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Abstract

The primate brain uses billions of interacting neurons to produce macroscopic dynamics and behavior,
but current methods only allow neuroscientists to investigate a subset of the neural activity. Computational
modeling offers an alternative testbed for scientific hypotheses, by allowing full control of the system. Here,
we test the hypothesis that local cortical circuits are organized into joint clusters of excitatory and inhibitory
neurons by investigating the influence of this organizational principle on cortical resting-state spiking activity,
inter-area propagation, and variability dynamics. The model represents all vision-related areas in one
hemisphere of the macaque cortex with biologically realistic neuron densities and connectivities, expanding on
a previous unclustered model of this system. Each area is represented by a square millimeter microcircuit
including the full density of neurons and synapses, avoiding downscaling artifacts and testing cortical dynamics
at the natural scale. We find that joint excitatory-inhibitory clustering normalizes spiking activity statistics in
terms of firing rate distributions and inter-spike interval variability. A comparison with data from cortical
areas V1, V4, FEF, 7a, and DP shows that the clustering enables the resting-state activity of especially higher
cortical areas to be better captured. In addition, we find that the clustering supports signal propagation
across all areas in both feedforward and feedback directions with reasonable latencies. Finally, we also show
that localized stimulation of the clustered model quenches the variability of neural activity, in agreement with
experimental observations. We conclude that joint clustering of excitatory and inhibitory neurons is a likely
organizational principle of local cortical circuits, supporting resting-state spiking activity statistics, inter-area
propagation, and variability dynamics.

Keywords: spiking neural networks, cerebral cortex, clustered connectivity, simulations, signal propagation,
spiking statistics, high-performance computing, macaque

Introduction

Most studies in computational neuroscience focus on either the local or global circuitry while neglecting the1

interactions across scales. Recent studies bridge these scales by combining local and global circuits into multi-scale2

models enabling cortical simulations at neuronal and synaptic resolution (Schmidt et al., 2018a,b). This approach3

raises new questions compared to the study of isolated local circuits, for example: How can a hierarchically4

organized spiking neural network with realistic activity statistics support reliable signal propagation across areas?5

Reliable signal propagation is considered to be one of the four key properties of a candidate neural code (Perkel6

and Bullock, 1968; Kumar et al., 2010). Most previous studies have made simplifications, such as considering7

only strictly feedforward networks, assuming all areas to be identical, and not using biological data to constrain8

cortical connectivity (Diesmann et al., 1999; Deco and Rolls, 2005; Kumar et al., 2008, 2010). These studies9

identified a major common issue: modeled signals tend to either die out or amplify. Topographic connectivity has10

been shown to be crucial for signal propagation in spiking neural networks (Zajzon et al., 2019). A recent study11
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achieved signal propagation in data-driven large-scale models with simplified local connectivity (Joglekar et al.,12

2018), in both population rate models and connected balanced spiking neural networks, albeit without realistic13

spiking statistics. Here, we present a large-scale model at single-neuron resolution with clustered connectivity,14

that is able to transmit signals across the cortical hierarchy while preserving biologically realistic dynamics. To15

avoid otherwise inevitable downscaling artifacts (van Albada et al., 2015), we include the full biological density of16

neurons and synapses in each local circuit, yielding a model with about 4 million neurons and 24 billion synapses.17

Although much is known about cortico-cortical and local connections, the structural connectivity is not fully18

characterized. Structural relations and statistical regularities can be used to fill the gaps in the anatomical data19

(Schmidt et al., 2018a; van Albada et al., 2022). The population-level connectivity matrix for the vision-related20

areas of macaque cortex derived from anatomical data by Schmidt et al. (2018a) was found to produce unrealistic21

activity when simulated with random connectivity below the population level. The predicted connectivity matrix22

spans six orders of magnitude and has a relatively high uncertainty. Small changes to the connectivity can23

increase global stability (Schuecker et al., 2017) by uncovering cortical loops critical to global stability, such as24

that between areas the frontal eye field and dorsolateral prefrontal cortex, ultimately leading to a stable network25

(Schmidt et al., 2018b). These neuron-level networks are difficult to control due to their size and complexity.26

Thus, reliably transmitting signals across areas without destabilizing the network is challenging.27

To overcome the limitations of random networks and ensure signal transmission, several studies use clustered28

networks (Amit and Brunel, 1997; Deco and Rolls, 2005; Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015;29

Rost et al., 2018; Rostami et al., 2022). Clustered networks involve some form of strengthened connections within30

clusters and weakened connections across clusters. Deco and Rolls (2005) studied attention using a network31

of spiking neurons spanning two areas and featuring different clusters of excitatory neurons within the areas.32

Clustered networks tend to have multiple attractors. Thus, models with clusters of excitatory neurons have been33

used to explain decision-related activity (Amit and Brunel, 1997; Litwin-Kumar and Doiron, 2012; Mazzucato34

et al., 2015). Jointly clustering excitatory and inhibitory populations can be used to robustly build winnerless35

competition into balanced random networks while reproducing biological firing rates, spiking irregularity, and36

trial-to-trial spike count variability from in vivo recordings (Rost et al., 2018; Rostami et al., 2022). Furthermore,37

excitatory-inhibitory (EI) clustering can generate robust multistability with local balance for a wider range of38

network sizes and parameters than purely excitatory (E) clustering (Schaub et al., 2015; Rost et al., 2018; Najafi39

et al., 2020; Rostami et al., 2022).40

Ample evidence exists that synaptic connections between excitatory neurons are clustered and not uniform (Song41

et al., 2005; Perin et al., 2011). For example, Song et al. (2005) found that, in the visual system, bidirectional42

and clustered three-neuron connection motifs occur significantly more often than in a random graph based on a43

pairwise connection probability alone. Furthermore, such clusters receive similar visual feedforward input and44

thus could form fine-scale functional groups (Yoshimura et al., 2005; Ko et al., 2011). Clusters can be identified45

in the neocortex as ensembles of highly active, interconnected cells and might encode sensory information by46

high firing rates (Yassin et al., 2010). More recent anatomical and physiological findings suggest that inhibitory47

neurons and their connectivity also have a high degree of specificity (Xue et al., 2014; Lee et al., 2014; Morishima48

et al., 2017; Arkhipov et al., 2018; Khan et al., 2018; Znamenskiy et al., 2018; Shin et al., 2019; Najafi et al., 2020).49

For instance, in reciprocally connected pairs of inhibitory and excitatory neurons in the mouse visual cortex there50

is a positive correlation between the strength of the excitatory and the inhibitory synapses (Znamenskiy et al.,51

2024). These studies suggest that the networks can form strong local interconnected clusters consisting of both52

excitatory and inhibitory cells. All in all, clustered connectivity is a common feature of the brain that can be53

computationally advantageous, but its effects on large-scale dynamics remain to be elucidated.54

In this work, we introduce a clustered connectivity scheme (Fig. 1) in a biologically constrained model of macaque55

cortex (Schmidt et al., 2018a,b). We validate our clustered model by comparing its simulated activity with the56

previous unclustered version of the model, as well as with resting-state spiking activity across several cortical57

areas (V1, V4, FEF, 7a, and DP). We find that the clustered model supports plausible activity statistics in58
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terms of firing rate distributions and inter-spike interval variability. We show that the clustered connectivity59

scheme improves upon the original model particularly in terms of the activity statistics of the higher cortical60

areas FEF, 7a, and DP. Most importantly, we find that the clustered model can transmit signals across all areas61

in both feedforward and feedback directions. Upon stimulation of V1, the activity propagates through the entire62

model with plausible response latencies. Finally, we also show that the stimulation of the model quenches the63

variability of neural activity, in agreement with experimental observations. All in all, we show how joint clustering64

of excitatory and inhibitory neurons can support plausible resting-state spiking activity statistics, inter-area65

signal propagation, and variability dynamics upon stimulation in a multi-area cortical network. The model can66

function as a testbed for further studies of cortical spiking dynamics requiring inter-areal signal propagation.67

Results68

A clustered multi-area model of the macaque cortex69

To study the effect of network clustering in macaque cortex we use a previously developed multi-area model of70

the vision-related areas (Schuecker et al., 2017; Schmidt et al., 2018a,b), see Methods for a detailed account of71

the model construction. In short, the multi-area model is a multi-scale spiking network model of all vision-related72

areas in one hemisphere of macaque cortex with neuronal and synaptic resolution. It integrates experimental73

data on cortical architecture and connectivity into a comprehensive network and relates cortical connectivity to74

its dynamics. The local circuitry features four cortical layers and uses the microcircuit of Potjans and Diesmann75

(2014) as a blueprint. The cortico-cortical connectivity is based on axonal tracing data (Bakker et al., 2012),76

including quantitative and layer-specific retrograde tracing data (Markov et al., 2014b,a). We extend this model77

by subdividing every area into Q clusters. Both inside and across areas, synapses within clusters are strengthened,78

and synapses between different clusters are weakened. Fig. 1 schematically shows the network construction for79

Q = 2.80

Unrealistic aspects of the dynamics of the original multi-area model81

As a baseline for comparison, we first simulated the spiking activity of the original unclustered model (Schmidt82

et al., 2018a,b). Fig. 2A shows raster plots for areas V1, V2, V4, 7a, DP, and FEF when the model is in the83

metastable state (see Methods). V1, V2, and FEF show largely asynchronous irregular activity, while the vertical84

stripes for V4, 7a, and DP indicate high synchrony. Neurons in areas 7a and DP fire at a high rate, especially in85

layers 4 and 5 of area 7a.86

Fig. 2B shows the distribution of firing rates for selected areas. Area MIP shows an unrealistic firing peak at87

around 300 spikes/s. Areas DP, MT, LIP, and 7a show a high density of firing rates well above 100 spikes/s. The88

other areas fire at more reasonable rates. The raster plots of 7a and DP in Fig. 2A suggest that population 5E89

spikes excessively while population 6E stays completely silent.90

To assess targeted signal propagation between areas, we stimulate V1 and observe the resulting firing rates in V291

in Fig. 2C. The stimulation is a brief pulse of 200 ms with a rate of 30 spikes/s. We recorded the instantaneous92

firing rate from V1 and V2 with a bin size of 1 ms and convolved it with a Gaussian kernel of 10 ms width. The93

stimulation was repeated every second, providing 100 stimulation trials. Fig. 2C shows the mean (solid line) and94

standard deviation (shading) across trials. No detectable signal arrives in area V2 in response to the V1 stimulus,95

even though most of the cortico-cortical connections to V2 originate from V1. The large standard deviation in96

the firing rates of area V1 indicates that the same stimulus can have vastly different effects on the dynamics of97

V1. As shown in Schmidt et al. 2018b, signals do propagate through the network spontaneously, but it appears98

difficult to control their directions and strengths.99
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Figure 1: Overview of the model. The basic building block of the areas of the model is the microcircuit and its
intricate connectivity (Potjans and Diesmann, 2014). All areas are split into Q clusters of equal size (here, Q = 2
is shown). Every column in every area has a counterpart in every other area. The synaptic weights are scaled
inside and across columns, both locally and across areas. The scaling depends on whether the same or different
columns connect with each other. If the connection is established within the same (or, for inter-area connections,
corresponding) cluster, the weights are strengthened with the factors JE+ and JI+. Otherwise the connections
are weakened by the factors JE− and JI−. This is illustrated on the bottom right with a two-population network
for simplicity.

Clustering supports realistic spiking dynamics and signal propagation100

To address the lack of signal propagation in the original multi-area model, we introduce a connectivity structure101

that clusters areas into columns and alters the synaptic weights. The altered synaptic weights emphasize102

connections between the same columns and weaken all other connections (see Methods Clustered multi-area103

model of macaque visual cortex). We simulated a clustered model with Q = 50 clusters. Fig. 3A shows raster104

plots for V1, V2, V4, 7a, DP, and FEF in the condition without transient stimulation, mimicking the resting state.105

The overall firing behavior has considerably changed with respect to the original unclustered model: In every106

area, some clusters are more active than others, displaying activity akin to up states. Especially in FEF, there107

is frequent switching between active clusters. Furthermore, the vertical stripes are gone, and spiking activity108

in areas 7a and DP is much more plausible. Fig. 3B shows the distribution of firing rates for selected cortical109

areas. All areas have a comparable firing rate distribution, and no area spikes excessively, in agreement with110

experimentally measured activity levels (Shinomoto et al., 2003, 2009; Morales-Gregorio et al., 2020).111

In order to study signal propagation, we provided a stimulation of 200 ms with a rate of 30 spikes/s to a given112

cluster in V1, repeated every second. Fig. 3C shows the propagation of the signal from V1 to the corresponding113

cluster in V2. A clearly detectable signal arrives in V2 briefly after V1 stimulation. The standard deviation of114

firing rates in areas V1 and V2 is smaller than in the original model (see Fig. 2C), indicating that the same115

stimulus has a more predictable effect on the firing rates. The gray line in Fig. 3C shows the firing rate of all116

other clusters in V1. Thus, the firing rates in the non-stimulated clusters remain low and are slightly suppressed117

during stimulation.118

We have thus shown that the clustered model has more realistic spiking activity with a consistent firing rate119

distribution across areas and can reliably propagate a stimulus from V1 to V2.120
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Figure 2: Dynamics of the original model. (A) Raster plot of spiking activity of 2% of the neurons in
areas V1, V2, V4, 7a, DP, and FEF during resting state. Blue: excitatory neurons, orange: inhibitory neurons.
(B) Distribution of spike rates across all layers and populations for several cortical areas. (C) Propagation of
a stimulation of 200 ms of 30 spikes/s from area V1 to V2. The firing rates are averaged over 100 trials and
convolved with a Gaussian kernel with a width of 10 ms. Standard deviation (±) at each time point is indicated
by the shaded regions.

Comparison of single-neuron spiking statistics with experimental recordings121

We compare the simulated data from the original model and the clustered model with new spiking neuron data122

(see methods Experimental data). The experimental data consist of recordings from V1 layers 5/6, V4 layers 2/3123

and 5/6, FEF layers 2/3, 7a layers 5/6 and DP layers 5/6. Fig. 4 compares the distributions of the coefficient124

of variation of the inter-spike intervals (CV ISI), the revised local variation (LvR; Shinomoto et al., 2009), and125

firing rate in all areas. In 7a and DP, the two experimental lines correspond to different recording sessions. To126

match the number of neurons from the experimental data, we randomly sample the same number of spike trains127

from the simulated data (N = 100 realizations) and plot the mean (lines) and standard deviation (shadings).128

The clustered model (Q = 50) matches the experimental data better than the original model for all data sets129

except V4 L2/3. It especially outperforms the original model for V4 L5/6, 7a, and DP. The CV ISI distribution130

in 7a of the original model (shown as an inset) is centered around unrealistically high values. In DP, the original131
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Figure 3: Dynamics of the clustered model. (A) Raster plot of spiking activity of 2% of the neurons in
areas V1, V2, V4, 7a, DP, and FEF during the simulated resting state. Neurons are ordered according to their
cluster membership. Blue: excitatory neurons, orange: inhibitory neurons. (B) Distribution of spike rates across
all layers and populations for several cortical areas. (C) Propagation of a stimulation of 200 ms of 30 spikes/s
from the stimulated cluster in area V1 to the corresponding cluster in V2. The firing rates are averaged over 100
trials and convolved with a Gaussian kernel with a width of 10 ms. Standard deviation (±) at each time point is
indicated by the shaded regions. The gray line shows the firing rate of all non-stimulated clusters in area V1.

CV ISI distribution is also shifted to the right, but not as strongly. The distributions of all three measures, CV132

ISI, LvR, and firing rate, match the experimental data better in the clustered than in the original model. In the133

lower panel, we show the Kolmogorov-Smirnov distance between the experimental and simulated distributions for134

the CV ISI, LvR, and firing rate for different numbers of clusters Q. In the case of the CV ISI distribution, V1,135

7a, and DP profit from clustering, while V4 and FEF initially worsen a little bit but recover at Q = 50. In the136

case of the CV ISI distribution, V1, 7a, and DP profit from clustering, while V4 and FEF initially worsen slightly137

but recover at Q = 50. For the LvR distribution, most areas appear unaffected by clustering, while 7a and DP138

profit from clustering, and V4 worsens. The agreement of the rate distribution does not change much with Q;139

only the V4 agreement declines.140
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Figure 4: Comparison of single-neuron spiking statistics from clustered model with experimental
recordings. Upper panel: Probability densities of CV ISI, LvR, and rate distributions for area V1 layers 5 and
6, area V4 layers 2 and 3, area V4 layers 5 and 6, area FEF layers 2 and 3, 7a layers 5 and 6, and DP layers 5 and
6. The experimental data in 7a and DP contain two measurements from two independent recording sessions. The
clustered model uses Q = 50 clusters. Inset in 7a, layer 5/6 shows the CV ISI of the original model. Lower panel:
Kolmogorov-Smirnov distance of the CV ISI, LvR, and rate distribution comparing experimental and simulated
data for different numbers of clusters Q. The left data point at Q = 1 equals the original, metastable model of
Schmidt et al. (2018b).

Network-wide signal propagation in feedforward and feedback directions141

We simulate the response of the clustered model to a pulse of 200 ms and 30 spikes/s applied either to one cluster142

in primary visual cortex (area V1) or to one cluster in the frontal eye field (FEF). Fig. 5 shows the firing rates in143

the stimulated cluster for feedforward and feedback propagation. Areas are sorted according to their distance to144
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the stimulated area, measured as the shortest possible path between the areas without crossing the cortical surface145

(Bojak et al., 2011). The coloring of the area names corresponds to different modules of the network determined146

using the map equation method (Rosvall et al., 2009) applied to the structural connectivity as described in147

Schmidt et al. (2018b). The firing rates are averaged over 100 trials and convolved with a Gaussian kernel with a148

width of 10 ms.149

The response to V1 stimulation propagates through the network in the feedforward direction from lower to higher150

areas in the visual hierarchy. Early visual areas (i.e., those close to the sensory periphery) and dorsal stream151

areas become active first. Ventral stream and polysensory areas follow these, and the frontal areas are the last to152

respond. The activation timing coincides well with the sorting according to the shortest paths.153

In contrast, the response to FEF stimulation propagates in the feedback direction. In this experiment, frontal154

areas become active first, followed by polysensory, ventral stream, and dorsal stream areas. Finally, early visual155

areas respond. We can also observe a relation between distance to the stimulated area and response time, although156

weaker than in the feedforward case.157

In both cases, farther areas respond later to the stimulus and have, in general, a weaker time-integrated response.158

All areas in the model show a response to both the feedforward and feedback stimulus, with the notable exception159

of MDP, which has no incoming connections in the model (from the areas included in it) and is therefore not160

shown in Fig. 5. In summary, the clustered connectivity enables signal propagation throughout the cortex.161

Response latencies in the clustered model162

To quantify the speed and effectiveness of the signal propagation, we measured the response latencies in the163

clustered model. We first used the Poisson surprise algorithm to detect which neuronal responses occurred due to164

the stimulus and not just by random chance (see methods Response latency measurement via Poisson surprise).165

In Fig. 6A–D, we show the instantaneous firing rate of all nonrandom neuron responses in four areas (V1, V2, V4,166

and FEF) and the spike train raster plot of a single sample neuron across trials. Both the firing rate and the167

raster plot show high activity during the stimulation that decays after the stimulus is removed. The firing rate168

shows that neurons in V1 respond quickly to the stimulus, whereas in the other areas, the maximum firing rate is169

reached after a small delay, as also shown in Fig. 5. For all neurons, we measured the time to the first nonrandom170

spike—the time between stimulus onset and the first nonrandom spike in the corresponding cluster—and depict171

its cumulative distribution in Fig. 6E. Fig. 6F shows the response latencies, defined as the time point when half172

of the neurons have become active, compared against experimental data (Schmolesky et al., 1998; Barash et al.,173

1991; Bushnell et al., 1981; Chafee and Goldman-Rakic, 1998; Robinson et al., 1978; Lamme and Roelfsema,174

2000). In the experimental data, the timings are reported from the moment a stimulation was presented to the175

monkey, whereas in the simulation, we directly stimulate V1. Thus, to have the same frame of reference, we176

subtracted the experimentally measured latency of V1 from the experimental response latencies. Areas V2, V4,177

and TF have similar response latencies in our model and in the experimental data. Also, model areas AITd and178

AITv, both of which overlap with area TEa for which the latency was measured experimentally, on average have179

a latency comparable to TEa. The remaining areas have a longer response latency in our model than in the in180

vivo experiments.181

Quenched neural variability after stimulation182

The variability of neuronal activity across trials, measured as the Fano factor, has been shown to decrease after183

stimulus presentation (Churchland et al., 2010; Rostami et al., 2022). We use the original and clustered models to184

study whether stimulation reproduces the decrease in neuronal variability. Similarly to the previous simulations,185

a pulse of 30 spikes/s but now lasting 400 ms was applied 50 times every 2 seconds to one cluster in area V1, and186

we measured the resulting Fano factor (see Methods Neural variability quantification across trials). Fig. 7 depicts187

the mean-matched Fano factor (solid line) for areas V1, V4, LIP, and MT, along with the standard deviation188
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Figure 5: Clustered connectivity enables signal propagation across the entire network, in both the feedforward
and feedback directions. A stimulation of 200 ms and 30 spikes/s was applied to one out of 50 clusters at time
point 0 in area V1 in the feedforward case and in area FEF in the feedback case. The simulations consisted
of 100 trials of 1 s duration each. The firing rates are convolved with a Gaussian kernel with a width of 10 ms.
Areas are sorted according to shortest path lengths with respect to the stimulated area—either V1 or FEF. The
color gradient under the curve represents time. Coloring of the area name labels corresponds to modules of the
area-level network identified using the map equation method (Rosvall et al., 2009) as described in Schmidt et al.
(2018b). Area MDP is not shown, as it does not have any incoming connections from the rest of the modeled
network.

(shading). In the experimental data, the variability decays as soon as an input is presented, followed by a slow189

increase and finally stabilizing at a slightly higher value towards the end of the stimulation period. In the original190

model, the Fano factor of V1 rises sharply when the stimulation is applied. All other areas appear unaffected by191

the stimulation, further demonstrating the lack of signal propagation. The Fano factor for these areas in the192

original model is several times larger than the experimental observations, likely due to the strong fluctuations in193

the simulated activity leading to a high variance across trials. In the clustered model, the stimulation decreases194

the Fano factor for all areas, albeit not as sharply as in the experimental observations. The Fano factor drops195

during the stimulation, and in V1 and V4, it reaches a low-value plateau, in contrast to the experimental data,196

where the Fano factor increases shortly after reaching the minimum.197
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Figure 6: Response latencies in the clustered model. (A–D) Neuronal responses of single neurons after
stimulation of V1. The shown responses are detected via the Poisson surprise method. Upper panels: Instantaneous
firing rate (FR) of all detected neurons for areas V1, V2, V4, and FEF (convolved with a Gaussian kernel with a
width of 10 ms). Lower panels: sample raster plot of a single neuron that exhibits a nonrandom response to the
stimulus. (E) Cumulative distributions of the time to the first nonrandom spike for several cortical areas. The
50th percentile—the time at which half of all neurons within the corresponding cluster have responded to the
stimulus—is considered the response latency for that area. (F) Comparison of response latencies in experiments
(Schmolesky et al., 1998; Barash et al., 1991; Bushnell et al., 1981; Chafee and Goldman-Rakic, 1998; Robinson
et al., 1978; Lamme and Roelfsema, 2000) and simulations. The latencies of modeled areas MSTd and MSTl
are compared with measurements from area MST; those of modeled areas AITd and AITv are compared with
measurements from TEa.

Discussion198

On the example of a multi-scale model of one hemisphere of macaque visual cortex, we have shown that joint199

clustering of excitatory and inhibitory neurons helps account for various aspects of cortical dynamics. First,200

the statistics of ongoing spiking activity in several cortical areas are more realistic compared to an unclustered201

version of the model (Schmidt et al., 2018a,b). Second, the clustering enables signals to reliably propagate across202

areas, with response times upon V1 stimulation matching experimental data in several areas. Third, the clustered203

model reproduces reductions in trial-to-trial variability upon stimulus presentation.204
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Figure 7: Neural variability changes after stimulation. The evolution of the Fano factor for areas V1, V4,
LIP, and MT in experimental data (Churchland et al., 2010), the original model, and the clustered model. MT
shows two experimental datasets. Simulated data: a pulse of 400 ms and 30 spikes/s was applied to one cluster in
primary visual cortex (area V1). In all three panels, Fano factor (FF) is computed in a 50 ms sliding window
sliding in steps of 10 ms. Shaded areas show the standard error of the mean.

In the original, unclustered model of Schmidt et al. (2018a,b), the simulated V1 spiking activity was compared205

with parallel spike train recordings from all layers of V1 in lightly anesthetized macaque (Chu et al., 2014b,a).206

For this area, our model with 50 clusters reproduces the distribution of the spiking irregularity quantified by the207

coefficient of variation of the inter-spike intervals (CV ISI) somewhat better than the original model (Fig. S1).208

However, the clustered model has a flatter power spectrum and lower power than both the experimental data and209

the original model, lacking the population bursts seen in the original model and having somewhat lower firing210

rates. A partial explanation for this may be that the clustered model is more representative of an awake state211

rather than an anesthetized state (Hayashi et al., 2014), since the anesthetic ketamine has been found to increase212

at least low-frequency and gamma power; although it was also found to decrease beta power (Akeju et al., 2016;213

Schroeder et al., 2016).214

In the present study, we compared the spiking activity with data from V1, visual area V4, the frontal eye215

field (FEF), parietal area 7a, and dorsal prelunate cortex (area DP). Overall, the clustered model fits the216

experimental data better than the unclustered version, in terms of firing rate distributions and distributions of217

spiking irregularity quantified by CV ISI and revised local variation (LvR). The main exception is V4 layers218

2 and 3, for which the original model performs better. Increasing the number of clusters beyond a few dozen219

consistently improves the goodness of fit to the experimental data.220

The ability to reliably and quickly transmit signals through the brain is critical for implementing a large number221

of functions. Studying the neuronal basis of complex interactions of feedforward and feedback signals requires a222

biologically realistic model supporting signal propagation. Joglekar et al. (2018) studied signal transmission in a223

large-scale model of macaque cortex consisting of population rate models and in a spiking network model. The224

authors increased cortico-cortical excitatory-to-excitatory and local inhibitory-to-excitatory weights, a scheme225

they called global balanced amplification following Murphy and Miller (2009). While V1 activation led to signal226

propagation to some areas in the asynchronous regime, reliable signal propagation across the entire network227

was only achieved in a synchronized regime. The laminar structure of cortex was neglected and a constant228

rather than an area- and population-specific connection probability was used. Furthermore, the network was229

heavily downscaled, containing only 2000 neurons per area, so that an area in their model can be thought of as230

corresponding roughly to a single cluster in our model. The present study shows how joint clustering of excitatory231
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and inhibitory neurons can support signal propagation across the cortical network at a realistic density of neurons232

and synapses while maintaining overall asynchronous irregular firing.233

The presented clustered model can transmit signals in bottom-up and top-down directions. The signal transmission234

enabled us to study the response latencies of feedforward signals and compare them with experimental data.235

In V2 and V4, areas close to V1, the origin of the stimulus, response latencies match well with the reported236

timings. Also the response latency of area TF and the average latencies of areas AITd and AITv are similar to237

the experimental findings. To the remaining areas tested, the propagation delay is longer than reported in the238

literature. We hypothesize that including a pulvinar module could speed up the corresponding signal propagation.239

The pulvinar connects with most areas of visual cortex (Shipp, 2003; Jones, 2012; Noudoost et al., 2010). Thus,240

it could decrease latencies by acting as a shortcut linking distant hierarchical levels (Cortes and Van Vreeswijk,241

2012; Zajzon and Morales-Gregorio, 2019).242

Moreover, including a pulvinar module could facilitate the study of attentional processing: Pulvinar neurons show243

firing rate modulation with attention (Petersen et al., 1987), and lesions to the pulvinar result in hemispatial244

neglect toward the contralesional visual field (Petersen et al., 1987; Karnath et al., 2002; Wilke et al., 2010, 2013)245

and problems in distractor filtering (Desimone et al., 1990), which has also been shown in a computational study246

(Jaramillo et al., 2019). Attention can be directed by either physical salience of a stimulus (bottom-up) or internal247

behavioral goals (top-down) (Noudoost et al., 2010). Thus, an extension of the presented model could be used to248

study the interplay of these two attentional streams and to reproduce experimental findings requiring top-down249

and bottom-up interactions.250

Finally, we studied trial-to-trial variability. An experimental study (Churchland et al., 2010) reports quenching251

of the Fano factor as a direct result of stimulation. No decline in the Fano factor can be found in the original252

model because it cannot effectively transmit signals across areas. Moreover, neurons in some areas show an253

exceptionally high Fano factor. The clustered model, however, displays a clear decline in the Fano factor following254

the stimulation. The decline lasts as long as the stimulation is active. In contrast, a slowly rising Fano factor255

follows an initial, low plateau in the experimental data. We hypothesize that using an adaptive neuron model256

would allow the model to adjust to the stimulation input, and thus, the Fano factor would rise slowly after257

reaching a minimum.258

In a next step, the size of the clusters could be made area-specific. The Kolmogorov-Smirnov distance of the259

CV ISI (Fig. 4) decreases with the number of clusters. With the current setup, further increasing the number of260

clusters is not feasible, as the model is already highly computationally intensive. The network construction time261

jumps from one minute in the original model to seven hours in the clustered model. The increased construction262

time is due to the increased numbers of nest.Connect calls: The original model has 254 populations connected263

using 9,116 connect calls. The clustered model consisting of 50 clusters has 50 ·254 = 12,700 populations connected264

by 9,116 · 502 = 22,790,000 connect calls. This number could potentially be reduced by implementing a specialized265

connection routine in the NEST simulator to handle clustered connectivity.266

To summarize, we introduce joint excitatory-inhibitory clustering in a biologically based multi-scale spiking267

model of one hemisphere of macaque vision-related cortex. This connectivity scheme supports inter-area signal268

propagation and a reduction in trial-to-trial variability upon stimulation, and enabled us to study response269

latencies. Furthermore, the clustered model reproduces spiking activity statistics in several cortical areas and270

retains most of the explanatory power of the original model. The clustered model can be used in future studies271

to elucidate information processing involving bottom-up and top-down interactions and to study the impact of272

subcortical structures on signal propagation.273
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274

Methods275

Multi-area model of macaque visual cortex276

The multi-area model is a multi-scale spiking network model of the vision-related areas in one hemisphere of277

macaque cortex and relates cortical connectivity to its resting-state dynamics. It integrates cortical architecture278

and connectivity data into a comprehensive network of 32 areas. Each area consists of the four layers 2/3, 4, 5,279

and 6, containing one excitatory and one inhibitory population each, and is represented by a patch of 1 mm2.280

Only agranular area TH consists of three layers, as it lacks layer 4. Table 2 summarizes the original and modified281

model, and Table 3 gives the neuron and synapse parameters. The inter-area (cortico-cortical) connectivity282

is based on axonal tracing data from the CoCoMac database (Bakker et al., 2012) combined with data from283

quantitative and layer-specific retrograde tracing experiments (Markov et al., 2014b,a). Local connectivity is284

based on the microcircuit model of Potjans and Diesmann (2014). The local microcircuit is customized for every285

area according to the neuronal densities and laminar thicknesses (Schmidt et al., 2018a). Combining local and286

cortico-cortical connectivity results in a connectivity matrix which is then stabilized using mean-field theory.287

The stabilization is necessary to arrive at a dynamical state that yields non-vanishing, non-saturating spike288

rates (Schuecker et al., 2017). The refined connectivity is used to simulate macaque vision-related cortex. By289

controlling the strength of the cortico-cortical interactions, the model can be poised in a metastable state where290

simulations reproduce local and cortico-cortical experimental findings (Schmidt et al., 2018b): the V1 single-cell291

spiking statistics, expressed as firing rates and power spectra, are close to those from recordings in macaque V1.292

The resulting inter-area functional connectivity patterns match macaque fMRI data. The model yields population293

bursts that propagate mainly in the feedback direction. In the following, we poise the model in the metastable294

state and refer to it as the original model.295

We extend this model by providing the possibility of injecting a stimulus of variable length and strength into any296

area. The stimulation consists of spike trains drawn from Poisson processes. The multi-area model distinguishes297

between input stemming from modeled neurons inside and across areas, and input originating outside the simulated298

circuitry—that is, the rest of cortex and subcortical structures. The latter input is the background activity299

driving the multi-area model. We assume that this input becomes stronger during stimulation and thus use the300

corresponding connections to stimulate the model. The spike trains representing the stimulation are drawn from301

Poisson processes with stationary rate νstim = 30 spikes/s and are independent to each target neuron.302

Clustered multi-area model of macaque visual cortex303

We generalize a connectivity scheme previously studied in binary (Rost et al., 2018) and spiking networks (Rostami304

et al., 2022) of one excitatory and one inhibitory population. Our basic building blocks are the layer-resolved305

microcircuits representing each area. We subdivide these basic building blocks into Q equally sized clusters306

spanning all layers of cortex. Each cluster thus consists of four excitatory and four inhibitory populations, an307

excitatory-inhibitory pair of populations for each layer. Within a cluster, the excitatory-to-excitatory (EE)308

synaptic connections are potentiated by a factor JE+. The excitatory-to-inhibitory (EI), inhibitory-to-excitatory309

(IE), and inhibitory-to-inhibitory (II) synaptic connections are potentiated by a factor JI+. Across clusters, the310

EE connections are depressed by a factor JE−, whereas the EI, IE, and II connections are depressed by a factor311

JI−. Additionally, a proportionality factor RJ = 3/4 is introduced to help prevent firing rate saturation in up312

states. The factors are related as follows:313
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JE− =Q− JE+

Q− 1
JI+ =1 +RJ(JE+ − 1)

JI− =Q− JI+

Q− 1 .

Furthermore, every local cluster has a matching cluster in all other areas that it connects to. The weights between314

these clusters are scaled as within-cluster weights. Conversely, all cortico-cortical weights between non-matching315

clusters are scaled as across-cluster weights. A sketch of the network is given in Fig. 1. Following Schmidt316

et al. 2018b, just as in the original model, we scale cortico-cortical weights onto excitatory populations with a317

factor χ and cortico-cortical weights onto inhibitory populations with a factor χIχ. In the case of one cluster,318

which corresponds to the network studied in Schmidt et al. (2018b), the scaling parameters are χ = 1.9 and319

χI = 2. In all simulations involving clusters, we use χ = 2. and χI = 2.2. The parameters are given in Table320

3. Just as in the original model, we draw independent spike trains from Poisson processes with a stationary321

rate νstim = 30 spikes/s representing subcortical input to stimulate the model for variable length and strength.322

However, we selectively stimulate one cluster instead of the whole area. Unless stated otherwise, we report results323

obtained for the model with Q = 50 clusters and refer to it as the clustered model.324

Network simulations325

We use commit c690b7a of the NEST 3.0 release (Hahne et al., 2021) running on the JURECA-DC cluster326

(Thörnig and von St. Vieth, 2021), which hosts compute nodes consisting of two sockets. Each socket contains a327

64-core AMD EPYC Rome 7742cd processor clocked at 2.2 GHz equipped with 512 GB of DDR4 RAM. An InfiniBand328

HDR100/HDR network connects the compute nodes. The simulations are performed using 6 compute nodes with329

8 MPI processes each and 16 threads per MPI process. With this setup, building the original model takes 1330

minute, whereas the clustered model takes 7 hours. A second of biological time of the original model can be331

simulated in 165 s. In contrast, the clustered model takes 4 minutes per biological second. In all simulations, time332

steps of 0.1 ms are used, and the subthreshold dynamics of the leaky integrate-and-fire neuron model is exactly333

integrated (Plesser and Diesmann, 2009). All presented simulations were run for 101.5 s, of which the first 500 ms334

are disregarded. In all simulations, spike times were recorded.335

Experimental data336

Spiking data from macaque cortical areas V1 and V4 in layers 5/6337

Neuronal activity was recorded from visual areas V1 and V4 (N = 1 subject, N = 1 session of ∼ 20min). Chronic338

recordings were made using 16 Utah arrays with 8× 8 electrodes each (Blackrock microsystems), 2 of them in339

visual area V4 and the rest in V1, with a total of 1024 electrodes. The electrodes were 1.5 mm long and thus340

reached deep layers 5 and 6. The recordings were made in the resting state. The macaque was head-fixed but341

free to move its limbs, look around and open or close its eyes. Thus, the spiking statistics include data from a few342

different behavioral states. A full description of the experimental setup, the data collection and preprocessing has343

already been published (Chen et al., 2022). The raw data were spike-sorted using a semi-automatic workflow with344

Spyking Circus—a free, open-source, spike-sorting software written in Python (Yger et al., 2018). Multielectrode345

recordings are prone to cross-talk in the signals leading to above-chance synchronous spiking events. All single346

units suspected to be cross-talk artifacts were removed from further analysis (Oberste-Frielinghaus et al., 2024).347

The spiking data were previously published elsewhere (Morales-Gregorio et al., 2023).348
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Spiking data from macaque cortical areas V4 and FEF in layers 2/3349

Neuronal activity was recorded from visual area V4 and dorsolateral prefrontal cortex (dlPFC), specifically a part350

of the frontal eye field (N = 1 subject, N = 59 sessions of ~5 min). Acute recordings were made with up to four351

simultaneous Plexon electrodes, recording from the superficial layers (L2/3) during resting state. The macaque352

was free to move its limbs, look around and open or close its eyes. Thus, the spiking statistics include data from353

a few different behavioral states. Spike sorting identified 4−10 clean single units per area and session. Single354

units suspected to be cross-talk artifacts were removed from further analysis (Oberste-Frielinghaus et al., 2024).355

These data correspond to recordings before or after the behavioral task published in (Sapountzis et al., 2022),356

using the same recording apparatus.357

Spiking data from macaque cortical areas DP and 7a in layers 5/6358

Neuronal activity was recorded from V1, V2, DP, 7a, and motor cortex (N = 1 subject, N = 2 sessions of359

∼ 10 min). The macaque was implanted with five Utah arrays (Blackrock microsystems), one in V1, one in V2,360

one in dorsal prelunate cortex (area DP), one in area 7a and one in the motor cortex (M1/PMd). In this study,361

we only included the 6× 6 electrode arrays from DP and 7a since not enough spikes could be detected in V1 and362

V2. The electrodes were 1.5 mm long and thus recorded from the deep layers (L5/6) of the cortex. The recordings363

were made in the resting state. The macaque was free to move its limbs, look around and open or close its eyes.364

Thus, the spiking statistics include data from a few different behavioral states. The raw signals were spike sorted365

using the Plexon software. Single units suspected to be cross-talk artifacts were removed from further analysis366

(Oberste-Frielinghaus et al., 2024). The recording apparatus is described elsewhere (de Haan et al., 2018).367

Datasets used in Churchland et al. (2010)368

Churchland et al. (2010) analyze the Fano factor in seven cortical areas of the macaque monkey: V1, V4, MT,369

LIP, PRR, PMd, and OFC. In the following, we only consider the first four, as these are part of the multi-area370

model. Area MT was studied in four different experiments, of which two involved two stimulations. We focus on371

the experiments in which only one stimulus was applied. The V1 data was taken from an anesthetized monkey,372

which was presented a 100% contrast sine-wave grating drifting in one of twelve directions. V4 data is taken from373

a task where the stimulation consisted of one or two oriented bars placed in the neuron’s receptive field. In some374

experiments, similar bars were placed in the opposite hemifield. The first MT task involved square-wave gratings375

superimposed to produce a plaid as a visual stimulus. The second stimulation consisted of 0% coherence random376

dots. The LIP stimulation consisted of two colored saccade targets from which the monkey could choose. To377

compare the experimental with the simulated data, we extract the experimental Fano factors from Figure 3 in378

Churchland et al. (2010) using the tool WebPlotDigitizer1.379

Analysis methods380

Summary statistics of the resting-state spiking activity381

We use several standard metrics to characterize the resting-state neural activity and to compare the models and382

experimental data. We use the coefficient of variation of the inter-spike interval distribution (CV ISI) and revised383

local variation (LvR; Shinomoto et al., 2009) to characterize interval statistics. The CV ISI is defined as the ratio384

of the standard deviation σ to the mean µ of the inter-spike intervals,385

CV =σ

µ
.

1https://automeris.io/WebPlotDigitizer/
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The LvR is defined as386

LvR = 3
n− 1

n−1∑
i=1

(
Ii − Ii+1

Ii + Ii+1

)(
1 + 4τr

Ii + Ii+1

)

= 3
n− 1

n−1∑
i=1

(
1− 4IiIi+1

(Ii + Ii+1)2

)(
1 + 4τr

Ii + Ii+1

)
.

The first term computes the local variance of consecutive inter-spike intervals Ii while the second term accounts387

for the refractoriness of the neuron.388

The distribution of spike rates P (rate) is calculated as the histogram of spike rates of all spike trains, computed389

as the total number of spikes of each neuron divided by the simulation time.390

For the experimental data, the CV, LvR, and P (rate) are calculated for all spike trains. Where the simulated391

data are compared against experimental data, as many spike trains as there are in the experimental data are392

used from randomly drawn neurons. The metrics are then calculated for this subset. This procedure is repeated393

100 times, and the mean and standard deviation are calculated. Otherwise, all spike trains from the population394

are used.395

Response latency measurement via Poisson surprise396

We derive response latencies in a set of areas resulting from an input to V1 employing the Poisson surprise397

method. This method was first used by Legendy and Salcman (1985) and further refined by Hanes et al. (1995)398

and Thompson et al. (1996). For a given neuron with mean firing rate r, this method evaluates how improbable399

it is that a series of n spikes, which we call response, in a given time interval T occurs by chance. The probability400

P is calculated using Poisson’s formula401

P =e−rT
∞∑

i=n

(rT )i

i! .

The surprise index402

SI =− logP

serves as a measure of improbability and yields higher values the more unexpected, or improbable, a result is. In403

order to detect the response latencies in a given area, we apply the following algorithm to every neuron in the404

area and identify neurons that exhibit a clear response in at least 60% of the trials. This procedure finds the405

neurons that reliably respond to the provided stimulus and corresponds to experimentalists probing for responsive406

neurons. We follow the procedure described by Hanes et al. (1995):407

1. We calculate the mean firing rate r the neuron for the whole simulation time.408

2. We split the spike train into trials, spanning the time between each stimulus onset. For each trial, starting409

with the first spike, we search for the first two consecutive spikes with a mean firing rate r̃ greater or equal410

to r. Then, the first two spikes remain fixed, the next spike is added to the sequence of spikes and the411

surprise index SI is calculated. This is done until reaching the end of the trial. The spike where SI is412

maximized is defined as the end of the assumed response.413

3. To detect responses, we first follow Legendy and Salcman (1985), fixing the last spike of the assumed414

response and calculating the surprise index SI for all previous spikes. The spike where the surprise index415
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SI is maximized is defined as the first spike of the assumed response. Some cortical areas have more416

gradual responses than the bursting responses considered by Legendy and Salcman (1985). To account417

for this, Hanes et al. (1995) extended the method from Legendy and Salcman (1985) to determine when a418

nonbursting change in the activity of the neuron becomes significantly different from the expected Poisson419

distribution. We follow Hanes et al. (1995) to detect such slow-rising responses. Spikes are added before the420

one maximizing the surprise index until the surprise index SI falls below a reduced significance threshold or421

the algorithm reaches the first spike of the trial. The significance level is set to p < 0.01 and relaxed to422

p < 0.05 in areas 7a, MT, MSTl, TF, and FEF. The relaxation is necessary as responses in these areas423

otherwise go mostly undetected. The assumed response is rejected if its surprise index SI is not significant.424

Neural variability quantification across trials425

The Fano factor is a measure of the variability of spike trains. It is defined as the ratio of the variance and the426

mean of the spike counts and measures the response variability across repetitions of the same experimental task,427

that is, across trials. While its definition is transparent, its results might suffer from careless use (Churchland428

et al., 2010; Rajdl et al., 2020): At higher spiking rates, the refractory periods of the neurons tend to regularize429

spiking, which could lower the Fano factor due to the variability of the spiking noise being reduced. Furthermore,430

the across-trial firing-rate variability could be constant but become normalized by a higher mean after stimulus431

onset. To control for the influence of the firing rates, we apply the mean matching procedure described by432

Churchland et al. (2010).433

The mean matching procedure works as follows: First, for each neuron, we compute the mean and the variance of434

the spike counts in a sliding window. Second, we construct the greatest common distribution based on the mean435

and the variance. The bins of this common distribution have a height equal to the smallest value for that bin436

across all distributions at all times. Third, at each time, individual points consisting of the mean and variance of437

the spike counts are excluded until matching the common distribution. Fourth, based on the remaining points,438

we calculate the Fano factor. Like Churchland et al. (2010), we use a 50 ms wide sliding window that moves in439

steps of 10 ms.440
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Tables441

Table 1: The areas of the model, which include all vision-related areas of macaque cortex in the parcellation of
Felleman and Van Essen (1991).

Areas in the model
Lobe Abbreviation Brain Region
Occipital V1 Visual area 1

V2 Visual area 2
V3 Visual area 3
VP Ventral posterior area
V3A Visual area V3A
V4 Visual area 4
VOT Ventral occipitotemporal area
V4t V4 transitional area
MT Middle temporal area

Temporal FST Floor of superior temporal area
PITd Posterior inferotemporal (dorsal) area
PITv Posterior inferotemporal (ventral) area
CITd Central inferotemporal (dorsal) area
CITv Central inferotemporal (ventral) area
AITd Anterior inferotemporal (dorsal) area
AITv Anterior inferotemporal (ventral) area
STPp Superior temporal polysensory (posterior) area
STPa Superior temporal polysensory (anterior) area
TF Parahippocampal area TF
TH Parahippocampal area TH

Parietal MSTd Medial superior temporal (dorsal) area
MSTl Medial superior temporal (lateral) area
PO Parieto-occipital area
PIP Posterior intraparietal area
LIP Lateral intraparietal area
VIP Ventral intraparietal area
MIP Medial intraparietal area
MDP Medial dorsal parietal area
DP Dorsal prelunate area
7a Area 7a

Frontal FEF Frontal eye field
46 Middle frontal area 46
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Table 2: Model description after Nordlie et al. (2009).

Model summary
Populations Original model: 254 populations: 32 areas (Table 1) with eight populations each

(area TH: six)
Clustered model: Each population is further subdivided into Q clusters.

Topology —
Connectivity area- and population-specific but otherwise random
Neuron model leaky integrate-and-fire (LIF), fixed absolute refractory period (voltage clamp)
Synapse model exponential postsynaptic currents
Plasticity —
Input independent homogeneous Poisson spike trains
Measurements spiking activity

Populations
Type Cortex
Elements LIF neurons
Number of
populations

32 areas with eight populations each (area TH: six), two per layer

Population size N (area- and population-specific)
Connectivity

Type source and target neurons drawn randomly with replacement (allowing autapses
and multapses) with area- and population-specific connection probabilities

Weights fixed, drawn from normal distribution with mean J such that postsynaptic potentials
have a mean amplitude of 0.15 mV and standard deviation δJ = 0.1J ; 4E to 2/3E
increased by factor 2 (cf. Potjans and Diesmann, 2014); weights of inhibitory
connections increased by factor g; excitatory weights < 0 and inhibitory weights
> 0 are redrawn; cortico-cortical weights onto excitatory and inhibitory populations
increased by factor χ and χIχ, respectively

Delays fixed, drawn from Gaussian distribution with mean d and standard deviation
δd = 0.5d; delays of inhibitory connections factor 2 smaller; delays rounded to the
nearest multiple of the simulation step size h = 0.1 ms, inter-area delays drawn
from a Gaussian distribution with mean d = s/vt, with distance s and transmission
speed vt = 3.5 m/s (Girard et al., 2001); and standard deviation δd = d/2, distances
determined as the median of the distances between all vertex pairs of the two areas
in their surface representation in F99 space, a standard macaque cortical surface
included with Caret (Van Essen et al., 2001), where the vertex-to-vertex distance
is the length of the shortest possible path without crossing the cortical surface
(Bojak et al., 2011) (see Schmidt et al. (2018a)), delays < 0.1 ms before rounding
are redrawn

Neuron and synapse model
Name LIF neuron
Type leaky integrate-and-fire, exponential synaptic current inputs
Subthreshold
dynamics

dV
dt

= −V−EL
τm

+ Is(t)
Cm

, if(t > t∗ + τr)
V (t)= Vr, else
Is(t) =

∑
i,k
Jk e
−(t−tki )/τs Θ(t− tki ), k: neuron index, i: spike index

Spiking If V (t−) < θ ∧ V (t+) ≥ θ
1. set t∗ = t, 2. emit spike with time stamp t∗

Input
Type Background
Target LIF neurons
Description independent Poisson spikes (for each neuron, fixed rate νext = νbgkext with average

external spike rate νbg = 10 spikes/s and number of external inputs per population
kext, weight J)

Measurements
Spiking activity
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Table 3: Parameter specification for synapses and neurons.

Synapse parameters
Name Value Description
J ± δJ Intra-areal connections: 87.8± 8.8 pA, cortico-cortical

connections in model with one cluster scaled as
Jcc = 1.9 · J , cortico-cortical connections in clustered model
scaled as Jcc = 2. · J , cortico-cortical connections onto
inhibitory populations in model with one cluster scaled as
JIcc = 2. · Jcc, cortico-cortical connections onto inhibitory
populations in clustered model scaled as JIcc = 2.2 · Jcc

excitatory synaptic strength

numbers of clusters Q ∈ [2, 50]. Within-cluster EE
connections scaled with JE+ = 0.3 ·Q rounded to the next
integer. Connections involving inhibitory populations in
addition scaled with proportionality factor RJ = 3/4

cluster scaling parameters

g g = 11 relative inhibitory synaptic strength
de ± δde 1.5± 0.75 ms local excitatory transmission delay
di ± δdi 0.75± 0.375 ms local inhibitory transmission delay
d± δd d = s/vt ± 1

2 s/vt inter-area transmission delay, with s the
distance between areas

vt 3.5 m/s transmission speed
Neuron parameters

Name Value Description
τm 10 ms membrane time constant
τr 2 ms absolute refractory period
τs 0.5 ms postsynaptic current time constant
Cm 250 pF membrane capacity
Vr −65 mV reset potential
θ −50 mV fixed firing threshold
EL −65 mV leak potential

Acknowledgements442

This project received funding from the DFG in RTG 2416 "MultiSenses-MultiScales" and Priority Program443

2041 "Computational Connectomics" [AL 2041/1-1]; and the EU’s Horizon 2020 Framework Grant Agreement444

No. 785907 (Human Brain Project SGA2) and No. 945539 (Human Brain Project SGA3). A subset of the445

experimental data was made available in the context of the FLAG-ERA grant PrimCorNet. The authors gratefully446

acknowledge the computing time granted by the JARA Vergabegremium and provided on the JARA Partition447

part of the supercomputer JURECA at Forschungszentrum Jülich (computation grant JINB33).448

Author contributions449

Conceptualization JP, SvA; Data curation JP, AMG; Formal Analysis JP; Investigation JP; Methodology JP, VR,450

SvA; Software JP; Visualization JP, AMG; Writing – original draft JP; Writing – review & editing JP, AMG,451

VR, SvA; Supervision SvA; Funding acquisition SvA452

References453

Akeju, O., Song, A. H., Hamilos, A. E., Pavone, K. J., Flores, F. J., Brown, E. N., Purdon, P. L., 2016.454

Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clin. Neurophysiol. 127 (6),455

2414–2422.456

20

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577979doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577979


Amit, D. J., Brunel, N., Apr. 1997. Model of global spontaneous activity and local structured activity during457

delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252.458

Arkhipov, A., Gouwens, N. W., Billeh, Y. N., Gratiy, S., Iyer, R., Wei, Z., Xu, Z., Abbasi-Asl, R., Berg, J.,459

Buice, M., et al., 2018. Visual physiology of the layer 4 cortical circuit in silico. PLOS Comput. Biol. 14 (11),460

e1006535.461

Babapoor-Farrokhran, S., Hutchison, R. M., Gati, J. S., Menon, R. S., Everling, S., 2013. Functional connectivity462

patterns of medial and lateral macaque frontal eye fields reveal distinct visuomotor networks. J. Neurophysiol.463

109 (10), 2560–2570.464

Bakker, R., Thomas, W., Diesmann, M., 2012. CoCoMac 2.0 and the future of tract-tracing databases. Front.465

Neuroinform. 6, 30.466

Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W., Andersen, R. A., 1991. Saccade-related activity in the467

lateral intraparietal area. i. temporal properties; comparison with area 7a. J. Neurophysiol. 66 (3), 1095–1108,468

pMID: 1753276.469

Bojak, I., Oostendorp, T. F., Reid, A. T., Kötter, R., 2011. Towards a model-based integration of co-registered470

electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes.471

Philos. Trans. R. Soc. A 369 (1952), 3785–3801.472

Bushnell, M. C., Goldberg, M. E., Robinson, D. L., 1981. Behavioral enhancement of visual responses in monkey473

cerebral cortex. i. modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol.474

46 (4), 755–772, pMID: 7288463.475

Chafee, M. V., Goldman-Rakic, P. S., 1998. Matching patterns of activity in primate prefrontal area 8a and476

parietal area 7ip neurons during a spatial working memorytask. J. Neurophysiol. 79 (6), 2919–2940, pMID:477

9636098.478

Chen, X., Morales-Gregorio, A., Sprenger, J., Kleinjohann, A., Sridhar, S., van Albada, S. J., Grün, S., Roelfsema,479

P. R., Dec. 2022. 1024-channel electrophysiological recordings in macaque V1 and V4 during resting state. Sci.480

Data 9 (1), 77.481

Chu, C. C. J., Chien, P. F., Hung, C. P., 2014a. Multi-electrode recordings of ongoing activity and responses to482

parametric stimuli in macaque V1. CRCNS.org.483

Chu, C. C. J., Chien, P. F., Hung, C. P., Mar. 2014b. Tuning dissimilarity explains short distance decline of484

spontaneous spike correlation in macaque V1. Vision Res. 96, 113–132.485

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., Newsome, W. T.,486

Clark, A. M., Hosseini, P., Scott, B. B., Bradley, D. C., Smith, M. A., Kohn, A., Movshon, J. A., Armstrong,487

K. M., Moore, T., Chang, S. W., Snyder, L. H., Lisberger, S. G., Priebe, N. J., Finn, I. M., Ferster, D., Ryu,488

S. I., Santhanam, G., Sahani, M., Shenoy, K. V., 2010. Stimulus onset quenches neural variability: a widespread489

cortical phenomenon. Nat. Neurosci. 13 (3), 369–378.490

Cortes, N., Van Vreeswijk, C., 2012. The role of pulvinar in the transmission of information in the visual hierarchy.491

Front. Comput. Neurosci. 6, 29.492

de Haan, M. J., Brochier, T., Grün, S., Riehle, A., Barthélemy, F. V., 2018. Real-time visuomotor behavior and493

electrophysiology recording setup for use with humans and monkeys. J. Neurophysiol. 120 (2), 539–552.494

Deco, G., Rolls, E. T., 2005. Neurodynamics of biased competition and cooperation for attention: A model with495

spiking neurons. J. Neurophysiol. 94 (1), 295–313, pMID: 15703227.496

21

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577979doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577979


Desimone, R., Wessinger, M., Thomas, L., Schneider, W., 1990. Attentional control of visual perception: cortical497

and subcortical mechanisms. In: Cold Spring Harbor symposia on quantitative biology. Vol. 55. Cold Spring498

Harbor Laboratory Press, pp. 963–971.499

Diesmann, M., Gewaltig, M.-O., Aertsen, A., 1999. Stable propagation of synchronous spiking in cortical neural500

networks. Nature 402 (6761), 529–533.501

Felleman, D. J., Van Essen, D. C., 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb.502

Cortex 1, 1–47.503

Girard, P., Hupé, J. M., Bullier, J., 2001. Feedforward and feedback connections between areas v1 and v2 of the504

monkey have similar rapid conduction velocities. J. Neurophysiol. 85 (3), 1328–1331.505

Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., Spreizer, S., Vennemo, S. B., Ippen, T.,506

Mørk, H., Jordan, J., Senk, J., Konradi, S., Weidel, P., Fardet, T., Dahmen, D., Terhorst, D., Stapmanns, J.,507

Trensch, G., van Meegen, A., Pronold, J., Eppler, J. M., Linssen, C., Morrison, A., Sinha, A., Mitchell, J.,508

Kunkel, S., Deepu, R., Hagen, E., Vierjahn, T., Kamiji, N. L., de Schepper, R., Machado, P., Albers, J., Klijn,509

W., Myczko, A., Mayner, W., Nagendra Babu, P., Jiang, H., Billaudelle, S., Vogler, B. S., Miotto, G., Kusch,510

L., Antonietti, A., Morales-Gregorio, A., Dolderer, J., Bouhadjar, Y., Plesser, H. E., Jun. 2021. Nest 3.0.511

Hanes, D. P., Thompson, K. G., Schall, J. D., 1995. Relationship of presaccadic activity in frontal eye field and512

supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp. Brain Res. 103 (1),513

85–96.514

Hayashi, K., Mukai, N., Sawa, T., 2014. Simultaneous bicoherence analysis of occipital and frontal electroen-515

cephalograms in awake and anesthetized subjects. Clin. Neurophysiol. 125 (1), 194–201.516

Jaramillo, J., Mejias, J. F., Wang, X.-J., 2019. Engagement of pulvino-cortical feedforward and feedback pathways517

in cognitive computations. Neuron 101 (2), 321–336.518

Joglekar, M. R., Mejias, J. F., Yang, G. R., Wang, X.-J., 2018. Inter-areal balanced amplification enhances signal519

propagation in a large-scale circuit model of the primate cortex. Neuron 98 (1), 222–234.520

Jones, E. G., 2012. The thalamus. Springer Science & Business Media.521

Karnath, H., Himmelbach, M., Rorden, C., 02 2002. The subcortical anatomy of human spatial neglect: putamen,522

caudate nucleus and pulvinar. Brain 125 (2), 350–360.523

Khan, A. G., Poort, J., Chadwick, A., Blot, A., Sahani, M., Mrsic-Flogel, T. D., Hofer, S. B., 2018. Distinct524

learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual525

cortex. Nat. Neurosci. 21 (6), 851–859.526

Ko, H., Hofer, S. B., Pichler, B., Buchanan, K. A., Sjöström, P. J., Mrsic-Flogel, T. D., May 2011. Functional527

specificity of local synaptic connections in neocortical networks. Nature 473 (7345), 87–91.528

Kumar, A., Rotter, S., Aertsen, A., 2008. Conditions for propagating synchronous spiking and asynchronous529

firing rates in a cortical network model. J. Neurosci. 28 (20), 5268–5280.530

Kumar, A., Rotter, S., Aertsen, A., 2010. Spiking activity propagation in neuronal networks: reconciling different531

perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627.532

Lamme, V. A., Roelfsema, P. R., 2000. The distinct modes of vision offered by feedforward and recurrent533

processing. Trends Neurosci. 23, 571–579.534

22

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577979doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577979


Lee, S.-H., Marchionni, I., Bezaire, M., Varga, C., Danielson, N., Lovett-Barron, M., Losonczy, A., Soltesz,535

I., 2014. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82 (5),536

1129–1144.537

Legendy, C. R., Salcman, M., 1985. Bursts and recurrences of bursts in the spike trains of spontaneously active538

striate cortex neurons. J. Neurophysiol. 53 (4), 926–939.539

Litwin-Kumar, A., Doiron, B., Sep. 2012. Slow dynamics and high variability in balanced cortical networks with540

clustered connections. Nat. Neurosci. 15 (11), 1498–1505.541

Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L., Vezoli, J., Misery, P.,542

Falchier, A., Quilodran, R., Gariel, M. A., Sallet, J., Gamanut, R., Huissoud, C., Clavagnier, S., Giroud, P.,543

Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z., Knoblauch, K., Van Essen, D. C., Kennedy, H.,544

2014a. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex545

24 (1), 17–36.546

Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., Misery, P., Giroud,547

P., Ullman, S., Barone, P., Dehay, C., Knoblauch, K., Kennedy, H., 2014b. Anatomy of hierarchy: Feedforward548

and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522 (1), 225–259.549

Mazzucato, L., Fontanini, A., La Camera, G., 2015. Dynamics of multistable states during ongoing and evoked550

cortical activity. J. Neurosci. 35 (21), 8214–8231.551

Morales-Gregorio, A., Dąbrowska, P., Gutzen, R., Palmis, S., Paneri, S., René, A., Sapountzis, P., Diesmann,552

M., Gruen, S., Senk, J., Gregoriou, G. G., Kilavik, B. E., van Albada, S., 2020. Estimation of the cortical553

microconnectome from in vivo spiking activity in the macaque monkey. 29th Annual Computational Neuroscience554

Meeting CNS.555

Morales-Gregorio, A., Kurth, A. C., Ito, J., Kleinjohann, A., Barthélemy, F. V., Brochier, T., Grün, S., van556

Albada, S. J., 2023. Neural manifolds in V1 change with top-down signals from V4 targeting the foveal region.557

BioRxiv, 2023–06.558

Morishima, M., Kobayashi, K., Kato, S., Kobayashi, K., Kawaguchi, Y., 10 2017. Segregated excitatory–inhibitory559

recurrent subnetworks in layer 5 of the rat frontal cortex. Cereb. Cortex 27 (12), 5846–5857.560

Murphy, B. K., Miller, K. D., 2009. Balanced amplification: A new mechanism of selective amplification of neural561

activity patterns. Neuron 61 (4), 635–648.562

Najafi, F., Elsayed, G. F., Cao, R., Pnevmatikakis, E., Latham, P. E., Cunningham, J. P., Churchland, A. K., 2020.563

Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously564

during learning. Neuron 105 (1), 165–179.565

Nordlie, E., Gewaltig, M.-O., Plesser, H. E., Aug. 2009. Towards reproducible descriptions of neuronal network566

models. PLOS Comput. Biol. 5 (8), e1000456.567

Noudoost, B., Chang, M. H., Steinmetz, N. A., Moore, T., Apr. 2010. Top-down control of visual attention. Curr.568

Opin. Neurobiol. 20 (2), 183–190.569

Oberste-Frielinghaus, J., Morales-Gregorio, A., Essink, S., Kleinjohann, A., Grün, S., Ito, J., 2024. Detection and570

removal of hyper-synchronous artifacts in massively parallel spike recordings. BioRxiv.571

Perin, R., Berger, T. K., Markram, H., Mar. 2011. A synaptic organizing principle for cortical neuronal groups.572

Proc. Natl. Acad. Sci. USA 108 (13), 5419–5424.573

Perkel, D. H., Bullock, T. H., December 1968. Neural coding. Neurosci. Res. Program Bull. 6 (3), 221–348.574

23

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577979doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577979


Petersen, S. E., Robinson, D. L., Morris, J. D., 1987. Contributions of the pulvinar to visual spatial attention.575

Neuropsychologia 25 (1), 97–105.576

Plesser, H. E., Diesmann, M., Feb. 2009. Simplicity and efficiency of integrate-and-fire neuron models. Neural577

Comput. 21, 353–359.578

Potjans, T. C., Diesmann, M., Mar. 2014. The cell-type specific cortical microcircuit: Relating structure and579

activity in a full-scale spiking network model. Cereb. Cortex 24 (3), 785–806.580

Rajdl, K., Lansky, P., Kostal, L., 2020. Fano factor: A potentially useful information. Front. Comput. Neurosci.581

14, 569049.582

Robinson, D. L., Goldberg, M. E., Stanton, G. B., 1978. Parietal association cortex in the primate: sensory583

mechanisms and behavioral modulations. J. Neurophysiol. 41 (4), 910–932, pMID: 98614.584

Rost, T., Deger, M., Nawrot, M. P., 2018. Winnerless competition in clustered balanced networks: inhibitory585

assemblies do the trick. Biol. Cybern. 112 (1), 81–98.586

Rostami, V., Rost, T., Riehle, A., van Albada, S. J., Nawrot, M. P., 2022. Excitatory and inhibitory motor587

cortical clusters account for balance, variability, and task performance. BioRxiv.588

Rosvall, M., Axelsson, D., Bergstrom, C. T., 2009. The map equation. Eur. Phys. J. Spec. Top. 178 (1), 13–23.589

Sapountzis, P., Paneri, S., Papadopoulos, S., Gregoriou, G. G., 2022. Dynamic and stable population coding of590

attentional instructions coexist in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 119 (40).591

Schaub, M. T., Billeh*, Y., Anastassiou, C. A., Koch, C., Barahona, M., 2015. Emergence of slow-switching592

assemblies in structured neuronal networks. PLOS Comput. Biol. 11 (7), e1004196.593

Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., van Albada, S. J., Apr. 2018a. Multi-scale account of594

the network structure of macaque visual cortex. Brain Struct. Funct. 223 (3), 1409–1435.595

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., van Albada, S. J., 2018b. A multi-scale layer-596

resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS Comput. Biol.597

14 (10), e1006359.598

Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., Leventhal, A. G., 1998.599

Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278.600

Schroeder, K. E., Irwin, Z. T., Gaidica, M., Bentley, J. N., Patil, P. G., Mashour, G. A., Chestek, C. A., 2016.601

Disruption of corticocortical information transfer during ketamine anesthesia in the primate brain. NeuroImage602

134, 459–465.603

Schuecker, J., Schmidt, M., van Albada, S. J., Diesmann, M., Helias, M., Feb. 2017. Fundamental activity604

constraints lead to specific interpretations of the connectome. PLOS Comput. Biol. 13 (2), e1005179.605

Shen, K., Bezgin, G., Hutchison, R., Gati, J., Menon, R., Everling, S., McIntosh, R., 2012. Information processing606

architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32 (48), 17465–17476.607

Shin, M., Kitazawa, A., Yoshinaga, S., Hayashi, K., Hirata, Y., Dehay, C., Kubo, K.-i., Nakajima, K., 2019.608

Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing609

mammalian cerebral neocortex. J. Comp. Neurol. 527 (10), 1577–1597.610

Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H., Doi, T.,611

Kawano, K., Inaba, N., Fukushima, K., Kurkin, S., Kurata, K., Taira, M., Tsutsui, K.-I., Komatsu, H., Ogawa,612

T., Koida, K., Tanji, J., Toyama, K., 2009. Relating neuronal firing patterns to functional differentiation of613

cerebral cortex. PLOS Comput. Biol. 5 (7), e1000433.614

24

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577979doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577979


Shinomoto, S., Shima, K., Tanji, J., Dec. 2003. Differences in spiking patterns among cortical neurons. Neural615

Comput. 15 (12), 2823–2842.616

Shipp, S., 2003. The functional logic of cortico–pulvinar connections. Philos. Trans. R. Soc. B 358 (1438),617

1605–1624.618

Song, S., Sjöström, P., Reigl, M., Nelson, S., Chklovskii, D., 2005. Highly nonrandom features of synaptic619

connectivity in local cortical circuits. PLOS Biol. 3 (3), e68.620

Thompson, K. G., Hanes, D. P., Bichot, N. P., Schall, J. D., 1996. Perceptual and motor processing stages621

identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76 (6),622

4040–4055, pMID: 8985899.623

Thörnig, P., von St. Vieth, B., 2021. JURECA: Data Centric and Booster Modules implementing the Modular624

Supercomputing Architecture at Jülich Supercomputing Centre. JLSRF 7, A182.625

van Albada, S. J., Helias, M., Diesmann, M., 2015. Scalability of asynchronous networks is limited by one-to-one626

mapping between effective connectivity and correlations. PLOS Comput. Biol. 11 (9), e1004490.627

van Albada, S. J., Morales-Gregorio, A., Dickscheid, T., Goulas, A., Bakker, R., Bludau, S., Palm, G., Hilgetag,628

C.-C., Diesmann, M., 2022. Bringing anatomical information into neuronal network models. In: Giugliano,629

M., Negrello, M., Linaro, D. (Eds.), Computational Modelling of the Brain: Modelling Approaches to Cells,630

Circuits and Networks. Springer International Publishing, Cham, pp. 201–234.631

Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., Anderson, C. H., 2001. An integrated632

software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inf. Assoc. 8 (5), 443–459.633

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,634

P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,635

A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J.,636

Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,637

A. H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors, 2020. SciPy 1.0: Fundamental Algorithms for638

Scientific Computing in Python. Nat. Methods 17, 261–272.639

Wilke, M., Kagan, I., Andersen, R. A., 2013. Effects of pulvinar inactivation on spatial decision-making between640

equal and asymmetric reward options. J. Cogn. Neurosci. 25 (8), 1270–1283.641

Wilke, M., Turchi, J., Smith, K., Mishkin, M., Leopold, D. A., 2010. Pulvinar inactivation disrupts selection of642

movement plans. J. Neurosci. 30 (25), 8650–8659.643

Xue, M., Atallah, B. V., Scanziani, M., Jul 2014. Equalizing excitation-inhibition ratios across visual cortical644

neurons. Nature 511 (7511), 596–600.645

Yassin, L., Benedetti, B. L., Jouhanneau, J.-S., Wen, J. A., Poulet, J. F. A., Barth, A. L., Dec 2010. An embedded646

subnetwork of highly active neurons in the neocortex. Neuron 68 (6), 1043–1050.647

Yger, P., Spampinato, G. L., Esposito, E., Lefebvre, B., Deny, S., Gardella, C., Stimberg, M., Jetter, F., Zeck, G.,648

Picaud, S., Duebel, J., Marre, O., 2018. A spike sorting toolbox for up to thousands of electrodes validated649

with ground truth recordings in vitro and in vivo. eLife 7, 1–23.650

Yoshimura, Y., Dantzker, J., Callaway, E., 2005. Excitatory cortical neurons form fine-scale functional networks.651

Nature 433 (24), 868–873.652

Zajzon, B., Mahmoudian, S., Morrison, A., Duarte, R., 2019. Passing the Message: Representation Transfer in653

Modular Balanced Networks. Front. Comput. Neurosci. 13, 79.654

25

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577979doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577979


Zajzon, B., Morales-Gregorio, A., 2019. Trans-thalamic pathways: strong candidates for supporting communication655

between functionally distinct cortical areas. J. Neurosci. 39 (36), 7034–7036.656

Znamenskiy, P., Kim, M.-H., Muir, D. R., Iacaruso, M. F., Hofer, S. B., Mrsic-Flogel, T. D., 2018. Functional657

selectivity and specific connectivity of inhibitory neurons in primary visual cortex. BioRxiv.658

Znamenskiy, P., Kim, M.-H., Muir, D. R., Iacaruso, M. F., Hofer, S. B., Mrsic-Flogel, T. D., 2024. Functional659

specificity of recurrent inhibition in visual cortex. Neuron.660

26

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.577979doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577979


Supplementary materials661

Supplementary methods662

V1 spiking data from Chu et al. (2014b)663

The experimental recordings from all layers of V1 have previously been used and described in the context of the664

multi-area model in Schmidt et al. (2018b). A detailed description has been published in Chu et al. (2014b), and665

the dataset is publicly available (Chu et al., 2014a). In short, the data were collected from a 64-electrode array666

implanted into primary visual area V1 of a lightly anesthetized macaque monkey, and are spike-sorted into 140667

single units. In our analysis in Fig. S1, we used the data on 15 minutes of spontaneous activity during which no668

visual stimulation was provided.669

Macaque resting-state fMRI670

The fMRI data have previously been used and described in the context of the multi-area model in Schmidt et al.671

(2018b). The data are publicly available in processed form in the GitHub repository of the model2. The data672

were acquired from six male macaque monkeys, and five of the six subjects have previously been described in673

Babapoor-Farrokhran et al. (2013). The Animal Use Subcommittee of the University of Western Ontario Council674

on Animal Care approved all experimental protocols in accordance with the guidelines of the Canadian Council on675

Animal Care. The subjects were under light anesthesia, and ten sets of five-minute resting-state fMRI scans were676

acquired from each subject. The AFNI software package3 was used to regress out nuisance variables. The Pearson677

correlation coefficients of the probabilistically weighted ROI time series for each scan were used to compute the678

functional connectivity (Shen et al., 2012).679

Power spectral density comparison680

For the comparison with the V1 data in Fig. S1, the power spectral density (PSD) is computed using Welch’s681

method implemented in signal.welch in the Python SciPy library (Virtanen et al., 2020). A boxcar window, a682

segment length of 1024 data points, and 1000 overlapping points between segments are used.683

Functional connectivity comparison with fMRI684

For the analysis of the functional connectivity (FC) in Fig. S1, we define the FC of the spiking network model as685

the zero-time-lag cross-correlation of the area-averaged synaptic inputs, following Schmidt et al. (2018b). It is686

approximated by687

IA(t) = 1
NA

∑
i∈A

Ni |Ii(t)| =
1
NA

∑
i∈A

Ni

∑
j

Kij |Jij | (νj ∗ PSCj) (t) .

The term PSCj(t) = exp[−t/τs] is the normalized postsynaptic current, ∗ means convolution, τs is the synaptic688

time constant, νj is the population firing rate of the source population j, Kij is the mean indegree, and Jij is the689

mean synaptic weight of the connection from j to the target population i containing N neurons. The population690

firing rate νj is a spike histogram with bin width 1 ms averaged over the entire population. Hence, time t here691

has a resolution of 1 ms.692

2https://github.com/inm-6/multi-area-model
3afni.nimh.nih.gov/afni
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Supplementary results693

Comparison with Schmidt et al. (2018b)694

To understand the main differences between the original and clustered model, we first compare the simulation results695

against the experimental data used by Schmidt et al. (2018b). The experimental data consist of multielectrode696

spike recordings from macaque V1 (Chu et al., 2014b,a) and resting-state fMRI recordings (Babapoor-Farrokhran697

et al., 2013); see Experimental data for a detailed description of the data. Fig. S1 shows that the explanatory698

power of the model is conserved. Fig. S1A–C show raster plots of the original model, the clustered model, and the699

experimental recordings of (Chu et al., 2014a). The CV ISI, shown in Fig. S1D, and the LvR, shown in Fig. S1E,700

in area V1 appear slightly better in the clustered model than in the original model.701

We quantify the similarity between the distributions using a Kolmogorov-Smirnov test of each model against702

the experimental data distribution. The CV ISI distribution of the V1 activity in the clustered model appears703

more similar to the experimental data (KS = 0.53, p� 0.001) than the original model (KS = 0.73, p� 0.001).704

Likewise, the LvR distribution is also better captured by the clustered model (KS = 0.59, p� 0.001) than by705

the original model (KS = 0.64, p� 0.001). However, the firing rate distribution from the original model better706

matches the experimental data (KS = 0.09, p = 0.28) than the clustered model (KS = 0.26, p� 0.001), shown in707

Fig. S1F. We also compare the power spectral density (PSD) of the spike histograms (bin size of 1 ms). The708

original model matches the experimental power spectrum well, whereas the clustered model exhibits an almost709

flat power spectrum that does not follow the experimental findings.710

Finally, we compare the cortico-cortical interactions of the model with experimentally measured fMRI BOLD711

signals (Babapoor-Farrokhran et al., 2013). Fig. S1H shows the Pearson correlation coefficient r of simulated712

functional connectivity (FC) with experimentally measured FC for different numbers of clusters Q. The dashed713

line shows the average correlation coefficient (r = 0.31) across all monkeys in the fMRI dataset, which indicates714

the correlation level to be explained by a model that is not tuned to any individual subject. All model versions715

reach this level of correlation between simulated and experimental FC.716
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Figure S1: Comparison with experimental data used in Schmidt et al. (2018b). (A-C) Raster plots
showing the spiking activity of excitatory and inhibitory cells from the original, unclustered model (A), from the
clustered model with 50 clusters (B), and from the experimental data (C); simulated excitatory and inhibitory
neurons are shuffled within layers for plotting to better match the sampling from the experimental data, where
neurons are ordered depth-wise but no distinction is made between excitatory and inhibitory cells. (D,E)
Distribution of irregularity of single-unit spike trains across all populations in area V1 quantified by the coefficient
of variation of the interspike intervals CV ISI (D) and revised local variation LvR (E) (Shinomoto et al., 2009)
for different numbers of clusters Q compared against experimental data (Chu et al., 2014a). (F) Distribution of
simulated spike rates across all populations of V1 and for the 140 single units extracted from the experimental
data (Chu et al., 2014a). (G) Power spectra of the summed spiking activity of 140 randomly selected V1 neurons
for the two model versions and for the experimental data. (H) Pearson correlation coefficient r of simulated
functional connectivity FC vs. experimentally measured FC for different numbers of clusters. Q = 1 refers to the
original, unclustered model. Dashed line: average correlation across all monkeys.
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