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0.034, see Figure 4A). Moreover, phrases with a consistent head position were tracked more 332 
strongly than phrases with a varying head position (V-Adv > V-Adv-Alt, Δ = 0.042, p = 0.012). 333 
We also found stronger tracking for V-N than for both V-Adv-Alt (Δ = 0.010, p < 0.001) and 334 
N-R (Δ = 0.103, p < 0.001), and stronger tracking for V-Adv than for N-R (Δ = 0.046, p = 0.008). 335 
There was no difference between V-Adv-Alt and N-R (Δ = 0.004, p = 0.772).  336 

 337 

 338 
Figure 4. (A) Pairwise comparisons of 1-Hz peaks in ITPC. (B) Boxplot of ITPC grouped by 339 
STRUCTURAL and SEQUENTIAL regularities, where [+SEQ, +STRUCT] = V-Adv, [-SEQ, +STRUCT] 340 
= V-Adv-Alt, [+SEQ, -STRUCT] = N-R, and [-SEQ, -STRUCT] = R-R. Asterisks indicate the results 341 
of post-hoc comparisons following a two-way repeated measures ANOVA. (C) Scatter plot and 342 
least-squares linear regression fitted between ITPC and TP in all grammatical conditions. Mean 343 
TP values of each condition were used as the predictor. The shaded area indicates 95% 344 
confidence interval. Significance: *, p < .05; **, p < .01; ***, p < .001. 345 
 346 
The ITPC results show that the brain is sensitive to both sequential and structural regularities. 347 
The next question is whether these effects are independently additive or whether they interact 348 
with one another. To test this, we ran a two-way repeated measures analysis of variance 349 
(ANOVA) on a subset of the data (see Figure 4B). In this subset, the two factors STRUCTURAL 350 
and SEQUENTIAL regularities were fully orthogonalized, yielding the following four groups: V-351 
Adv ([+SEQ, +STRUCT], V-Adv-Alt [-SEQ, +STRUCT], N-R [+SEQ, -STRUCT], and R-R [-SEQ, -352 
STRUCT]). As expected, the ANOVA yielded significant main effects of both structural (FSTRUCT 353 
(1, 19) = 13.13, p = 0.002) and sequential regularities (FSEQ (1, 19) = 6.86, p = 0.017). While, the 354 
interaction was not significant (Finteraction(1, 19) = 0.33, p = 0.572), the results in Figure 4B 355 
nevertheless suggest that the effect of SEQUENTIAL regularity is not the same for conditions 356 
with vs. without STRUCTURAL regularity. A post-hoc analysis on estimated marginal means52 357 
tentatively confirmed this suspicion. Regarding the role of sequential regularity, when the 358 
stimuli contained grammatical structure, adding sequential regularity increased ITPC ([+SEQ, 359 
+STRUCT] > [-SEQ, +STRUCT], β = 0.042, SE = 0.014, t(19) = 2.85, p = 0.012). However, this 360 
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effect of sequential regularity vanished when the stimuli contained no grammatical structure 361 
([+SEQ, -STRUCT] = [-SEQ, -STRUCT], β = 0.032, SE = 0.019, t(19) = 1.68, p = 0.140). The role 362 
of structural regularity, instead, appears to be more consistent. Adding structural regularity 363 
increased ITPC, both when there was sequential regularity in the stimuli  ([+SEQ, +STRUCT] > 364 
[+SEQ, -STRUCT], β = 0.046, SE = 0.016, t(19) = 2.96, p = 0.008) and when there was no 365 
sequential regularity in the stimuli ([-SEQ, +STRUCT] > [-SEQ, -STRUCT], β = 0.036, SE = 0.014, 366 
t(19) = 2.61, p = 0.017). All p-values reported for the post-hoc analysis were adjusted with 367 
Tukey’s method. Thus, it appears that the effect of STRUCTURAL regularity was more robust 368 
than the effect of SEQUENTIAL regularity: the effect of structural regularity showed up even in 369 
the face of sequential inconsistency, but the effect of sequential regularity was dependent on 370 
the presence of structure. We do note that these post-hoc pairwise comparisons should be 371 
interpreted with caution, because the interaction in the two-way ANOVA was not significant. 372 

As an additional control analysis, we used a linear regression analysis to test if the 1-373 
Hz ITPC effects can be explained by the transitional probabilities (TPs) of the two-word 374 
combinations in the different conditions. This analysis included the conditions V-N, V-Adv, and 375 
V-Adv-Alt. The condition N-R was not included because there were not enough N-R bigrams 376 
in the Wikipedia corpus to compute a sufficiently representative average TP for these non-377 
grammatical combinations. The bigram TP of a phrase w1w2 was computed as the probability 378 
of encountering that phrase divided by the probability of encountering all other two-word 379 

phrases starting with w1, or 𝑃(𝑤2|𝑤1) =
௉(௪ଵ௪ଶ)

௉(௪ଵ#)
. Word frequencies were extracted from the 380 

Chinese Wikipedia corpus used in a previous study13. ITPC on individual trials and average TP 381 
in the V-N, V-Adv, and V-Adv-Alt conditions were then entered into a linear regression model, 382 
which showed that TP did not reliably predict ITPC (Figure 4C; R2 = -0.016, β = 0.22, SE = 2.3, 383 
t(58) = 0.097, p = 0.923). Thus, while there might be differences between the conditions in 384 
terms of sequential statistics, this potential confound cannot explain the pattern of results we 385 
observed. 386 
 387 

3. Discussion 388 
In this EEG study, we investigated whether and how neural tracking of phrases in connected 389 
speech is modulated by regularities stemming from syntactic structure and from sequential 390 
lexical information. Besides robust syllable tracking in all conditions (Giraud & Poeppel, 2012), 391 
we observed tracking effects at the phrase rate in all conditions that contained a structural and/or 392 
sequential regularity at that rate. In line with the literature3–8,30, all grammatical conditions that 393 
can be characterized with a regular structural pattern elicited phrase-rate tracking, whether they 394 
contained sequential regularities (V-N, V-Adv) or not (V-Adv-Alt). These grammatical tracking 395 
effects were furthermore modulated by the syntactic properties of the phrases. Moreover, we 396 
found phrase-rate tracking in conditions with sequential lexical regularities, even in the absence 397 
of grammatical structure (N-R). In all, these findings suggest that the phrase-rate tracking effect 398 
is a general neural readout of regularity tracking, which is sensitive to the presence of different 399 
levels of linguistic representation.  400 
 401 
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3.1 Tracking structural regularities 402 
In both ITPC and evoked power, we observed 1-Hz phrase-rate tracking for all three conditions 403 
that contained grammatical structure (i.e., Verb-Noun, Verb-Adverb, and Verb-Adverb-404 
Alternation), which had a central-anterior scalp distribution in evoked power. Pairwise 405 
comparisons revealed effects of syntactic properties: verb phrases with complements were 406 
tracked more strongly than verb phrases with adjuncts (V-N > V-Adv), and verb phrases with a 407 
consistent head position were tracked more strongly than verb phrases with varying head 408 
positions (V-Adv > V-Adv-Alt). 409 

The overall pattern of phrase-rate tracking in grammatical conditions is not predicted 410 
by existing non-syntactic accounts. For instance, they cannot be explained by prosody53, 411 
because there is no difference between V-N and V-Adv sequences in either explicit prosodic 412 
structure (see Figure 5B) or implicit prosodic grouping (i.e., all grammatical conditions 413 
contained repetitions of verb phrases). Neither can these findings be captured in terms of 414 
differences in transitional probabilities34,36, because there was no reliable relationship between 415 
the magnitude of the tracking effects and bigram transitional probabilities across conditions 416 
(see Figure 4C). Alternatively, one might attribute the effect to the fact that V-N and V-Adv, as 417 
constructions, differ in frequency (e.g., the frequencies of the combinations V-N and V-Adv 418 
might be different). However, this presumes the representational capacity for syntactic 419 
abstraction in the first place. If people can compute statistics based on grammatical category 420 
combinations, they are able to represent syntactic structure extending beyond lexical 421 
representations. Frequency-based explanations of this kind must therefore be elaborated with 422 
structural language representations. 423 

Verb-noun phrases were tracked more closely than verb-adverb phrases. This effect of 424 
attachment type is consistent both with the theoretical distinction between complements and 425 
adjuncts and with their different processing characteristics. According to certain linguistic 426 
theories, complements and adjuncts are different in both syntax38,39 and semantics37. A potential 427 
processing-based explanation for increased phrase-rate tracking of complement phrases is that 428 
complements satisfy the selectional restriction of the verb, saturate its argument structure, and 429 
therefore reduce uncertainty in processing. Adjuncts, by contrast, only modify the verb without 430 
fulfilling any requirement, which does not significantly reduce uncertainty. The resulting 431 
uncertainty around adjunct attachment might yield increased variance in a stream of V-Adv 432 
structures, reducing phase coherence and hence phrase-rate tracking. 433 

Consistently head-initial phrases were tracked more closely than sequences with 434 
varying head position (effect of head position). The tracking difference between these 435 
conditions can be explained in terms of different positions of the grammatical head, which 436 
determines the syntactic status of the phrase and guides syntactic processing40,41,44–46. We find 437 
the head-position effect intriguing because it shows that the brain accomplishes a seemingly 438 
dichotomous task, namely tracking abstract linguistic structure while preserving structural 439 
detail. That is, it is unlikely that the head only serves as a salient landmark that repeatedly 440 
evokes a neural response or re-aligns neural oscillations1,10. If this were so, we should not have 441 
obtained consistent 1-Hz phrasal tracking in the V-Adv-Alt condition given the temporal 442 
fluctuation of several hundred milliseconds (i.e., phrase-initial and phrase-final heads randomly 443 
lagged by 500ms). Instead, the head position effect calls for a mechanism that resolves temporal 444 
inconsistency by inferring linguistic structure from the signal (cf.9). A candidate mechanism of 445 
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such kind is the “time-based binding” mechanism described in a computational model of neural 446 
oscillations54. This model infers structure from temporally unfolding signals to generate pulses, 447 
eventually rendering a consistent readout in the frequency domain. Under this framework, the 448 
effect of head position can be explained in terms of the temporal inconsistency associated with 449 
temporal binding: the 1-Hz peak in the V-Adv-Alt condition was lower than the 1-Hz peak in 450 
the V-Adv condition, because in the former case there was more temporal jitter in the brain’s 451 
generation of a periodic endogenous pulse (reflecting the composition of a verb phrase) in the 452 
absence of reliable physical cues. This proposal is compositional in the sense that higher-level 453 
units are hierarchically composed of low-level elements and decouples from constituent-level 454 
variance (e.g., head position inconsistency). Such a compositional theory aligns with 455 
neurobiological theories of language processing that include a combinatorial operation that 456 
hierarchically combines smaller elements into larger elements11,15,55–59. Our findings so far 457 
suggest that the process underlying phrasal tracking is likely sensitive to order (i.e., the 458 
timepoint at which structure building is initiated differs depending on the position of the head 459 
of the phrase) and detailed syntactic information (i.e., different types of syntactic structures 460 
elicit different degrees of tracking). These findings therefore enrich the neural tracking 461 
literature by showing how the tracking of phrases in connected speech is modulated by the 462 
specific syntactic properties of these phrases (cf. 3,5,7,8). 463 
 464 

3.2 Tracking sequential regularities 465 
In parallel with structural tracking effects, we observed phrase-rate tracking in conditions that 466 
exhibited a sequential lexical regularity at 1 Hz. This effect was more pronounced in 467 
grammatical conditions (V-N, V-Adv), but was also found in a condition where there is no 468 
grammatical structure at all (N-R). We interpret the N-R effect as indicating a sequential process 469 
external to grammatical structure. However, as we will discuss below, the sequential nature of 470 
the N-R effect cannot reduce all grammatical tracking effects to sequential regularities. 471 

Effects of sequential statistics are omnipresent in language processing. During sentence 472 
processing, word-level statistical information is activated in tandem with higher-level structural 473 
information to modulate neural activity60,61. Statistical information can also be exploited in the 474 
absence of grammatical structure, e.g., during speech segmentation33. Likewise, a recent 475 
frequency-tagging study62 reported multi-word tracking effects for sequences without any 476 
grammatical structure, when participants were instructed to perform a task tuned to specific 477 
semantic categories of the individual words (i.e., “detect two-word chunks consisting of living 478 
or non-living nouns”). Any pattern-recognition strategy operating over sequential, word-level 479 
information will yield a phrase-rate tracking readout if the presentation rate of the word-level 480 
features coincides with the frequency of phrases. In N-R sequences, participants heard a noun 481 
every other 500-ms word, hence this condition elicits a tracking effect at the 1-Hz phrase rate. 482 

This sequential strategy13 suffices to explain our findings in the N-R condition. 483 
However, it seems at odds with later studies8 showing no phrase-rate tracking in a “reversed 484 
phrase” condition (e.g., “fur dry skin rubs” vs. “dry fur rubs skin”) that, like our N-R condition, 485 
contained lexical regularities but no syntactic structure. A potential reason behind this 486 
difference is that the reversal of certain sentences affected the grammatical categories of their 487 
words. For instance, this study8 used derivational nouns involving a non-noun constituent and 488 
a suffix (e.g., the noun “teach-er”), of which a syllabic reversal breaks the desired part-of-489 
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speech pattern (e.g., “er-teach” is not a noun). Moreover, their sentences contained a number of 490 
disyllabic Chinese compound verbs, such as in the A-N-V-V sentence “red bird fly1 fly2”, which 491 
roughly means “the red bird flies”. Here, “fly1” and “fly2” are two distinct verbal morphemes 492 
that together form a verbal compound. As such, these sentences contain no lexical repetition at 493 
2 Hz, so the 2-Hz tracking effect likely stems from a combination of phrasal composition (the 494 
NP “red bird”) and morphological composition (the verbal compound “fly1 fly2”). In the 495 
reversed version of this type of sentence (i.e., a N-A-V-V sequence “bird red fly2 fly1”), there 496 
is again no lexical repetition. Reversing the sentence also breaks the NP and the compound, 497 
which can explain why they did not observe a 2-Hz phrase-rate tracking effect for reversed 498 
sentences. 499 

While being consistent with the N-R effect, the sequential strategy fails to explain the 500 
effects in other conditions. First of all, the 1-Hz effect in N-R had a posterior scalp distribution 501 
in evoked power, quite different from the central-anterior distribution of the effects in V-N and 502 
V-Adv (see Figure 3B). Though phrase-rate tracking effects converged in the frequency spectra, 503 
different processing strategies underlying tracking effects appear distinguishable in terms of 504 
topography. A spatial distinction underlying phrase-rate tracking was also discovered62, who 505 
found more widespread left-temporal activation associated with grammatical grouping as 506 
compared with non-grammatical, task-induced grouping. Second, a word-level tracking 507 
mechanism cannot explain the presence of phrase-rate tracking in V-Adv-Alt. Here, there is no 508 
consistent word-level regularity at the phrase rate at all, so the 1-Hz peak cannot come from the 509 
tracking of word-level features alone. Last, an exploratory analysis of the potential interaction 510 
between structural and sequential regularities showed that the magnitude of sequential tracking 511 
was boosted by adding structure (Figure 4B), suggesting that structural and sequential effects 512 
were not identical in nature and that the presence of grammatical structure increases the neural 513 
sensitivity to sequential regularity. While preliminary, this pattern suggests that structural and 514 
sequential information may go hand in hand in the service of extracting structured meaning 515 
from spoken language. 516 
 517 

3.3 A regularity-based hybrid account of phrase-rate tracking 518 
In this section, we motivate and elaborate on a hybrid account of phrase-rate tracking where 519 
regularities at multiple levels are required to explain neural patterns. This account receives 520 
justification directly from a comparison between the observed pattern of phrase-rate tracking 521 
and the predicted patterns under different theoretical hypotheses (see Figure 2). We consider a 522 
hybrid account most plausible, given a discrepancy between the current data and existing 523 
accounts that place their explanatory emphasis on singular linguistic factors. The difference 524 
between V-N and V-Adv raises a challenge for prosodic accounts53, because prosodic grouping 525 
was identical across conditions (see also more discussion21). Phrasal tracking in V-Adv-Alt 526 
contradicts lexical accounts13,14, since there was no reliable lexical repetition in this condition. 527 
And although the gradience within syntactic effects favors a syntactic explanation3,5,8, N-R does 528 
not contain grammatical structure at all, indicating that a purely syntactic account is not 529 
adequate either. To integrate our findings and the abovementioned accounts, we provide a 530 
hybrid explanation for the phrase-rate processing of connected speech sequences below.  531 

In the end, we arrive at a potential account in which the brain tracks regularities 532 
stemming from syntactic structure and from sequential lexical information. Given that language 533 
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processing is situated in a biological organ sensitive to multiple levels of information11,15,63, 534 
neither structural nor sequential regularities are unique to the neural tracking of language. 535 
Instead, we suggest rigorous dissection9 of, for example, auditory14, lexical13, and task-536 
modulated aspects62 of this frequency-tagged readout. The prospect of such an idea is supported 537 
by the recent progress of neuro-computational language models in explaining neural data19,64,65.  538 

To summarize, this study shows that phrase-rate neural tracking is sensitive to 539 
regularities at multiple representational levels. As regularities can be computed over both the 540 
sequential pattern of lexical information and the hierarchical structure of phrasal units, our 541 
findings call for a neurobiological account of language processing where the brain leverages 542 
regularities computed over multiple levels of linguistic representation to guide rhythmic 543 
computation, and which seeks to integrate the contributions of structural and sequential 544 
information to language processing and to behavior. 545 
 546 

4. Methods 547 

4.1 Participants 548 
Twenty-two native speakers of Mandarin Chinese participated in this study (15 females, mean 549 
age = 27.3, SD = 4.19) at the Max Planck Institute for Psycholinguistics (MPI). All subjects 550 
were reimbursed for their time (27 euros for 2.5 hours). Written informed consent was obtained 551 
prior to the experiment. This study was approved by the Ethics Committee of the Faculty of 552 
Social Sciences at Radboud University Nijmegen. The entire procedure was performed in 553 
accordance with relevant guidelines and regulations. 554 
 555 

4.2 Stimuli and design 556 
Participants listened to streams of monosyllabic Mandarin Chinese words that were 557 
isochronously presented at 2 Hz (see Figure 5A; the full stimulus list can be found in the 558 
Supplementary Materials). There were six conditions in total (see Table 1 for examples), 559 
consisting of repetitions of: verb-noun phrases (V-N), verb-adverb phrases (V-Adv), verb-560 
adverb phrases with varying order (V-Adv-Alt), combinations of a noun and a pseudorandom 561 
word (N-R), pseudorandom words (R-R), and verb-verb combinations (V-V). In the N-R and 562 
R-R conditions, R words were chosen pseudorandomly rather than randomly because we had 563 
to make sure that no grammatical combinations were present. For instance, the R word in the 564 
N-R condition could never be a verb, as that could generate a subject-verb sequence. In the first 565 
three conditions (i.e., V-N, V-Adv, and V-Adv-Alt), the combination of two adjacent words 566 
yields two-word phrases, which occur at 1 Hz. These are the grammatical conditions. In the 567 
latter three (i.e., N-R, R-R, and V-V), no grammatical combinations could be formed by 568 
combining adjacent words, which makes them non-grammatical conditions. Furthermore, the 569 
conditions V-N, V-Adv and N-R contain a sequential regularity at 1 Hz, because one or more 570 
of their parts of speech are repeated every 1 second. The conditions V-Adv-Alt, R-R, and V-V 571 
contain no sequential regularities at 1 Hz.  572 

Monosyllabic words were first synthesized using Google Text-to-Speech (Mainland 573 
Standard Chinese, WaveNet-C, male voice, speech rate = 0.75). Their duration was adjusted to 574 
exactly 500 ms by either padding zeros to the edges or truncating exceeding signals. After 575 
length normalization, a sinewave ramping window was applied to the first and last 10% of each 576 
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signal to make the speech envelope more natural. Then, 48 words were concatenated into 577 
streams of 24 seconds. Figure 5B shows the power spectrum of the auditory streams of each 578 
condition, which was computed by first applying a Hilbert transform to the half-wave rectified 579 
speech signal to extract the temporal envelopes, and then applying a discrete Fourier transform 580 
to the down-sampled (200 Hz) envelope of the stimuli. The power spectrum of all conditions 581 
contains a clear peak at 2 Hz only, showing that the acoustic signals only contain information 582 
at the word rate and that the conditions cannot be distinguished acoustically. 583 

For each of the six conditions, we created 288 unique two-word combinations. These 584 
two-word combinations formed syntactic phrases in the grammatical conditions and non-585 
syntactic ‘phrases’ (two-word combinations) in the non-grammatical conditions. Each phrase 586 
was repeated twice in different halves of the experiment, so there were 576 phrases per 587 
condition in total. These were divided over 24 streams per condition, each of which contained 588 
24 phrases (i.e., 48 monosyllabic words per condition). These streams were then distributed 589 
over 24 blocks, with each block containing one stream from each of the six conditions. The 590 
order of conditions within each block was pseudo-randomized, and the order of the blocks 591 
across participants was counterbalanced. 592 

 593 

 594 
Figure 5. Schematic representation of the materials and experimental procedure. (A) Multi-595 
level linguistic units present in connected speech sequences (left) and hypothetical neural 596 
responses to different levels of linguistic representation (right). This is a toy illustration of the 597 
temporal unfolding of monosyllabic words (both every 500ms) and phrases (every 1000ms), 598 
with hypothetical neural responses reflecting the processing of words and phrases at the 599 
corresponding rates of presentation. (B) The spectrum of stimulus intensity reflects the average 600 
spectral amplitude of synthesized speech signals in the frequency domain. A spectral peak was 601 
present in all conditions only at 2 Hz, corresponding to the word rate. The six conditions were 602 
not acoustically different. (C) Illustration of an experimental trial in one condition. (This figure 603 
includes icons from Flaticon.com) 604 
 605 
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4.3 Procedure 606 
Participants listened to speech streams played through loudspeakers in a sound-proof and 607 
electromagnetically shielded room. They were instructed to sit still, blink normally and pay 608 
attention to the audio. After audio playback, they had to indicate by button press whether they 609 
thought the previous stream was “easy to understand”. Participants were implicitly informed 610 
through feedback in a practice block that grammatical sequences are easier to understand than 611 
non-grammatical sequences. This behavioral task served to keep participants’ attention focused 612 
on the stimuli in a natural way without invoking artificial and task-specific grouping strategies. 613 
We chose not to use a phrase- or syllable-detection/monitoring task3,4 after observing in pilot 614 
runs that such tasks make participants inclined to strategically group every two or four syllables, 615 
even in non-grammatical conditions. The experiment was divided into 24 blocks. Participants 616 
were allowed to take short breaks after each block. The interval between trials ranged randomly 617 
from 800 to 1100 ms. The structure of each trial is illustrated in Figure 5C. 618 
 619 

4.4 EEG recording 620 
EEG signals were recorded using an MPI custom ActiCAP 64-electrode montage (Brain 621 
Products, Munich, Germany), of which 59 electrodes were mounted in the electrode cap. 622 
Horizontal eye movements were recorded by two electrodes placed on the outer canthi of the 623 
left and right eyes. Eye blinks were recorded by an electrode placed below the left eye. One 624 
electrode was placed on the right mastoid (RM), the reference electrode was placed on the left 625 
mastoid (LM) and the ground electrode was placed on the forehead. The EEG signal was 626 
amplified through BrainAmp DC amplifiers, referenced online to LM, sampled at 500 Hz and 627 
filtered with a passband of 0.016-249 Hz. The impedance of each electrode was kept below 25 628 
kΩ by applying electrolyte gel prior to data recording. 629 
 630 

4.5 EEG preprocessing 631 
EEG signals were preprocessed and analyzed with the Fieldtrip toolbox66 in the Matlab 632 
environment (Mathworks Inc., version 2021b). The EEG data were filtered with a 0.3-25 Hz 633 
bandpass filter and re-referenced to the average of the left and right mastoids (LM/RM). 634 
Channels that were malfunctioning or showed excessive drifts across the entire experiment 635 
were removed and then interpolated using the weighted average of their neighboring channels. 636 
Then, the data were epoched into single trials, from the onset of the third phrase (t = 2s; to avoid 637 
transient auditory ERP responses at stimulus onset) to the end of the sequence (t = 24s). Whole 638 
trials were rejected only if there was a consistent electrode-level artifact, such as excessive 639 
muscle movements or jumps. We used independent component analysis to regress out artifacts 640 
resulting from eye blinks and eye movements. Data from two participants were rejected during 641 
preprocessing. The data of one of them was very noisy due to excessive head movements (over 642 
60% of trials rejected). The other participant did not show reliable tracking at the syllable rate, 643 
which is at odds with robust findings that acoustic input reliably evokes spectral peaks at the 644 
corresponding frequency of presentation3–5,8,62. We excluded this participant because we 645 
consider syllable tracking to be a prerequisite for phrase tracking. 646 
 647 

4.6 Spectral analysis 648 
The preprocessed data were converted into the frequency domain by applying a discrete Fourier 649 
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transformation with a frequency resolution of 1/22 Hz (after removing the first two phrases, the 650 
duration of each trial was 22 seconds). We computed evoked power and ITPC between 0.3 and 651 
5 Hz. Evoked power was computed for each condition by first averaging over all trials in each 652 
condition and then applying a Fourier transform. ITPC at frequency f was computed as the 653 
mean of the squared sum of Fourier coefficients at f, which can be calculated with the formula: 654 
 655 

𝑅(𝑓) =
1

𝑘
቎൭෍cos𝜃௞
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+ ൭෍sin𝜃௞
௞

൱

ଶ

቏ 656 

 657 
where k denotes the number of trials for each condition and 𝜃௞  is the phase angle of the 658 
complex-valued Fourier coefficient. 659 
 660 

4.7 Statistical analysis 661 
We ran statistical tests on both power and ITPC at 1 and 2 Hz. For power, we tested if the 662 
amplitude at the target frequency was higher than the average of three neighboring frequency 663 
bins to its left. By only including left-neighboring bins, this analysis takes into account the 1/f 664 
trend in power spectra. For ITPC, we tested if the ITPC at the target frequency was higher than 665 
the average of three neighboring frequency bins on each side.  666 

Since power and ITPC in different frequency bins were not normally distributed, we 667 
ran non-parametric random permutation tests for peak detection. In each permutation, group 668 
labels (e.g., “target”, “neighbor”) were randomly assigned to observations from a merged 669 
sample containing all groups, resulting in permuted groups. Then, an arbitrary test statistic (here, 670 
we used the difference in mean between groups, denoted as Δ) was calculated for the 671 
permutation groups. Via 10,000 permutations, we created a sampling distribution of the values 672 
of the test statistic and calculated the probability of observing the actual experimental value 673 
under this sampling distribution. 674 

After detecting peaks in each individual condition, we first performed planned pairwise 675 
comparisons (paired samples t-tests) on ITPC between all conditions that showed a 1- or 2-Hz 676 
spectral peak to evaluate the contribution of detailed structural and/or sequential configurations. 677 
A false discovery rate (FDR) correction was performed after all pairwise comparisons to correct 678 
for multiple comparisons67. 679 
 680 
Data Availability 681 
Supplementary materials are uploaded with submission. The raw EEG dataset generated and 682 
used in the current study is available upon request. 683 
  684 
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