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Abstract 
Pooling MRI data from multiple datasets requires harmonization to reduce undesired inter-

site variabilities, while preserving effects of biological variables (or covariates). The popular 

harmonization approach ComBat uses a mixed effect regression framework that explicitly 

accounts for covariate distribution differences across datasets. There is also significant 

interest in developing harmonization approaches based on deep neural networks (DNNs), 

such as conditional variational autoencoder (cVAE). However, current DNN approaches do 

not explicitly account for covariate distribution differences across datasets. Here, we provide 

mathematical results, suggesting that not accounting for covariates can lead to suboptimal 

harmonization outcomes. We propose two DNN-based harmonization approaches that 

explicitly account for covariate distribution differences across datasets: covariate VAE 

(coVAE) and DeepResBat. The coVAE approach is a natural extension of cVAE by 

concatenating covariates and site information with site- and covariate-invariant latent 

representations. DeepResBat adopts a residual framework inspired by ComBat. DeepResBat 

first removes the effects of covariates with nonlinear regression trees, followed by 

eliminating site differences with cVAE. Finally, covariate effects are added back to the 

harmonized residuals. Using three datasets from three different continents with a total of 

2787 participants and 10085 anatomical T1 scans, we find that DeepResBat and coVAE 

outperformed ComBat, CovBat and cVAE in terms of removing dataset differences, while 

enhancing biological effects of interest. However, coVAE hallucinates spurious associations 

between anatomical MRI and covariates even when no association exists. Therefore, future 

studies proposing DNN-based harmonization approaches should be aware of this false 

positive pitfall. Overall, our results suggest that DeepResBat is an effective deep learning 

alternative to ComBat.  
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1 Introduction 
There is growing interest in combining MRI data across multiple sites, such as 

ENGIMA (Thompson et al., 2017) and ABCD (Volkow et al., 2018) studies. These so-called 

mega-analyses significantly advance neuroimaging research by increasing statistical power 

(Bethlehem et al., 2022; Marek et al., 2022), enhancing generalizability (He et al., 2022; Lu 

et al., 2022), and detecting subtle effects (Vogel et al., 2021; Tian et al., 2023). When pooling 

data across datasets, post-acquisition harmonization is necessary for removing undesirable 

variabilities across datasets, while preserving relevant biological information. A major source 

of undesirable cross-dataset heterogeneity is scanner differences across datasets (Magnotta et 

al., 2012; Chen et al., 2014; Hawco et al., 2018). In addition, the distributions of biological 

variables (e.g., demographics and clinical diagnosis) may also vary across datasets. These 

biological variables (also referred to as “covariates”) can have a large impact on MRI data 

(Hua et al., 2010), whose effects should be preserved after harmonization.  

A popular approach for harmonizing MRI data is via mixed effects modeling, such as 

ComBat (Fortin et al., 2017, 2018; Yu et al., 2018). ComBat removes additive and 

multiplicative site differences while including biological variables as covariates. For 

example, to perform a mega-analysis using several Alzheimer’s Disease (AD) dementia 

datasets, the ComBat model might be set up with hippocampal volume as the dependent 

variable, site as an independent variable, as well as age, sex and clinical diagnosis as 

covariates. Additive and multiplicate site effects are removed from the hippocampal volume, 

while the residual effects of age, sex and clinical diagnoses are retained. Several ComBat 

variants have been proposed to enhance harmonization performance (Garcia-Dias et al., 

2020; Pomponio et al., 2020; Wachinger et al., 2021). However, most ComBat variants 

harmonize brain regions separately, limiting their ability to eliminate nonlinear site 

differences spanning the brain regions.  

Deep neural networks (DNNs) are promising for eliminating nonlinear site differences 

distributed across the brain (Hu et al., 2023). Variational autoencoder (VAE)-based 

approaches (Moyer et al., 2020; Russkikh et al., 2020; Zuo et al., 2021; An et al., 2022) use 

an encoder to generate site-invariant latent representations from input MRI data. Site 

information is then concatenated to the latent representations to reconstruct the MRI data via 

a decoder. Generative adversarial networks (Dewey et al., 2019; Zhao et al., 2019; Modanwal 

et al., 2020; Bashyam et al., 2021), normalizing flow (Wang et al., 2021; Beizaee et al., 2023) 

and federated learning (Dinsdale et al., 2022) have also been explored. However, existing 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.574145doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

DNN approaches typically overlook the inclusion of covariates, which are explicitly 

controlled in mixed effects harmonization models (Fortin et al., 2017, 2018; Chen et al., 

2021). Since covariate distribution differences are unavoidable across datasets, neglecting 

covariates during harmonization can inadvertently remove relevant biological information, 

instead of reducing undesired dataset differences, leading to worse downstream performance. 

In Section 2.1, we show how a theoretical machine learning result (Tachet et al., 2020) can be 

used to understand this phenomenon.  

In this study, we propose two deep learning approaches: covariate VAE (coVAE) and 

deep residual batch effects harmonization (DeepResBat), which account for covariate 

distribution differences across datasets. coVAE extends conditional VAE (cVAE; Moyer et 

al., 2020) by concatenating covariates and site information with site- and covariate-invariant 

latent representations. On the other hand, DeepResBat adopts a residual framework inspired 

by the classical ComBat approach. DeepResBat first removes the effects of covariates using 

nonlinear regression trees, followed by eliminating unwanted site differences from the 

residuals with cVAE. Finally, covariate effects are added back to the harmonized residuals. 

We found that coVAE hallucinated spurious associations between anatomical MRI and 

covariates even when no association existed, suggesting that DNN-based harmonization 

approaches can introduce false positives during harmonization. On the other hand, 

DeepResBat effectively mitigated this false positive issue.  

The contributions of this study are multi-fold. First, we showed theoretically that 

ignoring covariate differences across datasets can lead to suboptimal harmonization 

outcomes. Second, we introduced a DNN-based harmonization approach DeepResBat that 

could account for covariate differences across datasets. DeepResBat outperformed ComBat 

(Fortin et al., 2017), CovBat (Chen et al., 2021) and cVAE (Moyer et al., 2020) across 

multiple evaluation experiments, including enhancing biological effects of interest, while 

removing unwanted dataset differences. Third, we demonstrated for the first time that DNN-

based harmonization approaches could potentially hallucinate relationships between 

covariates and MRI measurements even when none existed. Therefore, future studies 

proposing DNN-based harmonization approaches should be aware of this false positive 

pitfall. Although the current study focused on MRI data, our results are generally applicable 

to any field where instrumental harmonization is necessary, e.g., molecular biology (Johnson 

et al., 2007) and climate science (Iturbide et al., 2019). 
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2 Methods 
2.1 Motivation for accounting for covariates during harmonization 

Distribution differences in covariates, such as demographics and clinical diagnoses, 

across datasets are inevitable. Most deep learning harmonization approaches directly align 

distributions of latent representations across datasets without explicitly modeling covariate 

differences (Dewey et al., 2019; Zuo et al., 2021; Beizaee et al., 2023; Liu et al., 2023). 

Without explicitly accounting for these covariates, the covariates differences can be 

misinterpreted as undesirable dataset differences and wrongly removed by the harmonization 

algorithms. Here, we will formalize this phenomenon using a theoretical result from the 

machine learning literature (Tachet et al., 2020). 

More specifically, suppose we have two datasets 𝑆 and 𝑇 with target label 𝑌 and input 

data 𝑋. The goal is to predict 𝑌 using 𝑋. Suppose we have feature extractor 𝑔 that takes in 𝑋 

as the input with feature representation 𝑍 as the output. The feature representation 𝑍 is then 

entered into classifier ℎ to predict the target label. Let ϵ (ℎ ∘ 𝑔) and 𝜖 (ℎ ∘ 𝑔) be the 

expectation of classification errors when applying 𝑔 followed by ℎ to datasets 𝑆 and 𝑇 

respectively. Let 𝑌  and 𝑌  be the target label distributions in datasets 𝑆 and 𝑇 respectively. 

Let 𝑍  and 𝑍  be the distributions of the feature representation in datasets 𝑆 and 𝑇 

respectively. Then, Tachet des Combes and colleagues show that the following inequality is 

true: 

ϵ (ℎ ∘ 𝑔) + 𝜖 (ℎ ∘ 𝑔) ≥  
1
2 JS(𝑌 ∥ 𝑌 )  − JS(𝑍 ∥  𝑍 )

2
, (1) 

where JS(⋅ || ⋅) is the Jensen-Shannon divergence of two distributions. We note that the 

lowest possible error bound is zero. Therefore, assuming distributional differences between 

the target labels of the two datasets (i.e., JS(𝑌 ∥ 𝑌 ) > 0), then a lower bound of zero can 

only be achieved if the same distribution differences exist between the feature representations 

of the two datasets, i.e., JS(𝑍 ∥  𝑍 ) =  JS(𝑌  ∥ 𝑌 ). In other words, dataset-invariant 

representations (i.e., JS(𝑍 ∥  𝑍 ) = 0) lead to suboptimal classification performance (greater 

than zero error bound in Eq. (1)) if there exists distributional differences between the target 

labels of the two datasets (JS(𝑌 ∥ 𝑌 ) > 0).  

 To relate Eq. (1) to harmonization, we can think of 𝑔 as a harmonization procedure 

(instead of a feature extractor), and ℎ as a downstream task to predict covariates 𝑌 after 

harmonization. Therefore, if the distributions of covariates 𝑌 are different across datasets 

(i.e., JS(𝑌 ∥ 𝑌 ) > 0), blindly matching the distributions of brain imaging measures across 
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datasets in the harmonization process (i.e., JS(𝑍 ∥  𝑍 ) = 0) is suboptimal for the 

downstream task, i.e., error bound in Eq. (1) is greater than 0.  

For example, suppose we would like to harmonize two datasets with different 

distributions of healthy elderly participants and participants with Alzheimer’s disease (AD) 

dementia. Then, it is important to account for these distributional differences when 

harmonizing the datasets. This is typically not an issue for mixed effects harmonization 

approaches (such as ComBat and CovBat) since covariates are typically explicitly included. 

However, most deep learning approaches do not account for covariate distribution differences 

between datasets, which can potentially result in suboptimal downstream task performance.   

 

2.2 Datasets and preprocessing 

In this study, we proposed DNN models for harmonizing T1 anatomical MRI data. 

We will test the models using data from separate research initiatives: the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (Jack et al., 2008; Jack et al., 2010), the Australian Imaging, 

Biomarkers and Lifestyle (AIBL) study (Ellis et al., 2009, 2010) and the Singapore Memory 

Ageing and Cognition Centre (MACC) Harmonization cohort (Hilal et al., 2015; Chong et 

al., 2017; Hilal et al., 2020). All data collection and analysis procedures were approved by the 

respective Institutional Review Boards (IRBs), including the National University of 

Singapore IRB for the analysis presented in this paper. All three datasets encompass a range 

of modalities collected at multiple timepoints, such as MRI scans, cognition assessments, and 

clinical diagnoses. 

We utilized ADNI1 and ADNI2/Go data from ADNI (Jack et al., 2008; Jack et al., 

2010). For ADNI1, the MRI scans were collected from 1.5 and 3T scanners from different 

vendors (more details in Table S1). For ADNI2/Go, the MRI scans were acquired on 3T 

scanners. A total of 1,735 participants underwent at least one T1 MRI scan, resulting in 7,955 

scans scanned at multiple timepoints. 68 cortical and 40 subcortical regions of interest (ROI) 

were defined based on FreeSurfer (Fischl et al., 2002; Desikan et al., 2006). The volumes of 

the cortical and subcortical ROIs were provided by ADNI using multiple preprocessing steps 

(http://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/), followed by the FreeSurfer 

version 4.3 (ADNI1) and 5.1 (ADNI2/Go) recon-all pipelines, yielding a total of 108 

volumetric measures. 

 In the case of AIBL (Ellis et al., 2009, 2010), the MRI scans were collected from 

1.5T and 3T Siemens (Avanto, Tim Trio, and Verio) scanners (see Table S2 for more 

information). There were 495 participants with at least one T1 MRI scan, resulting in 933 
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MRI scans across multiple timepoints. The FreeSurfer 6.0 recon-all pipeline was employed to 

extract the volumes from 108 cortical and subcortical ROIs. 

In the case of MACC (Hilal et al., 2015; Chong et al., 2017; Hilal et al., 2020), the 

MRI scans were collected from a Siemens 3T Tim Trio scanner. There were 557 participants 

with at least one T1 MRI scan. There were 1197 MRI scans across the different timepoints of 

the 557 participants. Similar to AIBL, we utilized the FreeSurfer 6.0 recon-all pipeline to 

extract the volumes of 108 cortical and subcortical ROIs. 

 

2.3 Workflow 

To compare different harmonization approaches, we harmonized brain ROI volumes 

between ADNI and AIBL, as well as ADNI and MACC. Figure 1 illustrates the workflow in 

this study using AIBL as an example. The procedure was the same for harmonizing ADNI 

and MACC.  

Following our previous study (An et al., 2022), the Hungarian matching algorithm 

(Kuhn, 1955) was first applied to match a subset of participants with similar age, sex, 

MMSE, and clinical diagnosis distribution between ADNI and AIBL datasets (Figure 1A). 

The distributions before and after matching are shown in Figure S1. When matching the 

ADNI and AIBL datasets, we obtained 257 matched participant pairs. When matching the 

ADNI and MACC datasets, 277 matched participant pairs were obtained. Notably, not all 

time points had corresponding MMSE and clinical diagnosis information. Therefore, care 

was taken to ensure that all timepoints in the matched participants had both MMSE and 

clinical diagnosis. We ensured that each participant’s scans were all categorized as either 

“matched” or “unmatched” without splitting the participant’s scans across categories. The 

quality of the matching procedure was assessed through statistical tests, whose p values are 

reported in Tables S3 to S9. All p values were greater than 0.05.  

The resulting unmatched participants were used to train and tune various 

harmonization approaches (Figure 1B). After model fitting, the trained harmonization models 

were applied to harmonize matched and unmatched participants. Three evaluation 

experiments were performed (Figure 1C). First, as a common evaluation practice (Hu et al., 

2023), a machine learning model was trained to investigate whether harmonization could 

effectively reduce dataset differences by predicting which dataset a participant came from 

(more details in Section 2.8). Second, we evaluated whether harmonization led to stronger 

associations between harmonized ROI volumes with the covariates of interest (more details in 

Section 2.9). Finally, an exhaustive false-positive permutation test was carried out, involving 
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240,000 GPU hours and 360,000 CPU hours. This test aimed to assess whether deep 

harmonization models might introduce spurious associations (i.e., false positives) between 

anatomical MRI and randomly permuted covariates when no association exists (more details 

in Section 2.10). In evaluations where training was necessary (dataset prediction and false 

positive experiments), unmatched participants were used as the training and validation sets 

for the evaluation experiments, while the matched participants were used as the test set. 

 
Figure 1. Workflow of study. We illustrate the workflow using ADNI and AIBL. The same 
procedure was applied to ADNI and MACC. (A) ADNI and AIBL participants were matched 
based on age, sex, mini mental-state examination (MMSE) and clinical diagnosis. The 
unmatched participants were used for training and tuning harmonization and evaluation 
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models. The matched participants served as the test set for harmonization evaluation. (B) 
Left: Train harmonization models with unmatched participants. Right: Apply trained 
harmonization models on both unmatched and matched participants. (C) Three sets of 
evaluation experiments were tested on matched harmonized participants: dataset prediction 
experiment, association analysis and false positive experiment. In evaluations where training 
was necessary (dataset prediction and false positive experiments), unmatched participants 
were used as the training and validation sets for the evaluation experiments, while the 
matched participants were used as the test set. 
 
 
2.4 Training, validation and test procedure 

As described in section 2.3, the test set for evaluation (Figure 1C) consisted of 

matched participants. On the other hand, the unmatched participants were utilized for training 

both harmonization (Figure 1B) and evaluation models (e.g., dataset prediction and false 

positive experiments in Figure 1C).  

In the case of mixed effects models (ComBat and CovBat), there is no 

hyperparameter, so the data of all unmatched participants were used to fit the models. On the 

other hand, for the deep harmonization models, we have to tune the hyperparameters. 

Therefore, we divided the unmatched participants into 10 distinct groups. Notably, all 

timepoints belonging to a participant were assigned to a single group, thus avoiding any 

splitting of timepoints of a participant across different groups. For the training and tuning of 

the deep harmonization models on unmatched participants, a 9-1 train-validation split was 

employed, with 9 groups used for training and one group used as the validation set for 

hyperparameter tuning. This process was repeated 10 times, with each group serving as the 

validation set once. Subsequently, in the harmonization step (Figure 1B), we obtained 10 sets 

of trained harmonization models. These models were then applied to the unharmonized data, 

resulting in the generation of 10 harmonized data sets from both unmatched and matched 

participants.  

In the subsequent evaluation step (Figure 1C), the harmonized data of the unmatched 

participants were used to train and tune the evaluation models for dataset prediction (Section 

2.8) and false positive analysis (Section 2.10), following the same 9-1 train-validation split 

previously described. The harmonized data of the matched participants were designated as 

the test set to evaluate the harmonization performance. In the case of association analysis 

(Section 2.9), no evaluation model needed to be trained, so we directly applied general linear 

models (GLMs) and multivariate analysis of variance (MANOVA) to the harmonized data of 

the matched participants to obtain association results. 
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2.5 Baseline harmonization models 

Here, we considered ComBat (Johnson et al., 2007), CovBat (Chen et al., 2021), and 

cVAE (Moyer et al., 2020) as baseline models. 

 

2.5.1 ComBat 

ComBat is a mixed effects model that controls for additive and multiplicative site 

effects (Johnson et al., 2007). Here we utilized the R implementation of the algorithm 

(https://github.com/Jfortin1/ComBatHarmonization). The ComBat model is as follows: 

𝑥 = 𝛼 + 𝑌 𝛽 + 𝛾 + 𝛿 𝜖  , (2) 

where 𝑖 is the site index, 𝑗 is the participant index, and 𝑣 indexes the brain ROI volumes.  𝑥  

is the volume of the 𝑣-th brain ROI of participant 𝑗 from site 𝑖. 𝛾  is the additive site effect. 

𝛿  is the multiplicative site effect. 𝜖  is the residual error term following a normal 

distribution with zero mean and variance δ2. 𝑌  is the vector of covariates of participant 

𝑗 from site 𝑖. In this study, we chose age, sex, MMSE, and clinical diagnosis as covariates. 

The ComBat parameters 𝛼 , 𝛽 , 𝛾  and 𝛿  were estimated for each brain region 

using the unharmonized ROI volumes of all unmatched participants (Figure 1B). The 

estimated parameters can then be applied to map a new participant 𝑖 from site 𝑗 to 

intermediate space with brain regional volume 𝑥  and covariates 𝑌 . 

𝑥 =
𝑥 −  𝛼 − 𝑌 𝛽 − 𝛾  

𝛿
 + 𝛼 + 𝑌 𝛽 , (3) 

where  ̂ indicates that the parameter was estimated from the unmatched unharmonized ROI 

volumes from ADNI and AIBL. A separate ComBat model was fitted for harmonizing ADNI 

and MACC brain regional volumes.  

 

2.5.2 CovBat 

CovBat is a mixed effect harmonization model built on top of ComBat to remove site 

effects in mean, variance, and covariance (Chen et al., 2021). We utilized the authors’ R 

implementation of the algorithm (https://github.com/andy1764/CovBat_Harmonization). 

There are four main steps in CovBat harmonization. First, ComBat (Section 2.5.1) is applied 

to the volume of each brain region. to obtain ComBat adjusted residuals: 

𝑒 =
𝑥 − 𝛼 − 𝑌 𝛽 − 𝛾  

𝛿
, (4) 
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For participant 𝑖 of site 𝑗, the ComBat-adjusted residuals of all regional volume can be 

concatenated into a column vector 𝑒 . These vectors can in turn be concatenated across 

all participants of all sites into the matrix 𝐸 , where the number of columns is equal to 

the total number of participants and the number of rows is equal to the number of brain 

regional volume. 

Second, principal component analysis (PCA) is applied to 𝐸  to obtain 𝑞 

principal component (PC) scores and PCs, where 𝑞 is the rank of the matrix 𝐸 . 

Therefore, we can write 𝑒  as 

𝑒 = 𝜉 𝜙
=1

, (5) 

where 𝜉  is the 𝑘-th PC score of participant 𝑖 of site 𝑗, and 𝜙  is 𝑘-th PC.  

Third, each of the top 𝐾 PC scores were harmonized using a second round of 

ComBat, thus yielding 𝜉 . 𝐾 was selected to explain the 95% percentage of variance. The 

remaining PC scores were not harmonized. Finally, the harmonized brain ROI volumes are 

projected to intermediate space after model fitting: 

𝑒 =  𝜉
=1

𝜙 + 𝜉 𝜙
=

, (6) 

𝑥 = 𝑒 + 𝛼 + 𝑌 𝛽 , (7) 

Consistent with ComBat, we chose age, sex, MMSE, and clinical diagnosis as covariates. 

CovBat was fitted using all unmatched participants.  

For a new participant, 𝑒  was computed using the ComBat parameters estimated 

from the unmatched participants. The 𝑒  of the new participant was then projected onto 

the principal components (obtained from the unmatched particiapnts) to obtain principal 

component scores 𝜉 . The top 𝐾 scores were then harmonized using the second round of 

ComBat parameters estimated from the unmatched participants to obtain 𝜉 . Finally, 

Equations (6) and (7) were applied to obtain the harmonized ROI volumes of the new 

participant.  

Similar to ComBat, two separate CovBat models were fitted: one for harmonizing 

ADNI and AIBL brain regional volumes, and one for harmonizing ADNI and MACC brain 

regional volumes. 
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2.5.3 cVAE 

Moyer et al. (2020) introduced the conditional variational autoencoder (cVAE) model 

for harmonizing diffusion MRI data. In this paper, we applied the cVAE model to harmonize 

brain ROI volumes. Figure 2A shows the architecture of the cVAE model. The input brain 

volumes 𝑥 (𝑥 denotes brain volumes of all regions: 𝑥1, 𝑥2 … 𝑥 , … 𝑥108) were processed 

through an encoder deep neural network (DNN) to obtain the latent representation 𝑧. The 

one-hot site vector 𝑠 was concatenated with the latent representation 𝑧 and then fed into the 

decoder DNN, producing the reconstructed brain volumes 𝑥. To encourage the independence 

of the learned representation 𝑧 from the site 𝑠, the cost function incorporated the mutual 

information 𝐼(𝑧, 𝑠). The resulting loss function could be expressed as follows: 

𝐿 = 𝐿 +  𝛼𝐿 −  𝛾𝐿 +  𝜆𝐼(𝑧, 𝑠), (8) 

where 𝐿  was the mean square error (MSE) between 𝑥 and 𝑥, thus encouraging similarity 

between the harmonized 𝑥 and unharmonized volumes 𝑥. Additionally, Moyer et al. 

introduced the term 𝐿 , which was the soft-max cross-entropy loss of an adversarial 

discriminator aiming to differentiate 𝑥 and 𝑥, thereby further promoting their similarity. 

Finally, 𝐿  was the KL divergence term between representation 𝑧 and a multivariate 

Gaussian distribution with zero mean and identity covariance matrix (Sohn et al., 2015) to 

promote regularity and control over the latent space. This prior term will encourage the 

distributions of latent representations to be aligned across datasets, which can be problematic 

if there exists covariate differences between datasets (Section 2.1).  

The decoder and encoder components of the model were implemented as fully 

connected feedforward neural networks, where each layer was connected to the subsequent 

layer. Consistent with Moyer et al., the tanh activation function (Maas et al., 2013) was 

employed. During training, the variable 𝑠 represented the true site information associated 

with the input brain volumes 𝑥. After training, by setting 𝑠 to zero, the input 𝑥 could be 

mapped to an intermediate space. Training of the model was performed using the data from 

90% of the unmatched participants and hyperparameters were tuned using the data from 10% 

of the unmatched participants as validation set (Section 2.4). 

Hyperparameter tuning in the validation set involved optimizing a weighted sum of 

the reconstruction loss (MSE between 𝑥 and 𝑥) and the accuracy of participant-level dataset 

prediction: ½ MSE + Dataset Prediction Accuracy. The reconstruction loss (MSE) was 

halved to ensure comparability with the dataset prediction accuracy. Dataset prediction 

accuracy was determined by training an XGBoost classifier on the training set and evaluating 
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it on the validation set. To identify the best set of hyperparameters, the HORD algorithm 

(Eriksson et al., 2020; Regis & Shoemaker, 2013; Ilievski et al., 2017) was employed using 

the validation set (Table 1). The trained deep neural network (DNN) was then utilized for 

subsequent analyses after 1000 epochs of training. 

 

 
Figure 2. Model structure for cVAE, coVAE, and DeepResBat. (A) Model structure for the 
cVAE model. Encoder, decoder, and discriminator were all fully connected feedforward DNNs. 
s was the site we wanted to map the brain volumes to. (B) Model structure for the coVAE 
model. Site s and covariates y were input into the decoder to preserve covariates effects. 
Therefore, the main difference between cVAE and coVAE is the inclusion of covariates y.  (C) 
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Model structure for the DeepResBat model. The covariates effect estimator was an ensemble 
of XGBoost and linear models. Once the effects of covariates were removed (subtraction sign), 
the residual harmonizer was a cVAE model taking covariates-free residuals as input. The 
covariates effects were then added back to the cVAE output, yielding a final set of harmonized 
ROI volumes. 
 

Hyperparameter Search Range 

Initial learning rate 1e-2 – 1e-1 

Learning rate step 10 - 999 

Dropout rate 0 – 0.5 

𝛼 0.01 - 1 

𝛾 0.01 - 10 

𝜆 0.01 - 1 

Nodes for each layer 32 - 512 

Number of layers 2 - 4 

Node for z 32 - 512 

Table 1. Hyperparameters search ranges for cVAE on the validation set. We note that a 
learning rate decay strategy was utilized. After K training epochs (where K = learning rate 
step), the learning rate was reduced by a factor of 10.  
 

2.6 coVAE 

As highlighted in Section 2.1, accounting for covariates is essential for effective 

harmonization. Therefore, we extended the cVAE model to incorporate covariates as input, 

resulting in the covariate-VAE (coVAE) model, as shown in Figure 2B. More specifically, 

we concatenated site 𝑠 and covariates 𝑌 to obtain [𝑠, 𝑌]. The loss function was the same as 

cVAE (Eq. (8)) except that the mutual information loss term in Eq. (8) was modified to 

become 𝐼(𝑧, [𝑠, 𝑌]): 

𝐿 = 𝐿 +  𝛼𝐿 −  𝛾𝐿 +  𝜆𝐼(𝑧, [𝑠, 𝑌]). (9) 

Therefore, instead of minimizing the mutual information between 𝑧 and s, we minimize the 

mutual information between 𝑧 and [𝑠, 𝑌]. For the reconstruction, we concatenated latent 

representation 𝑧 with site 𝑠 and covariates 𝑌 as input to the decoder network.  

 Recall that the 𝐿  term was the KL divergence term between representation 𝑧 and 

a multivariate Gaussian distribution with zero mean and identity covariance matrix. This 

prior term therefore implicitly encouraged the alignment of the latent representations 𝑧 

between datasets. In the case of cVAE, the latent representation 𝑧 would contain covariate 

information. Therefore, cVAE would force the alignment of latent representations 𝑧 even if 
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the covariate distributions were different across datasets, which would be suboptimal (see 

Section 2.1). By contrast, because coVAE seek to minimize mutual information between 𝑧 

and [𝑠, 𝑌], so the latent representation 𝑧 would theoretically not contain covariate 

information. In this scenario, aligning the covariate-free and site-free latent representation 𝑧 

would make sense. 

 Consistent with ComBat (Section 2.5.1) and CovBat (Section 2.5.2), we chose age, 

sex, MMSE, and clinical diagnosis as covariates. The categorical covariates sex and clinical 

diagnosis were one-hot encoded for coVAE. Training of coVAE was performed using the 

data from 90% of the unmatched participants and hyperparameters were tuned using the data 

from 10% of the unmatched participants as validation set (Section 2.4). We used the HORD 

algorithm to search within the hyper-parameter ranges specified in Table 1 based on the 

validation set. Brain ROI volumes were mapped to intermediate space for subsequent 

analyses after 1000 training epochs. 

 Although coVAE appeared to be an intuitive straightforward extension of cVAE, as 

will be shown in the false positive analysis (Section 3.3), coVAE suffered from significant 

false positive rates. Therefore, in the next section, we proposed a second harmonization 

approach that could account for covariate distribution differences across datasets.  

 

2.7 DeepResBat 

Figure 2C illustrates our proposed DeepResBat approach. To motivate DeepResBat, 

we can write ComBat’s Eq. (2) into a more general form: 

𝑥 = 𝑓 𝑌 + 𝑔 (𝑖), (10) 

where 𝑖 is the site index, 𝑗 is the participant index, and 𝑣 indexes the brain ROI volumes. 𝑥  

is the 𝑣-th brain volume of participant 𝑗 from site 𝑖. 𝑌  are the covariates of participant 𝑗 from 

site 𝑖. In ComBat, 𝑓  is linear with  𝑓 𝑌 =  𝛼 + 𝑌 𝛽 , while 𝑔 (𝑖) =  𝛾 + 𝛿 𝜖  

accounts for both additive and multiplicative site effects. 

 To improve on ComBat, DeepResBat utilized nonlinear functions for 𝑓 and 𝑔. There 

are three stages for DeepResBat (Figure 2C). We first estimated the covariate effects 𝑓 using 

a nonlinear regression approach (Section 2.7.1). The covariate-free residuals from the first 

stage (𝑥 − 𝑓) were then harmonized using a generic deep learning approach, instantiated as 

cVAE in the current study (Section 2.7.2). The covariate effects from the first stage were then 

added back to the harmonized brain volumes from the second stage (Section 2.7.3).  
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 Consistent with ComBat, we chose age, sex, MMSE, and clinical diagnosis as 

covariates. Training of DeepResBat was performed using the data from 90% of the 

unmatched participants and hyperparameters were tuned using the data from 10% of the 

unmatched participants as validation set (Section 2.4). We used the HORD algorithm to 

search within the hyper-parameter ranges specified in Table 1 based on the validation set. 

Brain ROI volumes were mapped to intermediate space for subsequent analyses after 1000 

training epochs. 

 

2.7.1 Covariates effects estimation 

To estimate covariate effects, we first regressed out the linear effects of site for each 

brain ROI volume by fitting the following model, 

𝑥 = 𝛼 + 𝛾  + 𝜖 , (11) 

where 𝑥  is the 𝑣-th brain ROI volume for participant 𝑖 of site 𝑗, 𝛼  is the intercept term, 𝛾  

is the additive sites effect, and 𝜖  is the residual error term. The residual brain ROI volume 

𝑥  without linear site effects is obtained by 𝑥 = 𝑥 − 𝛾 . 

Before removing covariate effects, we first checked whether each covariate is actually 

related to any ROI brain volume in order to avoid the false positive issues exhibited by 

coVAE (Section 2.6). This check is performed in two stages. First, for each covariate, an 

XGBoost model (T. Chen & Guestrin, 2016) was trained to predict the covariate using all 

residual brain ROI volumes 𝑥 obtained from the previous step (Eq. (11)). XGBoost was 

chosen due to its efficacy with unstructured or tabular data (Grinsztajn et al., 2022; Shwartz-

Ziv & Armon, 2022) and its simplicity, allowing for fast training. For each covariate, the 

XGBoost model was trained using the training set (90% of unmatched participants) and 

hyperparameters were tuned using the validation set (10% of unmatched participants). We 

randomly sampled 50% of participants from the validation set and computed the correlation 

between the prediction and ground truth covariate. Pearson’s correlation and Spearman’s 

correlation were used for continuous and discrete covariates respectively. This sampling 

procedure was repeated 100 times. If the p values of the correlations were less than 0.05 for 

more than 95% of the repetitions, then we retained the covariate for the next stage.  

In the second stage, for each brain volume 𝑥 , an XGBoost model was trained to 

predict the brain volume using all survived covariates 𝑌. Once again, the training used the 

training set (90% of unmatched participants) and hyperparameters were tuned using the 

validation set (10% of unmatched participants). To ensure, we were not overfitting the 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.574145doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/


17 
 

covariate estimator, we again sampled 50% of participants from the validation set and 

computed the correlation between the prediction and ground truth covariate. Pearson’s 

correlation was used for evaluating brain ROI volumes’ predictions. This sampling procedure 

was repeated 100 times. If the p values of the correlations were less than 0.05 for more than 

95% of the repetitions, we retained the XGBoost model. If not, we fitted a linear model 

instead.  

Therefore, regardless of whether we ended up using a linear model or XGBoost, we 

obtained the covariates effect estimator 𝑓 𝑌  for each brain region 𝑣. The estimated 

covariates effects could then be subtracted from the original brain ROI volume, yielding 

covariate-free residuals: 

𝑟 = 𝑥 − 𝑓 𝑌 , (12) 

The residuals 𝑟  were presumably free from covariate effects, but retained unwanted 

variations from each dataset, which could be removed with a generic deep learning based 

harmonization approach in the next stage (Section 2.7.2). 

 

2.7.2 Covariate-free residuals harmonization 

In the second stage of DeepResBat, the covariate-free residuals 𝑟  were jointly fed 

into a deep learning based harmonization model 𝑔(⋅) for further harmonization. In the current 

study, we chose the cVAE model, although any deep learning harmonization model could be 

used. Similar to the cVAE baseline (Section 2.5.3), the cVAE was trained using the training 

set (90% of unmatched participants) and hyperparameters (Table 1) were tuned using the 

validation set (10% of unmatched participants) with the HORD algorithm.   

Following training, the covariates-free residuals were mapped to an intermediate 

space:  

�̂� = 𝑔(𝑟), (13) 

where 𝑟 was the covariate-free residuals and �̂� was the harmonized residual brain volumes.  

 

2.7.3 DeepResBat harmonization 

The final harmonized brain ROI volumes were then obtained by adding the estimated 

covariates effect from stage 1 and harmonized residual from stage 2 for each brain ROI 

volume:  

𝑥 = �̂� + 𝑓 𝑌 , (14) 
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where �̂�  was the harmonized residuals (Section 2.7.2) and 𝑓 𝑌  was the estimated covariate 

effects (2.7.1). 

 

2.8 Dataset prediction model 

As an evaluation metric, we employed XGBoost to predict the source dataset of the 

harmonized brain volumes (Figure 1C). The inputs to the XGBoost model were the brain 

volumes normalized by each participant's total intracranial volume (ICV). Due to the 10-fold 

cross-validation procedure described in Section 2.4, recall that the unmatched participants 

were divided into 10 groups of training and validation sets. Therefore, in the case of cVAE, 

coVAE and DeepResBat, there were 10 harmonization models and 10 sets of harmonized 

data for each participant. In the case of ComBat and CovBat, the models were fitted on all 

unmatched participants, so there was only one set of harmonized data for each participant. 

For each group of training and validation sets, an XGBoost classifier was trained 

using the training set and a grid search was conducted on the validation set to identify the 

optimal hyperparameters. To evaluate performance, the 10 XGBoost classifiers were used to 

predict the source dataset of the harmonized MRI volumes of the matched participants.  

The prediction accuracy was calculated by averaging the results across all time points 

of each participant and the 10 classifiers before further averaging across participants. To 

evaluate the harmonization quality between ADNI and AIBL, this evaluation procedure was 

applied to the ADNI and AIBL participants. The same procedure was applied to evaluate the 

harmonization quality between ADNI and MACC datasets. Lower prediction accuracies 

indicated that greater dataset differences were removed, suggesting better harmonization 

quality. 

 

2.9 Association analysis 

Lower dataset prediction accuracies (Section 2.8) indicate greater dataset differences 

were removed, but the removed dataset differences might contain important biological 

information, which should not be removed. Therefore, association analysis was also 

conducted to evaluate the ability of preserving relevant biological information (Figure 1C) 

during harmonization. The variables of interest included age, sex, clinical diagnosis, and 

MMSE. Univariate and multivariate association analyses were performed on matched 

participants using unharmonized or harmonized regional brain volumes from different 

approaches. As mentioned in previous sections, brain ROI volumes were harmonized by 
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mapping to intermediate space.  For the association analysis, we used the Python package 

statsmodels.  

We again reminded the reader that in the case of cVAE, coVAE and DeepResBat, 

there were 10 harmonization models and 10 sets of harmonized data for each participant. 

Therefore, the 10 sets of harmonized data were averaged for each matched participant before 

the association analysis was performed. In the case of ComBat and CovBat, there was only 

one set of harmonized data for each matched participant, so no averaging was necessary. 

 

2.9.1 Univariate association analysis 

Of the 108 brain regions, 87 regions are grey matter ROIs. We analyzed the 

associations between the 87 grey matter ROI volumes and covariates with GLM. Grey matter 

volumes are well-studied biomarkers correlated to age, sex, cognition, and AD dementia 

(Hutton et al., 2009; Hua et al., 2010; Blessed et al., 2018; van de Mortel et al., 2021).  

For each grey matter brain ROI volume and each harmonization approach, GLM 

models were fitted to evaluate the association between brain ROI volume and covariates. We 

fitted GLM separately for clinical diagnosis and MMSE to avoid cofounding. The GLM 

formulas were as follows: 

𝑥  ~ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝑀𝐶𝐼 + 𝐴𝐷 + 𝐼𝐶𝑉, (15) 

and 

𝑥  ~ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝑀𝑀𝑆𝐸 + 𝐼𝐶𝑉, (16) 

where 𝑥  was the 𝑣-th harmonized brain ROI volume, ICV was the estimated total 

intracranial volume. Z statistics for GLM's betas were utilized as evaluation metrics.  

 

2.9.2 Multivariate association analysis 

Multivariate analysis of variance (MANOVA) was applied to evaluate the 

multivariate association between 87 grey matter ROIs and covariates. As in Section 2.9.1, we 

conducted MANOVA separately for clinical diagnosis and MMSE. The fitted models were as 

follows: 

𝑥 ~ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝑀𝐶𝐼 + 𝐴𝐷 + 𝐼𝐶𝑉, (17) 

and 

𝑥  ~ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝑀𝑀𝑆𝐸 + 𝐼𝐶𝑉, (18) 

where 𝑥  referred to all harmonized grey matter brain ROI volumes and ICV was the 

estimated total intracranial volume.  
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2.10 False positive analysis 

To evaluate whether the harmonization approaches will hallucinate associations 

between covariates and harmonized ROI volumes when none exists, we performed a 

permutation analysis to evaluate false positive rates. For example, if we permuted age across 

participants, then the resulting harmonized brain ROI volumes should not associate with the 

permuted age.  

More specifically, when harmonizing ADNI and MACC, for each permutation, we 

randomly shuffled four covariates (age, sex, MMSE, and clinical diagnosis) together across 

(1) unmatched participants in the training set, (2) unmatched participants in the validation set 

and (3) matched participants. Harmonization models were then trained to harmonize brain 

ROI volumes based on the randomly shuffled covariates. As stated in Section 2.4, unmatched 

participants were used for training and tuning the harmonization models, and GLMs were 

performed in the matched harmonized participants.  

We expect the association between the randomly permuted covariates and harmonized 

brain ROI volumes to not exist. Therefore, we ran GLMs to validate our assumption via 

association analysis. The GLMs were run for each harmonized brain ROI volume with 

randomly shuffled covariates on matched participants. We considered 87 grey matter ROIs 

(see Section 2.9.1) to run the GLM. A diagnosis GLM (𝑥  ~ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝑀𝐶𝐼 + 𝐴𝐷 +

𝐼𝐶𝑉) and a cognition GLM (𝑥  ~ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝑀𝑀𝑆𝐸 + 𝐼𝐶𝑉) were fitted separately. Then 

for each permutation and each harmonized brain ROI volume, we obtained p values from the 

GLM corresponding to each covariate. 

This permutation procedure was repeated 1000 times. For each brain ROI volume 

harmonized by each harmonization model, we calculate the percentage of nominally 

significant p values below 0.05 across the 1000 p values from the 1000 permutations. The 

expected percentage across all grey matter ROIs is 5%, with a confidence interval (CI) of 

3.65% to 6.35% based on the normal approximation of the Binomial 95% CI (Eklund et al., 

2016). Percentage higher than 6.35% indicated that there were false positives. The same 

procedure was repeated for ADNI and AIBL datasets. 

 

2.11 Deep neural network implementation 

The DNNs developed in this paper were implemented using PyTorch (Paszke et al., 

2017) and executed on NVIDIA RTX 3090 GPUs with CUDA 11.0. The DNNs were 
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optimized using the Adam optimizer (Kingma & Ba, 2017) with the default settings provided 

by PyTorch. 

 

2.12 Statistical tests 

To assess distribution differences in age and MMSE between matched participants of 

AIBL and ADNI (as well as MACC and ADNI), two-sided two-sample t-tests were 

employed. For sex and clinical diagnoses, chi-squared tests were utilized to examine any 

significant distinctions. 

In the case of dataset prediction, the prediction performance was averaged over all 

time points of each participant and then across the 10 sets of models, resulting in a single 

prediction performance value for each participant. Therefore, this process yielded a vector of 

prediction performance for each dataset and harmonization approach, with each element 

corresponding to a particular participant. To compare the dataset prediction performance 

between the two harmonization approaches, a permutation test with 10,000 permutations was 

conducted. Each permutation involved randomly exchanging the entries between the 

performance vectors of the two approaches. A more detailed illustration of this permutation 

procedure can be found in Figure S2. 

Multiple comparisons were corrected with a false discovery rate (FDR) of q < 0.05. 

 

2.13 Data and code availability 

Code for the various harmonization algorithms can be found here (GITHUB_LINK). 

Two co-authors (CZ and PC) reviewed the code before merging it into the GitHub repository 

to reduce the chance of coding errors. 

The ADNI and the AIBL datasets can be accessed via the Image & Data Archive 

(https://ida.loni.usc.edu/). The MACC dataset can be obtained via a data-transfer agreement 

with the MACC (http://www.macc.sg/).   
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3 Results 
3.1 DNN models removed more dataset differences than classical mixed effect models 

Dataset prediction accuracies of matched participants are shown in Figure 3. Lower 

prediction accuracies indicated that greater dataset differences were removed, suggesting 

better harmonization quality.  

Figure 3A shows the dataset prediction performance for matched ADNI and AIBL 

participants. Without harmonization, an XGBoost classifier achieved 100% accuracy in 

identifying which dataset a participant's data came from. After applying mixed effect 

harmonization approaches (ComBat and CovBat), the prediction accuracy significantly 

dropped to 0.695 ± 0.376 (mean ± std) for ComBat, and 0.670 ± 0.383 for CovBat, indicating 

a substantial reduction in dataset differences. Deep learning approaches showed improved 

dataset difference removal, with performance of 0.595 ± 0.381 for cVAE and 0.592 ± 0.368 

for coVAE. Our proposed DeepResBat achieved an accuracy of 0.594 ± 0.375, which was not 

statistically different from the deep learning baselines (Table 2). Notably, all deep learning 

approaches exhibited significantly lower dataset prediction accuracies than mixed effect 

approaches, demonstrating the potential of deep learning for data harmonization. However, 

the dataset prediction accuracies of all deep learning approaches remained better than chance 

(p = 1e-4), indicating residual dataset differences. 

Similar outcomes were observed for matched ADNI and MACC participants (Figure 

3B). Without harmonization, the XGBoost classifier accurately predicted source datasets with 

100% accuracy. Mixed effect approaches, including ComBat and CovBat, reduced dataset 

differences to some extent, yielding accuracies of 0.752 ± 0.361 for ComBat and 0.740 ± 

0.370 for CovBat. All deep learning approaches (cVAE: 0.603 ± 0.391, coVAE: 0.558 ± 

0.418, DeepResBat: 0.608 ± 0.381) exhibited more effective removal of dataset differences 

than mixed effect approaches (Table 3). Our proposed DeepResBat achieved similar accuracy 

to cVAE with no statistical difference, but performed worse than coVAE, indicating room for 

improvement. However, coVAE introduced significant false positives (as will be shown in 

Section 3.3) and is therefore not an acceptable approach. Finally, the dataset prediction 

accuracies of all deep learning approaches remained better than chance (p = 1e-4), indicating 

the presence of residual dataset differences. 
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Figure 3. Dataset prediction accuracies. (A) Left: Dataset prediction accuracies for 
matched ADNI and AIBL participants. Right: p values of differences between different 
approaches. "*" indicates statistical significance after surviving FDR correction (q < 0.05). 
"n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC 
participants. All p values are reported in Tables 2 and 3. 
 

Dataset Prediction Accuracies 
（mean ± std） 

p values 

Unharm ComBat CovBat cVAE coVAE DeepResBat 

Unharmonized (1.000 ± 0.020)  1e-4 1e-4 1e-4 1e-4 1e-4 

ComBat (0.695 ± 0.376)   8e-4 1e-4 1e-4 1e-4 

CovBat (0.670 ± 0.383)    1e-4 1e-4 1e-4 

cVAE (0.595 ± 0.381)     0.5945 0.8931 

coVAE (0.592 ± 0.368)      0.8303 

DeepResBat (0.594 ± 0.375)       
Table 2. Dataset prediction accuracies with p values of differences between different 
approaches for matched ADNI and AIBL participants. Statistically significant p values after  
FDR (q < 0.05) corrections are bolded.  
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Dataset Prediction Accuracies 
（mean ± std） 

p values 

Unharm ComBat CovBat cVAE coVAE DeepResBat 

Unharmonized (1.000 ± 1e-16)  1e-4 1e-4 1e-4 1e-4 1e-4 

ComBat (0.752 ± 0.361)   0.0095 1e-4 1e-4 1e-4 

CovBat (0.740 ± 0.370)    1e-4 1e-4 1e-4 

cVAE (0.603 ± 0.391)     1e-4 0.7258 

coVAE (0.558 ± 0.418)      2e-4 

DeepResBat (0.608 ± 0.381)       
Table 3. Dataset prediction accuracies with p values of differences between different 
approaches for matched ADNI and MACC participants. Statistically significant p values after  
FDR (q < 0.05) corrections are bolded. 
 
 
3.2 DeepResBat enhanced associations between harmonized brain volumes and 

covariates 

Lower dataset prediction accuracies (Section 3.1) indicate greater dataset differences 

were removed, but the removed dataset differences might contain important biological 

information, which should not be removed. To evaluate whether relevant biological 

information is retained in the harmonization process, we performed univariate GLM and 

multivariate MANOVA analyses to evaluate the associations between harmonized volumes 

and covariates. Stronger associations between harmonized volumes and covariates suggest 

better enhancement of biological information after harmonization. 

 

3.2.1 DeepResBat outperformed baselines for univariate analysis 

Figures 4 and 5 show the results of the univariate GLM association analysis involving 

clinical diagnosis (Eq. (15)) in the ADNI-AIBL and ADNI-MACC matched participants 

respectively. Each dot in the plots represented a different brain region, so there are 87 dots in 

total. For age, MCI and AD dementia, more negative z values indicated greater atrophy due 

to aging and AD progression. Conversely, a lower MMSE indicates worse cognition, so more 

positive z values indicated greater atrophy related to worse cognition. For sex, the absolute z 

statistics were compared because there was no a priori expectation of positive or negative 

values, so a larger magnitude indicating a larger effect size. Therefore, in Figures 4 and 5, red 

indicates better performance by DeepResBat, while blue indicates worse performance. 
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Figure 4. Comparison of z statistics from GLM involving clinical diagnosis for 
DeepResBat and baselines on matched ADNI and AIBL participants. Each row compares 
DeepResBat and one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat 
(row 3), cVAE (row 4) and coVAE (row 5). Each column represents one covariate: age (column 
1), sex (column 2), MCI (column 3) and AD dementia (column 4). Each subplot compares z 
statistics of DeepResBat against another baseline for a given covariate across 87 grey matter 
ROIs. Each dot represents one grey matter ROI. Red dots indicate better performance by 
DeepResBat. Blue dots indicate worse performance by DeepResBat.   
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Figure 5. Comparison of z statistics from GLM involving clinical diagnosis for 
DeepResBat and baselines on matched ADNI and MACC participants. Each row compares 
DeepResBat and one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat 
(row 3), cVAE (row 4) and coVAE (row 5). Each column represents one covariate: age (column 
1), sex (column 2), MCI (column 3) and AD dementia (column 4). Each subplot compares z 
statistics of DeepResBat against another baseline for a given covariate across 87 grey matter 
ROIs. Each dot represents one grey matter ROI. Red dots indicate better performance by 
DeepResBat. Blue dots indicate worse performance by DeepResBat.    
 

In the case of matched ADNI-AIBL participants, DeepResBat yielded stronger 

associations between brain volumes and all covariates with respect to no harmonization 

(Figure 4 row 1), ComBat (Figure 4 row 2), CovBat (Figure 4 row 3) and cVAE (Figure 4 

row 4). When compared to coVAE, DeepResBat yielded weaker absolute z statistics for sex, 

similar z statistics for MCI and AD, and better z statistics for age. However, coVAE 

introduced false positives (as will be shown in Section 3.3) and is therefore not an acceptable 

approach. In the case of matched ADNI-MACC participants, DeepResBat yielded stronger 

associations between brain volumes and all covariates with respect to no harmonization 

(Figure 4 row 1) and all other baseline approaches (Figure 4 rows 2 to 5).  
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Similar conclusions were obtained for the univariate GLM association analyses 

involving MMSE (Eq. (16)) in the ADNI-AIBL (Figure S3) and ADNI-MACC (Figure S4) 

matched participants. 

 

3.2.2 DeepResBat outperformed baselines for multivariate analysis 

Figure 6 shows the results of the multivariate MANOVA association analysis involving 

clinical diagnosis (Eq. (17)) in the ADNI-AIBL and ADNI-MACC matched participants. The 

negative logarithm of p values was employed as the metric, where a larger negative logarithm 

of p values indicates a stronger association. Therefore, a higher bar in Figure 6 indicates 

better performance. 

 

 
Figure 6. Significance bar plot by MANOVA involving clinical diagnosis. A larger negative 
of log p value indicates a stronger association, and thus better performance. (A) Bar plot for 
matched ADNI and AIBL participants. (B) Bar plot for matched ADNI and MACC participants. 
 

In the case of matched ADNI-AIBL participants (left panel in Figure 6), DeepResBat 

yielded stronger associations between brain volumes and all covariates with respect to no 

harmonization, ComBat, CovBat and cVAE. When compared to coVAE, DeepResBat 

yielded weaker p values for sex, but stronger p values for age, MCI and AD. However, 

coVAE introduced false positives (as will be shown in Section 3.3) and is therefore not an 

acceptable approach. In the case of matched ADNI-MACC participants (right panel in Figure 

6), DeepResBat yielded stronger associations between brain volumes and all covariates with 

respect to no harmonization and all other baseline harmonization approaches.  

Interestingly, coVAE demonstrated inconsistent behavior for association with sex 

across different cohorts. In the ADNI-AIBL analyses, coVAE harmonized ROIs exhibited a 

strong association with sex (Figure 6A). By contrast, in the ADNI-MACC analyses, the 

association with sex was notably weak (Figure 6B). Conversely, DeepResBat displayed more 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.574145doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

stable performance across cohorts. The inconsistency of coVAE was also present in the 

univariate GLM analyses (Figures 4 and 5). 

Similar conclusions were obtained for the multivariate MANOVA association 

analyses involving MMSE (Eq. (18)) in the ADNI-AIBL and ADNI-MACC matched 

participants (Figure S5). 

 

3.3 CoVAE, but not DeepResBat, exhibited spurious associations between permuted 

covariates and harmonized brain volumes  

The harmonization models were retrained after permuting all four covariates: age, 

sex, diagnosis and MMSE (Section 2.10). The GLM association analyses (Section 2.9.1) 

were then rerun. Figure 7 illustrates the percentage of nominally significant p values (i.e., p < 

0.05) across 87 grey matter ROIs from 1000 permutations. More specifically, for each 

harmonized brain ROI volume, we calculated the percentage of nominally significant p 

values (i.e., p < 0.05) across 1000 p values corresponding to the 1000 permutations. The 

expected percentage of nominally significant p values across all grey matter ROIs should be 

5%, with a 95% confidence interval (CI) of 3.65% to 6.35% based on the normal 

approximation of the Binomial 95% CI (Eklund et al., 2016).  

 

 
Figure 7. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with 
clinical diagnosis after 1000 permutations of covariates. More specifically, each data point 
in the violin plot represents a brain ROI volume. Percentage is calculated based on the number 
of permutations in which p value of corresponding covariate was nominally significant (i.e., p 
< 0.05) divided by 1000 permutations. Percentage (vertical axis) is shown on a log scale. The 
black solid line is the expected percentage (which is 0.05), while the grey dashed lines indicated 
95% confidence intervals. (A) GLM analysis involving clinical diagnosis for matched ADNI 
and AIBL participants. (B) GLM analysis involving clinical diagnosis for matched ADNI and 
MACC participants.  
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In both ADNI-AIBL (Figure 7A) and ADNI-MACC (Figure 7B), not performing any 

harmonization yielded 5% nominally significant p values. ComBat, CovBat and DeepResBat 

also did not suffer from any spurious associations. However, coVAE yielded an inflated false 

positive rate in both ADNI-AIBL and ADNI-MACC, since the percentages of nominally 

significant p values were much greater than 5% for all covariates (Figure 7).  

To provide a different visualization of the results, Figure 8 shows the frequency 

distribution of p values for coVAE and DeepResBat in matched ADNI and AIBL 

participants. Each line in Figure 8 corresponded to a single brain ROI. The p values were 

divided into bins with a width of 0.05. Therefore, in the ideal scenario, the distribution of p 

values should follow a uniform distribution at a height of 0.05. For coVAE (Figure 8A) the 

frequency of p values within the 0-0.05 bin greatly exceeded 5% for all covariates. For 

DeepResBat (Figure 8B), there was a uniform distribution of p values for sex and AD. 

However, the distribution of p values for age and MCI were more conservative with less than 

5% of p values in the 0-0.05 bin. Similar results were obtained for matched ADNI and 

MACC participants (Figure 9). For coVAE (Figure 9A) the frequency of p values within the 

0-0.05 bin greatly exceeded 5% for all covariates. For DeepResBat (Figure 9B), the 

distributions of p values were uniform for all covariates. Visualization of p values 

distributions for no harmonization, ComBat and CovBat can be found in Figures S6 to S11. 

Similar conclusions were obtained for the GLM involving MMSE (Figures S12 to 

S14).  Furthermore, instead of permuting all four covariates, we also considered permuting 

only clinical diagnosis (Figure S15) or MMSE (Figure S16), yielding similar conclusions. 
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Figure 8. Frequency of p values of coVAE and DeepResBat for matched ADNI and AIBL 
participants by GLM involving clinical diagnosis based on 1000 permutations. Each line 
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the 
ideal scenario, the distributions of p values should follow a uniform distribution with a height 
of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p values for DeepResBat. 
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Figure 9. Frequency of p values of coVAE and DeepResBat for matched ADNI and 
MACC participants by GLM involving clinical diagnosis based on 1000 permutations. 
Each line corresponds to a single brain ROI. P values were binned in intervals of 0.05. 
Therefore, in the ideal scenario, the distributions of p values should follow a uniform 
distribution with a height of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p 
values for DeepResBat. 
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4 Discussion 
Current deep learning approaches for harmonization do not explicitly account for 

covariate distribution differences across datasets. As discussed in Section 2.1, ignoring 

covariates can lead to theoretically worse harmonization outcomes. We then proposed two 

DNN-based harmonization approaches, coVAE and DeepResBat, which explicitly accounted 

for covariate distribution differences across datasets. We demonstrated that DeepResBat 

outperformed mixed effects and deep learning baselines across three evaluation experiments 

involving three large-scale MRI datasets. 

More specifically, without any harmonization, XGBoost was able to predict almost 

perfectly which dataset a participant’s MRI volumes came from (Figure 3). After 

harmonization with mixed effects models (ComBat and CovBat), dataset classification 

accuracies dropped significantly, suggesting that ComBat and CovBat were able to remove 

some dataset differences. DNN-based harmonization approaches further reduced the 

classification accuracies, suggesting even greater removal of dataset differences.  

However, the removed dataset differences might contain important biological 

information, which should not be removed. Therefore, in the second experiment, we 

evaluated the strength of associations between the harmonized brain volumes and covariates 

(age, sex, MMSE and clinical diagnosis). Across both univariate GLM and multivariate 

MANOVA (Figures 4 to 6), we found that coVAE and DeepResBat yielded stronger 

associations between brain volumes and covariates. This suggests that coVAE and 

DeepResBat were retaining important biological information while removing undesirable 

dataset differences. Interestingly, DeepResBat was also more sensitive than coVAE, except 

for the association between brain volumes and sex in the matched ADNI and AIBL 

participants. Finally, cVAE exhibited weaker associations than ComBat, CovBat and even no 

harmonization (Figure 6), suggesting that cVAE was removing significant biological 

information in addition to unwanted dataset differences, thus providing empirical support for 

the theoretical discussion in Section 2.1. 

Given the flexible nature of DNNs, we were concerned that explicitly accounting for 

covariates could lead to spurious associations between harmonized brain volumes and 

covariates when no association existed. Our permutation test (Figures 7 to 9) supported our 

concerns in the case of coVAE. Although coVAE provided a natural (and in our opinion, 

elegant) extension of cVAE, we found significant false positive rates for coVAE. On the 
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other hand, DeepResBat was able to exhibit an expected amount of false positives, consistent 

with less flexible mixed effects models (ComBat and CovBat). 

Together, the three evaluation experiments suggest that DeepResBat is an effective 

deep learning alternative to ComBat. DeepResBat consisted of three steps: (1) regressed out 

the effects of covariates from the brain volumes, (2) followed by harmonizing the residuals, 

(3) and then adding the effects of covariates back to the harmonized residuals. Future 

research could investigate whether these three steps can be combined into a single 

optimization procedure by minimizing fitting Eq. (10) directly. However, we note that fitting 

Eq. (10) directly might lead to overfitting, yielding false positive issues, similar to coVAE.   

While our current implementation of DeepResBat utilized XGBoost to estimate 

covariate effects, other nonlinear regression approaches can be used. Furthermore, instead of 

using cVAE in the harmonization step, cVAE can be replaced with other harmonization 

approaches, such as generative adversarial networks (Bashyam et al., 2021). One advantage 

of cVAE is that the approach readily works for more than two datasets by extending the one-

hot encoding of sites. Therefore, although our experiments only harmonized pairs of datasets, 

DeepResBat can be readily applied to jointly harmonize three or more datasets.  

A drawback of DeepResBat is that our current implementation operates on summary 

measures (e.g., volumes or thickness), rather than at the image level (Zuo et al., 2021; 

Cackowski et al., 2023). Therefore, the harmonization procedure needs to be repeated for 

different summary measures (e.g., using a different brain parcellation). However, this 

disadvantage also means that DeepResBat can be applied to harmonize not just imaging data, 

but also any tabular data (e.g., micro-array data), suggesting the broad applicability of 

DeepResBat to any field where instrumental harmonization is necessary.  
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5 Conclusion 
In this study, we demonstrate the importance of incorporating covariates during 

harmonization. We propose two deep learning models, coVAE and DeepResBat, that account 

for covariate distribution differences across datasets. coVAE extends cVAE by concatenating 

covariates and site information with latent representations, while DeepResBat adopts a 

residual framework inspired by the classical ComBat framework. We found that coVAE 

introduces spurious associations between anatomical MRI and unrelated covariates, while 

DeepResBat effectively mitigates this false positive issue. Furthermore, DeepResBat 

outperformed ComBat, CovBat and cVAE in terms of removing dataset differences, while 

retaining biological effects of interest.  
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Supplementary Material 
Vendor Scanner Model Field Strength Number of scans 

GE  

Discovery  3T 595 
Genesis Signa 3T 273 

Signa Excite 1.5T 838 
3T 30 

Signa HDx 1.5T 464 
3T 42 

Signa HDxt 1.5T 212 
3T 405 

Philips 

Achieva 1.5T 67 
3T 481 

Gemini 3T 32 
Gyroscan Intera 1.5T 12 

Gyroscan NT 1.5T 2 
Ingenia 3T 84 

Ingenuity 3T 18 

Intera 1.5T 319 
3T 216 

Intera Achieva 1.5T 6 
3T 1 

Siemens 

Allegra 3T 48 
Avanto 1.5T 385 

Biograph 3T 12 
Espree 1.5T 22 

NUMARIS/4 1.5T 2 
Prisma 3T 2 

Prisma_fit 3T 3 
Skyra 3T 274 
Sonata 1.5T 371 

SonataVision 1.5T 25 
Symphony 1.5T 547 

SymphonyTim 1.5T 88 
Trio 3T 107 

TrioTim 3T 1371 
Verio 3T 601 

Table S1. Scanner information for 7955 scans in ADNI dataset. 
 
 
 

Vendor Scanner Model Field Strength Number of scans 

Siemens 
Avanto 1.5T 241 
TrioTim 3T 558 

Verio 3T 134 
Table S2. Scanner information for 933 scans in AIBL dataset. 
  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.574145doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

 Timepoint ADNI value AIBL value P value 

AGE 

1 71.0±5.5 70.8±5.3 0.96 

2 72.5±5.5 72.6±5.5 0.98 

3 74.2±5.5 73.9±5.6 0.93 

4 75.7±5.5 75.6±5.5 0.99 

MMSE 

1 29.3±0.9 29.2±0.9 1.00 

2 29.5±0.5 29.5±0.5 1.00 

3 29.7±0.5 29.7±0.5 1.00 

4 29.5±0.8 29.5±0.8 1.00 

AD diagnosis 

1 100%-0%-0% 100%-0%-0% 1.00 

2 100%-0%-0% 100%-0%-0% 1.00 

3 100%-0%-0% 100%-0%-0% 1.00 

4 100%-0%-0% 100%-0%-0% 1.00 

Sex - 50% 50% 1.00 

Table S3. ADNI-AIBL matching results for participants having 4 time points (scans). For 
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test. 
 
 

 Timepoint ADNI value AIBL value P value 

AGE 

1 73.3±3.3 73.1±3.3 0.96 

2 74.8±3.3 75.2±3.3 0.94 

3 76.3±3.3 76.1±3.3 0.97 

MMSE 

1 29.0±0.0 20.0±0.0 1.00 

2 30.0±0.0 30.0±0.0 1.00 

3 30.0±0.0 30.0±0.0 1.00 

AD diagnosis 

1 100%-0%-0% 100%-0%-0% 1.00 

2 100%-0%-0% 100%-0%-0% 1.00 

3 100%-0%-0% 100%-0%-0% 1.00 

Sex - 50% 50% 1.00 

Table S4. ADNI-AIBL matching results for participants having 3 time points (scans). For 
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test. 
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 Timepoint ADNI value AIBL value P value 

AGE 
1 74.4±9.8 74.5±9.8 0.99 

2 76.1±9.8 76.1±9.9 0.99 

MMSE 
1 27.9±2.8 27.9±2.8 1.00 

2 27.8±2.8 27.8±2.8 1.00 

AD diagnosis 
1 57%-43%-0% 57%-43%-0% 1.00 

2 57%-43%-0% 57%-43%-0% 1.00 

Sex - 88% 88% 1.00 

Table S5. ADNI-AIBL matching results for participants having 2 time points (scans). For 
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test. 
 
 

 Timepoint ADNI value AIBL value P value 

AGE 1 74.8±5.9 74.8±5.9 1.00 

MMSE 1 27.3±3.9 27.3±3.9 0.98 

AD diagnosis 1 68%-19%-13% 68%-19%-13% 1.00 

Sex - 43% 43% 1.00 

Table S6. ADNI-AIBL matching results for participants having 1 time point (scan). For 
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test. 
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 Timepoint ADNI value MACC value P value 

AGE 

1 71.5±6.8 72.3±6.7 0.67 

2 73.5±6.8 73.8±6.8 0.91 

3 75.9±6.9 75.5±6.6 0.81 

MMSE 

1 26.9±3.7 27.0±3.5 0.94 

2 26.1±4.5 26.1±4.5 0.98 

3 24.9±6.3 25.2±6.3 0.87 

AD diagnosis 

1 39%-46%-15% 36%-54%-10% 0.72 

2 43%-36%-21% 46%-36%-18% 0.88 

3 43%-36%-21% 46%-32%-22% 0.91 

Sex - 57% 57% 1.00 

Table S7. ADNI-MACC matching results for participants having 3 time points (scans). For 
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test. 
 
 

 Timepoint ADNI value MACC value P value 

AGE 
1 73.6±5.7 73.9±5.6 0.78 

2 75.8±5.6 75.5±5.6 0.71 

MMSE 
1 24.7±4.9 24.8±4.6 0.86 

2 23.4±6.9 23.5±6.6 0.91 

AD diagnosis 
1 35%-38%-27% 35%-40%-25% 0.80 

2 37%-30%-33% 37%-35%-28% 0.49 

Sex - 51% 58% 0.20 

Table S8. ADNI-MACC matching results for participants having 2 time points (scans). For 
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test 
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 Timepoint ADNI value MACC value P value 

AGE 1 75.7±6.7 75.7±6.7 0.97 

MMSE 1 21.0±5.9 21.0±5.9 0.94 

AD diagnosis 1 14%-34%-52% 14%-38%-48% 0.64 

Sex - 52% 56% 0.34 

Table S9. ADNI-MACC matching results for participants having 1 time points (scans). For 
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test. 
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Figure S1. Age, MMSE, sex and clinical diagnosis distributions before and after 
matching. (A) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and 
AIBL (red). Differences in the attributes between ADNI and AIBL were not significant after 
matching. (B) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and 
MACC (yellow). Differences in the attributes between ADNI and MACC were not 
significant after matching. P values showing the quality of the matching procedure are found 
in Tables S3 to S9. 
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Figure S2. Illustration of permutation test for comparing site prediction accuracies of 
ComBat and DeepResBat. (A1) For a given model, we averaged the site prediction 
accuracies within each participant for ComBat. (B1) Same as A1 but for DeepResBat. (A2) 
Averaging the site prediction accuracies across the 10 models within each participant. (B1 & 
B2) Same as A1 and A2 but for DeepResBat. (C) Permute 10,000 times to obtain p value.  
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Figure S3. Comparison of z statistics from GLM involving MMSE for DeepResBat and 
baselines on matched ADNI and AIBL participants. Each row compares DeepResBat and 
one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat (row 3), cVAE 
(row 4) and coVAE (row 5). Each column represents one covariate: age (column 1), sex 
(column 2), and MMSE (column 3). Each subplot compares z statistics of DeepResBat against 
another baseline for a given covariate across 87 grey matter ROIs. Each dot represents one grey 
matter ROI. Red dots indicate better performance by DeepResBat. Blue dots indicate worse 
performance by DeepResBat.   
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Figure S4. Comparison of z statistics from GLM involving MMSE for DeepResBat and 
baselines on matched ADNI and MACC participants. Each row compares DeepResBat and 
one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat (row 3), cVAE 
(row 4) and coVAE (row 5). Each column represents one covariate: age (column 1), sex 
(column 2), and MMSE (column 3). Each subplot compares z statistics of DeepResBat against 
another baseline for a given covariate across 87 grey matter ROIs. Each dot represents one grey 
matter ROI. Red dots indicate better performance by DeepResBat. Blue dots indicate worse 
performance by DeepResBat.   
 

 
Figure S5. Significance bar plot by MANOVA involving MMSE. A larger negative of log 
p value indicates a stronger association, and thus better performance. (A) Bar plot for matched 
ADNI and AIBL participants. (B) Bar plot for matched ADNI and MACC participants. 
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Figure S6. Frequency of p values of unharmonized data for matched ADNI and AIBL 
participants by GLMs involving clinical diagnosis and MMSE based on 1000 
permutations. Each line corresponds to a single brain ROI. P values were binned in intervals 
of 0.05. Therefore, in the ideal scenario, the distributions of p values should follow a uniform 
distribution with a height of 0.05. (A) Frequency of p values by GLMs involving clinical 
diagnosis. (B) Frequency of p values by GLMs involving MMSE. 
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Figure S7. Frequency of p values of unharmonized data for matched ADNI and MACC 
participants by GLMs involving clinical diagnosis and MMSE based on 1000 
permutations. Each line corresponds to a single brain ROI. P values were binned in intervals 
of 0.05. Therefore, in the ideal scenario, the distributions of p values should follow a uniform 
distribution with a height of 0.05. (A) Frequency of p values by GLMs involving clinical 
diagnosis. (B) Frequency of p values by GLMs involving MMSE. 
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Figure S8. Frequency of p values of ComBat for matched ADNI and AIBL participants 
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line 
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the 
ideal scenario, the distributions of p values should follow a uniform distribution with a height 
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p 
values by GLMs involving MMSE. 
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Figure S9. Frequency of p values of ComBat for matched ADNI and MACC participants 
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line 
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the 
ideal scenario, the distributions of p values should follow a uniform distribution with a height 
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p 
values by GLMs involving MMSE. 
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Figure S10. Frequency of p values of CovBat for matched ADNI and AIBL participants 
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line 
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the 
ideal scenario, the distributions of p values should follow a uniform distribution with a height 
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p 
values by GLMs involving MMSE. 
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Figure S11. Frequency of p values of CovBat for matched ADNI and MACC participants 
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line 
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the 
ideal scenario, the distributions of p values should follow a uniform distribution with a height 
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p 
values by GLMs involving MMSE. 
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Figure S12. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with 
MMSE after 1000 permutations of covariates. More specifically, each data point in the 
violin plot represents a brain ROI volume. Percentage is calculated based on the number of 
permutations in which p value of corresponding covariate was nominally significant (i.e., p < 
0.05) divided by 1000 permutations. Percentage (vertical axis) is shown on a log scale. The 
black solid line is the expected percentage (which is 0.05), while the grey dashed lines indicated 
95% confidence intervals. (A) GLM analysis involving MMSE for matched ADNI and AIBL 
participants. (B) GLM analysis involving MMSE for matched ADNI and MACC participants. 
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Figure S13. Frequency of p values of coVAE and DeepResBat for matched ADNI and 
AIBL participants by GLM involving MMSE based on 1000 permutations. Each line 
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the 
ideal scenario, the distributions of p values should follow a uniform distribution with a height 
of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p values for DeepResBat. 
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Figure S14. Frequency of p values of coVAE and DeepResBat for matched ADNI and 
MACC participants by GLM involving MMSE based on 1000 permutations. Each line 
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the 
ideal scenario, the distributions of p values should follow a uniform distribution with a height 
of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p values for DeepResBat. 
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Figure S15. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with 
clinical diagnosis after 1000 permutations of clinical diagnosis only. More specifically, 
each data point in the violin plot represents a brain ROI volume. Percentage is calculated based 
on the number of permutations in which p value of corresponding covariate was nominally 
significant (i.e., p < 0.05) divided by 1000 permutations. Percentage (vertical axis) is shown 
on a log scale. The black solid line is the expected percentage (which is 0.05), while the grey 
dashed lines indicated 95% confidence intervals. (A) GLM analysis involving clinical 
diagnosis for matched ADNI and AIBL participants. (B) GLM analysis involving clinical 
diagnosis for matched ADNI and MACC participants. 
 
 

 
Figure S16. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with 
MMSE after 1000 permutations of MMSE only. More specifically, each data point in the 
violin plot represents a brain ROI volume. Percentage is calculated based on the number of 
permutations in which p value of corresponding covariate was nominally significant (i.e., p < 
0.05) divided by 1000 permutations. Percentage (vertical axis) is shown on a log scale. The 
black solid line is the expected percentage (which is 0.05), while the grey dashed lines indicated 
95% confidence intervals. (A) GLM analysis involving MMSE for matched ADNI and AIBL 
participants. (B) GLM analysis involving MMSE for matched ADNI and MACC participants. 
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