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 Abstract—This study introduces a novel model for analyzing and 

determining the required sequencing coverage in DNA-based data 

storage, focusing on combinatorial DNA encoding. We explore the 

application of the coupon collector model for combinatorial-letter 

reconstruction, post-sequencing, which ensure efficient data 

retrieval and error reduction. We use a Markov Chain model to 

compute the probability of error-free reconstruction. We develop 

theoretical bounds on the decoding probability and use empirical 

simulations to validate these bounds. The work contributes to the 

understanding of sequencing coverage in DNA-based data storage, 

offering insights into decoding complexity, error correction, and 

sequence reconstruction. We provide a Python package that takes 

the code design and other message parameters as input, and then 

computes the required read coverage to guarantee reconstruction 

at a given desired confidence. 

I. INTRODUCTION 

HE growing volume of the world's digital data and the 

limitations of existing storage technologies motivate the 

need for new and innovative storage solutions [1]. 

DNA-based data storage (or DNA-based storage) 

emerges as a viable solution, offering unmatched density and 

durability. This novel approach involves the synthesis, storage, 

and sequencing of DNA molecules to encode, store and retrieve 

information. However, challenges such as short, error-prone 

strands and limitations in current synthesis technologies still 

remain [2] [3] [4] [5] [6] [7] [8]. 

While DNA-based storage stands as a promising technology, 

and the cost of DNA sequencing has been decreasing, it remains 

significantly more expensive than reading from established 

archival storage solutions [9] [10] [11] [12]. In the context of 

DNA sequencing costs and throughput, recent work [13] 

defined the DNA coverage depth problem, which considers the 

expected sample size, to guarantee successful decoding of the 

information. A related concept was suggested by Chandak et al. 

[14], who explored the balance of writing and reading costs in 

DNA-based data storage, studying the LDPC-based coding 

schemes. 

 Combinatorial DNA encoding is a recently introduced 

encoding scheme, which uses a set of clearly distinguishable 

DNA shortmers to construct large combinatorial alphabets, 

where each letter is encoded by a subset of shortmers [15]. The 

nature of these combinatorial alphabets minimizes mix-up 
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errors, while also ensuring the robustness of the system. 

combinatorial shortmer encoding is an extension of other 

composite coding schemes, such as [2] [16] [17]. 

This work presents the first model for analyzing the 

sequencing coverage depth problem under combinatorial DNA 

encoding. In this work, we define and study a new model to 

compute the required coverage depth. While the model 

presented in [13] assumes 1D encoding applied on the strands, 

our model considers 2D (inner-outer) MDS codes. Each 

sequence is encoded using the inner-code, to protect against 

symbol errors, while the outer-code adds redundancy to a block 

of sequences, protecting against sequence-level errors. This 

allows for a more thorough and detailed analysis of the required 

sequencing coverage when using the inner-outer code 

approach, a widely used coding technique in DNA-based 

storage [18] [19] [3] [2].  

We first address the question of reconstructing a single 

combinatorial letter by utilizing a reduction of this problem to 

the well-known coupon collector's problem. This provides a 

framework for determining the required number of reads to 

ensure that at least one copy of every member shortmer in the 

combinatorial letter is observed [13] [20] [21] [22] [23]. For this 

purpose, we present a Markov Chain approach to calculate 

decoding probabilities and provide computer code. We also 

generalize this model by considering a threshold for the 

minimum number of copies of each shortmer required for letter 

reconstruction. 

Next, we analyze the decoding probabilities of full-length 

combinatorial sequences that constitute a single complete 

message encoded using combinatorial DNA. We provide 

bounds on the decoding probability given the number of 

analyzed reads, and present an operational algorithm for 

determining the required coverage of reads. We explore our 

coverage depth model on different design parameters and 

compare the results to simulation experiments of combinatorial 

DNA reading. 

Lastly, we provide computer code implementing our coverage 

model that, given a sequence and message design, outputs the 

read coverage required for recovering the data with a user 

defined confidence level. This work combines theoretical 

progress represented by studying the coverage depth problem 

for combinatorial DNA-based storage, and also the practical 
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aspect supporting the design and implementation of such 

systems. 

II. RESULTS 

The decoding complexity is analyzed here by breaking the 

process down into its basic components. First, the decoding 

probability of a single combinatorial letter is analyzed, 

considering various design parameters and decoding 

approaches. Next, this paper addresses the decoding of a single 

combinatorial letter, while considering the use of error 

correction codes with varying redundancy levels. Finally, the 

decoding of a complete combinatorial DNA message is 

analyzed, considering a general 2D error correction MDS code 

(i.e., a code that protects against sequence dropouts as well as 

errors on each sequence). 

A. Reconstruction of a single combinatorial letter 

Let Ω be a set of valid k-mers used for a combinatorial DNA-

based data storage system. Consider a binomial combinatorial 

alphabet Σ with |Σ| ≤ (
𝑁
𝐾

) letters where each letter 𝜎 ∈ Σ 

consists of a subset of size 𝐾 of k-mers from Ω. This subset is 

referred to as the member k-mers of 𝜎. Let 𝑅 be the number of 

analyzed reads of a given combinatorial letter. We define a 

decoding algorithm in which we accumulate reads until we 

observe at least 𝑡 copies of 𝐾 unique k-mers from Ω. These 𝐾 

k-mers are refrred to as the inferred member k-mers, and are 

used to reconstruct a combinatorial letter 𝜎′ (See Algorithm 1).  

 

 
 

To analyze the probability of decoding a single combinatorial 

letter, we first assume that each read uniformly draws one of the 

𝐾 member k-mers. Let 𝑇(𝐾, 𝑡) be a random variable 

representing the number of reads analyzed until the decoding 

algorithm successfully stops. Let 𝜋(𝐾, 𝑡)(𝑅) be the probability 

of stopping with a successful inference after at most 𝑅𝑠𝑖𝑛𝑔𝑙𝑒 

reads. 

 𝜋(𝐾, 𝑡)(𝑅) = 𝑃(𝑇(𝐾, 𝑡) ≤ 𝑅) (1) 

For 𝑡 = 1 the random variable 𝑇(𝐾, 𝑡) represents the 

classical coupon collector model [24] and we get (See 

Appendix B: 

 𝜋(𝐾, 𝑡 = 1)(𝑅) = ∑ (−1)𝑖𝐾
𝑖=0 (

𝐾
𝑖
) (1 − (

𝑖

𝐾
))

𝑅

 (2) 

 𝐸(𝑇(𝐾, 1)) = 𝐾 ⋅ 𝐻𝐾  (3) 

where 𝐻𝐾 = ∑
1

𝑖

𝐾
𝑖=1  is the Kth harmonic number. 

 

For 𝑡 > 1 we can obtain [23]: 

𝐸(𝑇(𝐾, 𝑡)) = 𝐾(ln(𝐾) + (𝑡 − 1) ln(𝑙𝑛(𝐾)) + 𝑂(1)) (4) 

 

To calculate 𝜋(𝐾, 𝑡)(𝑅) for 𝑡 > 1, we use a Markov Chain 

(MC) formulation. Each state in the MC represents the status of 

the member k-mers in 𝜎, in terms of the number of times each 

has been seen. Specifically, a state is represented by a vector: 

 (𝑣(0),… , 𝑣(𝑡)); 𝑣(𝑖) ∈ {0, … , 𝐾} (5) 

for 0 ≤ 𝑗 < 𝑡, 𝑣(𝑗) indicates the number of member k-mers 

seen exactly 𝑗 times, while 𝑣(𝑡) indicates the number of 

member k-mers seen 𝑡 times or more.  

Clearly, this vector satisfies: 

 ∑ 𝑣(𝑖)𝑡
𝑖=0 =  𝐾 (6) 

 ∑ 𝑖 ∗ 𝑣(𝑖)𝑡
𝑖=0 ≤ 𝑅 (7) 

and when 𝑣(𝑡) = 0 the inequality in (7) hold as equality 

∑ 𝑖 ∗ 𝑣(𝑖)𝑡
𝑖=0 = 𝑅. We also note that since there are 𝑡 +

1 values in the vector (𝑣(0), 𝑣(1), … , 𝑣(𝑡)), there are a total of 

𝑁 = (
𝐾 + 𝑡

𝑡
) possible solutions to the equation, representing 𝑁 

states. 

 

For example, considering 𝐾 = 10 member k-mers and a 

threshold 𝑡 = 2. The following states can be defined: 

(10,0,0): All 10 k-mers have not been seen yet. This is the 

case before we start analyzing the reads. 
(8,2,0): After analyzing two reads, two unique k-mers have 

been observed exactly once while the remaining 8 k-mers have 

not been observed yet. 

(7,2,1): After analyzing at least four reads, two unique k-

mers have been observed exactly once, one k-mer has been 

observed 2 times or more and the remaining 7 k-mers have not 

been observed yet. 

We define the following transition matrix 𝐴 where each 

transition is defined by the observation of one read.  

𝐴[(𝑣(0), … , 𝑣(𝑖), 𝑣(𝑖 + 1) … , 𝑣(𝑡))][(𝑣(0), … , 𝑣(𝑖) −

1, 𝑣(𝑖 + 1) + 1… , 𝑣(𝑡))] =
𝑣(𝑖)

𝐾
  (8) 

This represents observing one of the 𝑣(𝑖) k-mers that were 

observed 𝑖 < 𝑡 times. 

And, 

𝐴[(𝑣(0), … , 𝑣(𝑖), … , 𝑣(𝑡))][(𝑣(0), … , 𝑣(𝑖), … , 𝑣(𝑡))] =
𝑣(𝑡)

𝐾

 (9) 

This represents observing one of the 𝑣(𝑡) k-mers that were 

observed at least 𝑡 times. 
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For example, the first two transitions are: 

𝑃(𝑠0 = (𝟏𝟎, 0,0), s1 = (9,1,0)) =
𝑣(0)

𝐾
= 1 

𝑃( s1 = (𝟗, 1,0), s2 = (8,2,0)) =
𝑣(0)

𝐾
 =

9

10
 

This happens when one out of the 9 yet unseen k-mers is drawn. 

𝑃( s1 = (9, 𝟏, 0), s2 = (9,0,1)) =
𝑣(1)

𝐾
 =

1

10
 

This happens only when the first observed k-mer is observed 

again. 

 

To get 𝜋(𝐾, 𝑡)(𝑅) we set the initial state to be  

𝑠0 = (𝑣(0) = K, 𝑣(1) = 0,… , 𝑣(𝑡) = 0)  (10) 

That is 𝑃0 = (𝑃(𝑠0) = 1,0,… ,0) is the state distribution 

vector. 

We derive the distribution vector over the states after 𝑅 steps, 

 𝑃𝑅 = 𝑃0𝐴
𝑅 (11) 

Let 𝑠𝑓 = (0,0, … , 𝑣(𝑡) = 𝐾) be the desired state in which all 

𝐾 k-mers have been observed at least 𝑡 times. 

 𝜋(𝐾, 𝑡)(𝑅) = 𝑃𝑅(𝑠𝑓) (12) 

 

Fig. 1 and Appendix A. demonstrate the state distribution vector 

for several values of 𝑅 using 𝐾 = 5 member k-mers and a 

threshold of 𝑡 = 1. Clearly, after analyzing the first read, a 

single k-mer is observed once while the other four have not 

been observed yet. With 𝑅 = 5, the probability of having seen 

all unique coupons reached 𝜋(5,1)(5) = ∏
𝑖

5

5
𝑖=1 = 0.038. At 

𝑅 = 15, this probability significantly increased to 

𝜋(5,1)(15) =  0.829. Finally, at 𝑅 = 30, the probability of 

observing all coupons was 𝜋(5,1)(30) =  0.994. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Evolution of probability in the coupon collector model. (a) The probability distribution across the 6 states (X-axis) after 

observing 𝑅 = 1 reads. (b-d) Similar to (a) with 𝑅 = 5, 15, 30 respectivley. Calculated for 𝐾 = 5, 𝑡 = 1, and no errors, 𝜖 = 0. 

 

This algorithm ignores possible synthesis and sequencing 

error as it assumes that all observed k-mers come from the set 

of 𝐾 valid k-mers. Introducing an error probability 𝜖 of 

observing an invalid k-mer requires a modified transition 

matrix 𝐵: 
𝐵[(𝑣(0), … , 𝑣(𝑖), 𝑣(𝑖 + 1) … , 𝑣(𝑡))][(𝑣(0), … , 𝑣(𝑖) −

1, 𝑣(𝑖 + 1) + 1… , 𝑣(𝑡))] = (1 − 𝜖)
𝑣(𝑖)

𝐾
 (13) 

This represents observing one of the 𝑣(𝑖) (valid) member k-

mers that were observed 𝑖 < 𝑡 times. 

And, 

𝐵[(𝑣(0), … , 𝑣(𝑖), … , 𝑣(𝑡))][(𝑣(0), … , 𝑣(𝑖), … , 𝑣(𝑡))] =
𝑣(𝑡)

𝐾
(1 − 𝜖) + 𝜖  (14) 

This represents observing one of the 𝑣(𝑡) k-mers that were 

observed at least 𝑡 times, or observing an invalid k-mer. 

For example, the first two transitions are: 

𝑃(𝑠0 = (𝟏𝟎, 0,0), s1 = (9,1,0)) = (1 − 𝜖)
𝑣(0)

𝐾
= 1 − 𝜖 

𝑃(𝑠0 = (𝟏𝟎, 0,0), s1 = (10,0,0)) = (1 − 𝜖)
𝑣(2)

𝐾
+ 𝜖 = 𝜖 

𝑃( s1 = (𝟗, 1,0), s2 = (8,2,0)) = (1 − 𝜖)
𝑣(0)

𝐾
 = (1 − 𝜖)

9

10
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𝑃( s1 = (9, 𝟏, 0), s2 = (9,0,1)) = (1 − 𝜖)
𝑣(1)

𝐾
 = (1 − 𝜖)

1

10
 

𝑃( s1 = (9, 𝟏, 0), s2 = (9,1,0)) = (1 − 𝜖)
𝑣(2)

𝐾
+ 𝜖 = 𝜖 

Fig. 2 depicts the decoding probabilities for varying number 

of analyzed reads using different values for the threshold 𝑡. The 

calculated probabilities are compared to a simulation 

experiment. As expected, as 𝑡 increases, more reads are 

required to reconstruct a combinatorial letter. Notably, when 𝑅 

reaches 100 or more, the probability effectively becomes 1, 

indicating full data recovery. This represents the balance 

between threshold level required for achieving precise 

combinatorial reconstruction and the read depth complexity. 

Note that throughout this section, we ignored the possibility 

of an error that results in k-mer mix-up (i.e., the output of the 

decoding algorithm is different from the original combinatorial 

letter,  𝜎′ ≠ 𝜎). This is due to the assumptions that the design 

parameters render this error type very unlikely. We further 

discuss this issue in Section IV. Discussion.

  
(a) 𝑡 = 1 (b) 𝑡 = 2 

  
(c) 𝑡 = 3 (d) 𝑡 = 4 

Fig. 2. Decoding probability for varying number of analyzed reads (𝑅) for different thresholds (𝑡). Each subplot corresponds to a 

different threshold value (𝑡). The analyses were conducted for 𝐾 = 7 and 𝜖 = 0.01. (a) results for 𝑡 = 1, the blue line 

corresponds to the calculated probability based on the MC model while the red line represents the median of 50 simulation runs, 

where each simulation calculates the success rate of 100 uniform drawing of 𝑅 reads across 𝐾 member k-mers. The simulation 

results are also presented as boxplots. (b-d). Like (a) with 𝑡 = 2, 3 and 4 respectivley. 

 

B. Reconstruction of a combinatorial sequence 

Let 𝑠 = 𝜎(1)𝜎(2) … 𝜎(𝑚) be a sequence of length 𝑚 over the 

same binomial alphabet defined in the previous section. 

Assuming the use of a proper MDS error correction code, we 

say that decoding only 𝑏 ≤ 𝑚 letters is sufficient for decoding 

the complete sequence. Let 𝑅 be the number of analyzed reads, 

fixing 𝐾 and 𝑡, we denote 𝜋(𝐾, 𝑡)(𝑅) as 𝜋(𝑅). Let 𝑊 be a 

random variable representing the number of letters in 𝑠 that 

were decoded. Assuming independence between the letters in 𝑠 

we get  

 𝑊~𝐵𝑖𝑛𝑜𝑚(𝑚, 𝜋(𝑅)) (15) 

We are interested in the probability of decoding the 

sequence 𝑠, 𝑃𝑠𝑖𝑛𝑔𝑙𝑒: 

𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝑅,𝑚, 𝑏) = 

= 𝑃(𝑊 ≥ 𝑏) = ∑ (
𝑚
𝑖
) 𝜋(𝑅)𝑖(1 − 𝜋(𝑅))𝑚−𝑖𝑚

𝑖=𝑏   (16) 

We can approximate this probability using the normal 

estimation (based on Central Limit Theorem). 

 𝑊~̇𝑁(𝑚𝜋(𝑅),𝑚𝜋(𝑅)(1 − 𝜋(𝑅))) (17) 

𝑃(𝑊 ≥ 𝑏) = 1 − 𝑃(𝑊 < 𝑏) = 1 − Φ (
𝑏−𝑚𝜋(𝑅)

√𝑚𝜋(𝑅)(1−𝜋(𝑅))
)(18) 

Where Φ is the CDF of the standard normal distribution.  

 

Fig. 3 presents the decoding probabilities of a combinatorial 

sequence with length 𝑚 = 100, examining how the number of 

analyzed reads (𝑅) affects the accuracy of sequence 

reconstruction across various redundancy levels (𝑏 =
100, 95, 90, 85) keeping other parameters constant (𝐾 = 7, 𝑡 =
4). We observe that the probability of successful reconstruction 

varies significantly with different redundancy levels. Notably, 
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higher redundancy levels (lower 𝑏 values) enable accurate 

reconstruction using fewer reads. These results also align with 

the results obtained from the Normal Approximation (Not 

shown). The results demonstrate the role of sequence level 

redundancy in affecting the likelihood of accurate 

reconstruction, making it an important tunable parameter in the 

overall design. 

 

  
(a) 𝑏 = 85 (b) 𝑏 = 90 

  
(c) 𝑏 = 95 (d) 𝑏 = 100 

Fig. 3. Decoding probability of a complete combinatorial sequence with varying redundancy levels. Results shown for a sequence 

of length 𝑚 = 100, with 𝐾 = 7, and requiring 𝑡 = 4. (a) Calculated decoding probability (blue line) as a function of the number 

of analyzed reads for redundancy level of 𝑏 = 85. Median results from 50 simulation runs are presents (red line) with boxplots 

representing the distribution of the simulation results. Each simulation run represents 100 uniformly drawn sets of 𝑅 reads, each 

comprising 𝑚 letters drawn from 𝐾 = 7 member k-mers. (b-d) Like (a) with 𝑏 = 90, 95, and 100, respectively. All analyses 

incorporate an error rate of 𝜖 = 0.01. 

 

C. Reconstructing a complete combinatorial message 

Let 𝑀 = {𝑠𝑖}𝑖
𝑙 be a complete combinatorial message encoded 

using a binomial alphabet like in the previous sections. The 

message is encoded using 𝑙 combinatorial sequences and, 

assuming proper MDS error correction code, 𝑎 ≤ 𝑙 of which are 

sufficient for the decoding of 𝑀. 

Let 𝑅𝑎𝑙𝑙  be the total number of analyzed reads over all 

sequences. We are interested in the probability of decoding at 

least 𝑎 of 𝑙 sequence using 𝑅𝑎𝑙𝑙  reads, 𝑃𝑎𝑙𝑙(𝑅𝑎𝑙𝑙 , 𝑙, 𝑎). 

Fig. 4 presents an overview of the decoding process and the 

analysis steps for a complete combinatorial message.  

First, the 𝑅𝑎𝑙𝑙  reads are distributed between the 𝑙 sequences, 

using, for example, the barcodes. Then, the decoding 

probability of each of the 𝑙 sequences is determined using the 

derivation from the previous section. The decoding probability 

of a single letter is analyzed using the coupon collector’s model. 

We now formally define each of these steps and analyze the 

decoding probability 𝑃𝑎𝑙𝑙(𝑅𝑎𝑙𝑙 , 𝑙, 𝑎) or simply 𝑃𝑎𝑙𝑙 .
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(𝑅1, … , 𝑅𝑙)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑅𝑎𝑙𝑙 , (

1
𝑙⁄ , … , 1 𝑙⁄ ) 

𝐵𝑖𝑛𝑜𝑚(𝑙, 𝑃𝑠𝑖𝑛𝑔𝑙𝑒) ≥ 𝑎 
Coupon collector of 𝑡 coupons. 𝐵𝑖𝑛𝑜𝑚(𝑚, 𝜋(𝑅)) ≥ 𝑏 

(a) (b) (c) 

Fig. 4. Reconstructing a complete combinatorial message. (a) 𝑅𝑎𝑙𝑙  reads are distributed between 𝑙 sequences and at least 𝑎 

sequences need to be decoded (b) The decoding probability of each of the letters is analyzed using the coupon collector’s model 

(Blue bins indicate the members k-mer) (c) Each sequence requires 𝑏 of the 𝑚 combinatorial letters to be decoded. 

The distribution of the 𝑅𝑎𝑙𝑙  reads across the 𝑙 sequences is 

modeled using a multinomial distribution 

(𝑅1, … , 𝑅𝑙) ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 (𝑅𝑎𝑙𝑙 , (
1

𝑙
, … ,

1

𝑙
)) (19) 

Given a specific distribution of the 𝑅 reads (𝑟1, … , 𝑟𝑙), to 

successfully decode the message we need to decode at least 𝑎 

of the sequences.  

 𝑃𝑎𝑙𝑙(𝑟1, … , 𝑟𝑙) = 𝑃(∑ 𝐼𝑖
𝑙
𝑖=1 ≥ 𝑎) (20) 

Where 𝐼𝑖  is an indicator of decoding sequence 𝑠𝑖 using 𝑟𝑖 
reads.  

Using the law of total probability and setting 𝑃(𝑅1 =
𝑟1, … , 𝑅𝑙 = 𝑟𝑙) = 𝑃(𝑟1, … , 𝑟𝑙) : 

𝑃𝑎𝑙𝑙 = 

 ∑ 𝑃(𝑟1, … , 𝑟𝑙)𝑃𝑎𝑙𝑙(r1, … , 𝑟𝑙)(𝑟1,…,𝑟𝑙)

∑𝑟𝑖=𝑅𝑎𝑙𝑙

 (21) 

Calculating 𝑃all directly becomes infeasible even for small 

values of 𝑅𝑎𝑙𝑙 , 𝑙 and 𝑎. We therefore bound this probability. 

First, we note that since for every sequence 𝑠𝑖 we have 

𝑃(𝐼𝑖) = 𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝑟𝑖 , 𝑚, 𝑏) ≥ 𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝑟𝑚𝑖𝑛 , 𝑚, 𝑏) 

Where 𝑟𝑚𝑖𝑛 = min
𝑗=1,…,𝑙

𝑟𝑖  and 𝜋𝑟𝑚𝑖𝑛  is obtained by using 𝑟𝑚𝑖𝑛 

in the coupon collector’s model. If we plug this back to (20) we 

can define a new binomial random variable 𝑋 that represents 

the number of sequences decoded: 

 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑙, 𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝑟𝑚𝑖𝑛 , 𝑚, 𝑏) ) (22) 

And, 

 𝑃𝑎𝑙𝑙(𝑟1, … , 𝑟𝑙) ≥ 𝑃(𝑋 ≥ 𝑎) (23) 

Yielding a lower bound on 𝑃𝑎𝑙𝑙(𝑅𝑎𝑙𝑙 , 𝑙, 𝑎) 

 𝑃𝑎𝑙𝑙 ≥ 𝑃(𝑋 ≥ 𝑎) ∑ 𝑃(𝑟1, … , 𝑟𝑙)(𝑟1,…,𝑟𝑙)

∑𝑟𝑖=𝑅𝑎𝑙𝑙

 (24) 

In the multinomial distribution for (𝑅1, … , 𝑅𝑙), many 

possible read distributions are very unlikely. We can further 

bound 𝑃𝑎𝑙𝑙  by setting a constant value 𝜌 and only considering 

read distributions for which min
𝑗=1,…,𝑙

(𝑟𝑗) ≥ 𝜌. Let 𝑋𝜌 be a random 

variable representing the number of sequences decoded when 

the decoding probability of each sequence is calculated using 𝜌 

reads. That is, 𝑋𝜌~𝐵𝑖𝑛𝑜𝑚 (𝑙, 𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝜌,𝑚, 𝑏)).  

We therefore have 

 𝑃𝑎𝑙𝑙 ≥ 𝑃(𝑋𝜌 ≥ 𝑎) ∑ 𝑃(𝑟1, … , 𝑟𝑙)(𝑟1,…,𝑟𝑙)

∑𝑟𝑖=𝑅𝑎𝑙𝑙
min

𝑗
𝑟𝑗≥𝑇

 (25) 

Given a small 𝛿 > 0, we check whether 𝑅𝑎𝑙𝑙  reads are 

sufficient to decode the message with 1 − 𝛿 confidence level.  

𝑃𝑎𝑙𝑙 ≥ 1 − 𝛿 

This can be achieved by choosing 𝜌 such that 

(a) 𝑃(𝑋𝜌 ≥ 𝑎) ≥ √1 − 𝛿 

And,  

(b) ∑ 𝑃(𝑟1, … , 𝑟𝑙)(𝑟1,…,𝑟𝑙)

∑𝑟𝑖=𝑅𝑎𝑙𝑙
min

𝑗
𝑟𝑗≥𝜌

≥ √(1 − 𝛿) (26) 

Since 𝑋𝜌 has a binomial distribution, we can find 𝜌 for which 

condition (a) holds. For condition (b), we use Sanov’s Theorem 

on the multinomial distribution as follows. For more on Sanov’s 

Theorem and the behavior of multinomials, see [25].  

 Sanov's theorem bounds the probability that the distribution 

of the reads into barcodes significantly deviates from the 

expected uniform (1 𝑙⁄  for each) distribution, particularly where 

at least one sequence gets fewer than 𝜌 reads. Fig. 5 

demonstrates this using a simulation of 100,000 instances each 

drawn from the multinomial distribution with 𝑝 = (
1

50
, … ,

1

50
) 

and 𝑛 = 4500 or 𝑛 = 5000. The plots show the distribution of 

the minimal values obtained. Clearly, increasing 𝑅𝑎𝑙𝑙  reduces 

the probability of the minimal value to be below a fixed 

threshold 𝜌. Decreasing the threshold 𝜌 yields a similar effect. 
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  (a) 𝑅𝑎𝑙𝑙 = 5000, 𝜌 = 65   (b) 𝑅𝑎𝑙𝑙 = 5000, 𝜌 = 77 

  
  (c) 𝑅𝑎𝑙𝑙 = 4500, 𝜌 = 65   (d) 𝑅𝑎𝑙𝑙 = 4500, 𝜌 = 77 

Fig. 5. The minimum value of a multinomial distribution 𝑌 = min
𝑗

(𝑋𝑗) where (𝑋1, … , 𝑋𝑙)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 (𝑅𝑎𝑙𝑙 , (
1

𝑙
, … ,

1

𝑙
)).  

(a) A histogram of the values of 𝑌 attained in 100,000 instances with 𝑙 = 50 and 𝑅𝑎𝑙𝑙 = 5000. The red line represents 𝜌 = 65. 

The gray box show the probability 𝑃(𝐸(𝜌)) = 𝑃(𝑌 < 𝜌). (b-d) Like (a) for (𝑅𝑎𝑙𝑙 , 𝜌) = (5000, 77), (4500, 65), (4500, 77). 

 

Let 𝑈 = (
1

𝑙
, … ,

1

𝑙
) be the expected uniform distribution 

equivalent to the expected read distribution for (𝑅1, … , 𝑅𝑙). 

Let 𝐸(𝜌) be the set of probability vectors equivalent to read 

distributions (𝑟1, … , 𝑟𝑙) for which ∑𝑟𝑗 = 𝑅𝑎𝑙𝑙 , min
𝑗=1,…,𝑙

(𝑟𝑗) < 𝜌: 

 𝐸(𝜌) = {𝑃 = (𝑝1, … , 𝑝𝑙)| ∑ 𝑝𝑖 = 1; min
𝑖

(𝑝𝑖) <
𝜌

𝑅𝑎𝑙𝑙
} (27) 

We define 휁(𝜌) = 𝑚𝑖𝑛𝑃∈𝐸(𝑇)𝐷(𝑃 ∥ 𝑈) where 𝐷(𝑃||𝑈) is 

the Kullback-Leibler divergence: 

 𝐷(𝑃 ∥ 𝑈) = ∑ 𝑝𝑖 log (
𝑝𝑖

𝑞𝑖
)𝑙

𝑖=1  (28) 

Let 𝑃∗ = arg min
𝑃∈𝐸(𝜌)

𝐷(𝑃||𝑈) the closest element to 𝑄 in 

𝐸(𝜌) in terms of the KL-divergence. That is 휁(𝜌) = 𝐷(𝑃∗ ∥ 𝑈) 

Next we show that 𝑃∗ is the distribution of reads in which 

𝜌 − 1 reads are assigned to one sequence and the remaining 

𝑅𝑎𝑙𝑙 − 𝜌 + 1 reads are uniformly distributed over the remaining 

𝑙 − 1 sequences.  

Lemma: 

 Let 𝑈 = (
1

𝑙
, … ,

1

𝑙
), Let 𝛼 <

1

𝑙
 (29) 

Let 𝑃∗ = (𝛼,
1−𝛼

𝑙−1
, … ,

1−𝛼

𝑙−1
), then 

∀𝑃 = (𝑝1, … , 𝑝𝑙), 𝑠. 𝑡. ∃𝑖; 𝑝𝑖 < 𝛼 

We have 

 𝐷(𝑃||𝑈) ≥ 𝐷(𝑃∗||𝑈) (30) 

The proof for this lemma is found in the appendix C. For 

intuition, this is simply the result of the symmetric nature of the 

KL-divergence function and of 𝑄. 

 

Sanov's Theorem [25]  provides a bound on the probability 

of observing any distribution within 𝐸(𝜌). 

 𝑃(𝐸(𝜌)) ≤ (𝑅𝑎𝑙𝑙 + 1)𝑙2−𝑅𝑎𝑙𝑙𝜁(𝜌) (31) 

Where, 

휁(𝜌) = 𝐷(𝑃∗||𝑈) = Σ𝑖=1
𝑙 𝑝𝑖

∗ log (
𝑝𝑖

∗

𝑞𝑖
) = 𝛼 log(𝛼𝑙) + (l −

1) (
1−𝛼

𝑙−1
) log

1−𝛼

𝑙−1
1

𝑙

= 𝛼 log(𝛼𝑙) + (1 − 𝛼) log (
𝑙(1−𝛼)

𝑙−1
) (32)  

This bound implies that the likelihood of observing a 

significantly non-uniform distribution of reads decreases 

exponentially as the total number of reads 𝑅𝑎𝑙𝑙  increases. 

We recall that  

 ∑ 𝑃(𝑟1, … , 𝑟𝑙)(𝑟1,…,𝑟𝑙)

∑𝑟𝑖=𝑅𝑎𝑙𝑙
min

𝑗
𝑟𝑗≥𝜌

= 1 − 𝑃(𝐸(𝜌)) (33) 

And so we get 

 𝑃𝑎𝑙𝑙 ≥ 𝑃(𝑋𝜌 ≥ 𝑎) (1 − 𝑃(𝐸(𝜌))) (34) 

 𝑃𝑎𝑙𝑙 ≥ 𝑃(𝑋𝜌 ≥ 𝑎)(1 − (𝑅𝑎𝑙𝑙 + 1)𝑙2−𝑅𝑎𝑙𝑙𝜁(𝜌)) (35) 
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This gives us an operational algorithm for checking if 𝑅𝑎𝑙𝑙  

reads are sufficient to ensure successful decoding with 

confidence 1 − 𝛿, as specified in Algorithm 2. 

 

 

 
 

Fig. 6a demonstrates the approach by presenting the 

probability of successful message decoding 𝑃(𝑋𝜌 ≥ 𝑎) and the 

probability of considering “enough” of the read distribution 

(1 − 𝑃(𝐸)) for a fixed number of overall reads 𝑅𝑎𝑙𝑙 = 3000 as 

a function of the threshold 𝜌. Clearly, 𝑃(𝑋𝜌 > 𝑎) increases as 

𝜌 increases since each sequence 𝑠𝑖 is decoded using more reads. 

On the other hand, as was demonstrated in Fig. 5. increasing 𝜌 

decreases 1 − 𝑃(𝐸(𝜌)) since less read distributions with 

min
𝑗

𝑟𝑗 ≥ 𝜌 are expected. 

We note that the bound achieved by using Sanov’s theorem 

is not tight and therefore present an alternative approach for 

finding 𝜌 using empirical simulations. Fig. 6b presents the 

probability (1 − 𝑃(𝐸(𝜌))) calculated like in Fig. 5 by 100,000 

instances of simulating the multinomial distribution with 𝑅𝑎𝑙𝑙 =
1000. Clearly, this method yields a tighter bound on the 

decoding probability while also requires analyzing less read 

overall. 

 

  
(a) (b) 

Fig. 6. Bounding the decoding probability. (a) Overall decoding probability 𝑃(𝑋𝜌 ≥ 𝑎) (blue line) and the Sanov bound on the 

probability of obtaining a read distribution across the sequences with 𝑚𝑖𝑛
𝑗

𝑟𝑗 ≤ 𝜌, 1 − 𝑃(𝐸(𝜌)) (red line) as functions of the 

threshold 𝑇 for a fixed number of analyzed reads 𝑅𝑎𝑙𝑙 = 3000. The threshold √1 − 𝛿 on the probability is marked with dotted 

lines for 𝛿 = 0.1 (pink dotted lines) and 𝛿 = 0.2 (green dotted lines), Setting 𝜌 to any value between these lines ensures decoding 

with 1 − 𝛿 confidence. All values are calculated for 𝐾 = 7, 𝑡 = 4, 𝜖 = 0.01, 𝑅 = 110,𝑚 = 10, 𝑏 = 8, 𝑙 = 10, 𝑎 = 8. (b) Like (a) 

with 𝑃(𝐸(𝜌)) calculated using simulations instead of the Sanov bound and where the total number of reads 𝑅𝑎𝑙𝑙 = 1000. 

D. A tool for determining the required sequencing coverage 

We have developed a tool designed to calculate the necessary 

sequencing coverage for DNA-based data storage systems.  

Parameters, Input, and Output 

 The tool gets as parameters the sequence design and coding 

schemes and computes the required sequencing coverage for a 

desired confidence level. Specifically: 

Design parameters:  

• 𝐾 – Total number of unique k-mers in each position. 
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• 𝑡 – The required threshold on the number of observed 

occurrences of each of the k-mer 

• 𝑚 – sequence length 

• 𝑏 – the number of letters required to be successfully 

decoded in each sequence 

• 𝑙 – The number of sequences in the message 

• a – The number of sequences required to be successfully 

decoded 

• 𝜖 – Error probability of observing an invalid k-mer 

Input: 

• 𝛿 – acceptable failure rate 

Output: 

• 𝑅𝑎𝑙𝑙  – required sequencing coverage 

Description of tool run  

Fig. 7 presents a high-level description of the tool workflow. 

Given the design parameters 𝐾, 𝑡, 휀,𝑚, 𝑏, 𝑙, and 𝑎, the tool finds 

a threshold 𝜌 and a total number of reads 𝑅𝑎𝑙𝑙  for which 

conditions (a) and (b) hold for the input confidence level 1 − 𝛿 

(Part C). First, 𝜌 is found such the decoding of at least 𝑎 

sequences is ensured, 𝑃(𝑋𝜌 ≥ 𝑎) ≥ √1 − 𝛿 (Part C). This 

calculation requires the probability to decode a single sequence, 

𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝜌,𝑚, 𝑏) (Part B) which uses the reconstruction 

probability of a single combinatorial letter 𝜋(𝐾, 𝑡)(𝜌) (Part A). 

Once 𝜌 is determined, the algorithm searches for the required 

number of overall reads 𝑅𝑎𝑙𝑙  that ensures 1 − 𝑃(𝐸(𝜌)) ≥

√1 − 𝛿. This can be achieved using either using the bound from 

Sanov’s Theorem or using the empirical estimation of 𝑃(𝐸(𝜌)). 

When a value for 𝑅𝑎𝑙𝑙  that satisfies the condition is found then 

the tool run exits outputting 𝑅𝑎𝑙𝑙  to the user

 
Fig. 7. Complexity calculation tool workflow. (a) Overview of the tool’s run including internal dependencies, input parameters 

and outputs for each part. (b) Reconstruction probabilities of a single combinatorial position, 𝜋(𝐾, 𝑡)(𝜌), calculated using the 

coupon collector’s model (inset, like in Fig. 1) as a function of the threshold 𝜌. (c) Decoding probability for a full-length 

combinatorial sequence, 𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝜌,𝑚, 𝑏), calculated using the binomial model with the probabilities from (a) as input. Plotted as 

function of the threshold 𝜌. (d) Finding 𝜌. Full message decoding probability, 𝑃(𝑋𝜌 ≥ 𝑎), calculated using the binomial model for 

𝑋𝜌 obtained from (c). Plotted as function of the threshold 𝜌. The target confidence level √1 − 𝛿 is presented in the dotted red line. 

(e) Finding 𝑅𝑎𝑙𝑙  given the selected 𝜌. The probability of considering enough read distributions (across the 𝑙 sequences), 1 −

𝑃(𝐸(𝜌)), based on either theoretical bound or the empirical calculation. Plotted as a function of 𝑅𝑎𝑙𝑙 . The target confidence level 

√1 − 𝛿 is presented in the dotted red line. 

 

Example runs  

To demonstrate the tool's functionality, we used it to 

determine the required sequencing coverage for different sets 

of design parameters, similar to those used in [15], and for 

various confidence levels. These results are presented in Table 

1. Clearly, increasing the desired confidence level (smaller 

values for 𝛿) requires increasing the sequencing converge. 

Scaling up the system’s capacity by taking 𝑙 to be 10 times 

larger results in a proportional increase in the 𝑅𝑎𝑙𝑙 . Increasing 

the redundancy level (lower value for 𝑎) reduces the number of 

required reads to analyzed. We note that the different design 

parameters influence both the threshold 𝜌 and the sequencing 

  ,   

        , ,  

  

(a) (b)

(c)

(d)( )

           

  ,    ,  ,  ,   a    

           

        , ,  
 ,  ,  ,   a    

 ,   a    
  ,   

        , ,  

           

    

 ,  ,  ,   a    

 ,   a    

 ,  a    

 
 

, 
 

 
  
 
 
  

 
, 

, 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.10.574966doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.10.574966
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

coverage 𝑅𝑎𝑙𝑙 . While 𝑅𝑎𝑙𝑙  is affected by all the design 

parameters, 𝜌 is primarily affected by 𝑚 and 𝑏. These findings 

underscore the importance of carefully selecting system 

parameters to optimize the efficiency and reliability of DNA-

based data storage systems. Future work may explore the 

boundaries of these parameters to further enhance system 

performance. 

𝑚 𝑏 𝑙 𝑎 𝛿 𝜌 𝑅𝑎𝑙𝑙  

100 80 

100 

80 

0.1 60 8,868 

0.01 60 9,778 

0.001 60 10,267 

90 

0.1 61 9,017 

0.01 61 9,942 

0.001 61 10,440 

1000 

800 

0.1 59 96,111 

0.01 60 102,625 

0.001 60 107,757 

900 

0.1 60 97,738 

0.01 61 104,336 

0.001 61 109,553 

100 90 

100 

80 
0.1 67 9,903 

0.01 67 10,399 

0.001 68 11,080 

90 

0.1 68 10,049 

0.01 69 10,709 

0.001 69 11,245 

1000 

800 

0.1 67 103,944 

0.01 67 114,600 

0.001 67 120,330 

900 

0.1 68 105,494 

0.01 68 110,769 

0.001 68 122,124 

Table 1. Required sequencing coverage for different design 

parameters and confidence levels. 

IV. DISCUSSION 

Our study presents a novel model for analyzing coverage 

depth in DNA-based data storage, particularly focusing on 

combinatorial DNA encoding. We use the coupon collector's 

problem framework to model the reconstruction of 

combinatorial letters from sequencing data. We present a 

Markov Chain (MC) formulation for the calculation of the 

decoding probability and provide a tool for computing the 

probability. This solution is, however, limited in its scale due to 

the size of states space. Further work may be done to allow 

scaling up this model, either by developing more efficient 

computations or by developing approximation to the model. 

One of the key aspects of the combinatorial approach is the 

strategic selection of Ω to consist easily distinguishable k-mers. 

This, together with the use of a threshold 𝑡 > 1 in the 

reconstruction algorithm (See Algorithm 1) effectively mitigate 

k-mer mixup errors, as was demonstrated in [15]. We therefore 

chose to ignore k-mer mixup error in the model used for the 

reconstruction probability. 

We also present a unified model for analyzing coverage 

depth of a complete combinatorial storage system considering 

an inner-outer error correction model. We present theoretical 

bounds on the decoding probability using Sanov’s Theorem on 

the multinomial model for read distribution or using an 

empirical estimation.  

 We also provide a python tool for determining the 

sequencing depth required to achieve a desired confidence level 

for a system given design and encoding scheme. We 

demonstrate the tool’s results on a selection of design parameter 

sets.  

Future exploration in DNA data storage will significantly 

benefit from further understanding and optimizing coverage 

depth and from further improving efficient combinatorial 

coding. These elements are key to enhancing data storage 

capacity and reliability, promising exciting advancements in the 

field. 

APPENDIX  

A. Evolution of Probability in the Coupon Collector Problem 

Video 

The coupon collector parameters that are showed in the video 

are: 𝐾 = 5, 𝑡 = 2, 𝑅 = 30. 

A. Evolution of Probability in the Coupon Collector Problem 

Video K=5, t=2, R=30.gif 

B. Classical coupon collector problem 

 𝜋(𝐾,1)(𝑅) = ∑ (−1)𝑖𝐾
𝑖=0 (

𝐾
𝑖
) (1 − (

𝑖

𝐾
))

𝑅

 (36) 

𝜋(𝐾, 𝑡)(𝑅) is the probability of collecting all 𝑛 unique 

coupons within 𝑅 trials. 

We will show that 

 (𝐾, 1)(𝑅) = 𝑃(𝑇(𝐾, 1) ≤ 𝑅) = 

∑ (−1)𝑖𝐾
𝑖=0 (

𝐾
𝑖
) (1 − (

𝑘

𝐾
))

𝑅

  (37) 

for the coupon collector's problem, we can approach it using 

the principle of inclusion-exclusion. The formula calculates the 

probability of collecting all 𝑛 unique coupons within 𝑅 trials. 

Let 𝐴𝑖 be the event that the 𝑖-th coupon is not collected in 𝑅 

trials. 

 𝑃(𝐴𝑖) = (1 −
1

𝐾
)

𝑅

 (38) 

Let ⋃ 𝐴𝑖
𝐾
𝑖=1  be the probability of not collecting at least one 

coupon in 𝑅 trials. 

Note that we are interested in: 

  𝜋(𝐾, 1)(𝑅) = 1 − 𝑃(⋃ 𝐴𝑖
𝐾
𝑖=1 ) (39) 

 

𝑃(⋃ 𝐴𝑖
𝐾
𝑖=1 ) is calculated using the principle of inclusion-

exclusion. 

 𝑃(⋃ 𝐴𝑖
𝐾
𝑖=1 ) = ∑ (−1)𝑗−1 ((

𝐾
𝑗
)) (1 −

𝑗

𝐾
)

𝑅
𝐾
𝑗=1  (40) 

And finally,  

𝜋(𝐾, 1)(𝑅) = 1 − 𝑃(⋃ 𝐴𝑖
𝐾
𝑖=1 ) = 1 − ∑𝐾

𝑗=1

(−1)𝑗−1 ((
𝐾
𝑗
)) (1 −

𝑗

𝐾
)

𝑅

= ∑ (−1)𝑗 ((
𝐾
𝑗
)) (1 −

𝑗

𝐾
)

𝑅
𝐾
𝑗=0

 (41) 

This follows from: 

 (⋃ 𝐴𝑖
𝐾
𝑖=1 ) = ∑ (−1)𝑗−1 ∑ 𝑃(𝐴𝐼)𝐼⊆{1,…,𝐾}

|𝐼|=𝑗

𝐾
𝑗=1       (42) 
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Where 𝐴𝐼 = ⋂ 𝐴𝑖𝑖∈𝐼  

For 𝑗 = 1: 

 𝑃(𝐴𝐼) = 𝑃(𝐴𝑖) = (1 −
1

𝐾
)

𝑅

 (43) 

 

For 𝑗 = 2: 

 𝑃(𝐴𝐼) = 𝑃(𝐴𝑚 ∩ 𝐴𝑙) = (1 −
2

𝐾
)

𝑅

 (44) 

And generally 

 𝑃(𝐴𝐼) = (1 −
𝑗

𝐾
)

𝑅

 (45) 

 

And clearly: 

 |{𝐼;
𝐼 ⊆ {1, … , 𝐾}

|𝐼| = 𝑗
}| = (

𝐾
𝑗
) (46) 

C. Proof of the Lemma for the Sanov bound 

Lemma: 

 Let 𝑈 = (
1

𝑙
, … ,

1

𝑙
), Let 𝛼 <

1

𝑙
 (47) 

Let 𝑃∗ = (𝛼,
1−𝛼

𝑙−1
, … ,

1−𝛼

𝑙−1
), then 

∀𝑃 = (𝑝1, … , 𝑝𝑙), 𝑠. 𝑡. ∃𝑖; 𝑝𝑖 < 𝛼 

We have 

 𝐷(𝑃||𝑈) ≥ 𝐷(𝑃∗||𝑈) (48) 

 

Proof: 

 𝐷(𝑃||𝑈) = Σ𝑖=1
𝑙 𝑝𝑖 log(𝑙𝑝𝑖) (49) 

 𝐷(𝑃∗||𝑈) = 𝛼 log(𝛼𝑙) + (1 − 𝛼) log (
𝑙(1−𝛼)

𝑙−1
) (50) 

We solve: 

 min 𝐷(𝑃) = Σ𝑖=1
𝑙 𝑝𝑖 log(𝑙𝑝𝑖) (51) 

Subject to: 

1. Σ𝑖=1
𝑙 𝑝𝑖 = 1  (52) 

2. 𝑝1 ≤ 𝛼 (WLOG)  (53) 

Therefore, the Lagrangian is: 

ℒ(𝑝1, 𝑝2, … , 𝑝𝑙 , 𝜆, 𝜇) = 

Σ𝑖=1
𝑙 𝑝𝑖 log(𝑙𝑝𝑖) − 𝜆(Σ𝑖=1

𝑙 𝑝𝑖 − 1) − 𝜇(𝑝1 − 𝛼) (54) 

The KKT conditions are: 

1. Stationarity 
∂ℒ

∂pi
= 0: 

for 𝑖 > 1,
𝜕ℒ

𝜕𝑝𝑖
= 0 → 𝑝𝑖 =

𝑒𝜆−1

𝑙
 (55) 

for 𝑖 = 1,
𝜕ℒ

𝜕𝑝1
= 0 → 𝑝1 =

𝑒𝜆−1+𝜇

𝑙
 (56) 

2. Primal feasibility: 

Σ𝑖=1
𝑙 𝑝𝑖 = 1  (57) 

𝑝1 − 𝛼 < 0  (58) 
3. Dual feasibility: 

𝜇, 𝜆 ≥ 0  (59) 
4. Complementary slackness: 

𝜇(𝑝1 − 𝛼) = 0  (60) 
Expressing 𝜆 using the primal feasibility (57): 

𝑝1 + (1 − 𝑙)𝑝𝑖 = 1  (61) 
Substituting 𝑝𝑖  and 𝑝1 from (55)(56): 

𝜆 = 𝑙𝑜𝑔 (
𝑙

𝑒𝜇+𝑙−1
) + 1  (62) 

Expressing 𝑝1 with 𝜆 from (62): 

𝑝1 =
𝑒𝜇

𝑙+𝑒𝜇−1
  (63) 

Expressing 𝜇: 

1. If 𝑝1 ≠ 𝛼, then 𝜇 = 0. 

2. If 𝑝1 = 𝛼, then 𝜇 can be non zero. 

If 𝑝1 = 𝛼, we substitute 𝛼 for 𝑝1 in (63): 

 𝛼 = 𝑒𝜇

𝑙+𝑒𝜇−1
→ 𝜇 = log(

𝛼(𝑙−1)

1−𝛼
) (64) 

Using the original expressions for 𝑝𝑖  from (55), and substituting 

𝜇 we expressed in (64), we get: 

for 𝑖 > 1,   𝑝𝑖 =
1

𝑙+
𝛼(𝑙−1)

1−𝛼
−1

=
1−𝛼

𝑙−1
 (65) 

and recall that 𝑝1 = 𝛼  

If 𝑝1 ≠ 𝛼, we substitute 𝜇 = 0 for 𝑝1 in (56): 

𝑝1 =
1

𝑙
  (66) 

Using the original expressions for 𝑝𝑖  from (55), and substituting 

𝜇 = 0, we get: 

for 𝑖 > 1, 𝑝𝑖 =
𝑒𝜆−1

𝑙
=

𝑒
𝑙𝑜𝑔(

𝑙
𝑒𝜇+𝑙−1

)

𝑙
=

𝑙

𝑒𝜇+𝑙−1

𝑙
=

1

𝑙
 (67) 

And we get the trivial solution 𝑃∗ = 𝑈 which does not satisfy 

the condition 𝑝1 < 𝛼. 
Therefore, we proved that 𝐷(𝑃||𝑈) ≥ 𝐷(𝑃∗||𝑈). 
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