overlapping with a TSS of gene cell markers in 257 
Herrera-Uribe et al., 2021. Similarly, we identified only TSS of CD8A-201 was within the DAP 258 
whose nearest gene is CD8A among three transcripts of CD8A (Supplementary Fig 15B). 259 
 260 
We also identified a cis-element region covering TSS of PAX5 that was broadly accessible, with 261 
highest accessibility in B cells (4th column of Fig 3A). This element may regulate the expression 262 
of PAX5 specifically in B cells, as PAX5 expression was noted in all B cell clusters in scRNA-263 
seq dataset (Fig 3B). Likewise, a cis-element region including TSS of CD4 that was 264 
differentially accessible in annotated CD4posab cells was identified (Fig 3A) and it might 265 
account for the RNA expression pattern of CD4 in CD4posab cells (Fig 3B). Unsurprisingly, this 266 
DAP near CD4 was also accessible in pDCs since CD4 is also expressed in that cell type (Fig 267 
3B). Intriguingly, this DAP is also accessible in CD8abPOSab cells (which do not express CD4) 268 
(albeit less so compared to CD4POSab cells), which might be due to CD4 expression not being 269 
solely controlled by this DAP near CD4 and there might be some other features that regulates the 270 
expression of CD4.  271 
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 272 
Identified cell type DAPs were then utilized to validate the integrated cell type annotation 273 
described in Fig 2B via two approaches: First, the nearest gene of cell type DAPs were extracted 274 
and labeled with corresponding human orthologous nomenclature. The gene ontology (GO) 275 
enrichment analysis was conducted using the human genes as input. The enriched GO terms lines 276 
up with the biological function of the matching cell type (Supplementary Fig 16-20). For 277 
example, the enriched terms with highest number of genes near B cell DAPs were “immune 278 
response-regulating signaling pathway” and the “enriched B cell activation” which align with the 279 
principal roles of B cells in the adaptive humoral immune system.  280 
 281 
 282 
Figure 3 Commensurate patterns of differentially accessible peaks and expression of 283 
nearby genes in porcine PBMC 284 
 285 

A: Dotplot visualizing identified differentially accessible peaks (DAPs) near canonical cell 286 
marker genes across 11 cell types annotated using integrated snATAC-seq and scRNA-seq (Fig 287 
2C) datasets. Such cell type DAPs are significantly more accessible (p_val_adj < 0.05) in one 288 
cell type compared to the average of all other cell types (see “Methods”). The nearest genes of 289 
the 12 DAPs on the x-axis from left to right were: Monocyte markers CSF1R and CD14, DCs 290 
marker: FLT3, B cell markers: PAX5 and CD19, T cell marker CD3E, CD4posab marker CD4, 291 
CD8abPOSab marker CD8A and CD8B, NK marker PRF1 and KLRK1, GD marker TRDC. The 292 
size of the dot represents the fraction of cells having chromatin accessibility at the DAP for each 293 
cell type. The larger dot indicates a higher percentage of nuclei with accessible region in that cell 294 
type. The color of the dot denotes the average chromatin accessibility level across all nuclei 295 
within a cell type (red is high). The genomic coordinates of the DAP genes on x axis are listed in 296 
Supplementary Table 6. The full list of cell type DAPs is described in Table 1 and 297 
Supplementary Table 7 celltype.DAP.summary.  298 

B: Dotplot visualizing gene expression of 12 marker DEGs across 11 cell types in scRNA-seq 299 
dataset. These 12 marker genes and their order on x-axis are the same as that of Fig 3A.  300 

C: Visualization of the genomic regions near the monocyte marker gene CSF1R described in Fig 301 
3A. The genomic coordinate of the DAP shown in the shaded region is 151125625-151130033 302 
on chromosome 2. The gene track and longest transcript of CSF1R is shown at the bottom of the 303 
panel. 304 

D: Visualization of different transcript of CSF1R created by Ensembl 102. Vertical arrows 305 
demonstrate that the Transcription Start Site (TSS) of CSF1R-201 and CSF1R-202 overlapped 306 
with the DAP described in Figure 3C.  307 
 308 
2.5 Cell type specific transcription factor activity 309 
 310 
To detect the TFs whose binding motif were enriched in the cell type specific cis-elements 311 
detected by snATAC-seq, and thus potentially control the cell’s biological functionality, 312 
transcription factor binding motif (TFBM) enrichment analysis was performed using the cell type 313 
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DAP genomic sequences as input to the HOMER package (see “Method” section) 314 
(Supplementary Table 8 TFBM.celltype.known.result.summary). Results for the top 20 enriched 315 
TFBM for each cell type are shown, clustered by their enrichment pattern across (x-axis) cell 316 
types and across transcription factor motifs (y-axis) (Fig 4). Overall, 69 unique TFs whose 317 
binding motif was enriched in cell type DAPs were identified. The gene activity of only about 32% 318 
of identified TFs were detected in respective annotated cell types in the scRNA-seq dataset. But 319 
expression of 74% of the TFs were detected in the matching or comparable cell type in bulk 320 
PBMC RNA-seq datawhich might result from the different capture efficiencies between scRNA-321 
seq and bulk RNA seq (Herrera-Uribe et al., 2021). TFs in the same TF family were clustered 322 
together (Fig 4). It is interesting that the clustering of cell types by TFBM enrichment was fairly 323 
consistent with clustering shown in Fig 2B determined through chromatin accessibility patterns. 324 
While the TFBM enrichment pattern of the mixed CD8abPOSabT_NK cell cluster was not 325 
similar to NK cell nor of CD8abPOSab T cell clusters (Fig 4), this cluster did share similar 326 
binding motif enrichment patterns to both NK cells (Figure 4, from Elk1 through Zfp281) and 327 
CD8abPOSab cells (Figure 4, from Fli1 through Sp1). The similar motif enrichment landscape 328 
observed between CD8abPOSabT_NK, myeloid cells, and B lineage cells from AP-1 through 329 
ELF5 indicated the regulatory complexity of the CD8abPOSabT_NK cluster (which is likely a 330 
mixed population) and thus was not explored in the downstream analysis.  331 
 332 
 333 
Figure 4 Transcription factor binding motif (TFBM) analysis of the cell type differentially 334 
accessible peaks (DAPs) predicts TF regulating these cell type networks 335 
 336 
A: Heatmap visualizing binding motif enrichment level for top 20 TFs in each of the 11 major 337 
PBMC types. The color of the square denotes the value of -log10 of multiple test adjusted q 338 
value with Benjamini multiple testing correction. The darker color, the smaller q value and the 339 
more statistically significant. * denotes that the binding motif of the TF were statistically 340 
enriched (q < 0.05) in the corresponding cell type. The TFs and cell types were both clustered by 341 
similarity of pattern using Euclidean distance. Cell types were annotated as described in Fig 2C: 342 
Monocytes, B cells, CD8abPOSab (CD8αβ+ αβ T cells), CD4+ αβ  T cells (CD4posab), CD2- 343 
γδ  T-cells (CD2negGD), conventional dendritic cell (cDCs), antibody secreting cells (ASC), 344 
CD8αβ+ αβ T/NK cells (CD8abPOSabT_NK), NK, CD2+ γδ T-cells (CD2posGD), 345 
plasmacytoid dendritic cells (pDCs). 346 
 347 
 348 
We identified both general and cell type specific TF patterns of cell type TFBM enrichment of 349 
the TFs. Several TFs had detectable enrichment of their motifs in cell types with no detectable 350 
RNA expression in the scRNA-seq dataset, like PAX6, indicating scRNA-seq may not be 351 
sensitive enough to detect their expression, or that the TFBM enrichment observed is unrelated 352 
to gene regulation. Unsurprisingly, the binding motif of TFs playing a crucial role in multiple 353 
immune cell types or lineages, like PU.1 (also known as SPI1), ETS, ETS1, and ETV2 were 354 
ubiquitously enriched in DAP for all cell types. We also identified a set of cell type specific TFs. 355 
The binding motif of PAX5, PAX6 and EBF were only enriched in B cells which is compatible 356 
with the fact that PAX5 is regarded as a B cell marker and PAX6 has a similar binding motif to 357 
that of PAX5. We also predicted several TF with enriched motifs in specific cell types that have 358 
few to no reports describing them as regulators of gene expression in the immune cell type motif 359 
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enrichment was observed. These included TCF21 which has not been reported in pDCs, and Spi-360 
B and TCF12 which was predicted as candidate regulators in pDCs development (Nagasawa et 361 
al., 2008). The binding motif of Nur77 (NR4A1) was most enriched in CD2posGD cells though it 362 
was also enriched in mixed CD8aPOSabT_NK cluster. The binding motif of several GATA 363 
family TFs (GATA, GATA1, GATA2, GATA3, GATA4, GATA6) were most highly enriched in 364 
CD2negGD cells. TCF21 and TCF12 had enrichment of binding motifs in pDCs DAP, which has 365 
also not been reported as expressed in or regulating genes specifically in pDCs. In addition, we 366 
found that PU.1 had motif enrichment in myeloid cell DAPs (pDCs, cDCs and monocyte) 367 
through three different TF complexes (PU.1, PU.1:IRF8, and PU.1-IRF).  368 
 369 
2.6 Cell type specific chromatin interactions 370 
To predict the potential regulatory regions of DEGs (Supplementary Table 9) and predict the 371 
regulatory cis-element interactions of the TFs described in Figure 4 at specific DEGs, cis-co-372 
accessibility networks (CCAN) analysis was performed using Cicero (Pliner et al., 2018). A 373 
CCAN is defined as a module of genomic regions that are statistically co-accessible with one 374 
another in the same cell type.  To maximize the ability to link TFs to DEGs in this dataset, 375 
CCANs were predicted for each DEG with a TSS overlapping an open chromatin region that was 376 
a DAP in the matching cell type. Each CCAN has the following characteristics:  1) The “hub” 377 
peak of a CCAN overlaps with the TSS of a gene which was a DEG in the matching cell type; 2) 378 
all remaining peaks were assigned to the same CCAN as the “hub” peak if the peak has a co-379 
accessibility score with the “hub” peak of at least 0.05 and was no more than 250,000 bp 5’ or 3’ 380 
to the gene TSS. Across 11 cell types, we identified 244 such CCANs in total (Table 1), and the 381 
total number of peaks in these CCANs ranged from 3-49. The full list of genomic regions in each 382 
predicted significant CCAN for each cell type can be found at FigShare link 383 
https://figshare.com/articles/journal_contribution/pig_PBMC_snATAC_CCAN_files_celltype_D384 
EG_bed_files_zip/24762189 (DOI:10.6084/m9.figshare.24762189). As examples of CCAN with 385 
highest average co-accessibility score with the center peak in each cell type, we visualized 386 
CCANs associated with POU2AF1 in B cells, CST7 in NK cells, MEF2C in cDCs cells, CD5 in 387 
CD4posab cells (Fig 5), FLNB in ASC, FSCN1 in CD2posGD, ARL4C in CD8abPOSab, S100A8 388 
in Monocytes and CXorf21 in pDCs (Supplementary Fig 21).  389 

 390 

Figure 5. Cis-co-accessibility network (CCAN) architecture at indicated differentially 391 
expressed gene in specific peripheral immune cell types 392 
 393 
Visualization of CCANs associated with DEGs in four different peripheral immune cell types. 394 
The center of each CCAN overlaps with the TSS of a DEG in respective cell type. Each purple 395 
line denotes that the peaks at either end of the line has a co-accessibility score greater than 0.05. 396 
Genes neighboring DEGs associated with each CCAN were not shown for the sake of clarity. 397 
 398 
A: CCAN at POU2AF1 in B cells. The “hub” peak (chr9-39139969-39146482) of this CCAN 399 
was a DAP overlapping TSS of POU2AF1 in annotated B cells. All peaks identified in snATAC 400 
dataset in this region are shown, but only the 24 peaks correlated with the hub peak with a co-401 
accessibility score > 0.05 are included in the CCAN (purple).  402 
 403 
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B: CCAN at CST7 in NK cells. The “hub” peak (chr17-30755868-30762233) of this CCAN is a 404 
CD2posGD cell DAP overlapping TSS of CST7. There were five peaks correlated with the hub 405 
peak with a co-accessibility score > 0.05;  406 
 407 
C: CCAN at MEF2C in cDCs cells. The “hub” peak (chr2-96274161-96278261) of this CCAN is 408 
a cDCs cell DAP overlapping TSS of MEF2C. There were 19 peaks correlated with the hub peak 409 
with a co-accessibility score > 0.05;  410 
 411 
D: CCAN at CD5 in CD4posab cells. The “hub” peak (chr2-10671164-10677736) of this CCAN 412 
is a CD4posab cell DAP overlapping TSS of CD5. There were 16 peaks correlated with the hub 413 
peak with a co-accessibility score > 0.05;  414 

Table 1. Cicero-based predictions of regulatory element networks acting to regulate 415 
Differentially expressed genes in specific cell types. 416 

 # 
DEG* 

# 
DAP* 

#DAP 
within 

promoter 

#CCAN with  
promoter DAP 

hub 

#DEG with 
promoter DAP 
 
 

#CCAN associated 
with DEG with  

promoter DAP hub 
 

Monocytes 864 3590 653 47 97 14 
B 308 1333 237 104 35 33 
CD8abPOSab 273 424 83 39 12 13 
CD4posab 197 587 73 33 12 8 
CD2negGD 141 574 123 0 9 0 
cDCs 507 1731 262 132 28 26 
ASC 593 2109 443 222 46 42 
NK 242 1114 235 122 28 28 
CD2posGD 158 676 206 127 11 11 
pDCs 771 3472 542 228 68 69 
Total 4054 15610 2857 1054 346 244 
 417 
*The statistical criteria are avg_log2FC>0.25 and p_val_adj < 0.05 418 
 419 
2.7 Regulators involved in cell type specific chromatin interactions 420 
 421 
Since the TSS hub peak is co-accessible with the peaks in the rest of the CCAN, the CCAN 422 
predicts regulatory regions potentially interacting with the accessible promoter to regulate 423 
differential expression of the DEG through binding regulatory proteins (Muto et al., 2021). To 424 
predict such potential regulatory TF for DEGs, TFBM enrichment analysis was performed, using 425 
the combined regions from each CCAN as input to HOMER. The binding motif of 70 TFs (41 426 
unique TFs) was found enriched in one or more CCANs. These motifs were associated with 45 427 
DEG (43 unique genes) in 8 of 11 annotated PBMC cell types. Only a few of these 41 TFs were 428 
detected in scRNAs-seq dataset while gene expression of 80% of these TFs were detected in 429 
corresponding or most comparable cell type in bulk RNA-seq of sorted porcine immune cells. 430 
These differences result from the fact that bulk RNA-seq has a deeper sequencing depth(Herrera-431 
Uribe et al., 2021). Some TFs (ZNF519,GFY, ISRE, Fra1, Fra2, GFY, SpiB and GRE) were not 432 
detected in bulk RNA-seq, which can be the result of the following factors: 1) Their expression 433 
levels were too low to be detected by bulk RNA-seq, 2) Since we used vertebrate motif sets to 434 
perform TFBM analysis, these TFs do not necessarily have to be expressed in porcine immune 435 
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cells, 3) It could be that other expressed TFs, who are in the same family of these undetected TFs, 436 
function as real regulators since they have similar binding motif.  437 
The results are illustrated across these CCANs through sorting by cell type and clustering by 438 
patterns of enrichment of TF motifs (Fig 6). Unsurprisingly, CTCF and BORIS (a CTCF-Like 439 
Protein) were in the same cluster and their binding motif was enriched in the CCANs of multiple 440 
genes. IRF1 can directly bind the IFN-stimulated response element (ISRE) to control expression 441 
of IFN-stimulated gene regarding IFN-I and IFN-II (Michalska et al., 2018). This might explain 442 
why IRF2, which is also in the IRF family having conserved binding domain, and ISRE are 443 
assigned into the same cluster. In addition, our results demonstrate the value of CCANs to 444 
identify putative regulators of DEG and verify TF-related genes previously predicted in Fig 4. 445 
For example, POU2AF1 is a transcriptional coactivator in complex with either OCT1 or OCT2 446 
whose binding motif were enriched in global B cell DAPs in Fig 4. Moreover, the enriched 447 
binding motif of CTCF in the CCAN of CST7 in CD2posGD could have contributed to the 448 
enriched binding motif of CTCF in CD2posGD DAPs in Figure 4. 449 
 450 
 451 
Figure 6 Transcription factor binding motif (TFBM) analysis on CCANs peaks identified 452 
potential regulator TFs for specific DEGs  453 
 454 
Potential transcription factors regulating cell type specific CCANs were identified through 455 
evaluation of transcription factor binding motif analysis of cis-co-accessibility network analysis.  456 
A: Heatmap visualizing the enrichment level of all TFs whose known binding motif(s) were 457 
enriched (q <= 0.1) in at least one CCAN associated with a DEG having a DAP overlapping with 458 
its TSS. The column denotes the DEG which is the hub of the CCAN, and the cell type for which 459 
the hub gene is differentially expressed is shown. The row denotes the TFs whose binding motif 460 
are enriched across all peaks of a CCAN. The color of the cell denotes the value of -log10 of q 461 
value for enrichment. The darker color, the smaller q value and the more statistically significant. 462 
* denotes that the binding motif of the TF are statistically enriched (q < 0.1) in the peaks of the 463 
CCAN associated with corresponding DEG. The TFs is clustered using Euclidean distance.  464 
 465 
 466 
Overall, there are 1-3 TF binding motifs enriched in each CCAN. Interestingly, exception to this 467 
observation is the binding motif of 13 TFs enriched in the CCAN associated with PRF1 in NK 468 
cells. PRF1 is highly expressed in NK cells and encodes a central protein (perforin) for NK cell 469 
function; thus, a highly active CCAN at the PRF1 promoter is not surprising. One of these, 470 
NRF2, is known to regulate PRF1(Jessen et al., 2020). On the other hand, several of these TFs 471 
are sub-units of AP-1, a well-known general transcription factor:  Fos gene family members 472 
(FOS, FOSL2, Fra1(FOSL1) and Fra2(FOSL2)) can encode protein dimerizing with proteins in 473 
Jun family (JunB and Jun) to form the AP-1 transcription factor complex. In addition, MAFK or 474 
other small MAF proteins can bind to the same motif as NF-E2. Thus, this unusually large 475 
number of different TFBM enriched in the PRF1 CCAN may be explained due to these 476 
functional overlaps for an AP-1-regulated gene. Interestingly, there is potential antagonistic 477 
interactions among enriched TF at PRF1; BACH2 regulates transcription (activation or 478 
repression) via MAFK, but BACH2 can inhibit AP-1 proteins in blood (Lesniewski et al., 2006).   479 
 480 
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To compare our predicted TF-target gene pairs with other studies, we explored the target genes 481 
of the 41 unique TFs in the ENCODE Transcription Factor Targets dataset (TFTD), which was 482 
created using ChIP-seq (ENCODE, Project Consortium et al. (2004); Myers et al., 2011; 483 
Rouillard et al., 2016). 22 of the 41 unique TFs shown in Fig 6 and their predicted target genes 484 
have been reported in ENCODE TFTD. Notably, for these 22 TFs, 57% (30 out of 53) predicted 485 
TF-target gene pairs described in Fig 6 were highly consistent with the ENCODE TFTD result 486 
(Supplementary Table 10).  For example, the binding motif of IRF3 was enriched in the CCAN 487 
peaks of POU2AF1, which was identified as a target of IRF3 reported in ENCODE TFTD. The 488 
binding motif of CTCF was enriched in CCANs of 15 DEGs (14 unique DEGs) and all of these 489 
predicted target genes were concordant with those reported in the ENCODE TFTD. Likewise, 490 
ZKSCAN1 was predicted to regulate CORO1C in cDCs and MAFK to regulate PRF1 in NK cells; 491 
these relationships were also reported in the ENCODE TFTD. Additionally, we also found some 492 
predicted regulatory relationships were similar to what has been reported in ENCODE TFTD. 493 
These include the result that ETS family TFs are predicted to bind to ADGRE5 is analogous to 494 
the relationship of ETS1 and ADGRE5 reported in ENCODE TFTD (Supplementary Table 10). 495 
 496 
Further, we also have some novel findings beyond ENCODE TFTD. For example, TF BATF and 497 
its associated gene PRF1 in NK cells were not reported in ENCODE TFTD. IGSF8 is a DEG 498 
having a promoter DAP and predicted CCANs in both ASC and pDCs. Interestingly, the binding 499 
motif of both CTCF and BORIS are enriched in the CCAN of IGSF8 in ASC, while the binding 500 
motif of SpiB is enriched in the CCAN of IGSF8 in pDCs. Similar IGSF8 expression level in 501 
ASC and pDCs (Supplementary Fig 13C), while enrichment of different TF in the same target 502 
gene might elucidate different regulatory mechanism governing the expression of IGSF8 in 503 
different immune cell types through a different regulatory network. Notably, SPIB is predicted to 504 
be a target gene of CTCF in ENCODE TFTD. On the contrary, PTPRE, a DEG having a 505 
promoter DAP and predicted CCANs in both cDC and NK, might be regulated via similar 506 
pathways in these two cell types since the biological function of BORIS and CTCF is similar.  507 
 508 
3. Discussion 509 
 510 
A detailed functional annotation of the porcine genome will greatly improve our understanding 511 
of porcine gene regulation and network biology, as well as accelerate genetic improvement of 512 
important traits such as disease resilience. While new epigenetic data across adult tissues has 513 
provided initial chromatin state maps (Kern et al., 2021; Pan et al. 2022), there is limited 514 
information on the regulatory regions in porcine immune cells (Foissac et al., 2019; Herrera-515 
Uribe et al., 2020). To identify such regulatory elements, we profiled the first chromatin 516 
accessibility landscape of freshly isolated porcine PBMC at single cell resolution. We 517 
demonstrated that this landscape of accessible regions at known marker genes could be explored 518 
to annotate cell type without the use of gene expression data. Integration with scRNAseq data 519 
was effective to both verify such annotations and to improve some ambiguities. Identifying 520 
regions more accessible in specific cell types was then exploited to predict TF that may bind 521 
such regulatory elements to control cell type expression. Correlation of accessibility among open 522 
chromatin regions were then used to predict both cis-co-accessibility networks (CCANs) at 523 
specific genes, as well as predict the TF controlling expression of these genes. These results were 524 
validated with ATAC-seq data from bulk-sorted PBMC populations and are consistent with 525 
many reports on specific gene regulatory factor networks.  526 
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 527 
3.1 Open chromatin regions detected with single nuclei ATACseq methods can be used to 528 
identify and annotate specific immune cell types in porcine peripheral blood 529 
 530 
A deep collection of high-quality open chromatin regions was identified and approximately 22% 531 
of these accessible regions were within 3kb from the TSS of an annotated gene (Fig 1A). This 532 
fraction was relatively low compared to that reported for human (in kidney; Muto et al., 2021). It 533 
might originate from the fact that the pig genome is not annotated as well as that of human or 534 
that this is the characteristic of immune cells compared to tissues; however, we detected much 535 
higher TSS enrichment scores [average was 17.99 (Supplementary Fig 1B-E)] than that of 536 
human PBMC snATAC-seq whose average is 12.55(Wu et al., 2022). Our two replicates showed 537 
high similarity and were integrated into a dataset of 17,207 nuclei and grouped into 35 clusters. 538 
By utilizing the DNA accessibility patterns of putative cis regulatory elements (gene activity) as 539 
a proxy for gene expression, this “gene activity” measure at several known gene markers for 540 
major cell types was used to annotate the 35 clusters. Gene activity for canonical gene markers 541 
was estimated with two methods: assigning all peak data (< 2,000 bp from TSS) to the closest 542 
gene, and by calculating the DAP for each cluster and using the specific DAP mapping proximal 543 
to the marker gene for estimating gene activity. We observed that the gene activity scores created 544 
from all nearby accessibility data were less definitive than the pattern(s) for DAPs at the 545 
canonical marker genes (Fig 1C-D, Supplementary Fig 6, Supplementary Table 4), which may 546 
demonstrate the most important regulatory elements for cell type expression may be TSS-547 
proximal DAP. Using the TSS-proximal DAP approach, we classified cell type by inspecting 548 
DAP patterns near all markers whose scRNAseq patterns of expression were used as cell type 549 
markers in PBMC (Herrera-Uribe et al., 2020). Monocytes, B, ASC, DCs, T, CD4posab, 550 
CD8abPOSabT_NK, NK, GD and unknown cells were determined sequentially. Consequently, 551 
the 35 clusters were grouped into 13 cell types (Fig 2B). 552 
 553 
Comparing the chromatin accessibility pattern in Fig 2A and the corresponding gene expression 554 
pattern in Herrera-Uribe et al., 2021 two general DAP-cell type expression patterns were 555 
observed: 556 
1) The DAP and the cell type where this DAP is open were consistent with the expression of the 557 
nearest gene in Herrera-Uribe et al., 2020. For instance, some B clusters (0, 8) and ASC (27) at 558 
CD86 DAP2, ASC (27) at CD19 DAP, cDCs (26) at CSF1R and CD86 DAPs, DC(26,29) at 559 
TCF4 DAP1, monocytes (5,7,9) at FLT3 DAP, DC(26,29), ASC (27)  and CD8abPOSab (13, 19, 560 
24, 30, 32) and CD8aPOSabT_NK (25, 33) at SLA-DRB1 DAPs, monocytes, B cells, ASC, 561 
CD8abPOSab, NK and CD8aPOSabT_NK at XBP1 DAP, CD8abPOSab at PRF1 DAP, pDCs 562 
(29) at CD4 DAP2. 563 
2) Accessible chromatin patterns had no nearby gene with matching scRNAseq gene expression 564 
reported (Herrera-Uribe et al., 2020. For example, ASC (27) demonstrates DNA openness at 565 
PAX5 DAP without revealing PAX5 expression in Herrera-Uribe et al., 2020. Similar patterns 566 
were found in CD8abPOSab (24, 30) at CD86 DAP2, CD2posGD (22) at XBP1 DAP, NK (10), 567 
CD8abPOSab (30) and B (8) at TRDC DAP, pDCs (29) at CD8B DAP2.  The chromatin 568 
accessibility at the DAP near CD4 in cluster 21,23, and 30 in Fig 2A might demonstrate the 569 
complexity of the gene expression and there are potentially multiple regulatory regions 570 
controlling the expression of this gene. These patterns might originate from the complicity of 571 
regulative mechanism in biology, the heterogeneity of a known porcine immune cell type and the 572 
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variability of the sensitivity of snATAC-seq and scRNA-seq.  Multiple regulatory elements and 573 
TFs can contribute to the regulation for the same gene coordinately and thus, the DNA openness 574 
at one cis-element near a gene might not necessarily pair with the gene expression in a cell type 575 
since they could miss an essential element to activate the gene expression compared to the cell 576 
types where the gene is expressed. Notably, we did not detect a peak overlapping the CD2 gene 577 
that would distinguish CD2posGD and CD2negGD directly, although there are a few DAPs 578 
whose nearest gene is CD2 (6,893bp or more distant, Supplementary Table 4). Because of this 579 
distance we did not use these peaks to predict CD2 status or for cell type determination. We 580 
divided DC (26, 29) into sub types via the chromatin accessibility at SLA-DRB1, CD8A, PRF1 581 
and KLRK1 cis-elements since they were highly expressed in CD2posGD but not CD2negGD 582 
cells, though they were not defined as CD2posGD markers (Herrera-Uribe et al., 2021).  583 
 584 
3.2 Chromatin accessibility pattern annotation verified and improved through integration 585 
with scRNAseq data 586 
 587 
To further explore and validate these proposed annotations, the snATAC-seq data was integrated 588 
with previously published scRNAseq data, and a high level of validation was observed. We 589 
showed that the chromatin accessibility pattern of cis regulatory elements near the cell type 590 
markers used in Herrera-Uribe et al., 2020, was highly similar to the pattern of the expression 591 
level of matching DEG (Fig 2B-2C, Supplementary Table 5). Our results revealed the snATAC-592 
seq has similar power to scRNA-seq in terms of cell type annotation, although there were a small 593 
number of inconsistencies. But its ambitious to define the cell type definitely using only using 594 
the peaks,  since there are usually multiple open chromatin regions near one gene and now the 595 
prior knowledge about which particular region is more informative than others in terms of one 596 
marker is limited. Considering the cell type assignment outcomes are nearly uniform in Fig 2B-C, 597 
the cell types of snATAC-seq predicted using scRNA were grouped into the same cluster as 598 
matching sorted porcine PBMCs in bulk ATAC-seq of in Supplementary Fig 3B-3C and the 599 
predicted cell type by integrating with scRNA in Fig 2C is more definitive compared to that in 600 
Fig2B, we used the predicted cell types using scRNA-seq to conduct further analysis. 601 
 602 
After studying the characteristic of cell type DAP near a TSS of a gene, we found that our 603 
dataset predicted the prospective TSS specifically used in the matching porcine immune cell 604 
types. Among DAPs including TSS of characterized cell markers in Herrera-Uribe et al., 2020, 605 
we predicted that 2 DAPs overlay the cell type specific TSS candidates for CSF1R and CD8A 606 
(Figure 3C-D and Supplementary Fig15).  607 
 608 
3.3 Porcine PBMC cell type regulatory elements were enriched for transcription factors 609 
known to control immune cell differentiation and function.  610 
 611 
A characteristic of cell type regulatory elements is that they can also be used to identify putative 612 
regulatory factors through TFBM enrichment analysis. This can be especially useful to 613 
complement regulatory network analysis using scRNAseq alone, since scRNA-seq is sparse and 614 
insensitive for detecting lowly expressed TFs. Thus, we defined the TFs that lead to the cell type 615 
specific biological functionality and that function ubiquitously across multiple pig immune cells 616 
by recognizing the TFs whose binding motif are enriched in cell type DAPs (Fig. 4). The binding 617 
motif of PU.1 (SPI1), ETS, ETS1, ETV2, Elk1, EWS, RUNX and Zfp281 were predicted to be 618 
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comprehensively enriched in diverse cell type DAPs. Besides, PU.1 was predicted as regulators 619 
in myeloid cells (pDCs, cDCs and monocytes) via 3 schemes: PU.1,PU.1:IRF8, and PU.1-IRF. 620 
We observed several TFs (POU5F1, POU2F3, POU2F2 and POU3F3) in the POU domain 621 
family whose binding motif are enriched in ASC and B cell DAPs. The observed specificity of 622 
Oct2 (POU2F2) in B cells is consistent with what has been previously reported (Küppers, 2021) . 623 
We also have identified several known cell-specific TF. Nur77, encoded by the NR4A1 gene and 624 
whose binding motif was enriched in CD2posGD cell DAPs in F, was reported to be expressed 625 
in pig Treg cells and has been recently shown to mediate T cell differentiation even during 626 
immunosuppression by calcineurin inhibitors (Sekiya et al., 2022). Our finding that binding 627 
motif of a couple of GATA family TFs including GATA3 are most enriched in CD2negGD cells 628 
agrees with the observation that GATA3 is highly expressed in pig CD2negGD cells compared to 629 
other GD cells (Rodríguez-Gómez et al., 2019; Gu et al., 2022) , as well as the GATA3 gene 630 
expression pattern reported in Herrera-Uribe et al., 2021 (Supplementary Fig 13B). At the same 631 
time, some novel regulators were predicted in this TFBM analysis. The predicted regulative 632 
function of Spi-B and TCF12 in pDCs DAPs supported a sparsely studied interaction (Nagasawa 633 
et al., 2008).  634 
 635 
3.4 Cis-acting regulatory networks and transcription factor-target gene relationships 636 
predicted from correlating chromatin accessibility of regulatory elements 637 
 638 
The prediction for the involvement of a TF in regulating genes through DAP for each cell type 639 
above did not attempt to connect a specific TF and its target gene(s). To define the regulatory 640 
networks with a higher resolution, the TFs were linked to DE target genes in each cell type via 641 
CCAN generation and identifying the regulatory network for such genes. The summary of 642 
number of CCAN associated with a DEG in each cell type was provided in Table 1. The fact that 643 
no such CCAN in CD2negGD might be due to the fact that CD2negGD has the least number of 644 
DEG with a promoter DAP, making it less possible to construct enough peak connections to 645 
assemble a CCAN associated with these DEG. Since the peaks are co-accessible with the DAP 646 
overlapping with a TSS of a DEG and are mostly within a window of size of 500,000 bp, 647 
motivated by the fact that scientist found the peaks near a gene are highly consistent with the 648 
regulatory enhancer region of identified using Chip-seq (Muto et al., 2021), we assumed that the 649 
promoter or enhancer region of that DEG can be covered in the genomic regions in the CCAN. 650 
Driven by the aim of exploring the prospective regulator for DEG, we performed TFBM analysis 651 
for each CCAN having a hub peak overlapping with a TSS of DEG. As a consequence, our 652 
outcomes summarized in Fig 6 indicate that CCANs are a powerful means to recognize regulator 653 
candidates of DEG and potentially refine the TF-target genes described in Fig 4. Additionally, 654 
our predicted TFs and their related DEG were highly consistent with or similar to regulatory 655 
relationships predicted in the ENCODE TFTD. This cross-species verification provided evidence 656 
that our predicted relationship between a regulator and its target gene may often be correct. 657 
Nevertheless, we also pinpoint some either new or porcine-specific TF-target gene pairs. Our 658 
results demonstrate the great power and sensitivity of snATAC-seq to elucidate the chromatin 659 
accessibility landscape of pig immune cells, determine the known cell types based on the DNA 660 
open element pattern, predict the regulators for each cell type, and create the first resource of TF 661 
and possible target genes, including the matching possible binding sites, in different unstimulated 662 
porcine immune cell types. 663 
 664 
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4. Limitations 665 
 666 
We recognize several limitations that constrained our power and likely accuracy. Firstly, we 667 
have only two biological replicates of PBMC from a single timepoint and pig breed. However, 668 
open chromatin regions in our replicates were very consistent, and by using un-manipulated 669 
PBMC we avoided potential changes to cell transcriptomes that can occur with the extensive 670 
sorting that would be required to collect large numbers of rare cells, such as ASC or DC. Our 671 
ability to exclude potential breed biases reflected in the results from adult Yorkshire pigs is 672 
limited, but this first dataset provides a foundation that can be expanded.  In addition, our 673 
published scRNA and snATAC were profiled from different samples. Profiling gene expression 674 
and chromatin accessibility from the same cells could be helpful to avoid the integration of these 675 
two ‘omic’ datasets. However, the integration produced a combined cell type annotation was 676 
highly consistent between omics methods. 677 
 678 
5. Conclusions 679 
 680 
The genome-wide catalog of regulatory elements in this snATAC-seq dataset, including the cell 681 
type DAPs and the regulatory elements in the CCAN at a DEG are important resources to 682 
improve genome-wide genetic variation analyses. One example use of these data is filtering of 683 
variants associated with important phenotypes such as disease resilience and resistance in pig 684 
populations, as a majority of  disease- and trait-associated noncoding Genome-wide association 685 
study (GWAS) variants are localized in this type of genomic regions  (Maurano et al., 2012). The 686 
predicted TF-target gene network is also a highly useful resource for future characterization of 687 
the regulatory elements controlling porcine immune cell identity for immunology and biomedical 688 
modeling. 689 
 690 
6. MATERIALS AND METHODS 691 
 692 
6.1 PBMC sample collection, nuclei isolation and snATAC-seq using 10x Chromium  693 
Four PBMC samples were isolated from 2 healthy 6-month-old FAANG founder male Yorkshire 694 
pigs using standard techniques(Herrera-Uribe et al., 2021). PBMC nuclei were isolated by 695 
following DEMONSTRATED PROTOCOL: Nuclei Isolation for Single Cell ATAC Sequencing 696 
(10x Genomics) with an adjustment: The concentration of nuclei suspension, which were stained 697 
by Ethidium homodimer-1, was measured and determined using Countess II FL Automated Cell 698 
Counter. Then 4 libraries from two batches were constructed as described in Chromium Next 699 
GEM Single Cell ATAC Reagent Kits v1.1 (10x Genomics) and sequenced via Illumina 700 
Novaseq 6000 sequencing runs at DNA facility at Iowa State University.  701 
 702 
6.2 Demultiplexing and generation of single-cell accessibility counts 703 
Porcine genome reference and gff3 file were downloaded from ensembl 102 and used to generate 704 
the config to create a reference package using cellranger-atac mkref function of Cell Ranger 705 
ATAC (V.1.2.0). Then the base call files (BCLs) were demultiplexed using cellranger-atac 706 
function to produce the FASTQ files. For each library, the single cell accessibility counts matrix 707 
was generated using the customized reference package by cellranger-atac count command.  708 
 709 
6.3 Nuclei doublet detection 710 
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To remove the doublet resulting from droplet that contains two cells, nuclei doublet detection 711 
using ArchR (1.0.1) was performed on R 4.1.1. The geneAnnotation was created using 712 
createGeneAnnotation function of ArchR with customized org and TxDb packages for Sus scrofa 713 
as input. ArrowFile for each of the dataset was constructed by running ArchR function 714 
createArrowFiles with the fragment files generated by Cell Ranger ATAC, geneAnnotation and 715 
genomeAnnotation scrofa genome Sscrofa 11.1 as input with default parameter. Inferred doublet 716 
score for each cell was added to each of the Arrow file using addDoubletScores function with 717 
default parameter. An ArchRProject was created by running ArchRProject function with 718 
generated arrow files as input. Then, 1466 detected nuclei doublets were filtered out with 719 
filterDoublets function with default filterRatio. The cell barcodes of non-doublets were pulled 720 
out for downstream analysis. 721 
 722 
6.4 Quality control, snATAC-seq datasets integration, and clustering 723 
The detected peaks using cellranger-atac in two datasets from animal 6798  and 6800 were 724 
merged using reduce function of GenomicRanges (1.42.0 ), respectively (Lawrence et al., 2013). 725 
The merged 6798 peaks having overlaps with merged 6800 peaks were merged with merged 726 
6800 using subsetByOverlaps of GenomicRanges. The peaks with a width >= 10000 bp or <=20 727 
bp were filtered out from the merged peaks of two animals to generate a set of high-quality 728 
unified peaks. The fragments detected was counted in this new set of peaks using FeatureMatrix 729 
command of Signac (1.4.0), a ChromatinAssay was created by CreateChromatinAssay of Signac 730 
with min.features  = 1000 and a Seurat (4.0.5) object was created using CreateSeuratObject for 731 
each of the dataset. The cells predicted to be doublets by ArchR were removed every Seurat 732 
object. Low-quality cells were removed from 4 Seurat objects (nucleosome_signal < 4, 733 
TSS.enrichment > 2, nCount_peaks > 2000, nCount_peaks < 30000) before term frequency 734 
inverse document frequency (RunTFIDF) normalization. 4 Seurat objects were merged and 735 
visualized by RunUMAP with dims = 2:30 as input. A set of integration anchors were defined by 736 
FindIntegrationAnchors and used as input to integrate 4 Seurat objects by running 737 
IntegrateEmbeddings using 1:30 dimensions of merged Seurat object. The integrated snATAC-738 
seq Seurat object was normalized and its most variable features were identified by RunTFIDF 739 
and FindTopFeatures, respectively. The correlation between sequencing depth and every reduced 740 
dimension component was checked by DepthCor. 2:30 reduced dimensions of the integrated 741 
Seurat object were used to define 35 clusters by running “FindClusters” with a resolution = 2.4 742 
using shared nearest neighbor (SNN) clustering algorithm. A bar plot was created to visualize the 743 
percent of cells in each cluster from each dataset. The DAP and the number of DAP in all 744 
pairwise clusters were summarized in Supplementary Table 1-2.  745 
 746 
6.5 Cell type annotation for clusters using snATAC-seq 747 
Regulatory regions potentially controlling cluster-specific gene expression were identified by 748 
measuring DAP for each cluster using FindAllMarkers of Seurat with min.pct = 0.2, 749 
logfc.threshold = 0.25, only.pos = TRUE. The list of DAPs for each cluster was provided in 750 
Supplementary Table 3.  Predicted gene activity profiles were created using two ways: 1) by 751 
counting the Tn5 transposase cutting sites in fragments of nearby genes (<2000 bp from TSS). 752 
Particularly, the overall estimated gene activity of the gene markers used in Herrera-Uribe et al., 753 
2021 were used to decide the cell types for clusters. This was used to roughly narrow down the 754 
possible clusters for a cell type (Supplementary Fig 6-11). 2) by counting the Tn5 transposase 755 
cutting sites at a cluster DAP whose nearest gene is one of the gene markers used in Herrera-756 
Uribe et al., 2021 (Supplementary Table 4)(Herrera-Uribe et al., 2021). This criterion was used 757 
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to determine the cell types more precisely in Fig 2A-B. The example comparison of the predicted 758 
gene activities using these two methods are provided in Supplementary Fig 12. The principles 759 
reflected in Fig 1C, Supplementary Fig 12 and Supplementary Table 4 to annotate the cell types 760 
are described as below.  761 
 762 
A. The first cell type determined was monocyte (cluster 5, 7, and 9) by checking the chromatin 763 
accessibility at 5 DAPs near CSF1R, CD14 and CD86 (first 5 columns in Fig 1C). 764 
B. The next cell type decided was B cells (cluster 0,3, 4, 8, 11, 18, 20) based on the chromatin 765 
openness at 2 DAPs near PAX5 and CD19 (6th-7th column in Fig 1C, Supplementary Fig 12 A-B).  766 
Then cluster 27 was defined as ASC using 3 DAPs near PRDM1 and TCF4 (TCF4 was highly 767 
expressed in ASC though it was not classified as an ASC marker in Herrera-Uribe et al., 768 
2021)(8th-10th columns in Fig 1C).  769 
C. DC clusters (26 and 29) were decided based on a DAP near FLT3 and was further 770 
interpretated as cDCs (26) based on 3 DAPs near SLA-DRB1 and pDCs (29), with an elevated 771 
Tn5 cutting sites in 4 DAPs at XBP1, IRF8, IRF8 and CD4. 772 
D. Chromatin accessibility at a DAP neighboring CD3E, identified T cell clusters (1, 2, 6, 12, 13, 773 
14, 16, 17, 19, 21, 22, 23, 24, 25, 28, 30, 32, 33, 34). Subsequently, clusters 2, 6 and 12 were 774 
characterized as CD4posab since the cells are largely accessible at CD4 DAP. Detection of 775 
chromatin openness at 3 DAPs near CD8B and CD8A enabled the definition of CD8abPOSab (13, 776 
19, 23, 24, 30, 32). Afterwards, cluster 10 was characterized as NK due to the lack of chromatin 777 
accessibility at CD3E DAP and the openness at PRF1 DAP and KLRK1 DAP. 778 
CD8abPOSabT_NK (25 and 33) was determined since the cells demonstrate the chromatin 779 
openness at CD3E, CD8A, PRF1 and KLRK1. TRDC gene activity was investigated to define GD 780 
cells (1, 14, 16, 28 and 22). Furthermore, the presence/absence of DNA accessibility at SLA-781 
DRB1, CD8A, PRF1 and KLRK1 DAPs were used to classify CD2posGD (22) and CD2negGD 782 
(1, 14, 16, 28) since these genes are highly expressed in CD2posGD Herrera-Uribe et al., 2021 783 
though they were not described as CD2posGD marker. Cluster 17, 21 and 34 were grouped into a 784 
particular subtype of T cells due to the co-accessibility of chromatin near markers of various cell 785 
types. 786 
E. Cluster 15 and 31 was determined as unknown cell type since it has elevated estimated gene 787 
activity for PAX5, XBP1, CD3E, PRF1 and TRDC. 788 
 789 
6.6 Cell type annotation for snATAC clusters by integration with scRNA dataset 790 
To further annotate the cell types, the cell types were predicted for each cell by integrating 791 
snATAC-seq with our published PBMC scRNA-seq data(Herrera-Uribe et al., 2021). A set of 792 
anchors were detected by running FindTransferAnchors having estimated gene activity of 793 
snATAC-seq as query and scRNA-seq data as reference with reduction = ‘cca’.  The most 794 
possible cell type labels predicted for each of the cell in snATAC-seq dataset were transferred to 795 
snATAC-seq by TransferData with the new reduction of integrated snATAC-seq as 796 
weight.reduction and dims = 2:30. The cells in snATAC-seq with a low prediction.score.max <= 797 
0.5 were excluded from our Seurat object.  798 
 799 
6.7 Cell type DAP identification 800 

Based on the predicted cell type labels by integrating with scRNA-seq, the genomic regions 801 
differentially accessible in one cell type compared to the average of all other cell types were 802 
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detected by running FindAllMarkers function of Seurat with min.pct = 0.1, only.pos = TRUE , 803 
logfc.threshold = 0.25 and p_val_adj < 0.05. The list of such DAPs for each cell type was 804 
provided in Supplementary Table 7 celltype.DAP.summary. 805 

6.8 Comparison with bulk ATAC-seq 806 

We identified shared peaks between scATAC and ATAC-seq of bulk sorted porcine PBMC 807 
populations using bedtools intersect with reciprocal overlap > 25% between peaks(Quinlan and 808 
Hall, 2010). Read counts in common peaks were obtained using featureCounts(Liao et al., 2014), 809 
and principal component analysis was applied using base R software to visualize clustering of 810 
scATAc-derived and bulk sorted PBMC populations. Enrichment and corresponding significance 811 
of cell type DAPs within DAPs from bulk sorted porcine PBMC populations were calculated 812 
using hypergeometric tests in base R. 813 

6.9 GO analysis of the genes close by cell type specific DAPs 814 
The nearest gene of the cell type DAPs were found and then converted to matching human 815 
homologous via Ensembl 102. Further, GO analysis was performed for each cell type using 816 
Metascape with the corresponding human genes as input(Zhou et al., 2019). The ontology terms 817 
in which the input genes are enriched were detected using hypergeometric test and Benjamini-818 
Hochberg p-value correction algorithm with all genes in the genome as background. 819 
Enriched terms were groups into clusters and Kappa-test score was used to capture the most 820 
representative term for each cluster. Further, the most significant terms with a Kappa score above 821 
0.3 in each cluster were kept. The networks are all visualized via Cytoscape(Shannon et al., 822 
2003). The GO analysis result was summarized in Supplementary Figure 16-20.  823 
 824 
6.10 Transcription factor binding motif analysis of cell type DAPs 825 
TFs associated with each cell type and might act as important regulators in each cell type. TFBM 826 
analysis was performed using HOMER with this setting “-size given -mask -mset vertebrates” to 827 
discover the TFs whose binding motif are enriched in exact size of cell type DAPs compared to 828 
the GC-content matching background peaks generated from the Sscrofa11.1 genome. The q 829 
value of a TF binding motif was calculated by taking the average q values of this TF in the 830 
corresponding cell type DAP if its binding motif is enriched in one cell type DAPs via different 831 
co-factors. The threshold of q value of TF binding motifs was set as 0.05. The known motif 832 
enrichment results for each cell type were listed in Supplementary Table 8 833 
TFBM.celltype.known.result.summary. 834 
 835 
6.11 Generation of cis-co-accessible networks using Cicero 836 
Chromatin cis-co-accessibility analysis was performed using R package Cicero (1.8.1). Seurat 837 
object of each cell type was converted to CellDataSet format via  as.cell_data_set and then used 838 
to generate input for cicero by make_cicero_cds function. The co-accessibility score for all peak 839 
pairs on each chromosome of Sscrofa 11.1 was calculated using the generated CellDataSet object 840 
by running run_cicero. All pairwise peaks are filtered following these criteria: 1) At least one of 841 
the pairwise peaks are a DAP in the matching cell type, 2) The co accessibility score of the 842 
pairwise peaks are greater than 0.05. The peaks meet the criteria above were grouped into co-843 
accessible networks using generate_ccans with default setting. The constructed CCANs were 844 
further refined as below: 1) The center peak of the CCAN overlaps with a TSS of a DEG in the 845 
matching cell type. 2) All peaks in the CCAN were assigned with the same CCAN number.  846 
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 847 
6.12 Prediction of the regulator for DEG in each cell type  848 
TFBM was conducted using HOMER with following setting “-size given -mask -mset 849 
vertebrates -N 300” to predict the TFs whose binding motif are enriched in peaks of each CCAN 850 
described above compared to the GC-content matching background peaks generated from 851 
Sscrofa11.1 genome. The threshold of q value of TF was set as 0.1.  852 
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