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S1 Appendix Definition of probability distributions in the 685

calculation of mutual information 686

In order to build an information footprint from data, we need to calculate the mutual information between 687

expression levels and the base identity at each position in the sequence, which is defined as 688

Ii =
X

b

X

µ

Pr i(b, µ) log2

✓
Pr i(b, µ)

Pr i(b) Pr(µ)

◆
, (43)

where b represents base identity and µ represents expression levels. 689

As shown in Fig S1(A) and S1(C), we find that binding sites have a higher signal-to-noise ratio in 690

information footprints when the coarse grained approach is taken 691

b =

(
0, if the base is mutated,

1, if the base is wild type.
(44)

On the other hand, to obtain a distribution of expression levels, sequencing counts are binned into N bins, 692

where the bins are chosen such there is an equal number of sequences in each bin. Again, we observe the 693

highest signal-to-noise ratio for N = 2, and see a continuous decrease with increasing number of bins. As 694

shown in Fig S1(B) and S1(C), we observe that signal-to-noise ratio is higher when fewer bins are used to 695

partition expression levels. 696

These observations may be explained by the fact that increasing the number of states or bins increases 697

the level of noise. When there are more states or more bins, fewer sequences will be present in each bin. This 698

amplifies the hitch-hiking effects discussed in Sec 1.3, leading to a higher level of noise. In addition, since the 699

boundaries between the bins are artificially set, a sequence may be randomly grouped into the N-th bin 700

rather than the adjacent (N-1)-th and (N+1)-th bins simply because the boundaries are set a particular level. 701

This randomness occurs in both the marginal probability distribution for µ and the joint probability 702

distribution, resulting in noise that is increased when more bins are added. 703

S2 Appendix Analytical calculation of information footprint 704

To better understand how mutations in the binding sites create signals in the information footprint, we 705

derive the information footprint analytically for a constitutively expressed gene, i.e. the promoter of the gene 706

only has a binding site for RNAP and is not bound by any transcription factors. 707

Consider a promoter region where the RNAP binding site is l base pairs long and the probability of 708

mutation at each site is ✓. Furthermore, the binding energy of RNAP to the wild-type sequence is denoted 709

by �" and we assume that at each position within the binding site, a mutation comes with cost ��" to the 710

binding energy. Therefore, if there are m mutations in the binding site, the total binding energy between 711

RNAP and the mutant binding site is �"+m��". 712
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1) b = {wild type, mutated}, number of bins = 2

2) b = {A, G, C, T}, number of bins = 2

3) b = {wild type, mutated}, number of bins = 10

(C)(A)

(B)

mutation increases expression mutation decreases expression

1 3

Supplementary Figure 1. Definition of probability distributions in the calculation of mutual
information. (A) Using a probability distribution of the four bases leads to a reduced signal-to-noise ratio
in the information footprint. The heights of the bars are the average signal-to-noise ratios calculated from
the information footprints of 20 synthetic datasets with the repression-activation architecture. (B)
Signal-to-noise ratio decreases when the number of bins increases. (C) Choosing different probability
distributions to calculate the information footprint for a synthetic dataset with the repression-activation
genetic architecture. The top footprint uses a probability distribution of wild-type and mutated bases and
uses 2 bins to calculate the probability distribution for expression levels. The middle footprint uses a
probability distribution of the four bases (A, G, C, T) and uses 2 bins to calculate the probability
distribution for expression levels. The bottom footprint uses a probability distribution of wild-type and
mutated bases and uses 10 bins to calculate the probability distribution for expression levels.

In a sufficiently large data set, the ratio of sequences with mutation at position i is given by 713

Pr i(b) =

(
1� ✓, if b = 0

✓, if b = 1.
(45)

Next, we determine Pr(µ). As before, we define Pr(µ) as the probability that a given sequence leads to 714

high expression levels or low expression levels. To predict expression levels, we begin by calculating pbound 715

for each promoter variant. Since the gene is constitutively expressed, the probability of RNAP binding is 716

given by 717

pbound =
P

NNS
e��(�"+m��")

1 + P
NNS

e��(�"+m��")
. (46)

As derived in Eqn 5, the steady state copy number of mRNAs is proportional to the probability of the 718

RNAP bound state. Therefore, expression level is only dependent on the number of mutations in the RNAP 719

binding site. 720

The probability distribution for the number of mutations in the RNAP binding site can be expressed 721

using the binomial distribution, where the probability of k mutations in the binding site is given by 722

Pr(m = k; l, ✓) =

✓
l

k

◆
✓k(1� ✓)l�k. (47)
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As illustrated in Fig S2, ince expression levels are solely determined by the number of mutations in the 723

binding site, and sequences are binned by expression levels to obtain P (µ), there is a threshold number of 724

mutations, m⇤, where sequences with m⇤ or more than m⇤ mutations fall into the lower expression bin. 725

Hence, P (µ) is given by 726

Pr(µ) =

8
<

:
Pr(m � m⇤; l, ✓) =

lP
k=m⇤

� l
k

�
✓k(1� ✓)l�k, if µ = 0

Pr(m < m⇤; l, ✓) = 1� Pr(m � m⇤; l, ✓), if µ = 1.
(48)

Finally, we determine the expression for Pr i(b, µ). To do this, we consider two cases, one where the 727

position i is outside of the RNAP binding site and one where the position i is within the RNAP binding site. 728

If i is not in the RNAP binding site B, then a mutation would have no effect on the expression levels, 729

therefore 730

Pr i/2B(b, µ) =

8
>>><

>>>:

(1� ✓) · Pr(m � m⇤; l, ✓), if b = 0 and µ = 0

(1� ✓) · Pr(m < m⇤; l, ✓), if b = 0 and µ = 1

✓ · Pr(m � m⇤; l, ✓), if b = 1 and µ = 0

✓ · Pr(m < m⇤; l, ✓), if b = 1 and µ = 1.

(49)

Having derived all the marginal probability distributions and the joint probability distributions, we can 731

then write down mutual information at a non-binding site and at a binding site. If position i is outside the 732

RNAP binding site, then 733

Ii =(1� ✓) · Pr(m � m⇤; l, ✓) log2
(1� ✓) · Pr(m � m⇤; l, ✓)

(1� ✓) · Pr(m � m⇤; l, ✓)

+ (1� ✓) · Pr(m < m⇤; l, ✓) log2
(1� ✓) · Pr(m < m⇤; l, ✓)

(1� ✓) · Pr(m < m⇤; l, ✓)

+ ✓ · Pr(m � m⇤; l, ✓) log2
✓ · Pr(m � m⇤; l, ✓)

✓ · Pr(m � m⇤; l, ✓)

+ ✓ · Pr(m < m⇤; l, ✓) log2
✓ · Pr(m < m⇤; l, ✓)

✓ · Pr(m < m⇤; l, ✓)
.

(50)

We can see that Ii = 0 since the fractions within the logarithms all cancel out to be 1. This is because the 734

joint probability Pr i(b, µ) for bases outside the binding site is simply given by the product of the marginal 735

distributions, 736

Pr i/2B(b, µ) = Pr i/2B(µ) Pr i/2B(b). (51)

If the position i is in the RNAP binding site, the calculation for Pr i(b, µ) is more complex. As illustrated 737

in Fig S2, if the position i has wild-type base identity, then the sequence would have low expression levels if 738

there are more than m⇤ mutations in the remaining l � 1 bases in the RNAP binding site and the sequence 739

would have high expression levels if there are less than m⇤ mutations in the remaining l � 1 bases in the 740

RNAP binding site. On the other hand, if the position i is mutated, then the sequence would have low 741

expression levels if there are more than m⇤ � 1 mutations in the remaining l � 1 bases and the sequence 742

would have high expression levels if there are less than m⇤ � 1 mutations in the remaining l� 1 bases. Taken 743

together, we can write down the joint probability distribution as 744

Pr i2B(b, µ) =

8
>>><

>>>:

(1� ✓) · Pr(m � m⇤; l � 1, ✓), if b = 0 and µ = 0

(1� ✓) · Pr(m < m⇤; l � 1, ✓), if b = 0 and µ = 1

✓ · Pr(m � m⇤ � 1; l � 1, ✓), if b = 1 and µ = 0

✓ · Pr(m < m⇤ � 1; l � 1, ✓), if b = 1 and µ = 1.

(52)

In this case, the joint distribution does not factor into the marginal distributions, 745

Pr i2B(b, µ) 6= Pr i2B(µ) Pr i2B(b), (53)
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site i
wild-type

l base pairs

site i
mutated

# of mutations in remaining
(l-1) base pairs needed to
reach m* total mutations

probability that
the sequence has

low expresion

Supplementary Figure 2. Calculating number of mutations needed to reach the threshold
between low expression and high expression bins. The joint probability distribution at site i is a
product of the probability that site i is mutated or wild type and the probability that the sequence has high
or low expression level. Since the expression of the sequence depends on the presence of a mutation at site i,
we need to consider two different cases in order to calculate the probability of expression. In the case where
site i has wild-type base identity, there need to be m⇤ mutations outside of site i in the RNAP binding site
for the sequence to reach the threshold m⇤. Therefore, the probability that the sequence has low expression
is Pr(m � m⇤; l � 1, ✓). On the other hand, in the case where site i is mutated, since one mutation is known
to exist, there only need to be m⇤ � 1 mutations outside of site i in the RNAP binding site for the sequence
to reach the threshold. In this case, the probability that the sequence has low expression is
Pr(m � m⇤ � 1; l � 1, ✓).

and therefore, mutual information has to be larger than zero, Ii > 0, clearly distinguishing positions that are 746

within the binding site from positions outside. Specifically, 747

Ii =(1� ✓) · Pr(m � m⇤; l � 1, ✓) log2
(1� ✓) · Pr(m � m⇤; l � 1, ✓)

(1� ✓) · Pr(m � m⇤; l, ✓)

+ (1� ✓) · Pr(m < m⇤; l � 1, ✓) log2
(1� ✓) · Pr(m < m⇤; l � 1, ✓)

(1� ✓) · Pr(m < m⇤; l, ✓)

+ ✓ · Pr(m � m⇤ � 1; l � 1, ✓) log2
✓ · Pr(m � m⇤ � 1; l � 1, ✓)

✓ · Pr(m � m⇤; l, ✓)

+ ✓ · Pr(m < m⇤ � 1; l � 1, ✓) log2
✓ · Pr(m < m⇤ � 1; l � 1, ✓)

✓ · Pr(m < m⇤; l, ✓)

=(1� ✓) · Pr(m � m⇤; l � 1, ✓) log2
Pr(m � m⇤; l � 1, ✓)

Pr(m � m⇤; l, ✓)

+ (1� ✓) · Pr(m < m⇤; l � 1, ✓) log2
Pr(m < m⇤; l � 1, ✓)

Pr(m < m⇤; l, ✓)

+ ✓ · Pr(m � m⇤ � 1; l � 1, ✓) log2
Pr(m � m⇤ � 1; l � 1, ✓)

Pr(m � m⇤; l, ✓)

+ ✓ · Pr(m < m⇤ � 1; l � 1, ✓) log2
Pr(m < m⇤ � 1; l � 1, ✓)

Pr(m < m⇤; l, ✓)
.

(54)

S3 Appendix States-and-weights models for common regulatory 748

architectures 749

There are six common regulatory architectures for promoters in E. coli. Based on the states-and-weights 750

diagrams shown in Fig S3, we can write down pbound, the probability that the RNAP is bound to the 751

promoter, for each of the regulatory architectures [1]. 752

For a constitutively expressed promoter, the states-and-weights diagram is shown in Fig S3(A), and the 753
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STATE WEIGHT

Constitutively expressed

STATE WEIGHT

Simple repression

STATE WEIGHT

Simple activation

STATE WEIGHT

Repression-activation

STATE WEIGHT

Double repression (OR gate)

STATE WEIGHT

Double activation (OR gate)

STATE WEIGHT

(A) (B) (C)

(D)

(F)

(E)

Supplementary Figure 3. States-and-weights models for common regulatory architectures. In
all the diagrams, P represents the number of RNAP; R represents the number of repressors; A represents the
number of activators; NNS represents the number of non-specific binding sites; �"pd represents the binding
energy of the RNAP; �"rd represents the binding energy of the repressor; �"ad represents the binding energy
of the activator; !ab represents the interaction energy between a and b. (A) States-and-weights model for a
promoter that is constitutively expressed. (B) States-and-weights model for a promoter under the simple
repression regulatory architecture. (C) States-and-weights model for a promoter under the simple activation
regulatory architecture. (D) States-and-weights model for a promoter under the repression-activation
regulatory architecture. (E) States-and-weights model for a promoter under the double repression regulatory
architecture with OR logic. (F) States-and-weights model for a promoter under the double activation
regulatory architecture with OR logic.
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probability of RNAP being bound is given by 754

pbound =
P

NNS
e���"pd

1 + P
NNS

e���"pd
, (55)

where NNS is the number of non-specific binding sites; P is the number of RNAP; �"pd is the binding energy 755

of the RNAP. 756

For a promoter with the simple repression regulatory architecture, the states-and-weights diagram is 757

shown in Fig S3(B), and the probability of RNAP being bound is given by 758

pbound =
P

NNS
e���"pd

1 + P
NNS

e���"pd + R
NNS

e���"rd
, (56)

where NNS is the number of non-specific binding sites; P is the number of RNAP; R is the number of 759

repressors; �"pd is the binding energy of the RNAP; �"rd is the binding energy of the repressor. Here, the 760

weak promoter approximation is often made, which states that the RNAP binding state has a much lower 761

Boltzmann weight compared to the repressor binding site. Therefore, the expression can often be simplified to 762

pbound =
P

NNS
e���"pd

1 + R
NNS

e���"rd
. (57)

For a promoter with the simple activation regulatory architecture, the states-and-weights diagram is 763

shown in Fig S3(C), and the probability of RNAP being bound is given by 764

pbound =
P

NNS
e���"pd + P

NNS

A
NNS

e��(�"pd+�"ad)!ap

1 + P
NNS

e���"pd + A
NNS

e���"rd + P
NNS

A
NNS

e��(�"pd+�"ad)!ap
, (58)

where NNS is the number of non-specific binding sites; P is the number of RNAP; A is the number of 765

activators; �"pd is the binding energy of the RNAP; �"ad is the binding energy of the activator; !a1a2 is the 766

interaction energy between the activator and the RNAP. 767

For a promoter with the repression-activation regulatory architecture, the states-and-weights diagram is 768

shown in Fig S3(D), and the probability of RNAP being bound is given by 769

pbound =
P

NNS
e���"pd + P

NNS

A
NNS

e��(�"pd+�"ad)!ap

1 + P
NNS

e���"pd + R
NNS

e���"rd + A
NNS

e���"ad + P
NNS

A
NNS

e��(�"pd+�"ad)!ap
, (59)

where NNS is the number of non-specific binding sites; P is the number of RNAP; R is the number of 770

repressors; A is the number of activators; �"pd is the binding energy of the RNAP; �"rd is the binding 771

energy of the repressor; �"ad is the binding energy of the activator; !a1a2 is the interaction energy between 772

the activator and the RNAP. 773

Let r1 = R1
NNS

e���"r1d , r2 = R2
NNS

e���"r2d , and p = P
NNS

e���"pd . Then, for a promoter with the double 774

repression regulatory architecture under OR logic, the states-and-weights diagram is shown in Fig S3(E), and 775

the probability of RNAP being bound is given by 776

pbound =
p

1 + r1 + r2 + r1r2!r1r2 + p
, (60)

where NNS is the number of non-specific binding sites; P is the number of RNAP; R1 is the number of the 777

first repressor; R2 is the number of the second repressor; �"pd is the binding energy of the RNAP; �"r1d is 778

the binding energy of the first repressor; �"r2d is the binding energy of the second repressor; !r1r2 is the 779

interaction energy between the two repressors. The states-and-weights diagram of the AND-logic double 780

repression regulatory architecture is shown in Fig 7(A). In this case, the probability of RNAP being bound is 781

given by 782

pbound =
p+ r1p+ r2p

1 + r1 + r2 + r1r2!r1r2 + p+ r1p+ r2p
, (61)
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Let a1 = A1
NNS

e���"a1d , a2 = A2
NNS

e���"a2d , and p = P
NNS

e���"pd . Then, for a promoter with the double 783

repression regulatory architecture under OR logic, the states-and-weights diagram is shown in Fig S3(F), and 784

the probability of RNAP being bound is given by 785

pbound =
p+ a1p!a1p + a2p!a2p + a1a2p!a1p!a2p

1 + a1 + a2 + p+ a1a2!a1a2p+ a1p!a1p + a2p!a2p + a1a2p!a1p!a2p
, (62)

where NNS is the number of non-specific binding sites; P is the number of RNAP; A1 is the number of the 786

first activator; A2 is the number of the second activator; �"pd is the binding energy of the RNAP; �"a1d is 787

the binding energy of the first activator; �"a2d is the binding energy of the second activator; !a1p is the 788

interaction energy between the first activator and the RNAP; !a1a2 is the interaction energy between the 789

second activator and the RNAP. The states-and-weights diagram of the AND-logic double activation 790

regulatory architecture is shown in Fig 8(A). In this case, the probability of RNAP being bound is given by 791

pbound =
p+ a1p!a1p + a2p!a2p + a1a2p!a1p!a2p!a1a2

1 + a1 + a2 + p+ a1a2!a1a2p+ a1p!a1p + a2p!a2p + a1a2p!a1p!a2p!a1a2

, (63)

where !a1a2 is the interaction energy between the two activators. 792

S4 Appendix Recovering binding site signal under extreme 793

mutation rates 794

As we have shown in Sec 1.2, when the rate of mutation in the mutant library is low, we lose the signal at 795

the RNAP binding site. We hypothesize that this is because RNAP binds weakly at the promoter. We 796

generated a synthetic dataset that has low mutation rate but stronger binding energy at the RNAP binding 797

site. As shown in Fig S4(A), the information footprint built from this dataset has a much higher level of 798

mutual information at the RNAP binding site compared to the information footprint built from a dataset 799

with the same mutation rate but weak RNAP binding energy, which supports our hypothesis. 800

We also showed that when the rate of mutation in the mutant library is high, there is low mutual 801

information at the repressor binding site. Our hypothesis is that this is caused by the large effects of 802

mutations on the repressor binding energy. We generated a synthetic dataset with high mutation rate while 803

reducing the effect of mutation on binding energy by five fold. As shown in Fig S4(B), this allows us to 804

recover the signal at the repressor binding site, which is also in line with our hypothesis. 805

S5 Appendix Transcription factor knock-out under double 806

activation 807

A double-activation promoter can also operate under an AND or an OR logic gate [2]. The 808

states-and-weights diagram for a double-activation promoter is shown in Fig S5(A). Under AND logic, the 809

two activators can interact both with the RNAP and with each other. This cooperativity leads to a further 810

increase in expression levels. In contrast, under OR logic, the activators independently interact with RNAP 811

and there is no cooperativity between them. We build synthetic datasets for an AND-logic and an OR-logic 812

double-activation promoter. As shown in Fig S5(B) and S5(C), under AND logic, since cooperativity is at 813

play, the signal at both A1 and A2 binding sites increases when A1 is increased. On the other hand, under 814

OR logic, the two activators act independently and there is competition between the signals at the two sites. 815

When A1 is increased, the signal at A1 binding site correspondingly increases but the signal at A2 binding 816

site decreases. 817

S6 Appendix Changing inducer concentration for the inducible 818

activator 819

In Sec 2.4, we discussed the effects of inducer concentration on the information footprints of a simple 820

repression promoter with an inducible repressor. Similar effects can also be seen for a simple activation 821
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weak RNAP binding mutations have strong effects on repressor binding energy

strong RNAP binding

Mutation rate = 0.20

mutations have weak effects on repressor binding energy

Mutation rate = 0.04(A) (B)

mutation increases expression mutation decreases expression

Supplementary Figure 4. Recovering signals from information footprints under extreme
mutation rates. (A) We generated two synthetic datasets with a mutation rate of 0.04 in the mutant
library. In the first dataset, we set the RNAP binding energy �"rd to be �5 kBT , which is typical of RNAP
binding at the wild type -10 and -35 binding sites. In the footprint produced from this dataset, there is low
mutual information at the RNAP binding site due to the low mutation rate. On the other hand, in the
second dataset, we increased �"rd to �12 kBT . This allows us to recover the signal at the RNAP binding
site. (B) We generated two synthetic datasets with a mutation rate of 0.20. In the first dataset, we used the
experimentally measured energy matrix for LacI at the O1 operator shown in Fig 2(B), where the average
effect of mutations on binding energy is 2.24 kBT . In the footprint produced from this dataset, there is low
mutual information at the repressor binding site due to the high mutation rate. In the second dataset, we
reduced the average effect of mutations fivefold and are able to recover the signal at the repressor binding
site.

promoter with an inducible activator. One example of an inducible activator is CRP, which changes its 822

conformation when bound to cyclic-AMP and thereby becomes more favorable to DNA binding [3]. Based on 823

the states-and-weights diagram for such a promoter, which is shown in Fig S6(A), the probability of RNAP 824

being bound is given by 825

pbound =
p+ paA!A + paI!I

1 + p+ aA + aI + paA!A + paI!I
, (64)

where p is the normalized weight of the RNAP bound state, aA is the normalized weight of the active 826

activator bound state, and aI is the normalized weight of the inactive activator bound state. !A and !I 827

account for the interaction energy between the RNAP and the active activator and the interaction energy 828

between the RNAP and the inactive activator, respectively. The exact expressions for p, aA, aI , !A and !I 829

are given in Fig S6(A). 830

To simplify the expression above, we determine the proportion of active and inactive activators with 831

respect to the total number of activators. Similar to the case of simple repression, we calculate pactive(c), 832

which is the probability that the activator exists in the active conformation as a function of the inducer 833

concentration, c. The different states of the activator can be modelled using the states-and-weights diagram 834

shown in Fig S6(B). Here, we consider two types of cooperativity. The first type of cooperativity is between 835

the two binding sites, where each ligand binding event changes the binding affinity of the unbound site. This 836

is inherent to the classic Monod–Wyman–Changeux model and is already encoded in the terms !A and !I in 837

Eqn. 64. The second type of cooperativity is between the two ligands, which accounts for the negative 838

cooperativity of CRP in the inactive state. This is accounted for by the cooperative energy terms "Aint and 839

"Iint, which represent the interaction energies between the two ligands in the active and inactive states, 840
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STATE WEIGHT

Double activation

STATE WEIGHT

1) A
1
 = 0, R

2
 = 25

(B)

4 5 6

1 2 3
(C) AND logic

2) A
1
 = 10, A

2
 = 25

3) A
1
 = 50, A

2
 = 25

4) A
1
 = 0, A

2
 = 25

OR logic

5) A
1
 = 0, A

2
 = 25

6) A
1
 = 50, A

2
 = 25

mutation increases expression mutation decreases expression

(A)

Supplementary Figure 5. Changing the copy number of activators in a double activation
promoter. (A) States-and-weights diagram of a promoter with the double activation regulatory architecture.
Under OR logic, the two activators do not exhibit coorperativity and !a1a2 = 0 kBT . The states-and-weights
diagram of a double activation promoter with OR logic is also shown in Fig S2(F). (B) Changing the copy
number of the first activator under AND logic and OR logic affects the signal at both activator binding sites.
The energy matrices of the activators are randomly generated in the same way as the energy matrices of the
repressors in Fig 8. For the promoter with AND logic, the interaction energies between the activators and
between the activator and the RNAP are set to -4 kBT . For the promoter with OR logic, the interaction
energies between the activators and between the activator and the RNAP are set to -7 kBT . The higher
interaction energy for the OR logic promoter is to ensure that there are similar levels of signal at the
activator binding sites compared to the AND logic promoter. All data points are the mean of average mutual
information across 20 synthetic datasets with the same parameters. (C) Representative information
footprints of a double repression promoter under AND and OR logic.

respectively. Given the states-and-weights diagram, pactive(c) is given by 841

pactive(c) =
1 + c

KA
L
+ c

KA
R
+ c

KA
L

c
KA

R
e��"Aint

1 + c
KA

L
+ c

KA
R
+ c

KA
L

c
KA

R
e��"Aint + e�2�"AI (1 + c

KI
L
+ c

KI
R
+ c

KI
L

c
KI

R
e��"Iint)

, (65)

where KA
L is the dissociation constant between the inducer and the left binding pocket of the active activator, 842

KA
R is the dissociation constant between the inducer and the right binding pocket of the active activator, KI

L 843

is the dissociation constant between the inducer and the left binding pocket of the inactive activator, and KI
R 844

is the dissociation constant between the inducer and the right binding pocket of the inactive activator. With 845

this expression, we can represent the number of active and inactive activators as AA = pactiveA and 846

AI = (1� pactive)A. Therefore, we have that aA = pactive
A

NNS
e���"Aad and aI = (1� pinactive)

A
NNS

e���"Iad . 847

We built synthetic datasets for a simple activation promoter with an inducible activator. As shown in 848
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(A) (B)

(C) 1 2

State Renormalized weight

Inactive state

mutation increases expression mutation decreases expression

(D)

State Renormalized weight

Active stateSTATE WEIGHT

Supplementary Figure 6. Changing inducer concentration for the inducible activator. (A)
States-and-weights diagram for an inducible activator. In the diagram, NNS is the number of non-binding
sites in the genome, P is the copy number of the RNAP, AA is the copy number of active activators, AI is
the copy number of inactive activators, �"pd is the binding energy of the RNAP, �"Aad is the binding energy
of the active activator, �"Iad is the binding energy of the inactive activator. !A = e��"p,aA and
!I = e��"p,aI , where "p,aA is the interaction energy between the RNAP and the active activator and "p,aI is
the interaction energy between the RNAP and the inactive activator. (B) States-and-weights diagram to
calculate the probability that the activator is in the active state. (C) Average mutual information at the
RNAP binding site increases as the inducer concentration increases. Here, we let KA

L = KA
R = 3⇥ 10�6 M,

KI
L = KA

R = 10�7 M, and �"AI = �3 kBT [3]. (D) Representative information footprints with low inducer
concentration (10�9 M) and high inducer concentration (10�3 M).

Fig S6(C) and Fig S6(D), when the concentration of the inducer is increased, the average signal at the 849

RNAP binding site increases, which corresponds to an increase in expression. At high inducer concentration, 850

the activator is too strongly bound to be affected by mutations, and therefore the signal at the activator 851

binding site is negligible. 852

S7 Appendix Noise from experimental procedures 853

In MPRAs such as Reg-Seq, the mutant library is grown up in culture. Once the cell culture is prepared, 854

genomic DNA (gDNA) and mRNAs are extracted, the latter of which is used as a template in reverse 855

transcription to make complementary DNA (cDNA). Afterwards, polymerase chain reation (PCR) is 856

performed to amplify the reporter gene from the gDNA and cDNA. Finally, sequencing adapters are attached 857

to the gDNA and cDNA. The gDNA and cDNA are then sequenced to obtain DNA and RNA counts for each 858

sequence variant. 859

As illustrated in Fig S7(A), there are at least two possible sources of experimental noise. Firstly, PCR 860

amplification is a stochastic process where the probability that a DNA molecule is amplified in a given cycle 861

is less than one. This stochasticity may cause some sequences to have an artificially high RNA count. We 862

note that assuming that the same reporter gene is used for each sample, the only difference in the sequence 863

being amplified would be the barcode. Since barcodes are typically much shorter, it is unlikely to signficiantly 864

alter the GC-content of the sequence, and therefore we do not discuss the effect of PCR sequence bias. 865
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Secondly, during RNA-Seq as well as the prior library preparation procedures such as RNA extraction and 866

reverse transcription, we cannot ensure that every mRNA is extracted, converted to cDNA, and sequenced. 867

Instead, in these steps, only a random subset of the original pool of mRNAs is sampled and included in the 868

final sequencing dataset. As a result, a sequence may have an artificially low RNA count because some copies 869

of the mRNA associated with that sequence are not sampled in one of the experimental steps. 870

gDNA
extraction

PCR
amplification

PCR
stochasticity

reverse
transcription

mRNA
extraction

random
sampling
effects

next
generation
sequencing

random
sampling
effects

2) Synthetic dataset with 30 cycles of PCR

1) Synthetic dataset with no experimental noise

3) Synthetic dataset where 0.5% of the mRNA sequences are sampled

(A)

(D)

mutation increases expression mutation decreases expression

1 (C)(B) 2 3

Supplementary Figure 7. Noise from experimental procedures in the Reg-Seq pipeline. (A) The
two main sources of noise in the experimental MPRA pipeline are stochasticity from PCR amplification and
random sampling effects from RNA extraction, reverse transcription, and RNA-Seq. (B) Signal-to-noise ratio
in the information footprints remains high when the number of PCR amplification cycles is increased. Here,
Pamp = 0.5. (C) Signal-to-noise ratio remains high when only a small percentage of the sequences are
randomly sampled. (D) Representative information footprints with no experimental noise, PCR stochasticity
after 30 cycles, and random sampling effects after 0.5% of the RNA sequences are sampled.

We simulate these two sources of experimental noise in our computational pipeline. To simulate PCR 871

with n cycles of amplification, we start with the original mRNA counts predicted based on the probability of 872

RNAP being bound. Subsequently, we model the number of sequences that are successfully amplified during 873

each cycle using a Binomial distribution [4]. Hence, for each sequence variant, 874

n(j + 1) = n(j) +B(n(j), Pamp), (66)

where n(j) is the number of sequences of the promoter variant in cycle j, B(n, P ) models the Binomial 875

distribution, and Pamp is the probability that a sequence is successfully amplified in a cycle. We applied 876

Eqn 66 to calculate the final count of each sequence variant in a library. As shown in Fig S7(B) and S7(D), 877

even when the probability of amplification is set to a low number of Pamp = 0.5, increasing the number of 878

PCR cycles does not reduce the signal-to-noise ratio in information footprints. Therefore, we conclude that 879

stochasticity in PCR does not contribute to significant levels of noise in information footprints. 880

To simulate the random sampling effect during RNA extraction, reverse transcription, and sequencing, we 881

randomly draw a subset of promoter variants in the mutant library and we only consider the expression levels 882
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of the selected promoter variants when we calculate mutual information to build the information footprint. 883

As shown in Fig S7(C) and S7(D), the levels of noise only becomes significant when less than 1% of the 884

original pool of sequences is sampled. Therefore, random sampling effects are not a significant source of noise 885

in information footprints either. 886

S8 Appendix Modelling extrinsic noise using a log-normal 887

distribution 888

In order to account for extrinsic noise, we choose to use a log-normal distribution to describe the copy 889

number of RNAPs and repressors. To model the copy number of RNAPs, the parameters of the underlying 890

Normal distribution are 891

µRNAP = logP (67)

�RNAP = ↵RNAP · µRNAP, (68)

where P = 5000 is the reporter copy number of RNAPs in E. coli. The magnitude of �RNAP is defined as a 892

product between µRNAP and the coefficient of variation ↵RNAP. We draw a random number �RNAP from this 893

Normal distribution and the final copy number of RNAP is given by 894

Pwith noise = e�RNAP . (69)

Similarly, to model the copy number of the repressors, we use another Normal distribution with the 895

parameters 896

µrepressor = logR (70)

�repressor = ↵repressor · µrepressor, (71)

where R = 10 is the reporter copy number of LacI in E. coli and ↵repressor is the coefficient of variation. We 897

draw a random number �repressor from this Normal distribution and the final copy number of the repressors 898

is given by 899

Rwith noise = e�repressor . (72)

We increase ↵RNAP = ↵repressor, which increases the standard deviation in the underlying Normal 900

distributions and therefore the extrinsic noise in the datasets. The distribution of RNAP and repressor copy 901

numbers using low and high values of ↵RNAP = ↵repressor is shown in Fig S8. 902

Supplementary Figure 8. Modelling the copy number of RNAPs and repressors using a
log-normal distribution. Empirical CDFs for the copy number of RNAPs and repressors modelled using a
log-normal distribution. For the ECDFs with low extrinsic noise, ↵RNAP = ↵repressor = 0.1. For the ECDFs
with high extrinsic noise, ↵RNAP = ↵repressor = 0.5.
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