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Mammalian neocortex contains a highly diverse set of cell types. These types have been mapped 17 
systematically using a variety of molecular, electrophysiological and morphological approaches.  Each 18 
modality offers new perspectives on the variation of biological processes underlying cell type 19 
specialization. Cellular scale electron microscopy (EM) provides dense ultrastructural examination and 20 
an unbiased perspective into the subcellular organization of brain cells, including their synaptic 21 
connectivity and nanometer scale morphology. It also presents a clear challenge for analysis to identify 22 
cell-types in data that contains tens of thousands of neurons, most of which have incomplete 23 
reconstructions.  To address this challenge, we present the first systematic survey of the somatic region 24 
of all cells within a cubic millimeter of cortex using quantitative features obtained from EM. This analysis 25 
demonstrates a surprising sufficiency of the perisomatic region to identify cell-types, including types 26 
defined primarily based on their connectivity patterns. We then describe how this classification facilitates 27 
cell type specific connectivity characterization and locating cells with rare connectivity patterns in the 28 
dataset.  29 

Introduction   30 

Electron microscopy volumes provide a unique perspective on neural circuits by enabling dense tracing of 31 
individual axons, dendrites and synaptic connections.  Progress in recent years in data acquisition and dense 32 
segmentation have dramatically grown the capability to acquire large scale datasets.1–7 The size of these 33 
volumes allow for large numbers of cells to be analyzed and reconstructions of entire dendrites and local axons 34 
of mammalian neurons are now possible. However, it raises the challenge of accurately classifying tens or 35 
hundreds of thousands of cells.  Doing so is necessary for many basic investigations, from co-registering 36 
neurons, to studying specific cell populations (including neuronal and non-neuronal cells), or being able to 37 
characterize the cell type specificity of connectivity at scale. Existing methods for automated cell-typing based 38 
on morphology often necessitate nearly complete axonal or dendritic reconstructions.8–11 Such reconstructions 39 
currently require manual correction to the segmentation, often referred to as proofreading, which is 40 
prohibitively time consuming at scale. Other definitions of cell-types require an understanding of the 41 
connectivity profile of individual axons, and therefore also require axonal proofreading. For example, a 42 
chandelier cell or basket cell is defined most clearly by the way they distribute their synapses onto its target 43 
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neurons.12–15 44 
 45 
In practice, when analyzing a large scale electron microscopy volume, one wants to intelligently invest 46 
proofreading efforts into the cells and cell types that are of interest to one’s study. Just as experimental systems 47 
require genetic tools to provide inexpensive access to rare cell populations that would otherwise be difficult to 48 
study with non-selective techniques, large scale electron microscopy requires computational tools to provide 49 
inexpensive access to specific cell types to facilitate further analyses. While the automated segmentation is very 50 
impressive in many respects, a significant amount of proofreading is required to clean and complete the 51 
reconstructions of cells. This means classifying, or even finding, cells based on specific output connectivity 52 
profiles is difficult in the dataset. Moreover, after proofreading, a single neuron reconstruction contains 53 
thousands of accurate synaptic targets to identify (Figure 1). A method that could identify cell-types in the 54 
dataset in a way that is insensitive to changes in proofreading and truncation is therefore of high utility, both to 55 
automate the classification of targets of proofread neurons and to help guide proofreading to cells that are more 56 
likely to have connectivity patterns of interest. 57 
 58 
Here we describe a fast, scalable and computationally inexpensive approach which can address these problems. 59 
We first analyzed the somatic region of nearly 100,000 cells in the MICrONs dataset,3 a cellular compartment 60 
which contains morphological and connectivity based biological properties that, as we will present, differentiate 61 
cell-types. By analyzing only the somatic region of a cell, our analysis was generally robust to segmentation 62 
errors, unique per cell, and therefore insensitive to most proofreading changes. We included well-established 63 
features that are known to differentiate cells, such as somatic size and cortical depth, as well as novel features 64 
whose cell-type distinctions are less well recognized such as nuclear folding and soma synapse density. We 65 
further developed an unsupervised approach to describe the fine scale morphology of the perisomatic region of 66 
inhibitory cells, and demonstrate that it varies across major inhibitory subclasses. With these features in hand, 67 
we address the need for dataset wide cell-type labels outlined above, by training a hierarchical classifier to 68 
identify basic cell classes across the entire dataset. We demonstrate the utility of perisomatic features to 69 
facilitate the targeted search for rare cell types across a dataset. This method is already being used to reveal 70 
fundamental aspects of cell type specific wiring of mammalian cortex.3,16–18 More broadly, the efficacy of this 71 
approach provides a roadmap for how to develop a scalable platform for leveraging local features of cells to 72 
infer cell-type classifications across large scale image data.  73 
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Results  74 

 75 
Figure 1: Large scale automated segmentations necessitate proofreading insensitive cell classifications. a) Rendering 76 
of a small fraction of neurons from the MICrONS dataset (1.4mm x 800μm x 800μm) covering all layers of cortex and 77 
multiple visual areas, with 1,207 rendered and then cutaway to reveal the full morphology of 2 selected neurons on the 78 
right portion of the dataset. b) Example neuronal morphologies before and after proofreading, i) excitatory neuron and ii) 79 
inhibitory neuron. c) Fraction of input and output synapses removed (left), added (middle) and maintained (right) after 80 
proofreading for 1,347 neurons. d) Neurons near the volume borders will inherently have truncated morphologies. e) i) 81 
Histogram of the radial extent of dendrites from a sample of 1,347 proofread neurons16 (left) and the cumulative 82 
distribution of those cells (right). ii) Histogram of the minimum distance from a volume border for all high quality nuclear 83 
detections (n=94,010) (left) and the cumulative distribution of those distances (right). The portion of cells which are less 84 
than the median radial extent (33% of cells) is indicated with teal shading and teal lines.   85 

Segmentation Quality Varies Across Neuronal Arbors 86 

We analyzed the larger portion of the MICrONS dataset, a 1.4mm x 800μm x 800μm volumetric serial section 87 
EM dataset from mouse visual cortex,3 that contains a dense segmentation of cells along with a nucleus 88 
segmentation and large scale synapse detection (Fig. 1a).2,19 This dataset includes 94,010 high quality nuclear 89 
detections fully enclosed within the boundaries of the volume (see methods) and spans cortical Layer 1 through 90 
to the white matter. For most cells, high quality cellular segmentation requires proofreading to clean and 91 
complete the reconstructions, particularly axons (Fig. 1b-c). Most false mergers are of axonal fragments, 92 
leading most outputs of unproofread axons to be incorrect (Fig. 1c). When axonal proofreading is invested in 93 
an individual cell, it creates an elaborate object to analyze with thousands of postsynaptic targets. In order to 94 
analyze the cell-type specific connectivity pattern of that single reconstructed cell (examples in Fig. 5-6), each 95 
of those post-synaptic cells requires a cell type label. Dendrites on the other hand are quite precise, as 75-95% 96 
of the 1,000 to 15,000 synapses detected on reconstructed axons can be mapped to their soma in the MICrONs 97 
dataset with more than 99% accuracy (Fig. 1c). However, many of these targets have incomplete reconstructions 98 
themselves because even for mm3 scale volumes about a third the cells are close enough to the edge to have 99 
their dendrites be truncated (Fig. 1d-e). This level of truncation across cells, whether due to segmentation errors 100 
or proximity to the volume border, led us to investigate alternative methods for cell-typing that would be 101 
insensitive to a cell’s dendritic and axonal reconstruction status. 102 
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 103 
Figure 2: Perisomatic region of cortical cells. a) A measure of the distance from the soma for each edit that was made 104 
to the segmentation during proofreading of 1,347 cells. Average noted by the teal line, area chart notes the 10th and 90th 105 
percentile across all cells. Arrow notes 15 microns. b) Example cell demonstrating the extent of mesh information used to 106 
extract somatic, nuclear and synapse features. All cell meshes were restricted to 15 microns from the center of the nucleus. 107 
c) Representative example of nuclear infolding in a single electron microscopy image. The soma is highlighted in gray, 108 
black represents the nuclear envelope and orange are the areas classified as infolded based on the shrink wrap method (see 109 
Methods). d) Example cell demonstrating the extent of mesh information used to extract post-synaptic features (left) and 110 
three example post-synaptic shapes (PSS)(right). All synapses included in the PSS analyses were within 60 microns from 111 
the center of the nucleus. e) A 3D rendering of the somatic cutouts from all the cells from a 100 micron column that was 112 
densely reconstructed for which manual labels were given. Cells rendered are organized by their cell class and colored by 113 
their cell subclass according to the color scheme displayed. 114 

Perisomatic Features Vary Across Cortical Cell Classes and Subclasses 115 

The somatic region of the cell is an attractive location for such a method to focus on because it is a unique 116 
region per cell and its limited spatial extent means it is rarely truncated. The automated reconstruction of the 117 
somatic region is typically precise and complete, with few changes during proofreading, if any (Fig. 2a). 118 
Moreover, the soma also has unique biological processes occurring within it, which led us to investigate if 119 
information within the perisomatic region could enable cell classification. 120 
 121 
We began by systematically extracting geometric properties of the nucleus and soma within 15 microns from 122 
the center of the nucleus (Fig. 2b). For nuclei, this included volume, surface area, and depth from the pial 123 
surface. The 3d nuclear segmentations provide a detailed view of an interesting feature of neuronal nuclei, their 124 
tendency to form infoldings of their membranes, sometimes also referred to as invaginations. We quantified the 125 
fraction of nucleus membrane area that was within an infolding using a geometrical method that shrink wraps 126 
the nucleus and labels membrane at least 150 nm from that wrap as part of an infolding (Fig. 2c) (see methods). 127 
The nucleus of different cell types has been described as having different degrees of infolding,20,21 but a 128 
systematic quantification has not been done across cortical types. We also calculated similar geometric 129 
properties of the somatic region of cells (see methods): the total volume, surface area, the ratio of the nucleus 130 
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volume to the soma volume, and the distance from the centroid of the nucleus to the centroid of the soma. To 131 
capture information about neuronal connectivity, we also measured the number and surface density of synaptic 132 
inputs detected on the somatic region of the cell. Together these somatic and nucleus features represent a feature 133 
space that was extracted for most cells (75% of nuclei detections, see Methods). For a subset of neurons, we 134 
also analyzed the nano-scale structure of the postsynaptic compartments, what we are terming a “post synaptic 135 
shape” (PSS) (see methods) within 60µm of the nucleus center (Fig. 2d). 136 
 137 
In order to develop a dataset wide cell-type classifier, we used a densely reconstructed and manually annotated 138 
column of 1,619 cells across all layers of primary visual cortex (Fig. 2e).3,16 This column included excitatory 139 
neurons (1,115), inhibitory neurons (143), and non-neurons (361) with expert annotated labels for cellular 140 
classes and neuronal subclasses (Excitatory: Layer 2/3, Layer 4, Layer 5 inter-telencephalic (IT), near-141 
projecting (NP) and extra-telencephalic (ET), Layer 6 IT (IT) and corticothalamic (CT) and Inhibitory: 142 
Martinotti/non-Martinotti cell (MC), Basket cell (BC), Bi-polar cell (BPC) and neurogliaform cell (NGC), Non-143 
neurons: astrocyte, oligodendrocyte precursor cell (OPC), oligodendrocyte, microglia, pericyte) (Fig. 2e). The 144 
cells in this column served as the ground truth throughout the rest of our analyses (see Methods). Though, it 145 
should be noted that our approach easily incorporates alternative labels as cell-type definitions evolve. 146 
 147 

 148 
Figure 3: Variations of nucleus and somatic features show stark laminar and cell-class based distinctions. a) i) 149 
Nuclear volume μm3 ii) fraction of nuclear membrane infolded and iii) somatic synapse density μm2 plotted against 150 
distance from the pial surface in microns. Cortical layer boundaries are noted by the dashed lines. b) Somatic surface 151 
cutout area in μm2 (within 15µm from the nuclear center) plotted against nuclear volume μm3. c) 2D UMAP embedding 152 
of all neuronal and nonneuronal cells inferred from somatic features, nuclear features and cortical depth. d) Z-scored 153 
feature matrix representing all the somatic and nuclear features on the manually labeled cells from the cortical column. 154 
Cells are organized by their annotated subclass. Dashed marks along the x axis denote segments of 100 cells (1115 155 
excitatory neurons, 143 inhibitory neurons, 361 nonneurons). For all plots, manually labeled cell classes are represented 156 
in color (1,619) and unlabeled examples in light gray (n=92,391). e) 3D mesh renderings of representative examples of 157 
different neuronal and non-neuronal cell classes. In the top row, nuclei displayed with the folded surface area highlighted 158 
in orange. Corresponding cell bodies displayed in the bottom row with somatic synapses in orange. Sphere size corresponds 159 
to predicted synapse size from the synapse detection model.3  160 
 161 
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How effective are different features alone in separating cells at different levels of classification within the 162 
cortex? To answer this question we plotted various individual features, and trained classifiers to distinguish 163 
cells at different levels of granularity. Nucleus features alone were nearly sufficient to separate neurons from 164 
non-neuronal cells (cross-validated classification accuracy 90%, Extended Data Table 1). Non-neuronal cells 165 
had generally smaller nuclei compared to neuronal cells, though astrocytes overlap in this distribution with the 166 
smallest neurons. Each non-neuronal cell class exhibited a distinct range and consistency in their nucleus 167 
volume across the layers of cortex (Fig. 3a.i). A nucleus-only classifier was able to identify non-neuronal 168 
subclasses with a cross-validated accuracy of 94% (Extended Data Table 1). Nucleus features of excitatory 169 
neurons across the dataset recapitulated expected laminar organization, wherein the borders between layer 2/3 170 
(L23), layer 4 (L4), layer 5 (L5), and layer 6 (L6) are all demarcated by shifts in the distribution of nucleus 171 
volumes. (Fig. 3a.i). Inhibitory cells, on the other hand, had less striking laminar patterns, but with more overall 172 
variation. They had a wider variation of nucleus volumes, which overlapped with those of excitatory cells, with 173 
the exception of the larger layer 5 excitatory neurons (Extended Data Fig. 1).  174 
 175 
The fraction of membrane inside an infolding also varied widely and systematically depending on depth (Fig. 176 
3a.ii, 3e). Layer 2/3 neurons had largely smooth nuclear membranes. There was a clear gradient of infolding 177 
within layer 4. All layer 5 excitatory cells had high degrees of infolding, despite the notable diversity of cell 178 
types and sizes within that population, which was reflected in the increased variation of nucleus volume in that 179 
layer.22 Infolding dropped sharply again in layer 6 (Fig. 3a.ii). On the other hand, inhibitory nuclei had 15-30% 180 
of their membrane within an infolding, regardless of their position within cortex. This made them quite distinct 181 
from excitatory neurons in layer 1, 2/3, 4 and 6 of cortex, but highly similar to those in layer 5 (Fig. 3a.ii, 182 
Extended Data Fig. 1). Non-neuronal cells generally did not have infoldings, though microglia, OPCs and 183 
oligodendrocytes had less spherical and convex shapes (Fig. 3e). Pericytes had the smallest overall volumes 184 
with shapes dominated by their close apposition to the vascular walls (Fig. 3e). 185 
 186 
Two features alone, nucleus volume and soma cutout area, revealed a surprisingly striking separation between 187 
the major cell classes found in the brain (Fig. 3b). In particular, neurons were separated from all non-neuronal 188 
classes and microglia, oligodendrocytes, OPCs, astrocytes, and pericytes occupy largely distinct portions of this 189 
2-dimensional space. The large surface area measurement for astrocytes was explained by the high density of 190 
their processes near the soma. Moreover, the high prevalence of segmentation mergers of pericytes with cortical 191 
vasculature resulted in variability in their soma size features as represented by the range in soma cutout area 192 
(Fig. 3b). Including the somatic features along with the nucleus features, we trained a classifier to distinguish 193 
neurons, non-neurons and erroneously segmentations from each other with a cross validated accuracy of 95.6%, 194 
and a classifier on non-neuronal classes with 97.5% accuracy (Extended Data Table 1). 195 
 196 
Excitatory neurons showed a consistent synapse density that varied slightly in a linear fashion with depth 197 
through the cortical volume. There was a notable increase in variation in layer 5 that correlated with the three 198 
subclasses found there with ET cells having larger synapse densities, NP cells with low synapse densities and 199 
IT cells in between (Fig. 3a.iii., 3e). Inhibitory neurons exhibited less laminar variation in somatic size. 200 
Inhibitory cells had much larger density of somatic innervation than excitatory cells, but also have a much wider 201 
degree of variation, reflecting previously recorded diversity of inhibitory subclasses (Fig. 3a.iii, 3e).19,23–26 202 
Unsurprisingly, all nonneuronal cells have many fewer somatic synapse counts and thus are clearly distinct 203 
from neurons across laminar layers (Fig. 3a.iii). Classifier accuracy for excitatory subclasses was high (90% 204 
Extended Data Table 1), with most confusion surrounding IT cells located at laminar borders, general locations 205 
expert annotators can reasonably disagree. Notably, accuracy was high across the layer 5 cell types (99% for 206 
NP, 85% for IT, and 87% for ET). 207 
 208 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2022.07.20.499976doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?gTQG5a
https://www.zotero.org/google-docs/?wz760q
https://doi.org/10.1101/2022.07.20.499976
http://creativecommons.org/licenses/by-nc/4.0/


To gain a broader understanding of the perisomatic feature landscape, we computed a low-dimensional 209 
embedding based on both nucleus and somatic features (Fig. 3c). Consistent with the diversity observed in 210 
individual features, low dimensional embeddings of the feature space across all the cells in the dataset (gray, n 211 
= 92,391) reflected the variations observed from the manually labeled cortical column (cell class colors, n = 212 
1,619 ). Non-neuronal cell classes occupied distinct areas of the feature space whereas excitatory neurons were 213 
primarily organized by cortical layers (Extended Data Fig. 1). Inhibitory neurons were largely restricted to a 214 
distinct cluster within this space, with some cells overlapping with cortical layer 5 cells likely due to the increase 215 
in nuclear infolding in those excitatory neurons. Although there were broad average differences in the nucleus 216 
and somatic features between the major interneuron subclasses (Fig. 3d), our attempts at building classifiers 217 
based on those features produced some confusion (accuracy of 90%) (Extended Data Table 1).  218 

Proximal Dendrites of Inhibitory Neurons Vary in Distributions of Post-Synaptic 219 

Morphologies 220 

 221 
Figure 4: Post Synaptic Shape (PSS) Features. a) Inhibitory neurons elicit large variability in ultrastructural 222 
morphology. b) Procedure for building a PSS dictionary model. The set of shapes is used to train a PointNet autoencoder 223 
which learns a latent feature vector of a fixed size (1024). This autoencoder is then applied to all shapes in the dictionary 224 
to generate a set of latent feature vectors. K-means with K = 30 is applied to this to obtain a set of cluster centers for 225 
binning the shapes. c) For each cell, the PSS are binned by shape type and distance from the soma (4 bins) from 0 - 60 226 
microns with 15 micron bin sizes. The resulting histogram is a 2D histogram shown above with the shapes in the x direction 227 
and distances in the y direction. d) Examples of 60 micron cutouts of the 4 predicted inhibitory subclasses with their spatial 228 
histograms shown as heatmaps. The top row shows the shape of the cluster center of each of the 30 clusters. In each heat 229 
map, darker boxes indicate higher values. e) Z-scored feature matrix representing the distance binned PSS features on the 230 
manually labeled inhibitory cells from the cortical column (n=143). Cells are organized by their annotated subclass. Dashed 231 
marks along the x axis denote segments of 100 cells f) 2D UMAP of all the inhibitory neurons (n=6,805) inferred after 232 
concatenating nucleus, soma and PSS features, cortical column cells in color and dataset wide inhibitory neurons in gray.  233 
 234 
At the same time, it was clear that the ultrastructure of inhibitory neuron peri-somatic regions was diverse in 235 
ways that the soma and nucleus features did not capture. Upon inspection, proximal inhibitory branches varied 236 
in caliber and surface texture, from smooth and uniform to covered in small spine-like protrusions (Fig. 4a). In 237 
order to take advantage of this information, we developed a method to summarize these fine shape statistics of 238 
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the proximal arbor.27 Since automated spine detection is a challenging technical problem, we instead use 239 
automated synapse detections to identify areas on the dendrites where changes in fine structure (e.g. spines) 240 
may occur. This approach gave us the added advantage of combining information about synaptic innervation 241 
with the fine morphological structure of the postsynaptic neuron surrounding any given synapse.  242 
 243 
For this, we computationally segmented the compartment on the postsynaptic side of each synapse, which we 244 
refer to as the “Post-Synaptic Shape” (PSS).27 This shape, computed as a variable sized mesh, typically 245 
represented either a portion of the soma, the shaft of a dendrite, or a spiny protrusion, though it could also be 246 
onto an axon or axon-initial segment. In order to model the diversity of these shapes, we needed to be able to 247 
compare these shapes with each other computationally. We therefore trained a PointNet auto-encoder that 248 
allowed us to generate a fixed size representation of each shape (Fig. 4b) of dimensionality 1024.  249 
 250 
We also wanted to measure the density of the distribution of shapes present in a cell. Consequently, we collected 251 
236,000 PSSs from a variety of neurons and applied a 2D dimensional reduction in order to visualize their 252 
distribution. This resulted in a continuous latent space where PSS objects of similar morphological character 253 
were closer together (Extended Data Fig. 2). Since different cells can have different numbers of shapes 254 
(synapses), we now needed to develop a fixed size representation for a cell. For this, we used the similarity 255 
observation from the 2D latent space to develop a binning protocol for all the shapes. We used the full 1024 256 
dimension features from the 236,000 PSSs and computed 30 cluster centers with K-means (Fig. 4b). Binning a 257 
set of shapes extracted on a cell using these cluster centers would therefore give us a 30 dimensional histogram. 258 
(The K-means algorithm randomly assigns the order of discretizations. Therefore, we also manually re-ordered 259 
the bin centers for visualization purposes from shapes representing small spines, to those representing longer 260 
spines, to dendritic shafts of different shapes, and finally somatic compartments.) 261 
 262 
We also observed that the location of the PSS could give us extra cues to distinguish between cells. For example, 263 
while spiny protrusions were most often found on the dendrites of cells, some cells also had them on the soma 264 
(Fig. 4a, Extended Data Fig. 3). Therefore, we took a second step of summarizing a cell’s distribution of PSSs 265 
according to its shape and distance from the nucleus center. For distance binning we used four 15 micron bins 266 
between 0 to 60 microns from the soma (see Methods). Combining the shape and distance binning resulted in 267 
a 120 dimensional spatial shape histogram (Fig. 4c), that summarizes information about the spatial organization 268 
of dendritic shapes and synapse densities near the soma, similar to a multi-dimensional Sholl analysis.28 There 269 
were typically clear visual differences in the spatial histograms of different cell types (Fig. 4d-e, Extended Data 270 
Fig. 3). For example, a Martinotti cell had a greater density of synapses onto small protrusions on its proximal 271 
dendrites than the basket or bipolar cell, but similar numbers to the neurogliaform cell. However, the 272 
neurogliaform cell had very few synapses on its soma, whereas the Martinotti has many, both onto smaller 273 
protrusions and smoother compartments of its somatic compartment (Fig. 4d).  274 
 275 
We then extracted these features on the vast majority of putative inhibitory neurons in the dataset (as predicted 276 
by perisomatic features, see methods). Appending these features to the soma features from the previous section 277 
and inspecting the UMAP (Fig. 4f) suggested that several inhibitory types that were not easily distinguishable 278 
without the PSS features were now more separable (subclass accuracy of 94%, Extended Data Table 1). 279 
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 280 
Figure 5: Hierarchical predictions enable dataset wide circuit analyses. a) Diagram of the hierarchical model 281 
framework used to predict neuronal and nonneuronal subclasses using a set of 5 classifiers. Nucleus and soma features 282 
alone were used for models 1-4. PSS features were added to predict inhibitory subclasses in model 5 (Extended Data Table 283 
1). b) Confusion matrix of the cross validation performance for all cells within the manually labeled column. Note  that 284 
classifiers for excitatory neurons, inhibitory neurons, and non-neurons were trained separately (Models 2,4,5 in panel a). 285 
The confusion rate between these classes can be seen in Extended Data Fig. 4. c) 2D UMAP embedding inferred from 286 
depth, nucleus, and soma features of all cells in the dataset colored by the hierarchical model predictions. d) i) 2D rendering 287 
of a representative 23P cell morphology, dendrite in black and axon in gray. Points represent the somatic position of all 288 
downstream target cells colored by the hierarchical model subclass prediction. ii) synapse count iii) total synapse area 289 
and iv) number of synapses per connection displayed by the model predicted subclasses illustrating the local targeting 290 
profile of this individual cell. e) Similar information as in d but for an inhibitory bipolar cell that is predicted to 291 
preferentially target basket cells. This unique population of bipolar cells has been further characterized in Schneider-Mizell 292 
2023. 293 

Perisomatic Features Enable Dataset Wide Classification 294 

In order to support these qualitative observations with quantitative methods and enable dataset wide 295 
classification, we trained a collection of classification models (support vector machines or multilayer 296 
perceptrons) on different feature sets: 1 - nucleus only, 2 - nucleus and soma, 3 - nucleus, soma and PSS 297 
(Extended Data Table 1).  All classifiers were trained using the labels from the manually labeled cortical column 298 
(see methods for more detail). We developed a hierarchical model that used a cascade of classifiers to sort cells 299 
at increasingly finer distinctions and integrated the steps into a comprehensive model where individual cells are 300 
sequentially sorted down the hierarchical tree (Fig. 5a). We found an optimal combination of classifiers which 301 
predicted cell types labeled within the column with an overall accuracy of 91% (Fig. 5b, Extended Data Table 302 
1), and importantly providing classifications for 88% of the cellular objects in the dataset (94,010/106,761 303 
cells). To further validate this classification, we randomly sampled 100 cells from each subclass predicted by 304 
the hierarchical model and had human anatomical experts assess the labels (Extended Data Fig. 4). For many 305 
classes, the average classification in this validation was consistent with the accuracy found within the column. 306 
The lower validation accuracy in the inhibitory subclasses as well as 5P-ET and 5P-NP was likely related to the 307 
sparse sample sizes in the training data from the column. The largest single confusion between types here was 308 
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between adjacent layers of similar pyramidal classes, where strict laminar boundaries separating manual classes 309 
is less confident. This demonstrates that these features are indeed useful for separating cell-types based on local 310 
somatic reconstructions of cortical cells, consistent with the structure of the low dimensional embedding (Fig. 311 
5c). Furthermore, predictions of cell density and overall cell counts per subclass across the dataset (Extended 312 
Data Fig. 5) corroborate the sampling rates we would expect from previous studies.29–32  Importantly, this 313 
approach can easily be adapted to accommodate new cell-type labels derived from more detailed or expansive 314 
studies of the dataset, creating a scalable platform for extending labels derived on smaller numbers of cells to 315 
dataset wide coverage. For example, we have successfully trained models based on the unsupervised clustering 316 
labels of morphological and connectivity properties of the same column cells as described in Schneider-Mizell 317 
2023 (Extended Data Fig. 6).  318 
 319 
Dataset wide classifications enable a range of subsequent analyses. The typical axon of a well-proofread neuron 320 
has hundreds or thousands of postsynaptic targets.3 To quantify the cell-type specific connectivity of such cells, 321 
each of those targets should have a cell-type label. Doing so manually is a practical bottleneck in analyzing 322 
these data. With these predictions, scientists can easily analyze the most numerous postsynaptic targets, the 323 
weight of these synapses with respect to predicted synapse area, and the number of synapses between proofread 324 
cells and cell subclasses across thousands of synapses (Fig. 5d-e). For example, a given layer 2/3 pyramidal 325 
neuron made the most synapses onto other 23P neurons (Fig. 5d). However, when we looked at the total 326 
predicted synapse size, 5P-ET neurons receive some of the largest average synapses. On the other hand, some 327 
examples were more surprising than this 23P cell. For example, bipolar cells (which largely overlap with a VIP 328 
subclass) have been described as the only disinhibitory specialist interneuron class, and are described as making 329 
synapses primarily onto SST cells (which are thought to overlap largely with the Martinotti Cell definition used 330 
here).33–36 Although the dataset contains cells consistent with that view, a companion study on extensively 331 
proofread cells identified a collection of disinhibitory multipolar neurons which exhibit strong targeting 332 
preferences for basket cells.16 This unique connectivity profile is observed in the dataset wide classifications as 333 
well (Fig. 5e). 334 
 335 

 336 
Figure 6: Perisomatic feature space enables more efficient search for unique cells. a) 2D UMAP embedding 337 
highlighting an example chandelier cell (orange dot) and an example 5P-NP targeting cell (blue dot) and their respective 338 
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20 nearest neighbors (+) in the perisomatic feature space. Note that UMAP non-linearly distorts feature space, so not all 339 
the nearest neighbors appear closest in the plot. b) Example proofread chandelier cell in layer 2/3 (dendrite in black, axon 340 
in gray). Output synapses marked along the axon and colored by the subclass prediction. Notice the characteristic vertical 341 
chains of synapses onto 23P cells. c) Chandelier cells are characterized by their preference to synapse onto the axon initial 342 
segment (AIS) of target cells.13,14 This can be quantified by measuring the angle between the target soma and the synapse 343 
(ɸ) and the distance from the soma (r). d) Heatmap illustrating the angle and distance distribution of the chandelier cell 344 
shown in B as well as two non Chandelier inhibitory examples. Note the spatial specificity of the chandelier cell targeting 345 
just below the target soma as compared to the other examples. Color notes the normalized synapse density for each cell. 346 
Synapses that had an angle >160° were considered onto the AIS of the target cell (shown by the dotted line). e) Angular 347 
distribution histogram of the chandelier cell (top row), the 20 nearest neighbors in the perisomatic feature space, and 20 348 
random inhibitory cells. f) Example cell that preferentially targets the rare 5P-NP subclass (dendrite in black, axon in gray), 349 
points represent target cell soma locations colored by predicted subclass. Output synapse counts reflect strong preference 350 
to 5P-NP cells. g) Fraction of output connectivity onto neuronal subclasses of the 5P-NP targeting cell (top row), the 20 351 
nearest neighbors in the perisomatic feature space, and 20 random inhibitory cells. 352 

Perisomatic Features Enable Efficient Search For Rare Cell Types  353 

Studying the connectivity patterns of cell types requires identifying many example cells of a particular 354 
connectivity profile. With more than 70,000 neurons densely sampled across a millimeter scale there should be 355 
many examples of any individual cell type. However, locating those examples can be challenging for rare 356 
subclasses because of their infrequent appearance and the need for axonal proofreading in order to use 357 
connectivity to suggest their subclass.    358 
 359 
Given that the major inhibitory neuron subclasses differ in their connectivity profiles, we already had some 360 
evidence that connectivity profile correlates with the perisomatic features we extracted (Fig. 4e), but we 361 
conjectured they could be useful for finding rarer types with highly specific connectivity patterns for which we 362 
did not yet have labels.  One particularly interesting and well known rare cell type in mouse visual cortex is the 363 
chandelier cell, which exclusively synapses onto the axon initial segment (AIS) of excitatory neurons.13–15,23,37,38 364 
We used a single proofread chandelier cell to see if we could facilitate finding other cells like it using the 365 
perisomatic features. We picked the top 20 nearest neighbors of the perisomatic feature space (Fig. 6a) and 366 
assessed what fraction of them were chandelier cells based on their connectivity profiles after cleaning them of 367 
false mergers and modest axonal extension (see methods). The chandelier cell’s connectivity profile is easy to 368 
recognize, both from its morphology where it makes vertical strings of synapses (Fig. 6b), and the unique 369 
targeting of synapses onto axon initial segment (AIS) of excitatory neurons.  Because the AIS is usually located 370 
just below the soma of excitatory cells in the cortex, the angular distribution of synapses relative to somatic 371 
targets can be used as a spatial proxy for AIS targeting (Fig. 6c-d).  A histogram of the angular distribution of 372 
synapses relative to the target soma (Fig. 6d-e), demonstrates that 16 of 20 the nearest neighbor cells have 373 
connectivities consistent with chandelier cells.  In contrast, none of the 20 random interneurons we sampled 374 
from the inhibitory neurons in the dataset, or any of the 143 interneurons systematically sampled in the column 375 
were chandelier cells, reflecting a highly significant enrichment (p<0.00001 by Fisher exact test). Based on this 376 
success, we also tried to find more examples of cells with a less well known connectivity profile. We selected 377 
a classically undescribed but proofread interneuron which made the majority of its synapses in layer 5 onto 5P-378 
NP neurons, despite those neurons being rare and with few input synapses (Fig. 6f).39 Picking the top 20 nearest 379 
neighbors of this cell, we found 13 cells which made at least 30% of their synaptic targets onto NP cells (based 380 
on our dataset wide classifier). This stands in contrast to the 0 of 20 random interneurons we sampled, or 2 of 381 
other cells of the other 163 systematically sampled in the column, again a highly significant enrichment 382 
(p<0.00001) (Fig. 6g). This application demonstrates how these features can be used to target rare cell types in 383 
the cortex.     384 
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Discussion 385 

Our analysis of the perisomatic region of cells in the mouse visual cortex demonstrates that a surprising amount 386 
of cell-type information can be extracted from the somatic regions of brain cells. Our approach has already been 387 
used to characterize the connectivity of distinct types of layer 5 Martinotti cells,17 the inter-related connectivity 388 
motifs of layer 5 thick tufted cells (5P-ET) and the surrounding inhibitory sub-network,18 and to confirm the 389 
connectivity profiles of interneurons to cells outside the column.16  Future work in this dataset and others will 390 
likely leverage iterations of dataset wide cell classifiers to discover novel aspects of cell-type specific wiring of 391 
cortical circuits along with broader organizational principles of wiring. Other cell classification approaches 392 
have been applied to this dataset, including unsupervised clustering of morphological features, and supervised 393 
approaches based on morphological graphs.40,41 All these approaches have focused on smaller subsets of the 394 
data that contained higher quality or complete reconstructions, reducing their effective coverage in the datasets 395 
to less than half the cells. In contrast, by leveraging the perisomatic features our hierarchical model covers 396 
almost all cells and the majority of detected synapses in the dataset with a postsynaptic cell type. Furthermore, 397 
extracting these features from the 3D segmentation alone is both fast and computationally inexpensive, making 398 
this framework scalable and iterable across datasets.  399 
  400 
The breadth of cells in large scale electron microscopy data makes it an attractive modality to study cell-types. 401 
Our approach provides an example of how computational methods are an important practical tool for efficiently 402 
directing study to small subsets of cells within large datasets. This is particularly clear within highly diverse 403 
and rare inhibitory cells (as shown in Fig. 5-6), but similar questions arise among glial sub-types. One such 404 
example is the difference between OPCs and premyelinating oligodendrocyte cells which are thought to be 405 
differentiated OPCs that are in transitional states to oligodendrocytes.42 The structural diversity of cells 406 
predicted as OPCs within the low dimensional embedding space (Fig. 5c) suggests that searching within the 407 
perisomatic feature space, as illustrated in Fig. 6, could be used to facilitate scientific discovery across brain 408 
cell types. More broadly, some of the features described here can be measured with other techniques, such as 409 
x-ray tomography or light microscopy, and can be used to distinguish cells into different subclasses in a manner 410 
similar to what has been presented here.  411 
 412 
Many studies of anatomical diversity of cortical cells have focused on the diversity of dendritic and somatic 413 
morphologies, axonal projection patterns, and synaptic connectivity patterns.24,43–45 Fewer studies have focused 414 
on differences in the of somas,46–48 particularly quantitative studies of the 3d ultrastructure of the soma with 415 
large single cell sample sizes across all layers of cortex. Laminar differences in cell body size distributions are 416 
well known, and serve as the basis for cyto-architectural definitions of layers, which clearly correlates with 417 
shifts in cell-type distributions, particularly excitatory ones.49 For example, pyramidal Layer 5 ET projection 418 
neurons are characterized by their large somas. This likely reflects differing demands for gene expression and 419 
metabolic load.50 Also, 5P-NP neurons have been recognized before as having smaller rounder somas on 420 
average.39,51 Further, anecdotal descriptions of variations in nucleus in-folding have been reported, though only 421 
in two dimensions within a narrower range of types (https://pubmed.ncbi.nlm.nih.gov/3988983/). Intriguingly, 422 
differences in nucleus infoldings have been reported to be modulated by activity in some brain areas.52 423 
 424 
One of the more striking features of our results is both the amount and distribution of perisomatic innervation 425 
varies across cell types. Although this has not been measured directly across a large number of cells and cell-426 
types in cortex before, our results are consistent with other studies.19,23 In particular, in excitatory cells, somatic 427 
input has been noted to be dominated by inhibitory sources.53 Although this is less well characterized for 428 
inhibitory subtypes, some have larger fractions of excitatory input.54,55 In addition, different types of inhibitory 429 
axons show preference or avoidance of the somatic compartment.53,54  Because the total somatic synaptic density 430 
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reflects an aggregate across all pre-synaptic types, such cell-type specific output patterns54–56 are likely related 431 
to and consistent with the variation we have observed across types in summed inputs.  432 
 433 
There are a few limitations to this work that should be kept in mind when interpreting its results.  First, our 434 
most detailed analysis has only been completed on one dataset which comes from a single animal. That said, 435 
some patterns are consistent with what was found in smaller published dataset from layer 2/3,19,23,57 and the 436 
basic patterns found in these features across mouse visual cortex are reproduced in a second smaller dataset 437 
(Extended Data Fig. 7). Our approach is not the final word in cell-type predictions in this dataset, or large scale 438 
EM in general, and there are a number of dimensions of potential improvement. First, cell-type labels will 439 
continue to evolve as more cells are classified by either human experts or quantitative methods with increasing 440 
specificity and sophistication. In particular, our validation results are consistent with there being a larger 441 
diversity of inhibitory cells than exist within the column and so expanding the number of classes and labels 442 
there could improve performance. However, we think the dataset wide framework we have presented here will 443 
continue to be valuable, as we still expect any new labels to only be available for a small subset of cells. It 444 
should be noted that while the soma and nucleus features are very fast, inexpensive, and scalable, the PSS 445 
features require significantly more computational resources. As such, we directed PSS feature analysis to the 446 
population of cells, inhibitory cells, that we believed warranted further differentiability. Second, this model 447 
does not make use of all the information present at the soma of neurons. For example, the detailed ultrastructure 448 
visible in the imagery is not fully utilized.  Other methods have utilized the underlying imagery of cells to 449 
distinguish cell types, either through detection of more subcellular organelles like cilia or by using imagery 450 
more directly to define abstract embeddings.56,58,59 Such methods could augment the perisomatic features we 451 
have described here. 452 

 453 
Beyond the somatic region, there are a large variety of studies have shown how local features visible in the 454 
ultrastructure contain information that encode information about cell types, including neurotransmitters of fly 455 
synapses, identity of neuromodulatory axons, or cutouts of local dendrite and axons.56,60 These results all 456 
support the view that large scale quantitative measurements of ultrastructure provides a rich basis for identifying 457 
cellular properties of cells.  Focusing on the somatic region is particularly useful because volumes of all sizes 458 
encounter volume boundaries or limits in reconstruction accuracy and somas are singular locations of cells. We 459 
believe that the efficacy of this approach provides a roadmap for how to develop a scalable platform for 460 
leveraging local features of cells to infer cell-type classifications. Beyond neuroscience, this approach illustrates 461 
how large scale ultrastructural imaging of cells can facilitate study of highly diverse and rare cell populations 462 
if paired with appropriate quantitative analysis.  463 

Methods 464 

MICrONS Dataset 465 

This dataset consists of a 1.4mm x 800µm x 800µm volumetric serial section EM dataset from mouse visual 466 
cortex of a male P87 mouse. The dataset covers all layers of cortex and spanning primary visual cortex and two 467 
higher visual areas. The dataset has been described in detail elsewhere.3 Briefly, two photon imaging was 468 
performed on the mouse, which was subsequently prepared for electron microscopy. The specimen was then 469 
sectioned and imaged using transmission electron microscopy.1 The images were then stitched, aligned, and 470 
processed through a deep learning segmentation algorithm, followed by manual proofreading.1–3,16  471 
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Cortical Column 472 

In this manuscript we leveraged proofreading and labels that were done as part of a separate study of a 100µm 473 
columnar region of primary visual cortex within the larger dataset.16 For clarity to the reader and completeness 474 
we are repeating some aspects of the methods that define that column here.   475 
 476 
Column Selection: The column borders were found by manually identifying a region in the primary visual 477 
cortex that was as far as possible from both the volume boundaries and the boundaries with higher order visual 478 
areas. A 100 x 100 µm box was placed on layer 2/3 and was extended along the y axis of the dataset. While 479 
analyzing the data, it was observed that deep layer neurons had apical dendrites that were not oriented along 480 
the most direct pia-to-white-matter direction, and thus adapted the definition of the column to accommodate 481 
these curved neuronal streamlines. Using a collection of layer 5 ET cells, points were placed along the apical 482 
dendrite to the cell body and then along the primary descending axon towards white matter. The slant angle 483 
was computed as two piecewise linear segments, one along the cortical depth to lower layer 5 where little slant 484 
was observed, and one along the direction defined by the vector averaged direction of the labeled axons.  485 
 486 
Using these boundaries and nucleus centroids,3 all cells were identified inside the columnar volume. Coarse 487 
cell classes (excitatory, inhibitory, and non-neuronal) were assigned based on brief manual examination and 488 
rechecked by subsequent proofreading and confusion with early versions of the classifiers described here.  To 489 
facilitate concurrent analysis and proofreading, all false merges were split connecting any column neurons to 490 
other cells (as defined by detected nuclei) before continuing with other work. 491 

 492 
Proofreading: Proofreading was performed primarily by five expert neuroanatomists using the 493 
PyChunkedGraph57,61 infrastructure and a modified version of Neuroglancer.62 Proofreading was aided by on-494 
demand highlighting of branch points and tips on user-defined regions of a neuron based on rapid 495 
skeletonization (https://github.com/AllenInstitute/Guidebook). This approach quickly directed proofreader 496 
attention to potential false merges and locations for extension, as well as allowed a clear record of regions of 497 
an arbor that had been evaluated. 498 
 499 
For dendrites, all branch points were checked for correctness and all tips to see if they could be extended. 500 
False merges of simple axon fragments onto dendrites were often not corrected in the raw data, since they could 501 
be computationally filtered for analysis after skeletonization (see below). Detached spine heads were not 502 
comprehensively proofread, and previous estimates place the rate of detachment at approximately 10-15%.  503 
 504 
For inhibitory axons, axons were "cleaned" of false merges by looking at all branch points. Axonal tips were 505 
extended until either their biological completion or data ambiguities, particularly emphasizing all thick branches 506 
or tips that were well-suited to project to new laminar regions. For axons with many thousand synaptic outputs, 507 
some but not all tips were followed to completion once major branches were cleaned and established. For 508 
smaller neurons, particularly those with bipolar or multipolar morphology, most tips were extended to the point 509 
of completion or ambiguity. Axon proofreading time differed significantly by cell type not only because of 510 
differential total axon length, but axon thickness differences that resulted in differential quality of auto 511 
segmentations, with thicker axons being of higher initial quality. Typically, inhibitory axon cleaning and 512 
extension took 3-10 hours per neuron.Expert neuroanatomists further labeled excitatory and inhibitory neurons 513 
into subclasses. Layer definitions were based on considerations of both cell body density (in analogy with 514 
nuclear staining) supplemented by identifying kinks in the depth distribution of nucleus size near expected layer 515 
boundaries. 516 
 517 
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Cell Labeling: For excitatory neurons, the categories used were: Layer 2/3-IT, Layer 4-IT, Layer 5-IT, Layer 518 
5-ET, Layer 5-NP, Layer 6-IT, and Layer 6-CT cells. Layer 2/3 and upper Layer 4 cells were defined on the 519 
basis of dendritic morphology and cell body depth. Layer 5 cells were similarly defined by cell body depth, 520 
with projection subclasses distinguished by dendritic morphology following Gouwens, Sorenson, and Berg9 521 
and classical descriptions of thick (ET) and thin-tufted (IT) cells. Layer 5 ET cells had thick apical dendrites, 522 
large cell bodies, numerous spines, a pronounced apical tuft, and deeper ET cells had many oblique dendrites. 523 
Layer 5 IT cells had more slender apical dendrites and smaller tufts, fewer spines, and fewer dendritic branches 524 
overall. Layer 5 NP cells corresponded to the "Spiny 10" subclass described in Gouwens, Sorenson, and Berg; 525 
these cells had few basal dendritic branches, each very long and with few spines or intermediate branch points. 526 
Layer 6 neurons were defined by cell body depth, but only some cells were able to be labeled as IT or CT by 527 
human experts. Layer 6 pyramidal cells with stellate dendritic morphology, inverted apical dendrites, or wide 528 
dendritic arbors were classified as IT cells. Layer 6 pyramidal cells with small and narrow basal dendrites, an 529 
apical dendrite ascending to Layer 4 or Layer 1, and a myelinated primary axon projecting into white matter 530 
were labeled as CT cells.  531 
 532 
Basket cells were recognized as cells which made more than 20% of their synaptic inputs onto the soma or 533 
proximal dendrites of cells. Neurogliaform cells were recognized by having a low density of output synapses, 534 
and boutons that had often had synaptic vesicles but no post-synaptic structures. Bipolar cells were labeled by 535 
having only 2 or 3 primary dendrites, and primarily making synapses with other inhibitory neurons.  Note, the 536 
Martinotti/non-Martinotti subclass label was given to cells that have previously been described in the literature 537 
to primarily target the distal dendrites of excitatory neurons without exhibiting hallmark features of bi-polar or 538 
neurogliaform cells. 539 
 540 
Due to high levels of proofreading in the column, there were very few errors thus the training set was augmented 541 
with manually labeled errors from the entire dataset. 542 

Proofreading and Truncation Analysis 543 

For every proofread cell in the cortical column (described above) we compared the cellular volume of the initial 544 
reconstruction from the automated segmentation to the cleaned and completed reconstruction. To measure the 545 
precision connectivity for each cell we noted the number of synapses that got removed with proofreading, the 546 
number of synapses that were added, and the number of synapses that were maintained with each cell before 547 
and after proofreading.  548 

To estimate the likelihood of truncation, we measured the distribution of dendritic extents from the proofread 549 
column cells. For each cell we measured the radial distance of each input synapse from the cell’s soma. The 550 
radial extent of a given cell was considered the distance of the 97th percentile input synapse. From this 551 
distribution we used the median value of 121 microns as a threshold for dendritic truncation, although closer to 552 
250 microns would be required to guarantee no truncation for any cell. For the rest of the cells in the dataset, 553 
we measured the distance of the soma from the volume borders in x and z. The overlap in these distributions 554 
relates to the probability of truncation, leading to our conclusion that roughly one third of the cells have some 555 
degree of dendritic truncation. 556 

Generating Nucleus and Soma Features 557 

We analyzed nuclei using the results of a deep neural network segmentation,3 extracted the mesh using 558 
marching cubes and obtained the largest component of the detected mesh. Nuclear features were then extracted 559 
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on the remaining meshes. These features included, nucleus volume, nucleus area, the area to volume ratio, 560 
nucleus surface area within an infolding, the fraction of the total surface area within an infolding, and cortical 561 
depth (measured as the distance from the pial surface). Nucleus fold features were extracted by creating a shrink 562 
wrapped47 mesh for each nucleus mesh. We then calculated the distance of each vertex on the nucleus mesh 563 
from the shrink-wrapped mesh. After visual inspection of cells across all the reported subclasses, any vertex 564 
further than 150 nm was considered within an infolding.  565 
 566 
For each nucleus detection the somatic compartment was identified as the ID in the segmentation which 567 
surrounded >80% of the nucleus. Somatic segmentations (downloaded at 64x64x40 nm resolution) went 568 
through a heuristic cleaning procedure to remove missing slices of data and incorrectly merged fragments. Since 569 
each soma was matched to its corresponding nucleus, 15 microns surrounding the nucleus' center of mass was 570 
cut out from the dense segmentation and converted into a binary mask. 15 microns was chosen due to the high 571 
quality of the segmentation (Fig. 2a) and it was large enough to encompass the entire soma of all cells from the 572 
smallest glial cell to the largest 5P-ET neuron. Binary dilation by 5 voxels in 3d was performed, followed by 573 
filling of all holes, and then binary erosion of 3 voxels. The resulting binary mask was meshed using marching 574 
cubes and connected component analysis was run on the result. 5 voxels was deemed an appropriate dilation to 575 
remove merged fragments without creating additional holes in the mesh. The largest connected component 576 
mesh was retained, and any disconnected components were dropped. Somatic features were extracted for all 577 
nuclear detections that were not cut off by the volume boundary (see Filtering procedure). These somatic 578 
features included soma area, soma volume, the area to volume ratio, the number of synapses on the somatic 579 
cutout, and the soma synapse density. Using both the somatic and nucleus meshes, we calculated the ratio 580 
between the nucleus volume and soma volume and the offset between the two, measured as the euclidean 581 
distance between nuclear center of mass and soma center of mass.  582 
 583 
Filtering procedure: There were 133,580 nuclear detections in the dataset and the filtering procedure consisted 584 
of three steps. Firstly, any detected objects less than 25µm3 were filtered out as errors as these largely consisted 585 
of small fragments of nucleoli. Second, after identifying the segment IDs within a 15μm bounding box around 586 
each nucleus, if over 20% of these IDs corresponded to error ID 0, they were filtered out. The majority of these 587 
error cases were cells close to the volume border or areas in the volume with higher segmentation errors such 588 
as those near blood vessels. Thirdly, cells that were predicted as errors based on the object classifier of the 589 
hierarchical model described below (Fig. 5a) were also removed from analysis. This resulted in a final set of 590 
94,010 cells, neuronal and nonneuronal. 591 
 592 
Feature normalization: Due to differences in section thickness during sample preparation, we noticed abrupt 593 
shifts in nucleus and soma size features along the sectioning axis (Z plane). This presumably is due to changes 594 
in section thickness across the dataset. To account for these abrupt and systematic shifts we binned the entire 595 
dataset by the longest length scale for which there didn’t appear to be systematic shifts in the distribution in the 596 
z plane (800 nm) and normalized each feature value by the average within each Z bin.  597 
 598 
For 2D UMAP embeddings and training of the classifiers it was important to place all features in approximately 599 
similar scales. For this reason, we independently Z-scored each feature across all cells and used that as the input 600 
for classifier training as well as the UMAP embeddings in Fig. 3-6.  601 

Generating PSS Features 602 

Around each synapse, we extracted a 3500 nm region to obtain the synapse region mesh. We experimented with 603 
region cutouts between 1000 to 5000 nm, however smaller cutouts led to ambiguities in the main shaft 604 
identification and thereby produced errors in the subsequent skeletonization. At 3500 nm the skeletons were 605 
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more stable and segmenting as expected. This mesh was then segmented using the CGAL surface segmentation 606 
algorithm63 which splits regions based on differences in thickness. We adapted our previously developed 607 
method27 to identify the PSS region by using a local skeleton calculated from the synapse region mesh, rather 608 
than a precomputed whole cell mesh. This allowed us to adapt this method for cells in the dataset without the 609 
need for proofreading.  610 
 611 
Given a cell for which all PSS have been extracted within a 60 micron radius from the nucleus center, the 612 
objective was to build a descriptor that encapsulates the various properties of the PSS. Initially we extracted 613 
PSS from within 120 micron radius. However, upon inspection of the normalized histograms and the 2D UMAP 614 
embedding space, the additional radial bins did not increase our differentiability and did increase truncation 615 
effects near the dataset thus we reduced the radius to 60 microns.  In particular, we aim to capture two of these 616 
properties: the type of shape of the PSS and the distance of the PSS from the soma.  For the shape, a dictionary 617 
of all shape types is built using the dictionary dataset from.27 These shapes were rotationally normalized and 618 
used to train a pointnet autoencoder64 to learn a latent representation of size 1024. The high dimensional latent 619 
space spanning all these shapes is a continuous space (Extended Data Fig. 3) which was used to generate a Bag 620 
of Words model30 for the shapes. To ensure we were sampling the entire embedding space, we performed K-621 
means clustering with K=30 to estimate cluster centers. The top row of Fig. 4c shows the shape in the dictionary 622 
that is closest to each of these cluster centers. For distance binning, we split the 60 micron radius around the 623 
nucleus center  into four 15 micron radial bins (Fig. 4c). All PSS were then binned according to their shape and 624 
distance properties to generate a histogram of counts. This histogram was Z-scored and then added to the rest 625 
of the features as input to classifiers and the UMAP embedding Fig. 4 and Fig. 6. 626 

Hierarchical Model Training and Validation 627 

Hierarchical Framework: We defined an object as the segmentation associated with a predicted nucleus3 from 628 
which nucleus, soma, and PSS features could be extracted. A hierarchical framework was designed to predict 629 
the cell type of any such object (Fig. 5c). To begin, there were 106,761 nuclear segmentations that passed the 630 
first two filters described above (see filtering procedure). The first level in the hierarchy predicted whether an 631 
object was a neuron (72,158), nonneuron (21,856), or an error (12,751). All objects predicted as errors were 632 
excluded from all subsequent analyses except for the hierarchical model evaluation. Nonneuronal cells were 633 
then classified as one of the following: astrocyte (7,850), microglia (2,638), oligodendrocyte (7,020), 634 
oligodendrocyte precursor cells (OPC) (1,703), or pericyte (2,645). For neurons, cells were predicted as either 635 
excitatory (64,195) or inhibitory (7,963) followed by a separate subclass classifier for each class type. 636 
Excitatory subclasses: Layer 2/3 pyramidal (19,735), Layer 4 pyramidal (14,777), Layer 5 IT (7,949), Layer 5 637 
ET (2,215), Layer 5 near projecting (NP) pyramidal (970), Layer 6 IT (11,734), Layer 6 CT pyramidal (6,815). 638 
After extracting PSS features from all predicted inhibitory neurons, a subset of neurons (n=1,158) that were 639 
actually excitatory clearly separated from the rest of the cells in the perisomatic feature space (with PSS 640 
features). This was expected due to known differences in proximal dendrite morphology between inhibitory 641 
and excitatory neurons. These neurons were then passed through the excitatory neuron classifier and labeled as 642 
excitatory for all subsequent analyses with a final set of 6,805 inhibitory cells with the following subclass 643 
counts: Basket cells (3,239), Bipolar cells (997), Martinotti/non-Martinotti cells (1,992), and Neurogliaform 644 
cells (571). 645 
 646 
Training: Soma and nucleus features were extracted from the 3D mesh of all objects and PSS features were 647 
extracted for all neurons predicted as inhibitory. For each level of the hierarchy, multiple classifiers were trained 648 
using either nucleus only, nucleus and soma features, or nucleus, soma, and PSS features. Within each level of 649 
the hierarchy, classifiers were trained using the cells and labels from the manually annotated cortical column. 650 
Due to the sparsity of some of the cell classes, we augmented the training set in the following ways: 470 errors 651 
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were added from within and around the column for the object model, 11 proofread 5P-NP cells and 250 652 
proofread 5P-ET cells were added to train the excitatory subclass model.  653 
 654 
For each classifier, model type was chosen using a randomized grid search for the following models: Support 655 
Vector Machine SVM with a linear kernel, SVM with a radial basis function kernel, Nearest Neighbors, 656 
Random Forest Classifier, Decision Tree and Neural Network. For each type, 50 models were trained with 657 
varying parameters and the top performing model was chosen. Individual models were further optimized using 658 
10-fold cross validation evaluated based on accuracy and F1 score (a measure for precision and recall). Training, 659 
and test examples were held consistent across models for direct performance comparison within each level. 660 
 661 
Model Performance and Validation: 662 
The hierarchical model was defined as the sequential combination of the best performing classifiers at each 663 
level. To see the performance of the all different feature sets at each level of the hierarchy please see Extended 664 
Data Table 1. The overall performance of the hierarchical model was measured with a test set that involved 665 
manual inspection of 100 examples of each of the neuronal and nonneuronal subclasses as well as errors. This 666 
resulted in a test set of 1700 cells. Cross validation and test performance for the hierarchical model are reported 667 
below (Extended Data Fig.4). Note that all scores reported are the weighted accuracy based on the sampling 668 
rate of each class within the column.  669 
 670 
The top level of the hierarchy (the object model), distinguished neurons from non-neurons as well as erroneous 671 
detections. The cross validated accuracy score on the column was 96% with a test score of 97%.  The second 672 
level of the model simply distinguished excitatory from inhibitory neurons. Here, the column cross validated 673 
accuracy score was 94% and the test set was 93%. Overall, across all subclasses, the hierarchical model on the 674 
column had a  cross validated accuracy of 91% and a dataset wide test set accuracy of 82%. 675 

Chandelier Cell Identification 676 

Chandelier cells are characterized by their unique axo-axonal synapses onto the AIS of target pyramidal cells. 677 
As there were no chandelier cells within the densely reconstructed column, we sought to test if the perisomatic 678 
feature space would facilitate an enriched dataset wide search for these cells. After identifying and proofreading 679 
a chandelier cell, we selected the top 20 nearest neighbors by euclidean distance using a KDTree search of the 680 
perisomatic feature space (nucleus, soma, and PSS features) after z-score normalization of each feature across 681 
cells. We also selected 20 random cells from the predicted inhibitory neurons. For each of these 40 cells, we 682 
proofread the reconstructions to ensure that there were no extraneous neurites attached, and extended the axon 683 
until there were at minimum 100 output synapses. On average the 20 nearest neighbors had 590 output synapses 684 
attached and the random cells had 809 synapses attached. 685 
 686 
To quantify whether a given cell was a chandelier or not, we measured the angle (ɸ) and the distance (r) between 687 
every output synapse and the soma of the postsynaptic cell (Fig. 6c). A synapse with an angle value of 0° would 688 
be considered straight above the target soma whereas an angle of 180° would be right below. Due to variations 689 
in axon directionality with respect to the pial surface, we determined that synapses with angle values between 690 
160-180° and within 60 microns of the soma were considered on the AIS of the target soma. In fact, because 691 
the specificity of chandelier targeting is so high, the density of synapse angle distributions alone was enough to 692 
identify other chandelier cells (Fig. 6e). Upon inspection of the proofread 20 nearest neighbors, we determined 693 
that cells with over 40% of their synapses within 160-180° were chandelier cells. The average normalized 694 
density for the identified cells was 62% as compared to 8% for the non chandelier cells. 695 
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Inhibitory Neuron Output Targeting 696 

After characterizing a single 5P-NP targeting cell, we applied a similar strategy to the one above to search for 697 
more neurons in the dataset that had a similar connectivity pattern. We selected the top 20 nearest neighbors by 698 
euclidean distance in the perisomatic feature space using KDTree search. These cells were proofread to remove 699 
false mergers and extend the axon to include at minimum 100 synapses. It should be noted that there were 5 700 
cells where the axons could not be extended due to volume boundaries or segmentation errors so they were 701 
replaced with the 5 nearest cells. On average the 20 nearest neighbors had 448 synapses attached. 702 
 703 
To quantify whether a cell preferentially targeted 5P-NP neurons, we measured the fraction of total output that 704 
targeted different predicted subclasses. Cells that output over 30% of their synapses onto 5P-NP cells were 705 
considered to have this rare connectivity preference.  706 

Predicted Subclass Densities 707 

To measure the predicted cell densities per subclass across the MICrONS dataset, we divided the dataset 708 
into 50µm2 bins in the XZ plane. Within each bin we calculated the number of cells for each subclass and 709 
scaled that to a mm2 to facilitate direct comparisons to reported densities in the literature. 710 

Dataset 2 711 

The second dataset covers a millimeter square cross-sectional area, and 50 microns of depth within the primary 712 
visual cortex of a P49 male mouse.19,23,57 The largest available segmentation spans Layer 2/3 of the cortex 713 
through to Layer 6. After applying the nuclear detection model19 and filtering out all nuclear objects below 714 
25µm3 and cells that were cut off by the volume border (see Filtering procedure above), 1,944 cells were used 715 
for the analysis. Class type of each cell was labeled manually and used as ground truth. Due to thinness of the 716 
volume, much of the distal cell morphologies were cut off and thus subclass type labeling was not possible. 717 
Nuclear and somatic mesh cleaning as well as feature extraction and normalization followed the same 718 
procedures outlined above. 719 
 720 
All datasets described in the manuscript are publicly available at https://microns-explorer.org/ and 721 
https://bossdb.org/  722 
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Supplemental Information: 884 

Extended Data Table 1 885 

 886 
Extended Data Table 1: Cross validation accuracy scores for individual classifiers at each level of the 887 
hierarchical model with differing input features. Each row corresponds to the corresponding numbers in the 888 
diagram in Fig. 5A. All training examples were held consistent between features sets for appropriate model 889 
comparisons. Classifiers with the highest accuracy score at each level were included in the hierarchical model 890 
(shown in bold). The overall hierarchical model performance on the column and the dataset wide validation set 891 
(see methods) is reported at the bottom.  892 
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Extended Data Figure 1 915 

 916 
Extended Data Figure 1: Neuronal and nonneuronal subclass distribution of individual soma and nucleus features. 917 
a) 2D UMAP embedding of all neuronal and nonneuronal cells inferred from somatic features, nuclear features and cortical 918 
depth. Manually labeled cellular subclasses are represented in color (1,619) and unlabeled examples in light gray 919 
(n=92,391). b) Distribution and variation of cortical depth of all cells from the human labeled column dataset. c) 920 
Distribution and variation of nucleus and somatic features of all cells from the column dataset. For all plots, mean and 921 
variance each subclass represented by the boxplots while individual cells are noted in the overlaid swarm plots. Color 922 
denotes human assigned subclass labels. 923 
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 944 

Extended Data Figure 2 945 

946 
Extended Data Figure 2: PSS embedding space organized by post-synaptic ultrastructural morphologies. 2D UMAP 947 
embedding of all shapes in the PSS Dictionary. The numbers indicate the bin centers mapped in this 2D space and the 948 
corresponding PSS meshes on the right show the shape associated with each bin center. Bins 1-8 range in spine shapes, 949 
Bins 9-23 are shaft shapes and Bins 24-29 are soma shapes. 950 
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 976 
 977 
 978 
Extended Data Figure 3 979 

 980 
Extended Data Figure 3: Inhibitory neuron subclasses exhibit spatial patterns to PSS distributions. The UMAP 981 
embedding of all the perisomatic features, including PSS features, across all inhibitory cells, colored with respect to what 982 
fraction of that cell's input (within the 60µm cutout) comes from what PSS/distance bin.  PSS shape bins were simplified 983 
from 29 bins to 5 broad categories to simplify the visualization (bins 0-4: short spines, 5-8: long-spines, 9-18+23: smooth 984 
shafts, 19-22: spiny shafts, 24-29: soma). This visualization gives insight into how different cells in different parts of this 985 
embedding space receive varying amounts of input onto different shapes within different spatial zones of the perisomatic 986 
area.  Cells on the far left hand side of the embedding, where in general bipolar type neurons were found, have larger 987 
fractions of their inputs near the soma, including dendritic shafts which are more irregular in shape (“spiny shafts”), and 988 
smooth shaft inputs farther away where the dendrites begin to elaborate. Basket cells on the right hand side of the side of 989 
the embedding are dominated by somatic inputs and smooth shaft inputs which are more evenly distributed spatially.  The 990 
island at the bottom that is dominated by neurogliaform cells is characterized by having relatively fewer somatic inputs, 991 
but an increasing amount of shaft and spiny input at distal dendrites.  992 
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Extended Data Figure 4 1003 

 1004 
Extended Data Figure 4: Classifier validation: a) Confusion matrix of hierarchical model performance for all cells 1005 
within the manually labeled column after training. b) Confusion matrix of hierarchical model performance on a dataset 1006 
wide sample of 100 cell predictions from each subclass. c) Comparison of column cross validation vs. dataset wide model 1007 
performance, asterisk notes significance by Fisher Exact Test.  1008 
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Extended Data Figure 5 1012 

 1013 
Extended Data Figure 5: Cell densities across the dataset by cellular subclass. Predicted cell densities per mm2 for 1014 
each subclass across the entire dataset in the XZ plane. Each square represents 50 micron2 and color denotes the density 1015 
scaled per mm2. Note due to the approximate 1 mm depth of cortex, these values are also roughly densities per mm^3. 1016 
They roughly agree with densities of cells estimated from light microscopy stereology of subclasses,29 usually utilizing 1017 
histochemical markers or genetic tools. Unfortunately for some subclasses, there is not a 1-1 to alignment between the 1018 
definitions of types in this study and the usual molecular markers used in those studies, as molecular markers are not 1019 
directly measurable in this electron microscopy volume.   1020 
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Extended Data Figure 6 1046 

 1047 
Extended Data Figure 6: Perisomatic feature based classification utilized with different cell-type labels. a) 1048 
Alternative excitatory subclass labels in the column from Schneider-Mizell et al 2023, based on unsupervised clustering 1049 
of dendritic and synaptic features rather than manual human expert calls. Labels on the clusters were inferred based on the 1050 
overlap with expert labels and cortical depth, with finer distinctions added when necessary (i.e. L4a,L4b,L4c). b) 1051 
Alternative inhibitory subclass labels from Schneider-Mizell et al. 2023 in the column based on unsupervised clustering 1052 
of their output connectivity statistics. These subclasses (Perisomatic targeting, Distal Targeting, Sparsely Targeting and 1053 
Inhibitory Targeting) likely largely but not completely align with broad molecular distinctions made amongst inhibitory 1054 
cells, based on reviews of the literature where molecular and output connectivity has been measured in the same cells. c) 1055 
A confusion matrix of a hierarchical model retrained to utilize these subclass labels for excitatory neurons vs inhibitory 1056 
neurons rather than human expert labels. Cross validation performance on the excitatory (67%) and inhibitory (85%) 1057 
subclass models was lower than the expert labels, due primarily to the fine grained distinctions made amongst layer 4 and 1058 
6 types.  The confusion matrix shown here is the output of the final model trained on all samples from the column.  1059 
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Extended Data Figure 7 1079 

 1080 
Extended Data Figure 7: Basic perisomatic feature patterns maintained across a second dataset from a different 1081 
animal. a) A cutout of a second dataset, which covers layer 2/3 to 6 of cortex, but is only 50µm thick.  Somas contained 1082 
within this volume (n=1,944) were analyzed in a manner identical to the larger dataset and soma, nucleus and PSS features 1083 
were extracted. Excitatory nuclei highlighted in light blue and inhibitory nuclei in magenta. b) Analysis of the feature to 1084 
feature correlations shows similar correlation structure between the two datasets. c) A joint UMAP of the perisomatic 1085 
features with the MICrONS dataset data shown in gray, and the smaller dataset covered by manually identified cell classes 1086 
overlaid. In general, the same overall patterns and degree of separation amongst layers and cell classes was observed. Note: 1087 
pericytes were manually excluded from this dataset due to the lower quality of nucleus and somatic segmentations. 1088 
Extensive detailed subclass cell type validation is not possible in this dataset due to the truncation of axons and dendrites. 1089 
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