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Disruptions in the tightly regulated process of human brain de-
velopment have been linked to increased risk for brain and men-
tal illnesses. While the genetic contribution to these diseases is
well established, important environmental factors have been less
studied at molecular and cellular levels. In this study, we used
single-cell and cell-type-specific techniques to investigate the ef-
fect of glucocorticoid (GC) exposure, a mediator of antenatal en-
vironmental risk, on gene regulation and lineage specification in
unguided human neural organoids. We characterized the tran-
scriptional response to chronic GC exposure during neural dif-
ferentiation and studied the underlying gene regulatory networks
by integrating single-cell transcriptomics- with chromatin acces-
sibility data. We found lasting cell type-specific changes that in-
cluded autism risk genes and several transcription factors asso-
ciated with neurodevelopment. Chronic GCs influenced lineage
specification primarily by priming the inhibitory neuron lineage
through key transcription factors like PBX3. We provide evi-
dence for convergence of genetic and environmental risk factors
through a common mechanism of altering lineage specification.
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Introduction
Human neurodevelopment is a tightly regulated process start-
ing early in embryogenesis that choreographs cellular prolif-
eration, migration, differentiation, and synaptogenesis. The
precise timing and sequence of these events are essential to
establish neural circuits that govern cognitive, emotional, and
behavioral functions. Deviations from this program have been
linked to a spectrum of neurodevelopmental and psychiatric
disorders, including autism spectrum disorders (ASD) and
schizophrenia. This is supported by the strong enrichment of
genes carrying genetic variants associated with these disorders
in molecular and cellular pathways essential for neurodevel-
opment1,2,3. Modeling the effects of associated deleterious
variants in transgenic animals and induced pluripotent stem
cell-derived model systems supports their impact on neurode-
velopment4,5.
While these disorders have a large genetic component, with

heritability estimates from twin studies around 75 %6, envi-
ronmental risk factors acting during pregnancy such as chem-
icals7, infections8, perinatal complications9,10, and exposure
to glucocorticoids (GCs)11 have also been implicated in in-
creasing disease risk by impacting neurodevelopment. With
this work, we aimed to elucidate the contribution of one such
prenatal environmental factor, GCs, which are steroid hor-
mones with critical endogenous roles in normal brain develop-
ment and important pharmacological applications during preg-
nancy11. Activation of the GC receptor in the developing brain
plays an essential role in neurogenesis, neuronal migration,
synaptogenesis, and modulation of neuronal plasticity11. Per-
turbations in GC signaling during critical periods of brain de-
velopment have been proposed to lead to long-lasting alter-
ations in brain structure and function, potentially contribut-
ing to the pathogenesis of psychiatric disorders12,13,14. Ani-
mal models and human studies have provided compelling ev-
idence for adverse effects of GC excess during gestation on
cognitive and emotional development. During pregnancies at
risk of premature labor, synthetic GCs such as betamethasone
and dexamethasone are routinely used to promote lung matu-
ration in the unborn child. Large epidemiological studies have
linked such antenatal exposure to synthetic GCs to altered risk
for childhood mental and behavioral problems15,16,17. An in-
crease in risk is observed mainly when synthetic GCs are ad-
ministered later in pregnancy, while the opposite was observed
for extremely preterm babies born at less than 28 weeks ges-
tation18,19. Given that more than ten percent of babies ( 13
million) were born prematurely worldwide in 2020, this is a
sizable environmental factor for brain development20.

Despite the strong evidence for harmful effects from epidemi-
ological studies, there is limited evidence on the underlying
molecular and cellular mechanisms11,21. Using human neu-
ral organoids as models of early brain development, we could
recently show that GCs elicit cell-type specific transcriptional
responses and that there is a highly significant enrichment of
genes associated with neurodevelopmental delay, ASD, and
more common psychiatric disorders among those regulated by
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GCs, especially in neurons22. This suggests a convergence
of the molecular pathways underpinning genetic and environ-
mental risk factors for neuropsychiatric disorders.
The advent of human neural organoids now allows us to better
link risk genes for neurodevelopmental disorders to molecular
and cellular mechanisms. Data from cerebral organoids de-
rived from induced pluripotent stem cells from patients with
idiopathic ASD or carrying rare coding or copy number vari-
ants associated with ASD suggest that cell fate specification
is altered by risk genes carrying deleterious mutations, with
particular support for alterations in the proportions of excita-
tory vs. inhibitory neuronal lineages or dorsal vs ventral are-
alization23,24,25,26,27. These findings are further supported by
results from a CRISPR-human organoids-single-cell RNA se-
quencing (CHOOSE) system, in which 36 high-risk autism
spectrum disorder genes were perturbed. These risk genes
were selected among other autism risk genes for their relation
to transcriptional regulation, and their perturbation uncovered
consistent effects on cell fate determination, mainly lowering
the dorsal-to-ventral ratio at different levels28.
With this manuscript, we aim to address whether the conver-
gence of risk genes for neuropsychiatric and neurodevelop-
mental disorders and genes regulated by antenatal exposure
to GC, an environmental risk factor for childhood mental and
neurodevelopmental disorders, extends beyond the molecular
context to alteration of cell fate specification. For this, we ex-
posed unguided and regionalized neural organoids to a chronic
administration of the synthetic GC dexamethasone, as it is
used clinically in pregnancies at risk of premature labor. We
assessed cell type-specific responses with single-cell RNA se-
quencing (scRNA-seq) and single-cell Assay for Transposase-
Accessible Chromatin using sequencing (scATAC-seq) analy-
ses directly after the chronic administration and following a
wash-out period. Our work extends beyond the existing lit-
erature by demonstrating a convergent impact of environmen-
tal and genetic risk factors for mental and neurodevelopmental
disorders on cell fate determination in the developing brain.

Results
Chronic glucocorticoid exposure in neural organoids
does not induce significant metabolic stress in cells.
To elucidate the effects of GCs on neurodevelopmental pro-
cesses, we designed an exposure paradigm in unguided neural
organoids. We collected 70-day-old organoids, continuously
exposed to GCs for ten days (Chr condition) and the match-
ing vehicle control organoids (Veh condition), allowing us to
measure the immediate transcriptional effects of chronic GC
exposure. Furthermore, we were interested in understanding
which transcriptional changes lasted for an extended period in
organoids. For this, we collected organoids from the Veh and
Chr conditions after an additional 20 days under standard cul-
ture conditions at day 90 (Veh-Veh and Chr-Veh conditions,
respectively). Lastly, we wanted to understand the differences
between the transcriptional effects of chronic and acute ex-
posure. Therefore, we obtained samples at day 90, exposed
to an additional 12-hour acute GC treatment before collection
(Veh-Acu and Chr-Acu conditions). We duplicated all analy-

ses using organoids derived from two human induced pluripo-
tent stem cell (hiPSC) lines, Line 409b2 and Line FOK4, with
four replicates in each of the six experimental conditions (Fig.
1).

We generated scRNA-seq data from all conditions. We com-
bined these data to determine the cell type composition in
organoids derived from the two iPSC lines. Basing our anal-
ysis on known marker genes of cell types in the developing
human brain, we were able to identify and label eight out of
the nine cell clusters in each of the lines (Fig. 2a; Supplemen-
tary Fig. 1a): Radial Glia (RG) (GPM6B, SOX2), neural pro-
genitor cells expressing cell cycle markers (Cycling) (TOP2A,
MKI67), Intermediate Progenitors (IP) (EOMES, PAX6), Ex-
citatory Neurons (Ex. Neurons) (SLC17A6, STMN2), In-
hibitory Neurons (Inh. Neurons) (GAD1, GAD2, SLC32A1,
STMN2), a population of unspecified neurons expressing
the G-protein regulator gene RGS5 (RGS5 Neurons) (RGS5,
LINC00682, STMN2), immature Choroid Plexus cells (Imm-
ChP) (RSPO3, TPBG) as well as more mature cells of the
Choroid Plexus (ChP) (TTR, HTR2C, CLIC6).

We also identified a cluster of cells in the datasets from both
lines, which did not express any clear combination of known
marker genes. We identified many of these cells as metabol-
ically challenged by scoring previously suggested pathways
specific for non-viable cells in organoids29 (Fig. 2b). We iden-
tified 12 % of all cells as non-viable in both datasets (4304
cells in Line 409b2 data and 3559 cells in Line FOK4 data).
In both cell lines, we found the highest fraction of non-viable
cells in the Unknown cluster (74 % of cells in Line 409b2 and
41 % in Line FOK4), followed by the RGS5 Neurons clus-
ter (54 % of cells in Line 409b2 and 15 % in Line FOK4).
Line 409b2 also had a substantial fraction of IP and Imm. ChP
cells identified as non-viable cells (26 % and 20 %, respec-
tively). For all other cell types, only small fractions of around
10 % or less were identified (Supplementary Fig. 1b). We
removed all cells identified as non-viable from the datasets.
We also removed the Unknown cluster in its entirety, as it was
predominantly composed of non-viable cells and, beyond that,
had no clear expression of marker genes. We compared via-
bility scores between GC-exposed and control samples for the
different conditions and found no significant difference after
removing the non-viable cells (Fig. 2c). This finding supports
that differential gene expression analyses between these condi-
tions are likely not confounded by differences in cell viability
after filtering. After removing all non-viable cells from the
datasets, more evident differentiation trajectories emerged in
low-dimensional space (Fig. 2d, top).

Consistent with our previous study22, GC treatment was not a
major source of variation during cell cluster definition, where
cells were separated mainly by their cell identity in the low-
dimensional data representation (Fig. 2d, middle). Further-
more, the expression of the GC receptor gene NR3C1 was
uniform across most cell types but less pronounced toward the
mature end of the neuronal lineage, as described previously22

(Fig. 2d, bottom). To characterize the regional identity of in-
hibitory and excitatory neurons in our dataset, we projected
them onto our recently published Human Brain Organoid Cell
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Fig. 1. Overview of experimental setup and design. We designed six treatment conditions duplicated in organoids derived from two cell lines. We replicated each of these
12 conditions using four samples. We collected two treatment conditions at day 70: Veh (exposed to the treatment vehicle dimethyl sulfoxide (DMSO) for ten days starting from
day 60) and Chr (exposed to the GC dexamethasone for ten days starting from day 60). We derived the four additional treatment conditions collected at day 90 from the day
70 conditions with sustained culturing in regular media conditions for a further 20 days (wash-out period). The two conditions derived from the Veh condition were Veh-Veh and
Veh-Acu, with an additional 12-hour acute GC exposure applied. Analogously, the two day-90 conditions derived from the Chr condition were Chr-Veh and Chr-Acu, with an
additional 12-hour acute GC exposure applied. Figure created with BioRender.com.

Atlas (HNOCA)30. Our neuron subtypes projected to the
non-telencephalic inhibitory and excitatory neuronal clusters
in HNOCA, while our RG cells projected primarily to non-
telencephalic neural progenitor cells. Organoids derived from
Line 409b2 additionally contained early cells of the glial lin-
eage, whereas organoids derived from Line FOK4 contained
a more pronounced lineage of the choroid plexus. Within the
neuronal lineage, cells from both lines mapped to similar cell
types in HNOCA (Supplementary Fig. 1c), suggesting that
organoids from both cell lines contained matching neuronal
cells.

Transcriptional response following chronic glucocor-
ticoid treatment in organoids includes key neurode-
velopmental genes. Next, we sought to identify the tran-
scriptomic and gene-regulatory responses to our different GC
treatment regimens. We harmonized results across the two
iPSC donor backgrounds to ensure robustness in our identi-
fied differentially expressed (DE) genes. Specifically, we only
deemed a gene as DE if it was significantly regulated at a false
discovery rate smaller than 0.1 with agreeing direction of ex-
pression fold-change in organoids derived from both cell lines
(Supplementary Fig. 2a). This approach reduced the number
of DE genes while increasing the robustness of downstream
analyses.
We first focused on DE genes in 70-day-old organoids, indi-
vidually comparing Veh and Chr conditions for each identified
cell type (Fig. 3a,b; Supplementary Table 1). We identified
803 consensus DE genes through this approach, with the most

DE genes (n = 462) emerging in the RG cell type and the least
in ChP cells with only three DE genes (Fig. 3c). Some cell
types, specifically IP and RGS5+ Neurons, did not yield sig-
nificant DE genes, likely due to power issues caused by smaller
cell numbers in these groups or perhaps less convergence of
cells within this identified cell type across the temporal differ-
entiation timeline.

Among the top consensus DE genes by fold change were
NNAT, a gene associated with early neurodevelopment and
ion channel control31 (mean log2 fold-change (log2FC) RG =
0.56); MAB21L1, associated with cerebellum development32

(mean log2FC Excitatory Neurons = 0.31); NFIB, a TF known
to be essential in brain development33 (mean log2FC In-
hibitory Neurons = -0.50); the transcriptional regulators ID3
(mean log2FC in Imm. ChP = 0.46) and ID2 (mean log2FC in
Imm. ChP and RG = 0.41 and 0.52 respectively). In addition to
NFIB, we identified several additional TFs closely associated
with developmental processes as DE in various clusters. Ex-
amples include SOX2, HDAC2, TCF7L2, PBX3, and YBX1.
We found that one of these TFs, YBX1, was DE in a total of
five cell types. Additional genes that were DE in five clusters
included DLK1 (a regulator of hippocampal neurogenesis34),
PCSK1N (associated with the neuroendocrine system35), the
collagen gene COL3A1 (involved in neuronal migration36),
and MARCKSL1 (associated with neural tube defects and re-
generation37) (Fig. 3c). We next performed pathway enrich-
ment using the Gene Ontology Biological Process (GO-BP)
set. This analysis identified enrichment for terms associated
with neurodevelopment in the clusters with the most consen-
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Fig. 2. Chronic glucocorticoid exposure in neural organoids does not induce significant metabolic stress in cells. a. Cell types on UMAP embedding for Line 409b2
and Line FOK4. Each cell type was identified in both datasets. b. Localization of non-viable cells (charcoal) in the UMAP embedding for Line 409b2 and Line FOK4 organoids.
The “Unknown” cluster is primarily made up of non-viable cells (74 % in Line 409b2 and 41 % in Line FOK4), suggesting these cells and the entire cluster should be removed. c.
Swarm plots showing no significant difference in mean viability score between control (gray) and treated (blue) samples following non-viable cell removal. Each dot represents a
sample from the indicated treatment condition. d. (top) UMAP embedding colored by cell type for Line 409b2 and Line FOK4 following non-viable cell removal. (middle) UMAP
embedding colored by treatment conditions. (bottom) NR3C1 (GC receptor) gene expression.

sus DE genes. These included: “axonogenesis”, “negative reg-
ulation of nervous system development” (RG); “axon develop-
ment”, “substantia nigra development” (Excitatory Neurons);
“cranial nerve development”, “regulation of neuron differen-
tiation” (Inhibitory Neurons) (Supplementary Table 2). How-
ever, the terms most significantly enriched did not converge on
specific neuronal pathways. They were generally associated
with cell-cycle regulation and intracellular transport in Exci-
tatory Neurons and regulation of gene expression in RG and
Inhibitory Neurons (Fig. 3d).

In addition to the transcription factors mentioned to be reg-
ulated above, we also found overlap with the 36 high-risk
autism spectrum disorder genes related to transcriptional reg-
ulation tested for their effect on cell fate determination us-
ing the CHOOSE system28. We observed that five of these
were also DE across three of our clusters: RG (ASH1L), Ex-
citatory Neurons (MYT1L, KMT2A), and Inhibitory Neurons
(FOXP1, BCL11A).

When comparing the DE effect directly following chronic GC
exposure with the lasting DE effect after the wash-out period
at day 90 (Supplementary Table 3), we observed a reduction
in the number of DE genes after the wash-out period (393 vs.

803 consensus DE genes). With 96 DE genes shared across
both comparisons, 12 % of the immediate transcriptomic ef-
fects showed persistent, stringent DE after the wash-out. The
non-overlapping DE genes are either specific to a more short-
lived response to GC exposure or, given the relatively high
number of TFs DE at day 70, have been translated to down-
stream transcriptional effects, explaining the 297 newly regu-
lated genes following the wash-out. Interestingly, 61 % of the
genes regulated after chronic exposure and wash-out in 90-
day-old organoids overlapped with the 2036 DE genes from
the 12-hour acute stimulation at day 90 (Supplementary Ta-
ble 4). Furthermore, in each cell type with overlapping genes,
the directionality of the DE effect was aligned for over 90 %
of the shared genes. This shows that more than half of the
lasting transcriptomic effects after chronic GC exposure were
shared with the response to acute GC exposure in 90-day-old
organoids, supporting that the lasting effects are closely re-
lated to GC activity even after the 20-day wash-out phase. The
overlap with the acute effect was prominent but reduced (40
%) in the DE day 70 genes (Fig. 3e), probably due to dif-
ferences in neurodevelopmental age. In fact, within each cell
type in the low-dimensional embedding, cells were separated
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by organoid age, emphasizing their transcriptomic differences
(Supplementary Fig. 2c). We found that 13 % of the genes re-
sponsive to an acute GC exposure at day 90 had a significantly
different response to this exposure based on the organoid’s his-
tory of chronic treatment, again supporting a lasting effect of
the chronic GC exposure (Supplementary Table 5).

GC exposure induces priming of the inhibitory neuron
lineage in neural organoids. Having observed a DE effect
in genes associated with neurodevelopment directly following
treatment, particularly in a subset of high-risk genes for ASD
involved in priming neuronal lineage fate28, we next focused
on investigating the impact of exposure to GCs on neural fate
decisions within our organoid system. For this, we defined
three lineage endpoints in our single-cell transcriptome data:
Excitatory Neurons, Inhibitory Neurons, and Choroid Plexus
(Fig. 4a). As a next step, we computed the lineage proba-
bility of every cell for each lineage endpoint along a pseu-
dotime trajectory. For all lineage trajectories, we observed a
continuous increase of lineage probability along the trajecto-
ries seen in the two-dimensional embeddings originating from
early (RG) cells and reaching maximum lineage probability at
the respective lineage endpoint (Fig. 4b). Given our particular
interest in neuronal lineage determination and because only a
few genes were DE in the ChP-related cell types, we focused
on the excitatory and inhibitory neuron lineage endpoints. To
account for any potential bias in organoid derivation specific
to our experiments, we validated the lineage probabilities in
an independently published dataset containing organoid data
from 6 additional iPSC donor backgrounds38. For this, we
reprocessed the scRNA-seq data from 70-day-old organoids
published in Kanton et al.38 (Fig. 4c) and analyzed it with
the same lineage inference approach used in our data. We ob-
served similar trends in lineage determination across pseudo-
time with clear trajectories towards inhibitory and excitatory
neurons (Fig. 4d).
One way of defining a driver gene for a lineage is a strong
correlation of the gene’s expression level with the computed
lineage probability for a specific lineage endpoint39. To quan-
tify the association of the observed DE effect following GC
exposure with the different lineages, we computed driver gene
correlation in our two datasets and the validation dataset (8
total iPSC donors) (Supplementary Table 6). Next, we over-
lapped our consensus DE gene list for each neuronal cell type
with the top 500 driver genes of the respective neuronal lineage
from each of the three datasets. We used the resulting list of
genes to compute the proportion of genes for which the direc-
tionality of the DE response aligned with the directionality of
driving the lineage. For both neuronal lineages, more than half
of all DE genes had an aligned direction of DE effect and ex-
pression changes along those lineages, suggesting a possible
acceleration in neuronal differentiation following GC expo-
sure. Furthermore, we found a significantly larger alignment
of the DE effect with the inhibitory neuron lineage drivers in
the three datasets (p=0.04) than with the drivers for the exci-
tatory lineage. This suggested that the overall DE effect cor-
related to a significantly higher degree with the priming of the
inhibitory than excitatory neuron lineage (Fig. 4e). Using the

driver gene information from the validation dataset only, we
observed a significant positive correlation between driver gene
strength for the inhibitory neuron lineage and the direction of
the DE effect in the inhibitory cell clusters of our two organoid
datasets (r=0.25, p=0.002) (Fig. 4f). Notably, BCL11A and
FOXP1, two of the genes with the strongest correlation with
inhibitory neuron lineage driver genes and the largest log2FC
following GC exposure, are also associated with high risk for
ASD28.

GC exposure results in an increased abundance of in-
hibitory neurons in organoids. Next, we aimed to under-
stand whether the observed priming of differentiation and,
specifically, of the inhibitory neuron lineage translated into a
measurable shift in cell type identity. We selected GAD1 as
a specific marker gene of the inhibitory neuron lineage across
brain regions (Fig. 5a). For both of our unguided organoid
datasets, we observed an increased proportion of GAD1 pos-
itive cells at the RNA level after exposure to GCs (1.7-fold
increase in Line 409b2 (5.2 % to 8.7 %); 1.2-fold increase in
Line FOK4 (11.6 % to 13.8 %)) (Fig. 5b). To confirm that
the increase in GAD1+ cells was not just a result of an in-
creased number of neurons present in GC-exposed organoids,
we computed the inhibitory-to-excitatory neuron ratio using
GAD1 and SLC17A6 as markers for the two groups, respec-
tively. The ratio consistently increased after GC exposure in
both datasets (0.52 (Veh) to 0.86 (Chr) in Line 409b2; 2.34
(Veh) to 2.94 (Chr) in Line FOK4).
In order to understand whether these differences would trans-
late to a more physiological tissue context for inhibitory
neuron development, we performed a comparable exposure
paradigm in regionalized ventral organoids. We obtained
these stainings in a new experiment using a CRISPR/Cas9
edited version of Line 409b2 organoids expressing GFP-
tagged GAD1 protein. Guiding differentiation with ventral-
ization factors allowed for a more abundant representation of
inhibitory neurons and their differentiation pathways40 (Sup-
plementary Fig. 3). Indeed, our RNA-level results were con-
sistent with tissue-level protein expression where more GAD1
signal was apparent in 5c). Chronic exposure to GCs led
to a significant 2.27-fold increase in GAD1+ cells (p=0.048,
Fig. 5d, Supplementary Table 7). We replicated this find-
ing in an independent staining experiment (fold-change=2.11;
p=0.0043) (Supplementary Table 7).
Following the 20-day wash-out period, we still observed an
increased number of GAD1-positive cells in 90-day-old GC-
exposed organoids at the RNA level (1.2-fold increase in Line
409b2 (3.4 % to 3.9 %); 1.5-fold increase in Line FOK4 (13.5
% to 20.1 %)) (Fig. 5b), while the inhibitory-to-excitatory
neuron ratio using GAD1 and SLC17A6 as markers at day 90
was not consistent across our two datasets (1.54 (Veh) to 1.15
(Chr) in Line 409b2; 5.29 (Veh) to 6.30 (Chr) in Line FOK4).
In summary, we have observed priming of the inhibitory neu-
ron lineage following GC exposure in our organoid system,
resulting in more GAD1+ cells at the RNA and protein level
in independent experiments, both in unguided and ventralized
organoids.
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Fig. 3. Transcriptional response following chronic glucocorticoid treatment in organoids includes key neurodevelopmental genes. a. Overview of the experimental
design for 70-day-old organoids. Created with BioRender.com. b. UMAP embedding for D70 data of Line 409b2 and Line FOK4 at D70 colored by cell type. Cells from D90
samples are shown in gray. All identified cell types are present at this earlier stage. c. Upset plot showing consensus DE results per cell type and the number of unique
and shared consensus DE genes. Selected genes are highlighted, autism risk genes are shown in blue, and further TFs are shown in green. d. Grouped semantic space
representation of the GO-BP enrichment results for the three cell types with the most detected DE genes. The size of the circles corresponds to the number of terms in the
cluster; their color corresponds to the log10(q-value) of the representative term for each cluster. The integers within the circles enumerate the eight most significant clusters, and
their representative term is written out in the legend below each plot. e. Upset plot showing DE results aggregated across all cell types for the effect of chronic GC exposure
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organoids (Day 90 Acu).

PBX3 regulation through chronic glucocorticoid expo-
sure supports inhibitory neuron priming. We next set out
to study the mechanisms underlying priming of the inhibitory
neuron lineage by identifying the lineage-driving TFs with the
strongest expression changes following GC exposure in our
model system. We identified 15 TFs that had an aligned direc-
tion of log2FC (in inhibitory neurons following GC exposure)
and driver correlation (with the inhibitory neuron lineage in
the validation data) (Fig. 6a). We hypothesized that a TF that
plays a central role in the lineage priming would not only it-
self be DE after GC exposure but would also have a significant
number of its target genes DE. Across all our DE genes and all
cell types, we identified 18 TFs that met these criteria: BCL6,
EGR1, ID2, ID3, ID4, NEUROD1, NEUROD2, NFE2L2,
NFIA, NFIB, NR2F1, NR2F2, NRG1, PBX3, SALL2, SOX2,
TFAP2A, and YBX1 (Supplementary Table 8). Of these re-
sponsive TFs, the GC-upregulated hox-gene PBX3 was a pos-
itive inhibitory neuron lineage priming driver. At the same
time, NFIA, NFIB, EGR1, and YBX1 were downregulated af-
ter GC exposure and negatively correlated with the inhibitory
neuron lineage in the validation data. All five TFs could thus
potentially contribute to the same priming effect. However,

PBX3 was the only TF that consistently was among the top
ten percent of driver genes for the inhibitory lineage in all three
datasets (top 1.4 % - 6.5 %, depending on dataset) while not
being among the top ten percent of drivers for the excitatory
neuron lineage in any of the datasets (Fig. 6b, Supplemen-
tary Fig. 4a). Therefore, we focused our further analysis on
PBX3 as an example of a GC-responsive TF, which could be
involved in priming the inhibitory neuron lineage. We found
PBX3 to be expressed across all cell types, with the highest
expression levels in inhibitory neurons (Fig. 6c, Supplemen-
tary Fig. 4b). PBX3 has previously been linked to hindbrain-
associated functions such as breathing, locomotion, and sen-
sation41.
The association of PBX3 with the inhibitory lineage was sup-
ported by investigating the expression trends of PBX3 along
pseudotime and towards each of the two neuronal lineage end-
points, where it increased with advancing pseudotime, with
the highest expression seen in inhibitory neurons. (Fig. 6d,
Supplementary Fig. 4b). Exploring data from the most re-
cent atlas of the developing human brain42, we found PBX3
expression to be developmentally regulated and with overall
higher expression in GABA-ergic compared to glutamatergic
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Fig. 4. Transcription factor regulation causes priming of the inhibitory neuron lineage in neural organoids. a. Force-directed graph embedding of organoid data from
both cell lines (without the RGS5 Neuron cluster) colored by cell type. Lineage endpoints are labeled with black circles. b. Computed lineage probabilities per cell for the three
lineage endpoints in the two datasets. c. Force-directed graph layout of validation data (published 70-day-old organoid data derived from 6 additional cell lines) 38. Colored by
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and driver status was aligned out of all genes both significantly DE (consensus DE genes from Line 409b2 and Line FOK4 data) and in the top 500 significant driver genes
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neurons and also higher in non-telencephalic compared to te-
lencephalic brain regions (with highest expression in the cere-
bellum) (Supplementary Fig. 4c). This supports a consis-
tent role of PBX3 in the developing fetal brain and neural
organoids.
In line with a priming effect of PBX3 on inhibitory neurons,
we not only observed an increased fraction of PBX3-positive
cells at the transcriptional level in the Chr condition compared
to the Veh condition across all cells in both cell lines (from
21 % to 26 % in Line 409b2 and from 22 % to 38 % in
Line FOK4) but also an increased fraction of PBX3+GAD1+
double-positive cells (from 1.7 % to 3.9 % in Line 409b2 and
from 4.5 % to 8.5 % in Line FOK4). In both cell lines, the
expression of PBX3 and GAD1 was significantly positively
correlated in cells expressing both genes (Line 409b2: r=0.43,
p=4.1e-16; Line FOK4: r=0.36, p=2.8e-15) (Supplementary
Fig. 4d).
Using immunofluorescent labeling of the PBX3 protein,
we imaged the ventrally-guided organoids with GFP-tagged
GAD1 at day 70 following chronic GC exposure, as previously
described. We found protein-level expression patterns consis-
tent with the scRNA-seq data, whereby PBX3 was identified
preferentially (though not exclusively) in the more mature neu-
rons that had already migrated to the outer ventricular zone

(Fig. 6e). As with GAD1, we quantified PBX3+ cells across
entire organoid slices and found a 1.73-fold significantly in-
creased abundance in chronically GC-exposed organoids com-
pared to controls (p=0.022; Fig. 6f, Supplementary Table 7).
Importantly, given the apparent co-localization of the GAD1+
and PBX3+ cell populations (Fig. 6e), we also counted
PBX3+GAD1+ double-positive cells and identified a 3.35-fold
increase following GC exposure (p=0.0041; Fig. 6g, Supple-
mentary Table 7). Having identified PBX3 as an example of a
lineage-driving TF that responds robustly to GC treatment in
our data, these results suggest a possible involvement of PBX3
in the priming of the inhibitory neuron lineage.

Multi-modal analyses of gene regulatory networks as-
sociate PBX3 with the regulation of inhibitory neuron
priming in organoids from Line 409b2. To understand the
contribution of epigenetic regulation, we introduced another
data modality with the same exposure paradigm. We collected
scATAC-seq data for 90-day-old treated and control organoids
of Line 409b2 (Veh-Veh and Chr-Veh condition). In Line
409b2, analyzed by itself, we still observed a significant pos-
itive correlation (r=0.077, p=0.046) between the DE effect in
inhibitory neurons at D70 (comparing Veh to Chr condition).
This correlation increased at day 90, after 20 days of wash-out
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DRAFTFig. 5. GC exposure results in an increased abundance of inhibitory neurons in organoids. a. Force-directed graph layout colored by expression of the inhibitory neuron
marker GAD1 (left). Force-directed graph layout colored by absorption probability per cell for the inhibitory neuron lineage (right). b. Fraction of GAD1 positive cells and
mean GAD1 expression across all cells in Veh Chr, Veh-Veh, and Chr-Veh conditions and organoids from both cell lines. c. Representative images of whole slice ventralized
organoids at day 70 in culture, following 10 days of chronic treatment with GCs (100nM dexamethasone; Chr condition - right) and control (Veh condition - left), show an increased
abundance of GAD1+ cells in the treated condition. Images were acquired at 20x magnification, showing DAPI (blue) and GAD1 (green). Lower panel: zoomed-in inserts. DMSO,
dimethyl sulfoxide; Dex, dexamethasone. d. Cell counting quantification of GAD1+ cells across entire organoid tissue slices (n=5 per condition) and graphically represented as
cells/mm2. Means per condition are indicated as a dotted black line. IHC, immunohistochemistry.

(comparing Veh-Veh to Chr-Veh condition) (r=0.15, p=4.7e-
3), supporting a lasting effect of the treatment on the cells
committed toward this lineage (Fig. 7a).

Combining the scRNA-seq data with the additional scATAC-
seq data enabled us to construct gene regulatory networks
(GRNs) for treatment and vehicle organoids. To better under-
stand the gene regulatory mechanisms underlying inhibitory
neuron lineage priming at both vehicle and GC-exposed con-
ditions, we integrated the single-cell genome accessibility data
with the matching scRNA-seq data (Fig. 7b). We inferred
multimodal GRNs using the expression of TFs and their target
genes, accessibility of TF binding sites, and prior biological
information such as conserved regions of the genome (Supple-
mentary Table 9). Centering the GRN inferred in the vehicle
organoids around PBX3 allowed us to visualize the baseline
regulatory interactions downstream of this TF. Notably, we
found that in this TF-centered GRN, 35 % of all genes were
DE in at least one of the three GC treatment conditions (Veh
vs. Chr, Veh-Veh vs. Chr-Veh, and Veh-Veh vs. Veh-Acu)
(Fig. 7c). This again highlights the role of PBX3 in mediating
the transcriptional response to GC exposure.

We computed the same PBX3-centered GRN for GC-exposed
organoids and compared them to the baseline GRN. We found

that 36 % of direct downstream targets in the GC-exposed con-
dition had been gained compared to the vehicle condition, and
30 % of genes downstream of PBX3 were among the top 500
drivers of the inhibitory neuron lineage (Fig. 7d). This find-
ing agrees with our previous observation that large fractions of
the GRN are responsive to GCs and relevant for the inhibitory
neuron lineage.

Comparing the association of PBX3 with the top 500 in-
hibitory drivers between the vehicle and GC-exposed PBX3-
centered GRNs, we observed a pronounced relative increase of
32 % (from 0.54 to 0.71) in the fraction of inhibitory neuron
driver genes in its direct downstream targets (Fig. 7d). In par-
ticular, some genes with a large fold-change in expression after
exposure to GCs and a high correlation with the inhibitory neu-
ron lineage were direct or second-order targets of PBX3 in the
GRN of organoids exposed to GC. Examples included CELF4,
a gene associated with synaptic development43, depression-
like behavior in mice44, and ASD45. Another example was
SYNPR, a common inhibitory neuron marker gene46,47 (Fig.
7a). Overall, these results further support a role of PBX3 in
the priming of or the selection towards the inhibitory neuron
lineage.
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DRAFTFig. 6. PBX3 regulation through chronic glucocorticoid exposure supports inhibitory neuron priming. a. Magnitude of driver gene correlation with the inhibitory neuron
lineage in the validation data 38 vs. log2FC of GC day-70 DE effect measured in our two cell lines. Genes with aligned direction of log2FC and lineage correlation are marked in
purple. b. Correlation of PBX3 expression with lineage probability across the excitatory and inhibitory neuronal lineages in all three datasets. The percentile of PBX3 among all
significant driver genes ranked by driver strength is shown to the side of every bar. c. Expression of PBX3 on a force-directed graph embedding of Line 409b2 data (left) with
cell type reference (right). d. Expression patterns of PBX3 across pseudotime for each of the two neuronal lineage endpoints in Line 409b2. e. Co-expression of GAD1+ (green)
cells with PBX3+ (magenta) cells in 70-day-old ventralized organoids of Line 409b2 in Veh and Chr conditions. 63x magnification zoom-in images are shown to the right of the
respective 20x whole slice images. Examples of double-positive cells marked by white arrows. DMSO, dimethyl sulfoxide; Dex, dexamethasone. f. Cell counting quantification
of PBX3+ cells across entire organoid tissue slices (n=5 per condition) and graphically represented as cells/mm2. Means per condition are indicated as a dotted black line. IHC,
immunohistochemistry. g. Cell counting quantification of PBX3+GAD1+ double-positive cells across entire organoid tissue slices (n=5 per condition) and graphically represented
as cells/mm2. Means per condition are indicated as a dotted black line.

Discussion

In this study, we investigated the effects of chronic expo-
sure to GCs on cell type-specific gene regulation and lineage
specification in neural organoids. Our experimental paradigm
modeled common environmental challenges to the develop-
ing brain, specifically the prenatal administration of synthetic
GCs. We observed highly cell type-specific gene expression
changes directly following GC exposure that were sustained
in various key molecular and cellular pathways even beyond
a 20-day wash-out period. More than half of the lasting
transcriptional changes after wash-out were shared with the
transcriptional response to an acute GC exposure at day 90,
supporting their relation to GR activation. In addition, tran-
scripts regulated directly after chronic exposure converged on
increased neuronal differentiation. We observed a positive cor-
relation of the DE effect following GC exposure with expres-
sion changes driving the inhibitory neuron lineages, signifi-
cantly more so than for excitatory neuron lineages. In line with
promoting inhibitory lineage specification, in this brain model

system, we showed that GC exposure leads to a higher propor-
tion of GAD1-positive cells, a canonical marker for inhibitory
neurons, that lasted following the wash-out. This suggests that
GCs shift neuronal developmental trajectories from excitatory
to inhibitory neuronal patterns.
We identified PBX3 as an example of an important TF for GC-
induced promotion of the inhibitory neuron lineage, with both
PBX3 and its downstream targets being responsive to GCs and
enriched for driver genes of the inhibitory neuron lineage. In
fact, GC exposure led to an increased number of cells double-
positive for PBX3 and GAD1, supporting the role of this TF
in GC-induced promotion of the inhibitory lineage. Interest-
ingly, other TFs identified through this analysis to be regulated
by GCs were previously identified as ASD risk genes and in-
volved in altered inhibitory lineage specification28. These in-
cluded FOXP1 and BCL11A, which were up-regulated by GC
and positively correlated with inhibitory neuron lineage in our
dataset. This highlights the convergence of environmental and
genetic risk factors on neurodevelopment, not only on specific
candidate genes but also on cellular trajectories.
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Fig. 7. Multi-modal analyses of gene regulatory networks associate PBX3 with the regulation of inhibitory neuron priming in organoids from Line 409b2. a. Magnitude
of driver gene correlation with the inhibitory neuron lineage vs. log2FC of Line 409b2. 1st and 2nd-order PBX3 target genes in the inferred chronic GRN are labeled in pink. Left:
Directly following treatment (70 days in culture). Right: after 20 days of wash-out (90 days in culture). Genes with an absolute lineage correlation greater than 0.45 are labeled
by name. b. UMAPS of integrated scRNAseq and scATACseq data of Line 409b2 at 90 days in culture. ScRNA-seq data is colored by cell type, and scATAC-seq data is shown
in gray. Left: Vehicle organoid data. Right: GC exposed organoid data. c. GRN centered around PBX3 in vehicle organoids with DE genes (consensus DE genes from any of
the three DE comparisons: D70 Chr, D90 Chr, D90 Acu) colored in red and TFs labeled by name. d. GRN centered around PBX3 in treated organoids with top 500 inhibitory
neuron driver genes colored in green, TFs labeled by name. The bar chart shows the fraction of newly gained direct PBX3 downstream targets. Barplot: Fraction of inhibitory
neuron drivers in direct TF downstream targets for control (Veh-Veh) and GC exposed organoids (Chr-Veh) of Line 409b2 at 90 days in culture.

Previous data from our group indicated that the expression of
the glucocorticoid receptor gene, NR3C1, increases in vitro
until about day 40, when levels start to plateau until day 158 in
organoids generated with a similar unguided protocol22. Our
10-day treatment scheme (starting at day 60) and wash-out
would thus fall within a window of continuously high NR3C1
expression at the whole organoid level. Previous studies in
a 2D cell culture context have described that chronic expo-
sure to GC can alter neural cell proliferation and viability48.
Here, neural organoids may be especially vulnerable as they
have been shown to contain cells in non-physiological gly-
colytic or hypoxic states, likely caused by a lack of vascula-
ture49,50. Analyzing scRNA-seq data from organoids, espe-
cially in a chronic treatment context, thus requires particular
care to account for metabolic profiles and altered cell states.
Thus, we followed a previous study that suggested removing

cells in non-physiological states to facilitate the analysis and
interpretation of neural organoid scRNA-seq data29. This ad-
ditional quality control step allowed us to resolve the identity
of an otherwise ambiguous cluster in both our datasets and
improved the visualization of neuronal differentiation trajec-
tories. It furthermore ensured that treatment and vehicle con-
ditions had comparable cell viability scores (Fig. 2c).

Single-cell RNA-seq and scATAC-seq datasets were gener-
ated from experiments using an unguided organoid differen-
tiation protocol, which enables the generation of a large va-
riety of neural cell types in vitro51. Regionalized organoid
differentiation protocols, on the other hand, usually generate
a more limited number of cell types with more regional or
functional brain specificity. Notably, the exact neuronal lin-
eages in organoids from unguided protocols can be challeng-
ing to predict a priori and do not always represent all brain
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regions. Therefore, a careful evaluation of the identity of ob-
tained cell types is required so that results can be interpreted in
the proper context. Mapping our datasets to the Human Neu-
ral Organoid Cell Atlas30 enabled precise and efficient identi-
fication of cell types. It revealed an overlapping cell identity
for non-telencephalic excitatory and inhibitory neurons, non-
telencephalic neural progenitor cells, and a more limited range
of glial and choroid plexus cells as expected for the brain ma-
turity level replicated by organoids at the chosen stage.

The abundance of non-telencephalic neurons was likely an en-
abling factor for identifying PBX3 as a strong GC-induced in-
hibitory lineage driver. In a focused analysis of PBX3 expres-
sion in the developing fetal brain42, we observed that this TF is
developmentally regulated, with higher expression in GABA-
ergic neurons and the highest levels observed in the cerebellum
(Supplementary Fig. 4c). The reported effects of GCs may
thus be restricted to non-telencephalic brain regions and not
necessarily extrapolate to telencephalic neurons. We did, how-
ever, also find PBX3 to be a strong and specific driver of the te-
lencephalic inhibitory neuron lineage in the dataset by Kanton
et al.38. Likely due to its graded expression, with highest lev-
els in the hindbrain, including the brainstem and cerebellum,
and lowest levels in the telencephalon, only very little data on
the role of PBX3 in human brain development have been re-
ported since most prior studies in vivo and in vitro, have fo-
cused on the telencephalon. However, the hindbrain has been
of increasing interest in neurodevelopmental disorders, includ-
ing ASD, with several studies pointing to a potentially impor-
tant role of hindbrain structures, such as the cerebellum and
the brainstem, in these disorders52,53,54.

Our results also support the key role of the excita-
tory/inhibitory balance in the pathogenesis of mental and neu-
rodevelopmental disorders (NDD) and the fact that genetic and
environmental risk factors converge on this same phenotype.
Previous studies in different human cellular and genetic mod-
els of ASD23,24,25,26,27 and data from CRISPR-based pertur-
bation assays in neural organoids confirm the critical role of
inhibitory neurons in the pathomechanisms of these disorders.
Perturbation assays targeting ASD and other NDD candidate
genes have shown that they directly impact lineage specifica-
tion towards inhibitory neuronal cells28 and migration of in-
hibitory neurons4. Given our findings on the effects of GC
exposure on PBX3 and inhibitory neuron lineages, it would
now also be important to examine the effects of other known
environmental risk factors on this phenotype.

Overall, this study highlights the complex interplay between
GC exposure, TF regulation, lineage specification, and neu-
rodevelopment. It provides a molecular and cellular link be-
tween genetic and environmental risk factors for neurodevel-
opmental disorders, including ASD. These results also open
up new avenues of investigation. Applying chronic GC treat-
ment at different developmental time points could elucidate
whether selective lineage priming is associated with varying
timing of differentiation across neuronal subtypes. Probing
the downstream targets and interaction partners of these TFs
would provide insights into the molecular pathways involved
in inhibitory lineage priming. In-vitro model systems could

be used to investigate potential rescue mechanisms following
lineage divergence in the context of environmental exposures.
Uncovering these mechanisms can deepen our understanding
of normal brain development and shed light on the molecular
cascades contributing to neurodevelopmental disorders.

Methods
iPSC culture. Two primary human induced pluripotent stem
cell (hiPSC) lines were used in this study. The first cell
line was reprogrammed using hiPSCs from skin fibroblasts
(HPS0076:409b2, RIKEN BRC cell bank, female)55,56 and
is referred to as “Line 409b2” in this manuscript. The sec-
ond cell line was reprogrammed using a plasmid-based proto-
col for integration-free hiPSCs from peripheral blood mononu-
clear cells from a female donor through the BeCOME study57

and is referred to as “Line FOK4” in this manuscript. MTA ap-
provals were obtained for the use of both hiPSC lines. hiPSCs
were cultured in Matrigel-coated (1:100 diluted in DMEM-
F12 (Gibco™, 31330-038), Corning Incorporated, 354277)
Costar® 6-well cell culture plates (Corning Incorporated,
3516) in mTESR1 Basal Medium (STEMCELL Technologies,
85851) supplemented with 1× mTESR1 Supplement (STEM-
CELL Technologies, 85852) at 37°C with 5 % CO2. Pas-
saging was performed with Gentle Cell Dissociation Reagent
(STEMCELL Technologies, 07174). RevitaCell Supplement
(1:100 diluted, Gibco™, A2644501) was added for 24 hours
after passaging to promote cell survival.

Neural organoid generation. Human neural organoids were
created as described by Lancaster et al.51 with some modifica-
tions. Briefly, hiPSCs were dissociated in StemPro Accutase
Cell Dissociation Reagent (Life Technologies, A1110501).
Single cells (n=9000) were dispensed into each well of an
Ultra-low attachment 96-well plate with round bottom wells
(Corning Incorporated, 7007) in human embryonic stem cell
medium (hESC, DMEM/F12-GlutaMAX (Gibco™, 31331-
028) with 20 % Knockout Serum Replacement (Gibco™,
10828-028), 3 % FBS (Fetal Bovine Serum, Gibco™, 16141-
061), 1 % non-essential amino acids (Gibco™, 11140-035),
0.1 mM 2-mercaptoethanol (Gibco™, 31350-010)) supple-
mented with 4 ng/ml human recombinant FGF (Fibroblast
Growth Factor, Peprotech, 100-18B) and 50 µM Rock inhibitor
Y27632 (Millipore, SCM075) for 4 days and in hESC medium
without bFGF and Rock inhibitor for an additional 2 days to
form embryoid bodies (EBs). On day 6, the medium was
changed to neural induction medium (NIM, DMEM/F12 Glu-
taMAX supplemented with 1:100 N2 supplement (Gibco™,
15502-048), 1 % Non-essential amino acids and 1 µg/ml
Heparin (Sigma, H3149)) and cultured for an additional 6
days. On day 12, the EBs were embedded in Matrigel
(Corning Incorporated, 354234) drops and transferred to 10-
cm cell culture plates (TPP, 93100) in neural differentiation
medium without vitamin-A (NDM-A, DMEM/F12GlutaMAX
and Neurobasal (Gibco™, 21103-049) in a 1:1 ration, ad-
ditionally supplemented with 1:100 N2 supplement 1:100
B27 without Vitamin A (Gibco™, 12587-010), 0.5 % non-
essential amino acids, insulin 2.5 µg/ml (Gibco™, 19278),
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1:100 Antibiotic-Antimycotic (Gibco™, 15240-062) and 50
µM 2-mercaptoethanol) for 4 days. On day 16, Organoids
were transferred onto an orbital shaker in NDM+A medium
(same composition as NDM-A with the addition of B27 with
Vitamin A (Gibco™, 17504-044) in the place of B27 without
Vitamin A) and were grown in these conditions at 37°C with 5
% CO2. NDM+A medium was changed twice per week until
the organoids were collected for cryopreservation or single-
cell dissociation or fixation in paraformaldehyde.
For validation of inhibitory-excitatory neural lineage effects
of GC, guided ventral organoids were generated as previously
described by Bagley et al.40. Briefly, EBs were formed start-
ing from iPSCs dissociated into single cells using Accutase
(Sigma-Aldrich, A6964) (n= 9,000). Five days later, dur-
ing the neuronal induction, to induce brain regionalization,
EBs were treated individually with SAG (1:10,000) (Milli-
pore, 566660) + IWP-2 (1:2,000) (Sigma-Aldrich, I0536) for
ventral identity and with cyclopamine A (1:500) (Calbiochem,
239803) for dorsal identity. All other culture parameters were
identical to the ones described above for unguided organoids.

Generation and validation of a neuron-specific fluores-
cent reporter iPSC cell line. Line 409b2 hiPSCs were used
to generate an eGFP+/GAD1+ heterozygous iPSC cell line.
gRNA (crRNA and tracrRNA, IDT) for editing with the re-
combinant S.p. HiFi Cas9 Nuclease V3 protein (IDT) was se-
lected to cut efficiently at a short distance from the ATG start
codon of the GAD1 gene by using the Benchling web tool
(https://benchling.com). A 1611nt donor ssODNs
(IDT) for homology-directed recombination was designed to
have homology arms of 222-300 nt on either side of the insert
DNA, a 717 nt sequence encoding for eGFP followed by the
3’UTR and the polyA signal. Lipofection (reverse transfec-
tion) was performed using the alt-CRISPR manufacturer’s pro-
tocol (IDT) with a final concentration of 10 nM of the gRNA,
ssODN donor, and Cas9. In brief, 0.75 µL RNAiMAX (In-
vitrogen, 13778075) and the RNP mix (gRNA, ssODN, and
Cas9 protein) were separately diluted in 25 µL OPTI-MEM
(Gibco, 1985-062) each and incubated at room temperature
for 5 min. Both dilutions were mixed to yield 50 µL of OPTI-
MEM. The lipofection mix was incubated for 20–30 min at
room temperature. During incubation, cells were dissociated
with Accutase (Life Technologies) for 6 min and counted. The
lipofection mix, 100 µL containing 50,000 dissociated cells
in mTeSR1 supplemented with RevitaCell (1:100, Gibco) and
the 2 µM M3814 NHEJ inhibitor58 was thoroughly mixed and
placed in 1 well of a 96-well plate covered with Matrigel ma-
trix (Corning, 35248). The media was exchanged to regular
mTeSR1 media (StemCell Technologies) containing the NHEJ
inhibitor after 24 h. Single cell–derived clonal cell lines were
analyzed and genotyped by PCR using genomic DNA isolated
with QuickExtract DNA Extraction Solution (Lucigen) and
primers binding within and downstream the modified region
(Primer 1) or in the HAs (Primer 2).
gRNA:
5’_GGTCGAAGACGCCATCAGCT_3’
ssODN:

5’_TGCGCACCCCTACCAGGCAGGCTCGCTGCCTTTCCT
CCCTCTTGTCTCTCCAGAGCCGGATCTTCAAGGGGAGC
CTCCGTGCCCCCGGCTGCTCAGTCCCTCCGGTGTGCA
GGACCCCGGAAGTCCTCCCCGCACAGCTCTCGCTTCTC
TTTGCAGCCTGTTTCTGCGCCGGACCAGTCGAGGACTC
TGGACAGTAGAGGCCCCGGGACGACCGAGCTGATGGT
GAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGC
CCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCC
ACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGAT
GCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGC
ACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTC
GTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGC
CGCTACCCCGACCACATGAAGCAGCACGACTTCTTC
AAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCG
CACCATCTTCTTCAAGGACGACGGCAACTACAAGAC
CCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGG
TGAACCGCATCGAGCTGAAGGGCATCGACTTCAAG
GAGGACGGCAACATCCTGGGGCACAAGCTGGAGTA
CAACTACAACAGCCACAACGTCTATATCATGGCCGA
CAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGA
TCCGCCACAACATCGAGGACGGCAGCGTGCAGCTC
GCCGACCACTACCAGCAGAACACCCCCATCGGCGA
CGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAG
CACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGA
AGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCG
CCGCCGGGATCACTCTCGGCATGGACGAGCTGTACA
AGTAACTAGAGCTCGCTGATCAGCCTCGACTGTGCC
TTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCC
GTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACT
GTCCTTTCCTAATAAAATGAGGAAATTGCATCGCAT
TGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGG
GTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGA
CAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTAT
GGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTA
GGGGGTATCCCCGCGTCTTCGACCCCATCTTCGTCCG
CAACCTCCTCGAACGCGGGAGCGGACCCCAATACCACT
AACCTGCGCCCCACAAGTAGGTCCCGCCCCAATTTTCT
ATCAAATGAACTGCAGGGAAGATGGGGGCGCTGGGAC
GTCGGGAGGCTGAGCTGGCGGAAAGGGAAGGGGGAG
CGCGGAGATAATGGAGGCTGGGAAATAAATGGGGCTCT
GACCCCGTCCCTGCCAGAGGTCATTCGGCTGTCAGGG
ACGCTAGGTGACTCCCAGGGCACCGGAAAGCGAGGAC
CACGCAAGGTCCGA_3’
Left and right homology arms are indicated in italics. eGFP
start and stop codons are underlined.
GFP Protein translation:
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
ATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRY
PDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRA
EVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSH
NVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQN
TPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEF
VTAAGITLGMDELYK*
Primer 1:
For 5’_ CACTCCCACTGTCCTTTCCTAA_3’
Rev 5’_ TCCTAGCTCTTCATTCCGCC _3’
Primer 2:
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For 5’:_GCTTCTCTTTGCAGCCTGTTTC_3’
Rev: 5’_ GGGCGCAGGTTAGTGGTATT _3’

Dexamethasone treatment. Organoids were treated with
glucocorticoids by dissolving Dexamethasone (Dex) in DMSO
(dimethyl sulfoxide) and subsequently in the NDM+A cul-
ture medium. To achieve the final concentration of 100nM,
Dex was first diluted in DMSO in a concentration of 100µM
and subsequently diluted in NDM+A culture medium to a fi-
nal concentration of 100nM. Vehicle control (Veh) organoids
received equal amounts of DMSO. Chronic exposures (days
60-70 in culture) were performed by replacing supplemented
media every two days. Some organoids were collected at day
70 following 10 days of exposure. Other organoids from the
same batch were subsequently cultured in normal unsupple-
mented media for a 20-day wash-out period followed by an
acute exposure (day 90 in culture) with 100nM Dex or DMSO
for 12 hours.

Immunoflourescence. Organoids were fixed using 4 %
paraformaldehyde for 45 minutes at 4°C, cryopreserved with
30 % sucrose, fixed in optimal cutting temperature (OCT)
compound (Thermo Fisher Scientific), and stored at -20°C
before cutting and preparation of 16 um cryosections on
SuperFrostTM slides. For immunofluorescence, sections were
postfixed using 4 % PFA for 10 mins and permeabilized with
0.3 % Triton for 5 mins. Sections were subsequently blocked
with 0.1 % TWEEN, 10 % Normal Goat Serum, and 3 %
BSA. Primary and secondary antibodies were diluted in a
blocking solution, and fluorescent staining was visualized and
analyzed using a Leica laser-scanning confocal microscope.
For staining with GFP and PBX3 or PAX6 and SATB2,
the slides were put through antigen retrieval before fixing
with paraformaldehyde. More specifically, the slides were
incubated in citric buffer (0.01 M, pH 6.0) for 1 min at 720
watts and 10 mins at 120 watts, left to cool down at room
temperature for 20 minutes, and washed once with PBS.
Alexa anti-chicken-488 and Alexa-anti-rabbit-647 were used
as secondary antibodies. All secondary antibodies are diluted
to 1ug/ml or 1:1000.

Antibodies:

Antigen Dilution Vendor Catalog #
DAPI 1:1000 Sigma Aldrich D9542
GFP 1:1000 Aves Lab 1020
PBX3 1:500 Abcam ab52903

Cell imaging and counting. For immunofluorescence,
stained slides were imaged using the 20x and 63x lens in con-
focal mode on the MICA Microhub microscope (Leica) and
the Leica Application Suite X software (version 1.4.4.26810)
or using the 20x lens on the AxioScan.Z1 Slide Scanner
(Zeiss). To identify cells positively stained only for PBX3
and GFP-GAD1 as well as cells double-positive for PBX3 and
GFP-GAD1, cells were manually counted by two independent
experimenters in two separate staining experiments using the
Cell Counter Tool in ImageJ software. Counts are reported

as cells/mm2 normalized by tissue surface area. AxioScan.Z1
Slide Scanner images are quantified as total counts per entire
organoid slice (n = 5 per group), while MICA Microhub im-
ages are quantified as one representative selected tile per mo-
saic organoid slide (n = 10 tiles per group). Statistical analyses
are reported as 2-sided unpaired T-tests.

scRNA-seq library preparation and sequencing. Single
cells were dissociated using StemPro Accutase Cell Disso-
ciation Reagent (Life Technologies), filtered through 30uM
and 20uM filters (Miltenyi Biotec) and cleaned of debris us-
ing a Percoll (Sigma, P1644) gradient. Single cells were re-
suspended in ice-cold Phosphate-Buffered Saline (PBS) sup-
plemented with 0.04 % Bovine Serum Albumin and prepared
for single-cell separation. Experiments were performed in a
paired case-control design with 2 or 4 conditions at day 70
and day 90 respectively run in parallel. Single cells were run
through the Chromium controller to form gel emulsion beads
containing barcoded single cells and prepared into single-cell
libraries using the Chromium Single Cell 3’ Reagent Kits v2
according to the manufacturer’s recommendations without any
modifications (10x Genomics). To reach an optimal target cell
number, 10,000 cells per sample were loaded onto a channel of
the 10x chip. All libraries were assessed using a High Sensitiv-
ity DNA Analysis Kit for the 2100 Bioanalyzer (Agilent) and
KAPA Library Quantification kit for Illumina (KAPA Biosys-
tems). Sequencing of the 10x Genomics single-cell RNA-seq
libraries was performed on an Illumina NovaSeq 6000 (Illu-
mina, San Diego, CA) at the sequencing core facility of the
Max Planck Institute for Molecular Genetics (Berlin, Ger-
many).

scATAC-seq library preparation and sequencing. Sin-
gle cells were dissociated from whole organoids according
to the scRNA protocol above. Subsequent nuclei preparation
and scATACseq library generation was performed using the
Chromium Single Cell ATAC Library & Gel Bead Kit (16 rxns
PN-1000110) according to the manufacturer’s recommenda-
tions without any modifications (10x Genomics). Sequencing
of the 10x Genomics single-cell ATAC-seq libraries was per-
formed on an Illumina NovaSeq 6000 (Illumina, San Diego,
CA) at by the sequencing core facility at the Max Planck Insti-
tute for Molecular Genetics (Berlin, Germany).

scRNA-seq quality control. Count matrices were produced
from fastq files using 10x Genomics Cell Ranger59 v3.0.2 with
the transcriptome hg38_ensrel9460. Count matrices of 90-
day-old acutely treated and control organoids of Line 409b2
and Line FOK4 (Veh-Veh and Veh-Acu conditions) have pre-
viously been used in Cruceanu et al.22 and are available
from the Gene Expression Omnibus repository (accession:
GSE189534). All data has been reprocessed and reanalyzed
here.
All downstream analyses were carried out using the scverse61

packages scanpy62 v1.9.3 and anndata63 v0.9.1 with Python
v3.10.12 unless indicated otherwise. For quality control (QC),
cells with less than 1200 total unique molecular identifier
(UMI) counts, cells with more than 150,000 total UMI counts,
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cells with less than 700 genes expressed, and cells with 25
% or more mitochondrial UMI counts were removed from the
dataset. Next, any genes expressed in less than 20 cells were
removed.
For a second QC step, an initial clustering of the
full dataset was computed using louvain clustering (lou-
vain Python package v0.8.0, https://github.com/
vtraag/louvain-igraph)64 with appropriate prepro-
cessing and a resolution of 0.5. Based on this clustering,
two samples, which mainly clustered separately from all
other samples, were removed (409b2-D70-Chr-V1, 409b2-
D70-Veh-V2). In addition, three further samples with low
numbers of expressed genes or a sequencing saturation be-
low 35 %, as reported by 10x Genomics Cell Ranger, were re-
moved (409b2-D70-Veh-C1, FOK4-D90-Veh-Veh-C1, FOK4-
D90-Veh-Veh-C2).
For a final QC step, the data was reclustered following the
same procedure as before, and marker genes were computed
using the gene ranking function of scanpy with default param-
eters. Based on the marker gene signature, any clusters con-
taining mostly mesenchymal cells, epithelial cells, myocytes,
neuroectoderm, neural stem cells, macrophages, or fibroblasts
were removed from the dataset.

scRNA-seq preprocessing and cluster annotation. All
steps described in this section were applied separately to the
data derived from Line 409b2 and Line FOK4.
Normalization size factors were computed using the scran65

R package v1.22.1 (R v4.1.2) with the appropriate prepro-
cessing to obtain an initial coarse clustering of the data
as required for this approach. The raw counts of each
cell were then normalized by the respective size factor
and log(1+x) transformed. 4000 highly variable genes
(HVGs) were computed using the log-normalized counts
using the “cell_ranger” flavor59. Principal components66,
a nearest neighbor graph67, a force-directed graph draw-
ing (https://github.com/bhargavchippada/
forceatlas2)68, louvain clustering (https:
//github.com/vtraag/louvain-igraph)64, and
partition-based graph abstraction (PAGA)69 were computed
using default parameters. The layout obtained from plotting
the PAGA results with a threshold of 0.05 was used as
initialization to compute Uniform Manifold Approximation
and Projection (UMAP)67 with default parameters.
Marker genes were computed by ranking genes for each clus-
ter, with further sub-clustering or merging of clusters per-
formed where appropriate. Cell type identities were assigned
to clusters by comparing top-ranking genes per cluster with
known marker genes from developmental neurobiology. A to-
tal of eight cell types and one cluster of unknown identity were
identified using this procedure.

Removing non-viable cells from scRNA-seq datasets.
All steps described in this section were applied separately to
the data derived from Line 409b2 and Line FOK4.
To identify cells in non-viable metabolic states, the following
Gene Ontology70,71 Biological Process genesets were scored
using the respective scanpy function with default parameters

in every cell (as previously suggested29). Negative markers of
cell viability: “glycolytic process” (GO:0006096), “response
to endoplasmic reticulum stress” (GO:0034976). Positive
markers of cell viability: “gliogenesis” (GO:0042043), “neu-
rogenesis” (GO:0022008), and previously reported marker
genes of the choroid plexus72. Each score was scaled to
the range (0,1). A joint cell viability score was computed
by adding all scaled positive viability scores, subtracting all
scaled negative viability scores, and scaling the final score to
the range (0,1). Based on the final score, the “Unknown” cell
cluster was identified as mostly non-viable and therefore re-
moved from the dataset. Additionally, cells with a final via-
bility score of less than or equal to 0.4 were identified as non-
viable cells and removed from the dataset.
Following the removal of non-viable cells, HVGs, principal
components, the neighbor graph, force-directed graph draw-
ing, PAGA (threshold 0.001 for computing the layout), and
UMAP were recomputed following the same procedure de-
scribed in the section above.

Mapping scRNA-seq data to the Human Neural
Organoid Cell Atlas. Query to reference mapping using
scPoli73 from the scArches74 package v0.5.9 was used to
project the scRNA-seq data acquired in this study to the
Human Neural Organoid Cell Atlas (HNOCA)30. HNOCA
data and the scPoli integration model weights used in the
original study were obtained from https://github.
com/theislab/neural_organoid_atlas. The fea-
ture (gene) space of the datasets from this study was adapted
to the feature space used in the HNOCA scPoli model, filling
any missing genes with zero expression. The query model was
trained for five pre-training epochs and one training epoch with
unlabeled prototype training enabled. Annealing of the model
hyperparameter alpha was set to 10 epochs, and the model hy-
perparameter eta was set to 5. Feeding this study’s data and the
HNOCA data through the trained model produced a mapped
latent representation, which was used as input for the neighbor
graph and UMAP computation. Cell type annotations from
the annot_level_2 HNOCA annotation column (the final anno-
tation shown in Fig. 1 of the HNOCA paper30) were used to
contextualize the data generated in this study.

scRNA-seq differential expression analysis. The R tool
MAST75 v1.20.0 (R v4.1.2) was used to compute DE genes
per cell type between treatment conditions on log-normalized
expression data. This analysis was carried out separately
for the two source cell lines. Samples that contained less
than ten cells of a given cell type were removed to com-
pute differential expression (DE) for this cell type. Addi-
tionally, genes expressed in less than five percent of cells
of a given cell type were also removed to compute DE for
this cell type. For each cell type and source cell line, a
hurdle model was fit according to the following formula:
∼ ngeneson + treatment_acute + treatment_chronic +
treatment_chronic treatment_acute where ngeneson cor-
responds to the number of expressed genes in the sample, treat-
ment_chronic corresponds to the 10-day treatment applied be-
tween day 60 and day 70 (Veh or Chr), and treatment_acute
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corresponds to the 12-hour treatment applied at day 90 (Veh,
Acu or None for samples collected at 70 days in culture). A
likelihood-ratio test was applied to test for DE at D70 (chronic
effect) and D90 (chronic and acute effect).
Only genes with a false-discovery rate corrected p-value of
less than 0.1 in both source cell lines and agreeing direction
of DE fold-change were deemed DE for a given cell type to
reduce the number of false-positive DE results. DE genes
were visualized using the UpSetPlot76 v0.8.0 Python package
(https://github.com/jnothman/UpSetPlot).

Functional enrichment analysis of DE genes and TF–
target gene enrichment. Consensus DE genes computed
as described in the previous section were used as input to
the enrichment analysis using the Python implementation of
Enrichr77,78 via the GSEApy79 package v1.0.5 with default
parameters. For the annotation of biological function, the
“GO_Biological_Process_2021” geneset was used as provided
by Enrichr. For the transcription factor target enrichments,
the “ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X”
geneset was used as provided by Enrichr. For greater cover-
age of TFs, a second database was used for this enrichment:
CollectTRI80, obtained via the Python implementation of de-
coupler81 v1.4.0. Any hits with a false discovery rate of less
than 0.1 were considered significantly enriched. Gene Ontol-
ogy enrichment results were summarized and visualized us-
ing GO-Figure82 v1.0.1 (go.obo version: releases/2021-05-01;
go.obo version used to create GO relations: releases/2023-04-
01; similarity_cutoff: 0.2).

Processing of public neural organoid scRNA-seq data.
Count data, associated metadata, and gene names were down-
loaded from ArrayExpress (accession: E-MTAB-7552) as
stated in the data availability section of the Kanton et al. pub-
lication38. The dataset was subsetted to cells belonging to the
study’s 70-day-old organoid cell line comparison section. Any
cells from cell line 409b2 or cells without a cell type label were
removed from the dataset. Genes expressed in less than 10 re-
maining cells were also removed from the dataset. Raw counts
were normalized per cell to the median total counts per cell in
the dataset, and log(1 + x)-transformed. HVGs and principal
components were computed as with the original datasets. An
integrated neighbor graph was computed using the BBKNN
algorithm83 (bbknn Python package v1.5.1) using cell line as
a batch key and neighbors_within_batch=5 with otherwise de-
fault parameters of the scanpy external implementation. From
this integrated neighborhood graph, UMAP and force-directed
graph drawing were computed with default parameters. The
“Cortical neurons” cluster and the “LGE interneurons” clus-
ter were identified as the excitatory and inhibitory neuron cell
types in this dataset, respectively.

Trajectory inference and driver gene computation. For
Line 409b2 and Line FOK4 data, the RGS5+ Neuron cluster
was removed from the dataset for this analysis, followed by
recomputation of HVGs, principal components, the neighbor
graph, force-directed graph drawing, PAGA (threshold 0.001

for computing the layout) and UMAP following the same pro-
cedure as described in the sections above. All the steps de-
scribed in this section were applied separately to the data de-
rived from Line 409b2, Line FOK4, and the external validation
data.
The scanpy external implementation of Palantir84 was used to
compute a pseudo time following the manual selection of an
“early cell” within a progenitor cluster for each dataset (RG for
Line 409b2 and FOK4, Cortical NPCs for the validation data).
First, Palantir diffusion maps were computed with five diffu-
sion components and otherwise default parameters. Second,
a t-distributed stochastic neighborhood embedding (tSNE)85

representation was computed on the first two components of
the Palantir multi-scale data matrix with a perplexity of 150
and otherwise default parameters. The resulting embedding
was used to compute the Palantir pseudotime, sampling 500
waypoints and otherwise default parameters.
CellRank39,86 was used to compute lineage probabilities
based on the Palantir pseudotime. CellRank was installed
from the GitHub main branch (https://github.com/
theislab/cellrank) at commit c3ced63 (earliest stable
version including this commit: v2.0.1). The CellRank pseu-
dotime kernel was initiated with the Palantir pseudotime, and
a transition matrix was computed. This, in turn, was used to
initiate the GPCCA87 estimator, which allowed the computa-
tion of macrostates from the transition matrix. Inhibitory and
excitatory neuron trajectory endpoints (plus an additional ChP
endpoint in Line 409b2 and FOK4 data) were manually se-
lected from the computed macrostates and, in turn, used to
compute the respective fate probabilities for each cell and ter-
minal state. We further used CellRank to compute lineage
drivers for each terminal state, correcting for false discovery
rate (FDR) and discarding any drivers where the significance
of the driver correlation could not be computed. A driver gene
with an FDR below five percent was deemed significant in all
downstream analyses. The scipy88 implementation of the t-
test on two related samples of scores was used to compute the
significance of the difference between the alignment of con-
sensus DE genes and driver gene directionality between the
excitatory and inhibitory neuron lineages across three datasets.
For visualizing gene trends, the knn-smoothing on the expres-
sion data, as implemented in the scVelo89 v0.2.5 moments
function, was used with 30 principal components and other-
wise default parameters. Using this data, gene trends were fit-
ted using the GAMR model90 with 7 knots and plotted along
Palantir pseudotime.

Processing of public fetal human brain scRNA-seq
data. The Cell-Ranger-processed count matrices from
the recently published first-trimester fetal brain atlas by
Braun et al.42 were downloaded using the link provided
by the authors (https://storage.googleapis.
com/linnarsson-lab-human/human_dev_
GRCh38-3.0.0.h5ad). The associated organoid age,
10x Chromium chemistry version, and neurotransmitter-
transporter (NTT) annotations metadata were obtained
from supplementary tables S1 and S2 of the publica-
tion: https://github.com/linnarsson-lab/
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developing-human-brain/files/9755355/
table_S1.xlsx and https://github.com/
linnarsson-lab/developing-human-brain/
files/9755350/table_S2.xlsx. Any genes ex-
pressed in less than 20 cells were removed. Next, cells with
less than 200 genes expressed were removed from the dataset.
The total counts of each cell were normalized to 10,000
and log(1 + x)-transformed. Using the CellClass annotation
provided by the authors, the dataset was then subset to the
clusters Neuron, Neuroblast, Neuronal IPC, and Radial glia.
Using the “Chemistry” annotation, the dataset was further
subset to cells collected by the 10x 3’ v2 chemistry. Any cells
expressing neither the GABA NTT nor any of the glutamate
NTTs were removed from the dataset. Any cells expressing
both the GABA NTT and any of the glutamate NTTs were
also removed from the dataset. A new metadata column
(“NTT_simplified”) was created, indicating whether the
GABA NTT or any of the glutamate NTTs were expressed in
each cell.

scATAC-seq data preprocessing. Count matrices were
produced from fastq files using 10x Genomics Cell Ranger
ATAC91 v2.0.0 with the reference GRCh38 (Ensembl release
94)60. Unless stated otherwise, all downstream analyses
were carried out using the R packages Signac92 v1.9.0 and
Seurat93 v4.3.0 on R v4.1.2. The aggregated and filtered
peak-barcode matrix from 10x Genomics Cell Ranger ATAC
was loaded with Signac together with the associated frag-
ments file and metadata. Any features detected in less than
ten cells and any cells with less than 200 detected features
were discarded from the dataset. Gene annotations from the
EnsDb.Hsapiens.v86 v2.99.0 (https://bioconductor.
org/packages/release/data/annotation/
html/EnsDb.Hsapiens.v86.html) were used. Tran-
scription start site (TSS) enrichment, nucleosome signal, and
the fraction of reads in peaks statistics were computed per
cell. AMULET94 was installed from the GitHub main branch
(https://github.com/UcarLab/AMULET) at commit
9ce413f and used for detecting and removing doublet cells
from the dataset. F or QC, only cells conforming with all
the following criteria were kept in the dataset: over 1,000
fragments in peak regions, less than 100,000 fragments in
peak regions, TSS enrichment score greater than 2.7, TSS
enrichment score smaller than 10, over 30 % reads in peaks,
blacklist ration smaller than 0.66 and a nucleosome signal ra-
tio below 10. This resulted in 7 % of cells being removed and
20616 remaining cells. TF-IDF normalization95, top feature
identification (min.cutoff = ’q0’), singular value decomposi-
tion, neighbor graph computation, UMAP67 computation, and
clustering96 were performed. Gene activities were computed
and log-normalized. ChromVar97 activities were computed
using the BSgenome.Hsapiens.NCBI.GRCh38 (https:
//bioconductor.org/packages/release/
data/annotation/html/BSgenome.Hsapiens.
NCBI.GRCh38.html) genome and motif position fre-
quency matrices from the JASPAR2020 database (https:
//bioconductor.org/packages/release/data/
annotation/html/JASPAR2020.html)98.

Multimodal integration of scRNA-seq and scATAC-seq
data. The integration described in this section was carried out
individually for the GC-exposed and vehicle data (scRNA-
seq and scATAC-seq) from 90 days-old organoids (Veh-Veh
and Chr-Veh conditions) using the Python package GLUE99

v0.3.2.
The scATAC-seq data was saved as an h5ad object by
exporting to Python using anndata2ri v1.1 (https://
github.com/theislab/anndata2ri) automatic con-
version. The data was subset for the respective treatment con-
dition and reduced to 101 dimensions using 15 latent seman-
tic indexing iterations, as implemented in GLUE. The first di-
mension was discarded as it usually correlates strongly with
read depth. The resulting representation was used to compute
a neighbor graph as implemented in the scanpy62 package (us-
ing cosine similarity as a metric), followed by UMAP67 com-
putation also using the scanpy implementation.
The raw scRNA-seq count data was subset to the respec-
tive treatment condition and processed using the scanpy pack-
age as follows, using default parameters unless stated other-
wise: highly variable gene computation (n_top_genes=2000,
flavor="seurat_v3"), count normalization per cell to the me-
dian total counts per cell in the dataset, log(1+x) transforma-
tion, scaling each feature to unit variance and zero mean, com-
putation of 100 principle components, neighbor graph compu-
tation using the cosine similarity metric and UMAP computa-
tion.
A GLUE RNA-anchored guidance graph was computed us-
ing the scRNA-seq and scATAC-seq data, and a GLUE
model was fitted using a negative-binomial probability dis-
tribution and highly variable features from both data modal-
ities. Principal components were used as a reduced repre-
sentation of the scRNA-seq data, while the latent semantic
indexing embedding was used for scATAC-seq data. Data
from both modalities were passed through the trained GLUE
model, and the resulting concatenated representation was used
to compute a combined neighbor graph and UMAP repre-
sentation of the data. A bipartite matching approach100,
as implemented in the scim package (https://github.
com/ratschlab/scim, master branch, commit 6392e65),
was used (get_cost_knn_graph function with knn_k=15,
null_cost_percentile=99 and capacity_method=‘uniform’) to
match cells from both modalities one by one into ‘meta-
cells’. In cases where no ATAC match was found for an RNA
cell, only the RNA information was used. The GLUE latent
vector of the cell was calculated as the average latent vec-
tor of the matched cells and used for joint neighbor graphs
and UMAP computation for data visualization. The Python
implementation of MAGIC101 (https://github.com/
KrishnaswamyLab/MAGIC) was used to impute gene ac-
tivities on the matched dataset using k=15 neighbors, decay=1,
thresh=1e-4, and four nearest neighbors for kernel bandwidth
computation.

Gene-regulatory network inference. The R tool Pando102

v1.0.3 (https://github.com/quadbio/Pando) with
R v4.1.2, together with Signac92 v1.9.0 and Seurat93 v4.3.0
for preprocessing, were used to infer gene-regulatory net-
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works (GRNs) from the integrated multimodal data sepa-
rately for the two treatment conditions (as in the integra-
tion step). The integrated metadata was loaded into a Seu-
rat object, from where the data of the two modalities were
preprocessed individually. The scATAC-seq peaks were em-
bedded in low-dimensional space using TF-IDF normaliza-
tion95, top feature identification (min.cutoff = ’q0’), and sin-
gular value decomposition. At the same time, the RNA data
was log-normalized (normalization.method="LogNormalize",
scale.factor=10000), top features were identified (selec-
tion.method="vst", nfeatures=4000), the data was scaled,
and principle components were computed. The GRN
was initiated using both data modalities and conserved re-
gions from mammals as included in Pando (phastConsE-
lements20Mammals.UCSC.hg38). Candidate regions were
scanned for TF binding sites as provided by Pando (mo-
tif2tf data). The resulting data and initialized network
were used to infer the GRN (peak_to_gene_method=’Signac’,
method=’glm’) followed by gene module identification
(p_thresh=0.1, nvar_thresh=2, min_genes_per_module=1,
rsq_thresh=0.05). ggplot2103 v3.4.2 and ggraph (https:
//github.com/thomasp85/ggraph) v2.1.0 were used
to generate TF-centered GRN visualizations.

As multimodal analyses were only carried out in Line 409b2,
we applied a stricter false discovery cutoff of five percent in
all DE analyses in this section to define a DE gene.

Statistical testing. The SciPy88 implementation of the t-test
for the means of two independent samples was used to test
for significance throughout the manuscript unless stated other-
wise. Correlation coefficients were computed using the SciPy
implementation of the Pearson correlation coefficient and p-
value for testing non-correlation unless stated otherwise.

Data and code availability

Processed count matrices in h5ad format (scRNA-
seq and scATAC-seq) with associated metadata, as
well as all analysis code is available from Zen-
odo. (DOI: 10.5281/zenodo.10391945; https:
//doi.org/10.5281/zenodo.10391945).

Raw scRNA-seq data (including filtered count matrices) are
available from the Gene Expression Omnibus repository:
GSE252522 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE252522): scRNA-seq
Veh, Chr, Chr-Veh, and Chr-Acu conditions. GSE189534
(https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE189534): scRNA-seq Veh-Veh and
Veh-Acu conditions; Line FOK4 = Line2; Line 409b2 =
Line3; Veh-Veh = Veh, Veh-Acu = Dex. Raw scATAC-seq
data (including filtered count matrices) are available from
the Gene Expression Omnibus repository: GSE252523
(https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE252523)
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Supplementary Figure 1. Chronic glucocorticoid exposure in neural organoids does not induce significant metabolic stress in cells. a. Selected marker gene
expression per cell type and cell line. b. Fraction of non-viable cells per cell type and cell line. The absolute number of non-viable cells per cluster is displayed above each
bar. The “Unknown” clusters were removed from the datasets in their entirety (394 cells in Line 409b2; 7039 cells in Line FOK4). c. Top: cells from this publication projected
to the HNOCA 30. Cells are colored by their origin dataset (left) and cell types assigned in this study (right). Bottom: HNOCA cell type labels. CP, choroid plexus; NPC, neural
progenitor cell; EC, endothelial cell; MC, mesenchymal cell; NC, neural crest; OPC, oligodendrocyte progenitor cell; PSC, pluripotent stem cell.
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Supplementary Figure 2. Transcriptional response following chronic glucocorticoid treatment in organoids includes key neurodevelopmental genes. a. Filtering
scheme used to identify consensus DE genes between organoids from the two genetic backgrounds. b. Grouped semantic space representation of the GO-BP enrichment
analysis for the three cell types with the least detected DE genes. The size of the circles corresponds to the number of terms in the cluster; their color corresponds to the
log10(q-value) of the representative term for each cluster. The integers within the circles enumerate the eight most significant clusters, and their representative term is written
out in the legend below each plot. c. UMAP embedding of Line 409b2 and Line FOK4 data colored by organoid age.
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DRAFT
Supplementary Figure 3. GC exposure results in an increased abundance of inhibitory neurons in organoids. a. Representative image of whole slice dorsalized Line
409b2 (GFP-GAD1) control organoids at day 70 in culture (Veh condition). Only very few GAD1+ cells are visible. Lower panel: zoomed-in inserts. DMSO, dimethyl sulfoxide;
Dex, dexamethasone. b. Representative image of whole slice dorsalized Line 409b2 (GFP-GAD1) organoids at day 70 in culture, following 10 days of chronic treatment with
GCs (100nM dexamethasone; Chr condition). Only very few GAD1+ cells are visible, but slightly more than in the dorsalized control organoids. c. Representative image of whole
slice ventralized Line 409b2 (GFP-GAD1) control organoids at day 70 in culture (Veh condition). A larger number of GAD1+ cells compare to the dorsalized organoids indicates
a successful ventralization.
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Supplementary Figure 4. PBX3 regulation through chronic glucocorticoid exposure supports inhibitory neuron priming. a. Correlation of NFIA, NFIB, YBX1, and EGR1
expression with lineage probability across the excitatory and inhibitory neuronal lineages in all three datasets. The percentile of each gene among all significant driver genes
ranked by driver strength is shown on the side of every bar. b. Expression of PBX3 in Line FOK4 and the validation data (Kanton et al.) on a force-directed graph embedding (top).
Expression patterns of PBX3 across pseudotime for each of the three lineage endpoints in Line FOK4 and the validation data (Kanton et al.) (bottom). c. Expression of PBX3
in the fetal brain atlas 42 neurons and progenitors across age (in days), dissected brain region, and neurotransmitter-transporter expression (left to right). NTT, neurotransmitter
transporter d. Expression of GAD1 and PBX3 in day-70 double-positive cells with fitted linear regression line. Left: Line 409b2. Right: Line FOK4.
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