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*Corresponding author: a.morales-gregorio@fz-juelich.com

January 12, 2024

High-dimensional brain activity is often organised into lower-dimensional neural manifolds. However,
the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multielectrode
electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4 and DP with a high spatio-
temporal resolution. We find, for the first time, that the population activity of V1 contains two
separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct
dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal
region of V1, which are significantly stronger during the eyes-open periods, a previously unknown
effect. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the
experimental findings. Taken together, our analyses and simulations suggest that top-down signals
modulate the population activity of V1, causing two distinct neural manifolds. We postulate that the
top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses,
resulting in a type of visual stand-by state.
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Introduction

The brain can be described as a high-dimensional dynamical system capable of representing and1

processing a plethora of low-dimensional variables.2

The time-resolved activity of a population of neurons can be considered as a trajectory in a high-3

dimensional space, where each neuron represents one dimension; i.e., the state space of the neural4

system. Typically, the system does not attain all possible states in the state space, but rather remains5

confined to small subsets. These subsets of the state space are referred to as a neural manifolds1–5.6

Neural manifolds have been shown to encode aspects such as decision-making in the prefrontal cortex7

of macaque6, hand movement trajectories in the motor cortex of macaque2,3,7, odour in the piriform8

cortex of mice8, head direction in the anterodorsal thalamic nucleus of mice5, and spatial position in9

the hippocampus of mice9. The study of neural manifolds in the visual cortex has been conducted in10

mice10,11 and macaque12,13. However, to the best of our knowledge, the state dependence of neural11

manifolds in the primary visual cortex (V1) of macaque has not yet been investigated.12

Neural manifolds often have an intricate structure, which can be studied using methods borrowed13

from computational topology5,12,14. In addition to the topology, the number of uncorrelated covariates14

required to capture the variance in the state space is studied as a measure of the dimensionality of a15

neural system1,10,15–20. Regardless of species and brain area, the dimensionality is drastically lower16

than the total number of recorded neurons (i.e., state-space dimension)1, suggesting robust encoding of17

low-dimensional variables. Stringer et al.10 showed that the dimensionality of visual cortical activity in18

mice can vary dynamically to encode precise visual input, seen as changes in the power law exponent of19

the explained variance. Such dynamical changes in dimensionality have not yet been demonstrated in20

other species.21

Whether a subject has its eyes open or closed is known to affect the activity in the visual cortex,22

even in darkness21–25. In particular, the spectral power in the alpha frequency band (roughly 8–12 Hz)23

is known to decrease when the eyes are open, commonly known as alpha blocking26–28. Alpha blocking24

is usually attributed to desynchronisation27 or oscillatory damping28 within V1. However, the concrete25

pathway(s) triggering these phenomena, and the relation between eye closure and neural manifolds in26

V1, are still unknown.27

The primary visual cortex (V1) is known to represent fine details of visual input at both single-28

neuron and population levels12,29. The visual system is hierarchical in nature, with information29

travelling from lower to higher areas (bottom-up) and vice versa (top-down), within specific frequency30

bands30–33. Top-down signals from V4 to V1 are known to mediate visual attention for figure-ground31

segregation and contour integration in macaque33–37. Recent evidence suggests that top-down signals32

can modulate neural manifold geometry and their dimensionality38,39. Naumann et al.38 show in33

silico that top-down signals can rotate neural manifolds to maintain context-invariant representations.34

Dahmen et al.39 show that recurrent connectivity motifs modulate the dimensionality of the cortical35

activity. As effective connectivity is input-dependent40, a change in top-down input may therefore affect36

the dimensionality of neural activity. However, whether top-down signals modulate neural manifold37

geometry and dimensionality in vivo remains to be shown.38

Here, we study the state space of the primary visual cortex of the macaque (N=3) during the resting39

state and its relation to the top-down signals from higher visual areas (V4, DP). We find that the40

population activity of macaque V1 is organised as two distinct high-dimensional neural manifolds, which41

are correlated with the behaviour (eye closure) of the macaques, but not related to any visual stimuli.42

The dimensionality of each of these manifolds is significantly different, with higher dimensionality found43

during the eyes-open periods than the eyes-closed periods. In addition, we estimated input from higher44

cortical areas to V1 and found that these top-down signals (in the form of LFP beta-band spectral45

Granger causality) are significantly stronger during the eyes-open periods, suggesting they play a role46

in modulating the neural manifolds and their dimensionality. Finally, we simulate a spiking neuron47

model under resting-state conditions and show that top-down signals can induce multiple manifolds by48

changing the firing modes of the network. Taken together, the data analysis and simulations show that49

top-down signals could actively modulate the V1 population activity, leading to two distinct neural50

manifolds of macaque visual cortical activity.51
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Figure 1: Overview of the experiment and neural manifold construction. a Illustration of the experimental setup.
b Approximate locations of array implants in both experiments. Exact placement of the arrays differs slightly
between subjects L and A. c Steps for obtaining the multi-unit activity envelope (MUAe)41, used in this study.
Band-pass filtering is performed between 500 Hz and 9 kHz, and the rectified signal is low-passed at 200 Hz to
obtain the MUAe. d Schematic representation of state space and a neural manifold. Note that time is implicit
within the neural manifold.

To explore the activity in the visual cortex, the intracortical electrical potential from the visual cortex52

of three rhesus macaques (Macaca mulatta) was recorded. The experiments simultaneously recorded the53

activity from V1 and V4 (macaques L & A)42 and from V1 and DP (macaque Y, see Figure 1b)43. The54

recordings were made in the resting state, i.e., the macaques sat head-fixed in a dark room and were not55

instructed to perform any particular task. In this state the macaques often showed signs of sleepiness56

and kept their eyes closed for periods of variable duration. The right eye—contralateral to the site of57

neural recording—was tracked using an infrared camera, allowing the identification of periods of open58

or closed eyes. See methods Electrophysiological data from macaques L & A and Electrophysiological59

data from macaque Y for further details on the data acquisition and processing. The experimental60

setup and data processing steps are illustrated in Figure 1.61

Two distinct neural manifolds in V1 correlated with eye closure

To explore the activity of the visual cortex, we characterise the high-dimensional population activity62

(between 40 and 800 electrodes, see Table 1 for details) for each area and macaque in terms of the63

downsampled (1 Hz) multi-unit activity envelope (MUAe)41 (Figure 2a). We projected the population64

activity into a 3D space for visualisation using principal component analysis (PCA) (Figure 2b-d).65

In V1, at least two distinct neural manifolds are apparent in the 3D projection space; sample session66

in Figure 2b-d, see Figure S1-S6 for all other sessions and subjects. We labelled the manifolds according67

to the sign of the log odds of a two-component Gaussian mixture model (see methods Neural manifolds68

and clustering and Outlier removal). The log odds represent the probability for a given data point to69

correspond to one manifold or the other.70

To confirm that the two manifolds in the lower-dimensional projection are not an artefact of the71

dimensionality reduction, we estimated the Betti numbers of the high-dimensional population activity72

using persistent homology (see Methods, Topological data analysis). The persistence barcodes show73

that at least two independent generators of the H0 homology groups exist in the high-dimensional74

population activity, corresponding to two connected components (Figure S7), i.e., two distinct neural75

manifolds. Thus, we confirm that the two manifolds observed in the 3D projection are inherent to the76

high-dimensional space.77
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Figure 2: Two distinct neural manifolds in V1 correlated with eye closure. a Overview of the experimental data
from session L RS 250717. From top to bottom: Time evolution of the eye signal; the z-scored MUAe signal for
each electrode (electrodes ordered by their correlation with the eye signal); the mean z-scored MUAe at each
time point; and the log odds overlaid with the most likely manifold (two clusters, Gaussian mixture model). b, c,
d First three principal components of the MUAe population activity. Colours indicate the manifold identified
via the log odds of a Gaussian mixture (b), the eye closure (c) and the mean z-scored MUAe (d). Each dot
represents a different point in time. Outliers were excluded from the neural manifolds shown in b–d, see Outlier
removal. e, f Violin plots of the distribution of the log odds across epochs, respectively distinguished according
to eye closure (e, result of a logistic regression test shown) and z-scored MUAe (f). Horizontal bars indicate
medians of the distributions.

Additionally, we tested whether the observed manifolds could be an artefact of the MUAe signal.78

We spike-sorted one session (L RS 250717) with a semi-automatic method and analysed the population79

activity resulting from the single-neuron firing rates (Figure S8). The spiking activity also displayed80

two manifolds, in agreement with the MUAe signals.81

While the activity of visual cortex is mainly driven by visual input, whether and to what extent82

it is separately modulated by eye closure is unclear. Marking data points on the V1 manifolds with83

the eye closure signal (Figure 2b) reveals that one manifold strongly relates to the eyes-open periods,84

whereas the other manifold strongly relates to the eyes-closed periods.85

To confirm the correlation between eye closure and manifolds, we tested the differences between the86

eyes-open and eyes-closed periods using a twofold approach. First, we performed a logistic regression87
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between the eye closure signal and the log odds, revealing a significantly higher than chance correlation88

in all sessions (Figure 2e). Second, we visualised the distribution of the log odds during the eyes-open89

and eyes-closed periods separately; showing a clear correspondence between the eye closure and the90

sign of the log odds in most cases (Figure 2e). Taken together, the logistic regression and the log-odds91

distributions demonstrate that membership of a point in state space in one of the two V1 manifolds is92

closely related to eye closure. Given this, we will refer to the manifolds as the eyes-open manifold or93

the eyes-closed manifold.94

The existence of two separate manifolds could be trivially explained if the MUAe activity levels95

were significantly higher in one manifold, and the manifolds simply reflected the population activity96

level. To rule out this possibility, we checked whether higher-activity epochs uniquely correspond to97

one of the manifolds. The violin plots of the full data distribution—based on the z-scored MUAe shown98

in Figure 2a—show that there is no clear separation into two manifolds (Figure 2f). Additionally, we99

visualised the 2D histograms of z-scored MUAe against log odds (Figure S9). Both the violin plots and100

the 2D histograms suggest that the activity level alone does not fully explain the presence of the two101

neural manifolds in macaque V1.102

For completeness, we also visualised the population activity from V4 and DP (Figure S10, S11). In103

contrast to V1, the population activity in areas V4 and DP does not appear to contain two distinct104

neural manifolds. We also tested the relationship between neural activity and eye closure in V4 and105

DP (Figure S12), using the same procedure as for V1. Although some correlation is observed between106

eye closure and log odds, the violins reveal no clear manifold separation. Thus, we conclude that the107

observed manifolds are restricted to V1 and are not present in V4 or DP.108

Higher dimensionality during eyes-open periods, primarily due to decorrelation

To further understand the functional role and implications of the observed neural manifolds in V1, we109

studied their dimensionality. We used the participation ratio (PR, Equation 1), which is defined via the110

percentage of variance explained by the principal components of the covariance matrix19,39. The PR111

can be rewritten in terms of the statistics of the covariance matrix112

PR =
(
∑

i λi)
2∑

i λ
2
i

=
N

1 + v2 + (N − 1)(m2 + s2)
(1)

where λi are the eigenvalues of the covariance matrix and N is the number of electrodes. v, m, and s113

are the ratios between the standard deviation of auto-covariances, average cross-covariances, and the114

standard deviation of cross-covariances with respect to the average auto-covariances, respectively. See115

Dimensionality for detailed methods.116

To study the dimensionality, we computed the time-varying PR from the z-scored MUAe signals, by117

calculating the PR for windows of 30 s width (1 s steps, thus 29 s of overlap with adjacent windows),118

see Figure 3a. Stronger MUAe activity is typically associated with higher variance, which may bias the119

results toward higher dimensionality. We avoided bias due to the varying activity level by normalising120

the data (via z-scoring) within each window. We found that there is a strong correlation between the121

log odds and the time-varying PR (Figure 3b) and compared the PR values between the two manifolds122

using a Mann-Whitney U test (Figure 3c). We also measured the PR for one spike sorted session123

(Figure S8d). The correlation and tests show that the dimensionality is higher during the eyes-open124

periods, consistently for all datasets, both for MUAe and spikes.125

To further support this finding, we also show the distribution of the variance explained by each of126

the principal components (PC) of the MUAe data, depicted on a log-log scale in Figure 3d. We fitted a127

power law to the PC variances and report the exponent α (Figure 3e). A higher α indicates faster decay128

of the curve, i.e., lower dimensionality. The power law exponents are in agreement with our sliding129

window approach: We observe higher dimensionality during eyes-open than during eyes-closed periods130

(Figure 3e).131

To narrow down the reason causing the dimensionality changes, we computed v2, (N − 1)m2, and132

(N − 1)s2 and observed that the changes in (N − 1)m2—i.e. the average cross-covariances—dominate133
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Figure 3: Higher dimensionality during eyes-open periods. a Log odds and participation ratio (PR) for session
L RS 250717. The PR was calculated on a sliding window of 30 s width. b Pearson correlation between log odds
and PR for each session. c Comparison of PR between neural manifolds (Mann-Whitney U test). d Distribution
of principal components and their explained variance on a log-log scale, for each manifold. Power law exponent α
estimated over the ranges where the curves approximate a power law. e Comparison of power law exponents for
the two neural manifolds in all sessions. The eyes-open manifold always had a smaller exponent, indicating a
higher dimensionality. f Differences in the terms of the PR function between eyes-open and eyes-closed, results of
Welch’s t-test across sessions shown. The quantities are related to the standard deviation of auto-covariances
(v2), average cross-covariances ((N − 1)m2), and standard deviation of cross-covariances ((N − 1)s2)

the PR differences between the eyes-open and eyes-closed periods (Figure 3f). Thus, the main reason134

for the observed dimensionality changes is decorrelation during the eyes-open periods.135

Top-down signals from V4 to V1 are present in the form of beta-band spectral
Granger causality

In search of an internal mechanism that may modulate the neural manifolds and their dimensionality,136

we turned our attention to cortico-cortical interactions. Since signatures of top-down activity have137

previously been reported in the beta frequency band (roughly 12–30 Hz)31,33,45, we use spectral Granger138

causality to measure top-down signals.139

To determine whether top-down signals are present in our data, we calculated the coherence and140

Granger causality between every pair of V1-V4 and V1-DP electrodes (see Coherence and Granger141

causality)—using the local field potential (LFP). Figure 4a,b show the coherence and Granger causalities142

for a sample pair of electrodes. To quantify the cortico-cortical signals, we searched for peaks in143

the coherence and Granger causality, using an automatic method (see Methods, Peak detection).144
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Figure 4: Inter-area coherence and spectral Granger causality. a Representative sample of coherence between V1
and V4 (electrodes 242 and 142, respectively). Low-frequency and beta-band peaks indicated. b Representative
sample of spectral Granger causality. c Schematic representation of the electrode locations overlaid with the
mean top-down signal strength B per electrode (see Coherence and Granger causality for a description of B). d
Receptive field (RF) map overlaid with the mean B per electrode. Stronger B is found around the foveal region of
V1. e Mean B displayed against the distance from the fovea. f Fraction of labelled neurons (FLN) from V4 to V1
(data from tract-tracing experiments44). V1 subdivisions represent c: central (foveal region), LF: lower visual
field, pc: peri-central, and fp: far periphery. The strongest connectivity exists from V4 to V1c, in agreement with
our measurements. g Number of electrode pairs with strong (B > 10) top-down signals detected in each session.

We detected beta-frequency Granger causality peaks in around 0.5% of all V1-V4 electrode pairs,145

predominantly in the top-down direction (Figure S13). We only found beta-band bottom-up interactions146

in V1-DP electrode pairs.147

For the electrodes with a beta causality peak, we estimated the causality strength B (Equation 5).148

The electrodes with their receptive field (RF) closer to the fovea show substantially higher B (Figure 4c–e,149

Figure S14), in agreement with a previous structural connectivity report44 (Figure 4f). To disregard150

potential spurious Granger causality peaks, we restrict all further analysis of the top-down signals to151

the strongest interactions, by setting a threshold of B > 10 (Figure 4g). We found few bottom-up152

V1-to-V4 signals with high strength in the beta frequency band.153

We thus found top-down signals from V4 to V1, in agreement with previous studies31,33,45; but we154

did not find strong signals from DP to V1 in our data. V4-to-V1 signals are therefore strong candidates155

for the modulation of the neural manifolds and their dimensionality.156

Stronger top-down signals from V4 to V1 during eyes-open periods

To elucidate the behavioural relevance of the V4-to-V1 top-down signals, we examined how the LFP157

spectral power, coherence, and Granger causality change in relation to eye closure.158

We extracted the LFP data for each behavioural condition and concatenated the data within the159

same condition. This approach could introduce some artefacts, which we expect to be minor in view160
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Figure 5: Stronger top-down signals from V4 to V1 during eyes-open periods. a Spectral power, coherence, and
Granger causality of the LFP for the electrodes with high causality strength (B > 10) in session L RS 250717, see
Figure S15 for all other sessions. The data for each behavioural condition (eyes-open/closed) were concatenated
and their metrics reported separately (top row). The difference between eyes-open and eyes-closed periods was
calculated for each electrode or pair of electrodes (bottom row). In all panels the thick line shows the median
across electrodes (or pairs of electrodes) and shading indicates the 25th to 75th percentile. b Time evolution of
log odds (top) and time-dependent beta-band Granger causality difference B(t) (bottom), for the electrode pairs
with top-down signals. c Histogram of the Pearson correlation between the log odds and B(t). Colour indicates
the significance levels of the associated two-sided t-test.

of the very small number of transitions in comparison with the number of data samples (500 Hz161

resolution). Both in V4 and V1, we find that the spectral power at low frequencies (< 12 Hz) is higher162

during the eyes-closed periods, whereas the power in the beta band (12–30 Hz) is slightly higher during163

eyes-open periods (Figure 5a, Figure S15). Spectrograms of the V1 LFP power confirm the reduction in164

low-frequency power during eyes-open periods (Figure S17). The coherence in the beta band is higher165

during the eyes-open periods, with the peak shifted to higher frequencies compared to the eyes-closed166

condition. Notably, the top-down Granger causality is substantially higher in the beta band during the167

eyes-open periods.168

In order to confirm our observations, we also computed spectrograms of the Granger causality using169

a 10-second sliding window (Figure S16a). Statistical tests (Welch’s t-test) of the difference between170

bottom-up and top-down Granger causality, ∆GC, confirmed a shift toward top-down interactions171

during the eyes-open periods compared to the eyes-closed periods, for a vast majority of all electrode172

pairs (Figure S16b,c). Thus, we found higher beta-band Granger causality during eyes-open periods173

using two different approaches.174

Additionally, to confirm the interdependence of top-down signals and the neural manifolds, we175

computed the correlation between the time-varying beta-band Granger causality B(t) (Equation 8)176

and the log odds (Figure 5b,c). An overwhelming majority of V1-V4 electrode pairs showed a highly177

significant correlation (p < 10−6, two-sided t-test). Thus, the top-down signals and neural manifolds178

are co-dependent at a fine temporal scale, as well as within eyes-closed and eyes-open periods.179
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We further tested whether the top-down signals were correlated with gaze direction and eye180

movements (Figure S18), to rule out the presence of any visual stimuli—despite the experiments being181

performed in a dark room. No clear trend could be observed, thus indicating no relation between gaze182

direction and top-down signals. This finding suggests that the visual scene is not the source of the183

observed top-down signals.184

In conclusion, the time-dependent spectral analysis reveals large variations of power and Granger185

causality. On the one hand, the spectral power at low frequencies decreases during eyes-open periods,186

consistent with the well-known alpha blocking phenomenon26–28. On the other hand, the V4-to-V1187

top-down signals are strongest during the eyes-open periods. The time-varying top-down beta causality188

strength did not substantially correlate with gaze direction or eye movements, suggesting no relation189

between the top-down signals and the visual scene; as expected in a dark room. Taken together, these190

results suggest that V4-to-V1 signals modulate V1 activity, contributing to a different state-space191

manifold with increased dimensionality.192

Discussion

In this paper, we presented three novel findings in the primary visual cortex (V1) of macaques during193

the resting state: two separate manifolds in the state space associated with eye closure (Figure 2);194

higher dimensionality due to lower mean cross-correlations during eyes-open periods (Figure 3); and the195

presence of stronger top-down signals from V4 to V1 during the eyes-open periods, primarily targeting196

the foveal region of V1 (Figure 4, Figure 5). In addition, we observed lower power at frequencies197

below 12 Hz during the eyes-open periods (Figure 5, Figure S17), consistent with the well-known alpha198

blocking effect26.199

We observed that two distinct manifolds appear in the state space of macaque V1—but not V4 nor200

DP—during the resting state for all subjects and sessions, for both MUAe and spike data (Figure 2,201

S1-S6, Figure S8), and are correlated with eye closure (Figure 2e,f). The manifolds were not just an202

artefact of the three-dimensional projection used for visualisation, as we confirmed they also exist203

in higher dimensions with persistent homology (Figure S7). Previous work in mice has shown that204

the visual cortex represents a myriad of behaviours in the resting state, such as facial movements205

or running46. However, a similar study on the macaque showed that the macaque visual cortex is206

very specific to vision, and minimally driven by spontaneous movements47. Thus, we do not expect207

the neural manifolds of V1 to be strongly affected by any behaviour other than visual behaviour, in208

agreement with our finding that eye closure neatly explains the two manifolds.209

Our findings could in principle be explained by the presence of complex visual stimuli that would210

alter the population dynamics and cortico-cortical communication. However, we are certain that no211

strong visual stimuli are present in the visual field, due to the very dark environment of the recording212

room. Additionally, we performed several analyses to control for activity levels (Figure 2 and Figure S9)213

and gaze direction Figure S18. Furthermore, the original data for Macaques L and A includes an214

extensive evaluation of data quality, which excluded all electrodes that did not strongly respond to215

visual stimuli42. Thus, all the electrodes included in our analysis (from Macaques L and A) would216

strongly respond if there were strong visual stimuli, but we observed no such responses in the MUAe217

activity (see Figure 2). We are therefore certain that the visual input is faint or nonexistent, which218

implies that the observed neural manifolds must be induced by some other internal mechanism.219

Further characterisation of the activity in the different manifolds revealed that the neural dimension-220

ality is manifold-dependent (Figure 3). We observed higher dimensionality in the eyes-open manifolds221

across all macaque and sessions. Our measured dimensionality is in agreement with previous reports on222

the visual cortex10,16. Previous work has also shown higher dimensionality in the primary motor cortex223

during eyes-open than eyes-closed periods48, analogous to our findings in the visual cortex.224

We hypothesised that top-down signals from higher cortical areas could be the modulatory mechanism225

responsible for the changes observed in the neural manifold and dimensionality of V1 activity. Indeed,226

we found that there are strong top-down signals from V4 to V1 (Figure 4), targeting particularly the227

foveal region of V1, in agreement with structural connectivity44. We also found the top-down signals to228
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vary over time, with increased presence during the eyes-open periods (Figure 5). In agreement with229

our findings, previous studies found that cortico-cortical top-down signals between V1 and V4 are230

predominantly present in the beta (12–30 Hz) frequency band, while bottom-up signals between V1231

and V4 are present in the delta/theta (< 8 Hz) and gamma (> 30 Hz) bands31,45. Others suggest that232

top-down signals from V4 to V1 are found more generally in the low frequencies (< 30 Hz), not uniquely233

in the beta-band33. In our analysis we did not find any gamma band causality (Figure 4), likely because234

our recordings were from the deep cortical layers (in macaque L and A the electrodes were 1.5 mm235

long, putatively recording mostly from layer 5) and gamma oscillations are known to be weak in layer 5236

of the visual cortex30,49. In addition, gamma activity is associated with bottom-up signals33, which237

we do not expect in a dark room with no visual stimuli. In contrast to our findings, van Kerkoerle238

et al.30 reported that top-down signals appear in the alpha (8–12 Hz) frequency range. Whether the239

specific top-down and bottom-up frequencies generalise to the whole cortex is unclear. Instead, Vezoli240

et al.45 postulate overlapping modules of certain frequencies (alpha, low-beta, high-beta, and gamma)241

that differ across cortical areas. Our findings are also consistent with the work by Semedo et al.50, who242

suggested that bottom-up signals dominate during visual stimulation and top-down signals dominate243

in the absence of visual stimuli—note that in their work the eyes were always open. We did not find244

top-down signals from DP to V1, possibly due to the electrodes used in macaque Y being 1 mm long,245

thus likely recording from layer 4, and top-down connections do not originate in nor target layer 4 of246

visual cortex51.247

In the present study, it was not possible to test directly from the experimental data whether the248

V4-to-V1 signals are responsible for the modulation of V1 dynamics. Future studies could perform249

such a test by a reversible inactivation of the V4-to-V1 pathway, such as via reducing the temperature250

of V452,53, injecting a GABA agonist (e.g., muscimol, bicuculline)54–56 or using targeted optogenetic251

suppression57. These techniques have been successfully applied to study the suppression of cortico-252

cortical communication; however, to best of our knowledge, they have not been used to study the effects253

of macaque V4-to-V1 signals in the resting state.254

Numerical simulations offer an alternative approach to study the effect of top-down signals in spiking255

neural networks. We thus performed preliminary simulations of a simple spiking neuron model—of the256

well-known Brunel type58—to ascertain whether V4-to-V1 signals can modulate the neural manifolds257

(Figure 6). Modelled top-down signals, in the form of sinusoidal oscillating inhomogeneous Poisson258

processes, led to a different neural manifold in the network activity when a subset of the network259

neurons was targeted (Figure 6d). These changes were not due to the increase in firing rate caused260

by the additional top-down input, but rather due to the activation of different neuron patterns in the261

model (Figure 6e,f). We limited the analysis of the model to the presence of neural manifolds, because262

our model was ill-suited to study the dimensionality, given that average cross-correlation is known263

to cancel out in balanced EI networks59,60. Future work could use more complex models—such as264

clustered networks59,61,62—to study the effects of correlated inputs with realistic power spectra on the265

dimensionality and elucidate whether the top-down signals can directly induce the observed increase in266

the dimensionality during the eyes-open periods.267

Taken together, our data analysis and simulations suggest that top-down modulation alone is268

sufficient to cause the distinct neural manifolds in V1 activity. Nevertheless, sustaining the different V1269

manifolds might involve additional mechanisms, such as neuromodulation or adaptation of recurrent270

connectivity via short-term plasticity. Previous work suggests that N-methyl-D-aspartate (NMDA)271

receptors are central to the top-down communication from V4 to V135,63. Interestingly, targeted272

pharmacological deactivation of NMDA receptors in macaque V1 leads to the suppression of alpha273

blocking28 and absence of decorrelation during eyes-open64; both of which are correlated with the274

increased V4-to-V1 signals in our data. In addition, the top-down signals are not constant throughout275

the eyes-open periods (Figure S16), but the slow timescale of the NMDA receptors could help sustain the276

eyes-open manifold, even if the top-down input fades. Thus, we speculate that the top-down connections277

preferentially target the NMDA receptors in V1 neurons, leading to the observed alpha blocking and278

decorrelation. Another mechanisms could involve recurrent connectivity, in the form of cell-type-specific279

motifs. Such motifs have been shown to affect the dimensionality of brain networks39, and they could280
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Figure 6: Simulation of a balanced spiking neural network with top-down modulation. a Diagram of balanced
random spiking neural network. Background input is provided constantly, top-down signals are provided
intermittently. b Sample raster plots show spiking activity in the different input regimes. c Time evolution of
input regimes and mean firing rate (FR). d First two principal components of the firing rate (binsize = 1 s).
Colours indicate the different input regimes. e Distribution of mean firing rate per neuron is almost identical
between the two regimes. f Mean firing rate of the 100 most active neurons. The top-down modulation changes
the mean firing rates of each neuron, in both the positive and negative directions, leading to the observed distinct
manifolds.

emerge in the effective connectivity of the network as a result of the top-down input.281

If the V4-to-V1 signals convey behavioural information, then how does such behavioural information282

reach V4 in the first place? We explore the possible communication pathways that lead to the observed283

V4-to-V1 signals, illustrated in Figure 7. We identified three main candidates: the visual stimulus (or284

absence thereof) from the retina to V1; the proprioception of eyelid muscles via the somatosensory285

cortex; and the voluntary motor commands for eye closure. The first proposed pathway involves286

visual stimuli being transmitted from the retina to V1 via the lateral geniculate nucleus (LGN). The287

absence of stimuli could be the reason for the observed changes in the V1 activity, whereas the presence288

of visual stimuli could trigger a V1-V4 feedback loop. However, the macaques in our experiments289

had very little to no visual input, even during eyes-open periods, since they were sitting in a dark290

room. Additionally, we found no consistent difference in MUAe activity levels between the eyes-open291

11

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2023.06.14.544966doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544966


V1

V4

LGN

Feedback 
loop

(faint)
Visual input

?

S1

V4

V1

Proprioception

Midbrain

V1

V4

MFEF

Eyelid
closure

Signal copy

cba

Figure 7: Proposed communication pathways for V1 modulation via V4. a Visual input directly to V1 triggering
a cortico-cortical feedback loop. b Proprioception of eyelid muscles via the midbrain (possibly superior colliculus)
and somatosensory cortex. c Cortico-cortical communication of motor commands.

and eyes-closed manifolds (Figure 2). The second proposed pathway involves proprioception of the292

eyelid that could inform the cortex when the eyes are closed and trigger the activity changes in V1.293

Mechanoreceptors in the eyelid activate the oculomotor nerve projecting to the midbrain (possibly to294

the superior colliculus)65, eventually entering the cortex via the somatosensory area (S1)66. From S1295

the signal could find its way to V1 via several cortico-cortical pathways, potentially including neurons296

in V4; however this mechanism might be relatively slow, given the absence of direct connections from297

S1 to V1 or V467. Furthermore, the shortest known S1-to-V1 cortico-cortical pathway does not involve298

V4, rendering this pathway a rather weak candidate. The third and final proposed pathway involves299

voluntary eyelid closure which is initiated by the ventral motor cortex and the frontal eye field (FEF).300

The eyelid closure and eye movements may be communicated to the visual cortex via cortico-cortical301

connections or the superior colliculus. Given that V4 is part of the fronto-parietal network (with302

strong FEF⇄V4 connections)67,68, the eye movement signals could easily reach V4, which could then303

modulate the V1 activity. A trans-thalamic pathway through the pulvinar could also assist the V4-to-V1304

communication, including the synchronisation of the alpha rhythm69; although such trans-thalamic305

connections have only been confirmed in mice so far70.306

The hypotheses from Figure 7 are not necessarily mutually exclusive, and could all play a role in the307

modulation of V1 activity. To understand which pathways are most relevant to sustain the manifolds,308

we had a closer look around the manifold transitions (Figure S19) by looking at the MUAe signals309

at a high temporal resolution (1 kHz). For the eye-opening transitions, we observed that sometimes310

V1 MUAe activity precedes V4 activity, in agreement with the feedback loop hypothesis (Figure 7a);311

whereas in other cases V4 activity precedes V1 activity, in agreement with the hypotheses shown in312

Figure 7b,c. In the eye-closing transitions, the activity from V1 and V4 appeared to be simultaneous.313

The number of transitions was relatively small, which did not allow for a quantitative analysis of314

the transitions between the two manifolds. Further work could revisit this issue by looking at longer315

recordings including larger numbers of transitions between eyes-open and eyes-closed periods.316

Given the complex mechanisms that seem to be involved in ensuring that V1 population activity317

adjusts to eye closure, it seems likely that it has a functional benefit. First of all, if the eyes are closed,318

no visual stimuli are processed and V1 firing rates are reduced to save energy. On the other hand,319

when the eyes are open, higher-dimensional activity might be advantageous for better encoding visual320

stimuli, which are known to have a high dimensionality10. This could thus facilitate visual processing.321

Previous work showed that spectral power in the alpha band (8–12 Hz) is inversely correlated with322

visual recognition performance in human subjects27,71: lower alpha power was associated with better323

performance in a visual discrimination task. Our results suggest that the change in neural manifolds324

and dimensionality are directly correlated with the decrease in alpha power (Figure 5, Figure S17).325

Future work could study the relation between the dimensionality, alpha power, and visual performance326

(e.g., response latency to different images) to determine the functional relevance of our findings.327

In conclusion, we provide in vivo evidence for the modulation of neural manifolds by cortico-cortical328

communication, which we hypothesise could enable more efficient responses to visual stimuli. Our329

analysis and previous results suggest that the eyes-open manifold—together with the corresponding330

dimensionality and spectral power changes—constitutes a visual stand-by state, which is modulated by331
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top-down input from V4 and other internal mechanisms.332
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Materials and methods

Macaques

We analysed the resting state data from three (N=3) rhesus macaques (Macaca mulatta), recorded in two333

different experimental laboratories. The data from macaques L & A was collected at the Netherlands334

Institute for Neuroscience, and previously published42. The data from macaque Y was collected at the335

Institut de Neurosciences de la Timone, with the recording apparatus described elsewhere43. At the336

time of visual cortex array implantation macaque L (male) was 7 years old and weighed 11 kg; macaque337

A (male) was 7 years old and weighed 12.6 kg; and macaque Y (female) was 6 years old and weighed338

7 kg.339

All experimental and surgical procedures for Macaque L & A complied with the NIH Guide for Care340

and Use of Laboratory Animals, and were approved by the institutional animal care and use committee341

of the Royal Netherlands Academy of Arts and Sciences (approval number AVD-8010020171046).342

All experimental and surgical procedures for Macaque Y were approved by the local ethical committee343

(C2EA 71; authorization Apafis#13894-2018030217116218v4) and conformed to the European and344

French government regulations.345

Electrophysiological data from macaques L & A

We used publicly available42 neural activity recorded from the neocortex of rhesus macaques (N=2) during346

rest and a visual task. The macaques were implanted with 16 Utah arrays (Blackrock microsystems), two347

of them in visual area V4 and the rest in the primary visual cortex (V1), with a total of 1024 electrodes.348

The electrodes were 1.5 mm long, thus recording from the deeper layers, likely layer 5. The system349

recorded the electric potential at each electrode with a sampling rate of 30 kHz. A full description of350

the experimental setup and the data collection and preprocessing has already been published42; here351

we only provide the details relevant to this study.352

Three resting-state (RS) sessions were recorded per macaque, during which the subjects did not353

have to perform any particular task and sat in a quiet dark room. Pupil position and diameter data354

were collected using an infrared camera in order to determine the direction of gaze and eye closure of355

the macaques. On the same days as the RS recordings, a visual response task was also performed. The356

visual response data were used to calculate the signal-to-noise ratio (SNR) of each electrode, and all357

electrodes with an SNR lower than 2 were excluded from further analysis. Additionally, we excluded358

up to 100 electrodes that contributed to high-frequency cross-talk in each session, as reported in the359

original data publication42. The sessions, duration and number of electrodes per subject are listed in360

Table 1.361

Electrophysiological data from macaque Y

In addition to the published data from macaques L & A, we also used an unpublished dataset from one362

additional rhesus macaque (N=1). Neural activity was recorded during rest and during a visuomotor363

integration task. The recording apparatus is described elsewhere43. Macaque Y was implanted with five364

Utah arrays (Blackrock microsystems), two of them in the primary visual cortex (V1), one in dorsal365

prelunate cortex (area DP), one in area 7A and one in the motor cortex (M1/PMd). In this study we366

only included the 6x6 electrode arrays from V1 (two arrays) and DP (one array), for a total of 108367

electrodes. The electrodes were 1 mm long, thus recording from the central layers, likely layer 4. The368

recording system recorded the electric potential at each electrode with a sampling rate of 30 kHz.369

Two resting-state (RS) sessions were recorded, during which the macaque did not have to perform370

any particular task and sat in a quiet dark room. Pupil position and diameter data were collected371

using an infrared camera in order to determine the gaze direction and eye closure of the macaque. We372

excluded up to 50% of the electrodes that contributed to high-frequency cross-talk in each session,373

similarly to the methods described in42. See Table 1 for an overview of the sessions used in this study.374
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Table 1: Summary of subjects and recordings included in this study.

Clean
Subject Session Duration (s) Areas Electrodes Electrodes

L L RS 250717 1363 V1 896 765
V4 128 116

L L RS 090817 1321 V1 896 761
V4 128 116

L L RS 100817 1298 V1 896 774
V4 128 118

A A RS 150819 2278 V1 896 402
V4 128 11

A A RS 160819 2441 V1 896 369
V4 128 9

Y Y RS 180122 906 V1 72 42
DP 36 25

Y Y RS 180201 699 V1 72 44
DP 36 24

MUAe and LFP signals

The raw neural data were processed into the multi-unit activity envelope (MUAe) signal and local375

field potential (LFP). To obtain MUAe data, the raw data were high-pass filtered at 500 Hz, rectified,376

low-pass filtered at 200 Hz, and downsampled to 1 kHz. Finally, the 50, 100, and 150 Hz components377

were removed with a band-stop filter in order to remove the European electric grid noise and its main378

harmonics. To obtain the LFP data, the raw data was low-pass filtered at 250 Hz, downsampled to 500379

Hz and a band-stop filter was applied to remove the European electric grid noise (50, 100, and 150 Hz).380

The MUAe and LFP data for macaques L & A were already provided by the original authors42381

in the open-source .nix format, which uses python-neo data structures to hierarchically organise and382

annotate electrophysiological data and metadata. The metadata, such as the cross-talk removal or the383

positions of the arrays in the cortex, were provided in the .odml machine- and human-readable format,384

which were incorporated into the python analysis scripts.385

Spike sorting

The raw data from one session (L RS 250717) were spike-sorted using a semi-automatic workflow with386

Spyking Circus—a free, open-source, spike-sorting software written entirely in Python72. An extensive387

description of the methods of this algorithm can be found in their publication, as well as in the online388

documentation of Spyking Circus1.389

Roughly, Spyking Circus first applied a band-pass filter to the raw signals between 250 Hz and 5 kHz.390

Next, the median signal across all 128 channels that shared the same reference (2 Utah arrays) was391

calculated and subtracted, in order to reduce cross-talk and movement artefacts. The spike threshold was392

set conservatively, at eight times the standard deviation of each signal. After filtering and thresholding,393

the resulting multi-unit spike trains were whitened—removing the covariance from periods without394

spikes to reduce noise and spurious spatio-temporal correlations. After whitening, a subsample of all395

spike waveforms is selected, reduced to the first five principal components, and clustered into different396

groups with the k-medians method. Finally, all spikes in each electrode are assigned to one of the397

waveform clusters based on a template fitting algorithm, which can also resolve overlapping waveforms.398

After the automatic sorting, the waveform clusters were manually merged and labelled as single-unit399

activity, multi-unit activity, or noise. Only single-unit activity (SUA) spike trains were included in this400

1spyking-circus.readthedocs.io
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study. The waveform signal-to-noise ratio (wfSNR) was calculated for all SUA, and those with a wfSNR401

< 2 or electrode SNR < 2 (from the visual response task) were excluded from the analysis.402

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural manifolds and clustering

The MUAe data were downsampled to 1 Hz and arranged into a single array, with between 50 and 900403

recording locations per session.404

In order to visualise the data, we used a standard dimensionality reduction technique (principal405

component analysis, PCA) to reduce the neural manifold to 3D. The clusters observed in the RS sessions406

were labelled using a two-component Gaussian mixture model on the 3D projection. The clustering407

method provides the log odds, i.e., the chance that any given point belongs to one cluster or the other.408

The log odds captures the multi-cluster structure of the manifold in a single time series; thus, we409

consider it to be an identifier of the V1 manifolds.410

Outlier removal

The neural manifolds in our analysis are a collection of time points scattered across the state space. In411

the data some time points appear very distant from all other points, which we associate with noise and412

we therefore seek to remove them. To identify the outliers we used a procedure similar to the one used413

by Chaudhuri et al.5. First, we calculated the distance matrix of all points to each other, and took the414

1st percentile value from the distance distribution, D1. We then estimated the number of neighbours415

that each point had within D1 distance, and finally discarded the 20 percent of points with the fewest416

neighbours.417

Topological data analysis

We used persistent homology to confirm that the lower-dimensional structures that we observed in the418

3D projection of the neural manifolds are in fact topological features of the data and not just an artefact419

of the dimensionality reduction. Before computing the persistence barcodes we projected the data into a420

10D subspace using the isomap technique73. The method aims at approximately preserving the geodesic421

distance between data points (that is the shortest path between two points on the neural manifold) and422

thus is suited for reducing the dimensionality of the data when applying a topological data analysis.423

The analysis on the 10D data showed qualitatively equivalent results to the full-dimensional data, while424

requiring a much shorter computation time.425

To calculate the persistence barcodes of the Vietoris-Rips complex of the neural manifold we used426

an efficient open-source implementation (Ripser2). Briefly, the algorithm successively inflates balls427

with radius r around each point of the manifold. If k points have a pairwise distance smaller than r428

(that is, for all pairs of points both points are contained in the ball of the other point), they form a429

(k − 1)D simplex. Thus, the neural manifold gives rise to a simplicial complex (a collection of simplices430

of potentially different dimension) the topological features of which represent the topology of the neural431

manifold and can be extracted computationally. As r is increased, many short-lived features appear by432

chance. If the manifold has complex topological structures, they should continuously appear as the433

radius of the balls grows for a large range of r. We computed the persistence barcode for the first three434

homology groups H0, H1 and H2. Homology groups are topological invariants that capture topological435

features of a given dimension of the neural manifold. The long-lasting bars in the n-th persistence436

barcode correspond to the number of independent generators βn of the respective homology group Hn.437

For low dimensionalities, they can be interpreted intuitively: β0 is the number of connected components,438

β1 the number of 1D holes, β2 the number of enclosed 2D voids. Throughout all plots of this paper we439

display the top 1% longest-lasting barcodes for each homology group.440

2ripser.scikit-tda.org
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Dimensionality

We used two different approaches to study the dimensionality of the neural data.441

First, we compute the time-varying participation ratio (PR, Equation 1) from the covariance matrix.442

We take a 30 s sliding window with a 1 s offset over the MUAe data and compute the PR for each443

window separately. Higher activity leads to higher variance; thus, we normalised the data within each444

window via z-scoring to minimise this effect. The PR does not require setting an arbitrary threshold.445

From the time-varying PR we measured the correlation between the log odds and the PR, and the PR446

distribution in each manifold.447

Second, we computed the eigenvalue distribution of the neural data within each manifold. Once448

again we normalised the data after sampling each manifold. The distribution appeared to follow a449

power law, in agreement with previous studies10. We used a linear regression in log-log space to fit a450

power law to our data, where the slope of the linear fit in the log-log plot corresponds to the exponent451

α of the power law.452

Coherence and Granger causality

To estimate the communication between cortical areas we rely on the coherence and Granger causality453

of the LFP.454

Coherence is the quantification of linear correlations in the frequency domain. Such that455

Cxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
(2)

where Cxy is the frequency (f) dependent coherence between two signals x and y, Sxy(f) is the456

cross-spectral density, and Sxx(f) and Syy(f) are the auto-spectral densities.457

In order to assess the directionality of frequency dependent interactions between the areas we applied458

spectral Granger causality analysis to the LFP recordings74. We first computed the cross-spectral459

matrix S(f) with the multitaper method. To this end, we subdivided the chosen signal pairs into460

10 s long segments. These were processed individually with 3 Slepian tapers and averaged in the end.461

This yielded the cross-spectrum. The segments had an overlap of 50%. Next, we decomposed the462

cross-spectrum into the covariance matrix Σ and the transfer function H(f) with the Wilson spectral463

matrix factorisation75, obtaining the matrix equation464

S = H(f)ΣH†(f). (3)

With these factors, one is able to obtain a version of directional functional connectivity between the465

first and second signals via466

GCx→y(f) =
Sxx(f)

H̃xx(f)ΣxxH̃
†
xx(f)

(4)

where H̃xx(f) = Hxx(f) + Σxy/ΣxxHxy(f) and mutatis mutandis for the influence of the second onto467

the first signal. The analysis was performed for all pairs of channels between the areas that exhibited a468

peak in the coherence in the β band 12 Hz < f < 30 Hz.469

We quantify the beta-band Granger causality strength as470

B =

f=30 Hz∑
f=12 Hz

GCx←y(f)−GCx→y(f). (5)

We also analysed the time-varying spectral Granger causality. For this aim we used 10 s windows471

and moved them across the data with 1 s steps, for a final time resolution of 1 Hz. We calculated the472

spectral Granger causality for each window separately. The initial and final 5 s were discarded to avoid473

disruptions at the boundaries. So the time-varying causality spectrogram is474

GCx→y(t, f) = GCx→y(f)

∣∣∣∣
[t0,t1]

, ... ,GCx→y(f)

∣∣∣∣
[tn−1,tn]

(6)

17

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2023.06.14.544966doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544966


and mutatis mutandis for the y → x direction.475

Finally, we also define the time-varying Granger causality difference476

∆GC(t, f) = GCx←y(t, f)−GCx→y(t, f), (7)

which summed over the beta band we call477

B(t) =
f=30 Hz∑
f=12 Hz

∆GC(t, f). (8)

Note that478

B ≠

N∑
i

B(ti)

N
(9)

due to the nonlinearities in the Granger causality calculation.479

Both the coherence and spectral Granger causality were implemented in the Electrophysiology480

Analysis Toolkit (Elephant)76.481

Peak detection

Table 2: Peak detection algorithm parameters.
CWT peak detection parameters

widths 100− 500 Hz Width range for CWT matrix.
width step 0.1 Hz Step between widths.
wavelet Ricker Wavelet used for convolution.
max distances widths / 4 Criterion to consider ridge lines connected.
gap thresh 10 Hz Ridge lines farther apart will not be connected.
min length 225 Minimum length of ridge lines.
min snr 1 Minimum snr of ridge lines.
noise perc 10 Percentile of ridge line considered noise for snr calculation.

To detect coherence and Granger causality peaks (used to identify admissible channel pairs for our482

analysis) we used a standard peak detection algorithm for 1D arrays using wavelet transforms. We483

computed the continuous wavelet transform (cwt) for wavelets with widths from 10 Hz to 100 Hz (at484

0.1 Hz steps), using a Ricker wavelet—i.e., a Mexican hat. Next, we searched for ridge lines in the485

cwt—peaks across different wavelet lengths—following standard criteria77. Finally, the ridge lines were486

filtered based on their total length, gaps, and signal-to-noise ratio (snr). The resulting ridge lines (if487

any) were considered as peaks in the coherence.488

The detected peaks tended to be broad, since our parameter choice intentionally rejected narrow489

peaks. We chose this configuration in favour of robustness and to minimise false positives. Nevertheless,490

peaks were detected for a majority of electrode pairs.491

Spiking neural network simulations

To investigate the hypothesis that top-down signals in the β-band induce a change in the population492

dynamics and dimensionality, we conducted a spiking neural network simulation. The network consists493

of 10, 000 excitatory and 2, 000 inhibitory leaky integrate-and-fire (LIF) neurons with exponential494

post-synaptic currents. Pairs of neurons are randomly connected with a connection probability of495

p = 0.1. The spike transmission delay is randomly sampled following a log-normal distribution. Generally496

speaking, the simulation experiments consist of two parts corresponding to the two states observed in the497

neuronal activity. In the first state (background state), the input consists of spike trains sampled from498
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Table 3: General model description
Model Summary

Populations two populations, one excitatory, one inhibitory
Connectivity random connectivity
Neuron model leaky integrate-and-fire model
Synapse model alpha-function shaped postsynaptic current
Input independent spike trains from inhomogeneous

Poisson processes with given rate r(t)

Neuron and synapse model

Subthreshold dynamics dV
dt = − V

τm
+

Isyn(t)
Cm

,

Isyn(t) = J e
τsyn

(t− t∗ − d)e−(t−t
∗−d)/τsyn×

H(t− t∗ − d)
Spiking If V (t−) < θ and V (t+) ≥ θ,

1. Set t∗ = t and V (t) = V0, and
2. Emit spike with time stamp t∗.

Connectivity

Type pairwise Bernoulli,
i.e., for each pair of neurons generate a
synapse with probability p

Weights fixed source- and target-population-specific weights
Delays log-normally distributed delays for

excitatory and inhibitory neurons

Input

Background r(t) = max(0, νbgbase + νbgamp · sin(2πfbg · t))
Top-down modulation r(t) = max(0, νtdbase + νtdamp · sin(2πf td · t))

an inhomogeneous Poisson process with a baseline rate of νbgHz that is modulated with a 1Hz sinusoidal499

oscillation. In the second state, the network additionally receives input spike trains from inhomogeneous500

Poisson processes with rates oscillating at 20 Hz. The first state represents the eyes-closed, the second501

the eyes-open condition. Both input regimes provide independent input to each neuron, based on502

the same rate profiles. During the simulation, we recorded the spiking activity of 1, 000 excitatory503

and 200 inhibitory neurons. We provided the top-down modulation to a subset of the neurons in the504

network. We targeted 50% of both the excitatory and inhibitory population. During the simulation, we505

distinguish two manifolds corresponding to the eyes-open and eyes-closed periods during the recordings.506

See Table 3, Table 4 for a full description of the network and the experiments. For the simulations we507

used NEST (version 3.3)78.508
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Table 4: Simulation parameters.
Population Parameters

Nex 10,000 number of excitatory neurons
Nin 2,000 number of inhibitory neurons

Connectivity Parameters

p 0.1 connection probability

Neuron parameters

τm 20 ms membrane time constant
τr 2 ms absolute refractory period
τsyn 2 ms postsynaptic current time constant
Cm 250 pF membrane capacity
Vm 0 mV resting potential
EL 0 mV membrane capacity
Vreset 0 mV reset membrane potential
Vth 20 mV threshold

Stimulus parameters: Background

νbgbase 8682 spikes/s baseline rate

νbgamp 2170 spikes/s amplitude

f 10 Hz sinusoidal oscillation frequency

Stimulus parameters: Top-down signal

νtdbase 0 spikes/s base line rate

νtdamp 723 spikes/s amplitude

f 20 Hz sinusoidal oscillation frequency

ptd 0.5 fraction of neurons targeted by top-down
modulation in setup 1 and 3

ptd 1 fraction of neurons targeted by top-down
modulation in setup 2

Synapse parameters

JEE 6.4 pA synaptic efficacy excitatory to excitatory

JIE 9.5 pA synaptic efficacy excitatory to inhibitory

g 4 relative inhibitory synaptic efficacy

JEI −g ∗ JEE synaptic efficacy inhibitory to excitatory

JII −g ∗ JEE synaptic efficacy inhibitory to inhibitory

Delay parameters

µex 1.5 ms mean of lognormal distribution
for excitatory connections

µin 0.75 ms mean of lognormal distribution
for inhibitory connections

σex,in 0.5 ms standard deviation of lognormal
distribution for all connections
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[41] Hans Supèr and Pieter R. Roelfsema. Chronic multiunit recordings in behaving animals: advantages and limitations.657

Progress in Brain Research, 147:263–282, 2005. doi: 10.1016/S0079-6123(04)47020-4.658

[42] Xing Chen, Aitor Morales-Gregorio, Julia Sprenger, Alexander Kleinjohann, Shashwat Sridhar, Sacha J. van659

Albada, Sonja Grün, and Pieter R. Roelfsema. 1024-channel electrophysiological recordings in macaque V1 and660

V4 during resting state. Scientific Data, 9(1):77, 2022. ISSN 2052-4463. doi: 10.1038/s41597-022-01180-1. URL661

https://www.nature.com/articles/s41597-022-01180-1.662

23

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2023.06.14.544966doi: bioRxiv preprint 

https://www.science.org/doi/10.1126/science.abd7435
http://www.pnas.org/lookup/doi/10.1073/pnas.1402773111
https://linkinghub.elsevier.com/retrieve/pii/S089662731401099X
https://linkinghub.elsevier.com/retrieve/pii/S0896627317304713
https://linkinghub.elsevier.com/retrieve/pii/S0896627317304713
https://linkinghub.elsevier.com/retrieve/pii/S0896627317304713
http://www.pnas.org/lookup/doi/10.1073/pnas.2022097118
https://linkinghub.elsevier.com/retrieve/pii/S0896627312004369
https://linkinghub.elsevier.com/retrieve/pii/S0896627312004369
https://linkinghub.elsevier.com/retrieve/pii/S0896627312004369
https://linkinghub.elsevier.com/retrieve/pii/S0960982213011299
http://www.nature.com/articles/ncomms13804
http://www.pnas.org/lookup/doi/10.1073/pnas.1706183114
http://www.pnas.org/lookup/doi/10.1073/pnas.1706183114
http://www.pnas.org/lookup/doi/10.1073/pnas.1706183114
https://elifesciences.org/articles/76096
https://elifesciences.org/articles/76096
https://elifesciences.org/articles/76096
http://biorxiv.org/lookup/doi/10.1101/2020.11.02.365072
http://biorxiv.org/lookup/doi/10.1101/2020.11.02.365072
http://biorxiv.org/lookup/doi/10.1101/2020.11.02.365072
https://www.nature.com/articles/s41597-022-01180-1
https://doi.org/10.1101/2023.06.14.544966


[43] Marcel Jan de Haan, Thomas Brochier, Sonja Grün, Alexa Riehle, and Frédéric V. Barthélemy. Real-time visuomotor663
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Extended data figures
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Figure S1: Overview of the experimental data from session L RS 090817. a Time evolution of signals. b, c, d
First three principal components of the MUAe neural manifold.
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Figure S2: Overview of the experimental data from session L RS 100817. a Time evolution of signals. b, c, d
First three principal components of the MUAe neural manifold.
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Figure S3: Overview of the experimental data from session A RS 150819. a Time evolution of signals. b, c, d
First three principal components of the MUAe neural manifold.
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Figure S4: Overview of the experimental data from session A RS 160819. a Time evolution of signals. b, c, d
First three principal components of the MUAe neural manifold.
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Figure S5: Overview of the experimental data from session Y RS 180122. a Time evolution of signals. b, c, d
First three principal components of the MUAe neural manifold.
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Figure S6: Overview of the experimental data from session Y RS 180122. a Time evolution of signals. b, c, d
First three principal components of the MUAe neural manifold.
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Figure S7: Persistence homology of the high-dimensional manifolds show the presence of at least two clusters.
Each panel shows data for one session. For each panel, (Top) Sample clouds with a green radius around them.
These correspond to the radius used in the persistent homology process. (Main plots) Persistence barcodes of
the Vietoris-Rips complex of the 10D neural manifolds, for all sessions. (Inset plots) Distribution of barcode
length with a fitted lognormal distribution, long barcodes coloured red (determined ad hoc). (Bottom right panel)
Number of clusters found in each session.
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Figure S8: Overview of the spiking data from session L RS 250717. Single neurons were isolated using a
semi-automatic spike sorting method, see Methods, Spike sorting. The firing rate (FR) was calculated counting
the number of spikes in 1-second bins. a Sample spike raster plots for eyes-open and eyes-closed periods. b Sample
waveforms from four electrodes, multiple single units isolated in some electrodes (colour-coded). Median (solid
line) and 20-80 percentiles (shading) shown per unit. c Time evolution of signals. d, e, f First three principal
components of the FR. Insets show the persistent homology for the H0 homology group (d), the Participation
Ratio (PR) of each manifold that are in agreement with the MUAe measurements (d) and the violin plots of the
eye closure against the clustering log odds (e).
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Figure S9: 2D histograms of z-scored MUAe and log odds. Darker colour indicates higher occurrence. If the
neural manifolds were solely explained by the higher activity, the histograms should be strictly diagonal; we
instead observe that the histograms spread across multiple quadrants and are even bimodal in some cases.
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Figure S10: V4 activity from session L RS 250717 does not show distinct clusters in its neural manifold. a Time
evolution of signals. b, c, d Three dimensional PCA of the MUAe neural manifold.
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Figure S11: DP activity from session Y RS 180201 does not show distinct clusters in its neural manifold. a
Time evolution of signals. b, c, d Three dimensional PCA of the MUAe neural manifold.
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Figure S12: V4 and DP manifold log odds are not strongly correlated with eye closure nor with MUAe. a, b
Violin plots of V4 and DP for eye closure (a) and MUAe activity (b). Neither show a clear separation along
different neural manifolds.
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Figure S13: Quantification of coherence peaks and beta-band spectral Granger causality. a Quantification of
coherence peaks across all sessions. A substantial portion of all electrode pairs displayed a beta peak. Note
that the percentages for a session can add up to more than 100% since the same electrode pair can have both a
low-frequency and a beta peak. b Quantification of beta-band spectral Granger causality for all sessions. Welch’s
t-test was used to determine whether top-down Granger causality was greater than, less than, or roughly equal to
bottom-up Granger causality, within the beta frequency band. The test was only applied to those electrode pairs
that showed a beta coherence peak. A large portion of V1 ⇄ V4 pairs show stronger causality in the top-down
direction, while V1 ⇄ DP did not appear to have prominent top-down causality compared to bottom-up causality.
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Figure S14: Spatial distribution of Granger causality strength per electrode for all relevant sessions. (Left
column) Schematic representation of the electrode locations overlaid with the mean top-down signal strength B
per electrode (see Coherence and Granger causality for a description of B). (Center column) Receptive field (RF)
map overlaid with the mean B per electrode. Stronger B is found around the foveal region of V1. (Right column)
Mean B displayed against the distance from the fovea.
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Figure S15: Spectral power, coherence, and Granger causality for the electrodes with high causality strength
(B > 10) in sessions L RS 090817, L RS 100817, and A RS 150819. The data for each behavioural condition
(eyes-open/closed) were concatenated and their metrics reported separately. Thick line shows median across
electrodes (or pairs of electrodes) and shading indicates the 25th to 75th percentile (top row for each session).
The difference between eyes-open and eyes-closed was calculated for each electrode or pair of electrodes (bottom
row for each session).
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Figure S16: Time-dependent spectral Granger causality reveal higher top-down signals in the eyes-open periods.
a Time evolution of the log odds (top), and the spectral Granger causality difference for a representative sample
of V1-V4 electrodes (bottom). The sample electrodes were the same as in Figure 5a. b Causality difference
median (line) and 25th to 75th percentiles (shade) in each manifold for one sample V1-V4 electrode pair. Beta
frequency range highlighted. c Quantification of beta-band causality difference B(t) over time (in each manifold)
for all V1-V4 and V1-DP electrodes in all sessions—using Welch’s t-test.
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Figure S17: Analysis of the V1 LFP spectrogram. a Log odds identifying the neural manifolds (as in Figure 2a),
and time-varying spectrum of a sample V1 electrode (session L RS 250717, power normalised for each frequency).
b Spectrum of a sample V1 electrode (session L RS 250717). Colours indicate the different manifolds. c Result of
t-test in the low frequency band (less than 12 Hz) for all V1 electrodes. As expected, the overwhelming majority
of electrodes displays higher low frequency power when the eyes are closed.
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Figure S18: Top-down signals are not correlated with gaze direction. a Sample traces of the beta-band Granger
causality difference, gaze direction (Eye X, Eye Y), and gaze movement speed (

√
∆X2 +∆Y2). b Sample beta

causality difference over the gaze locations. Higher top-down causality is not concentrated in particular regions.
c Histograms of Pearson correlation coefficients between time-dependent causality difference and gaze signals,
computed for all electrode pairs in all sessions. Significant (p < 0.01 two-tailed) part of histograms shown in
orange. Note that we did not correct for multiple testing, since reducing the p-value threshold would simply
reinforce our finding that no strong correlation was present between the gaze and the top-down signals; i.e.,
no multiple testing correction was the more conservative approach in this case. d Scatter plot of the summed
time-independent causality difference against the correlation with gaze direction and movement. There is no clear
relation between B(t)-gaze correlation and causality strength.
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Figure S19: Closer look at the V1 and V4 MUAe around the transitions between the two manifolds in session
L RS 250717.
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