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ABSTRACT 

Insects constitute the most species-rich radiation of metazoa, a success due to the evolution of active 
flight. Unlike pterosaurs, birds, and bats, the wings of insects did not evolve from legs1, but are novel 
structures attached to the body via a biomechanically complex hinge that transforms tiny, high-
frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the 
wings2. The hinge consists of a system of tiny, hardened structures called sclerites that are 
interconnected to one another via flexible joints and regulated by the activity of specialized control 
muscles. Here, we imaged the activity of these muscles in a fly using a genetically encoded calcium 
indicator, while simultaneously tracking the 3D motion of the wings with high-speed cameras. Using 
machine learning approaches, we created a convolutional neural network3 that accurately predicts wing 
motion from the activity of the steering muscles, and an encoder-decoder4 that predicts the role of the 
individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled 
robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based 
simulation that incorporates our model of the hinge generates flight maneuvers that are remarkably 
similar to those of free flying flies. This integrative, multi-disciplinary approach reveals the mechanical 
control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily 
important skeletal structures in the natural world. 

Whether to forage, migrate, reproduce, or avoid predators, aerial maneuverability is essential for flying 
insects. Most insects actuate their wings using two morphologically and functionally distinct sets of 
muscles. Contractions of the large, indirect flight muscles (IFMs) are activated mechanically by stretch 
rather than by individual action potentials in their motor neurons—a specialization that permits the 
production of elevated power at high wingbeat frequency5–7. There are two sets of IFMs, dorso-ventral 
muscles (DVMs) and the dorso-longitudinal muscles (DLMs), arranged orthogonally to maintain a self-
sustaining oscillation (Fig. 1a-c). The tiny deformations in the exoskeleton generated by the IFMs are 
mechanically amplified by the wing hinge8–12, an intricate structure consisting of an interconnected set of 
small sclerites embedded within more flexible exoskeleton and regulated by a set of small control 
muscles13 (Fig. 1a,b). In this paper, we use machine learning approaches and physics-based simulations to 
gain insight into the underlying mechanics of the wing hinge of flies and its active regulation during flight. 

Morphology of the dipteran wing hinge 
The 3-dimensional structure of the wing hinge of flies is so complex that it is difficult to depict in 2-
dimentional drawings. As an introduction to this intricate structure, we provide an animation in 
Supplementary Movie 1 that illustrates the arrangement of wing sclerites within the hinge and the control 
muscles that regulate their function. These data are based on our ongoing effort to accurately reconstruct 
the detailed morphology of the wing hinge of fruit flies (Drosophila melanogaster), using a specialized 
application of confocal microscopy. While this efforts provides some clarity on the morphology of the 
hinge in a static configuration—with the wings folded snuggly against the body—the mechanical 
operation of the hinge during flight remains enigmatic, because the wing sclerites are difficult to visualize 
externally and move so rapidly that their changing configuration has not been accurately captured by 
either stroboscopic photography14, high speed videography15, or X-ray tomography16. The consensus of all 
prior morphological analyses in various dipteran species2,9,10,12,16 suggests that the tiny deformations of 
the thorax generated by contractions of the IFMs are transformed into wing motion via the mechanical 
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actions of the anterior and posterior-medial notal wing processes (ANP and PMNP) on the ‘x’-shaped 1st 
axillary sclerite (ax1) at the base of the wing (Fig. 1d-h). The ANP projects from the anterior end of the 
parascutal shelf and fits in the groove between the two anterior lobes of ax1. The PMNP sits at the anterior 
end of the large scutellar lever arm (SLA) in a notch between the two ventral lobes of ax1. Contractions of 
the DLMs during the downstroke are thought to be transmitted to the wing hinge via two main 
mechanisms: (1) a rotation of the scutellum along its junction with the notum that moves the scutellar 
lever arm and PMNP upward, and (2) an elevation of the entire notum that raises the ANP at the lateral 
edge of the parascutal shelf (Fig. 1a). Contractions of the antagonistic DVMs during the upstroke cause 
the opposite effects (Fig. 1b). The more distal 2nd axillary sclerite (ax2) possesses a dorsal flange that fits 
between the two dorsal protuberances of ax1, coupling the two sclerites during flight (Fig. 1g, 
Supplementary Movie 1). Ax2 is a critical component of the hinge system because it is rigidly attached to 
the radial vein—the main structural spar of the wing, and it has an anteriorly projecting ventral extension 
that fits into a notch in the plural wing process (PWP), thus forming the main fulcrum for wing motion. 
Because this fulcrum point is distal and anterior to ax1, upward motion of the SLA causes downward 
motion and pronation of the wing, whereas downward motion of the SLA causes upward motion and 
supination of the wing8. 
 
In addition to the SLA, the anterior end of the scutellum is connected to another anteriorly projecting 
structure, the 4th axillary sclerite (ax4), providing a second mechanical pathway linking IFM strains to the 
wing base (Fig. 1a-e). Ax4 lies ventrolateral to the SLA and is attached by a long, previously unnamed 
sclerite (which we term the ‘canoe’ based on its peculiar shape) to the 3rd axillary sclerite (ax3). Ax3 
contacts ax1, ax2, and the base of the anal vein, which serves as the main structural spar for the posterior 
half of the wing (Fig. 1d,e). Due to its connection with the anal vein, the linkage system consisting of the 
scutellum, ax4, canoe, and ax3 could influence wing camber and angle of attack during flight10,17, but this 
functional role remains speculative. We note that some prior authors have drawn the canoe as an 
extension of ax317,18, but the two structures are clearly distinct in our confocal reconstructions 
(Supplementary Movie 1) and more recent µ-CT data19. 

In addition to the four axillary sclerites that are directly incorporated into the hinge, another important 
sclerite, the basalare, sits in the membranous episternal cleft just anterior to the wing (Fig. 1g,h)14,16,20. 
From the surface, the basalare is a triangular-shaped structure, but it has a long internal invagination 
(apophysis) that provides an attachment site for two of its three control muscles (Fig. 1h). During flight, 
the basalare is thought to oscillate passively due to the opening and closing of the episternal cleft and via 
its ligamentous connection to the base the radial vein. However, the magnitude of these oscillations and 
the mean position of the basalare is actively regulated by its three control muscles16,21, thereby adjusting 
the tension of the ligamentous connection to the radial vein. 

Although the IFMs provide the power to oscillate the wings, they cannot regulate the rapid changes in 
kinematics required for flight maneuvers or the sustained asymmetrical patterns of motion necessary to 
remain aloft with damaged wings22. In flies, that control is mediated by a set of 12 steering muscles that 
insert on three of the four sclerites (ax1, ax3, ax4) and the basalare (Fig. 1f-h, Supplementary Movie 1). 
The steering muscles are named after the sclerite on which they act (ax1: i1 and i2; ax3: iii1, iii2, iii3; ax4: 
iv1, iv2, iv3, and iv4; basalare: b1, b2, and b3). Ax4 and its muscles are sometimes described using an 
alternative nomenclature, hg, after its German name ‘hinter-Gelenkforsatz’18. Each steering muscle is 
innervated by only a single excitatory motor neuron23,24, thus the entire flight motor system is remarkably 
sparse relative to comparably maneuverable vertebrates such as hummingbirds25. 
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Neural network model wing hinge. 
Machine learning is proving increasing useful at gaining insight into many phenomena in biology, for 
example, the processing of visual information by mammalian cortex26. While such approaches are 
powerful in their ability to accurately predict an output (e.g. response of a neuron) from a set of inputs 
(e.g. complex sensory stimuli), it remains a challenge to gain mechanistic insight from the hidden features 
of a neural network after its successful training. Our aim is to use machine learning to probe the 
musculoskeletal transformations that underlie the mechanical function of the hinge, using this activity of 
control muscles as an input, and the detailed 3-D motion of the wings as an output. We constructed an 
experimental apparatus that allowed us to capture the wing motion of tethered flies at 15,000 frames per 
second with three high-speed cameras, while simultaneously measuring steering muscle activity using the 
Ca2+ indicator, GCaMP7f27 (Fig. 2, Extended Data Fig. 1). To capture data that represented a wide range of 
muscle activity, we collected a large set of sequences, each triggered whenever the activity of one of the 
steering muscles (chosen a priori at the start of each trial) exceeded a user-defined threshold. To 
encourage a wide variety of flight behaviors, we also displayed open- and closed-loop visual stimuli on a 
cylindrical array of LEDs28 surrounding the fly. In total, we recorded a total of 485 flight sequences from 
82 flies. After excluding a subset of wingbeats from sequences when the fly either stopped flying or flew 
at an abnormally low wingbeat frequency, we obtained a final dataset of 72,219 wingbeats.  

To reconstruct the kinematics of the wings from the high-speed data, we developed an automated 
tracking algorithm that used a trained convolutional neural network (CNN)29 and particle swarm 
optimization30 (Extended Data Fig. 2a), a work flow that is described in detail in Supplementary 
Information. We specified wing pose relative to a fixed reference frame that approximated the mean 
stroke plane using three Tait-Bryan angles: stroke position (φ), deviation (θ), and wing pitch (η) (Fig. 2b). 
We also defined a fourth angle (ξ) that quantified the chord-wise deformation of the wing (i.e. camber) 
from the leading to the trailing edge (Fig. 2c). We parsed the wing kinematic traces into separate 
wingbeats, beginning and ending at dorsal stroke reversal. To reduce the dimensionality of the data, we 
fitted Legendre polynomials to all four kinematic angles, creating a vector of 80 coefficients (φ = 16, θ = 
20, η = 24, ξ = 20) that accurately captures the motion of one wing during each stroke.  

We determined the Ca2+ signals originating from each of the 12 steering muscles using a real-time 
unmixing model as previously described27. The muscle activity traces were normalized over each trial 
duration, such that 0 and 1 corresponded to -2 and +2 standard deviations, respectively (Fig. 3a). Due to 
its binding kinetics31, GCaMP7f reports a low-pass filtered version of sarcoplasmic Ca2+ levels, which in 
addition to attenuating high frequencies, introduces a time delay between changes in ion concentration 
and fluorescence signals. Because of these effects, the muscle signals relevant for the kinematics of any 
individual stroke are spread out over several stroke cycles, and the GCaMP7f data recorded after a 
particular wingbeat are better representative of the Ca2+ levels in the muscles at the time the kinematic 
measurements were made. Thus, when training and evaluating our CNN, we associated the kinematics of 
each individual wingbeat with the Ca2+ signals recorded in the muscles the during the subsequent 9 
wingbeats.  

The details of the CNN that predicted wing motion from muscle activity, along with metrics used to 
evaluate its accuracy, are provided in Supplementary Information. Briefly, we trained the network using 
85% of our dataset, reserving the rest as a test set. For each wingbeat, the 13x9 matrix of muscle activity 
and wingbeat frequency provided the input to the network, whereas the output consisted of a vector 
containing the 80 Legendre coefficients encoding the four angles of wing motion (Fig. 3a,b). Despite the 
fact that the network was trained using a measure of muscle activity filtered by GCaMP7f kinetics, it 
nevertheless predicted the salient modulations in wing motion throughout the measured sequences with 
remarkable accuracy (Fig. 3c, Extended Data Fig. 3). This accuracy was not guaranteed, given that prior 
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biophysical experiments suggest that the properties of some steering muscles (most notably, b1)20 are 
regulated by small changes in motor neuron firing phase, a physiological feature that is not detectable via 
Ca2+ imaging. This success of the network might imply that such changes in firing phase are correlated 
with features that are detectable by our imaging method, or that excluding firing phase might be 
responsible for small errors in our predictions that are beyond the precision of our wing tracking. 
Nevertheless, the overall success of the trained network suggests that even a limited measure of steering 
activity provides sufficient information to reconstruct the intricate pattern of wing motion with 
reasonable accuracy.  

A previous study found that steering muscles can be roughly categorized by their activity pattern into 
phasic muscles (e.g. b2, i1, iii1, iv1) that fire sporadically in bursts, and tonic muscles (e.g. b1, b3, i2, iii3, 
iv4) that exhibit more continuous patterns of activity27. We observed roughly the same pattern in our 
more limited dataset (Fig. 4a), which was deliberately enriched to captures sequences in which muscle 
activity and wing kinematics actively changed during the 1.1 ms segments during which we collected high-
speed video data. To quantify the degree to which the activities of different steering muscles were linked, 
we performed a correlation analysis on the muscle activity, and found strong linear trends among some 
of the muscles (Extended Data Fig. 4, Extended Data Table 1). We did not find any significant correlation 
between steering muscle activity and wingbeat frequency. This was not surprising, given that changes in 
wingbeat frequency are known to occur more slowly than changes in the time course of the wing 
kinematic angles32, and the indirect flight muscles that have been implicated in the regulation of frequency 
(the power muscles33 and the two pleuro-sternal muscles34) were not recorded in this study.  

Virtual manipulations using CNN model 
We used our CNN model of the hinge to investigate the transformation between muscle activity and wing 
motion by performing a set of virtual manipulations, exploiting the network to execute experiments that 
would be difficult, if not impossible, to perform on actual flies. As a starting point, we defined a baseline 
pattern of muscle activity that was derived from sequences without any noticeable changes in muscle 
fluorescence and wing motion (grey data, Fig. 4b,c). From this starting point, we could then manipulate 
the network inputs to systematically increase the activity of each individual steering muscle, along with 
proportional changes in the activity of the other muscles with which it was correlated within our dataset 
(Extended Data Figure 4, Extended Data Table 1). The kinematic consequences of increasing the 
normalized activity of each steering muscle to 1, representing near-maximal output, are plotted in the 
columns of Fig. 4c. From these data, it is possible to identify the correlations between muscle activation 
and changes in wing motion, as one might do in an actual physiology experiment in which each steering 
muscle was recorded in isolation. The results of these virtual experiments are consistent with prior 
experimental data from the subset of steering muscles for which electrophysiological recordings have 
been possible. For example, activation of the b1 and b2 muscles is known to correlate with an increase in 
stroke amplitude and deviation21,35. Although electrophysiological recordings from b3 have not been 
feasible due to its small size, the antagonistic effects relative to b1 are consistent with the morphological 
arrangement of these two muscles. Similarly, the activity of i1 is known to correlate with a decrease in 
stroke amplitude and deviation, whereas the activity of the muscles of ax3 are correlated with increases 
in these parameters35,36. The consistency of our model’s predictions with these prior observations 
provides confidence that the CNN converged on a solution that captures the salient features of wing hinge 
mechanics. 
 
Aerodynamic effects of steering muscles  
Collectively, the results of the virtual experiments conducted using our CCN hinge model indicate that the 
12 steering muscles act in a coordinated manner to regulate subtle changes in wing motion. To examine 
the aerodynamic consequences of these changes, we used a dynamically scaled flapping robot37 to 
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measure how flight forces would change with alterations in the activity of each muscle (Extended Data 
Fig. 5). The motion of the leading edge of the robotic wing was controlled by a system of servo motors 
that specified the three wing angles (φ, θ, η ). Unlike earlier versions, which modeled the wing as a solid 
flat planform38, our new robotic wing consisted of 4 span-wise wedges connected by three hinge lines 
approximating the positions of wing veins L3, L4, and L5 (Fig. 1d, 2c). We could actuate the angles at each 
hinge line via servo motors attached to the base of the wing, thus specifying the fourth kinematic angle, 
𝜉𝜉, that determines camber (Extended Data Fig. 5a). A sensor at the base of the wing measured the 
aerodynamic forces and torques generated by the flapping motion of each kinematic pattern. We used 
the Newton-Euler equations to estimate the inertial forces generated by a flapping wing, based on 
previously measured values of wing mass39 and added them to the measured aerodynamic forces, thus 
obtaining a time history of forces and torques generated by the wing for each wingbeat (Extended Data 
Fig. 5b,c). We then conducted this analysis for the 12 kinematic patterns predicted by our CNN for the 
maximum activity of each steering muscle (Fig. 4), creating a map linking muscle activity to flight forces 
(Extended Data Fig. 6). 
 
Simulating free flight maneuvers. 
Using our aerodynamic data, we could then test whether our CNN linking muscle activity to wing motion 
could generate free flight maneuvers that resemble those executed by real flies. To do so, we used Model 
Predictive Control (MPC)40 to determine the activity patterns within the array of 24 steering muscles (12 
for each side) that generate any arbitrary flight maneuver in the shortest amount of time within a specified 
number of wingbeats. The details of our simulator are described in Supplementary Information (Fig. 5, 
Extended Data Fig. 7). Briefly, the state vector of the system, x, consists of 13 parameters that collectively 
specify the linear and angular velocity of the body in the strokeplane reference frame and the body 
quaternion and position in an inertial reference frame. The control vector, u, consists of 24 parameters 
representing the left and right muscle activities. Our model also incorporates body drag, the inertial and 
aerodynamic damping of the wings41, and gravitational forces. In Fig. 5a-b, we show a MPC simulation of 
a stereotypical free flight maneuver—a body saccade42—in which flies rapidly change direction in ~100 
ms32,43. The MPC simulation starts in forward flight mode (0.3 m s-1) and has to reach a goal state with a 
yaw rotation of 90o to the right within 10 wingbeats. Left and right steering muscle activity show relatively 
subtle changes during the maneuver, with the largest asymmetries in b1, b3, and iv4 activity (Fig. 5c). The 
saccade is achieved by a combination of roll, pitch and yaw rotations with only a slight deceleration in 
forward velocity (Fig. 5d). Using the time course of muscle activity, we could reconstruct the left and right 
wing motion patterns during the saccade using our CNN model (Fig. 5e). The asymmetries in wing motion 
are subtle, corresponding remarkably well to those recorded during the free flight saccades of real 
flies32,43.  
 
We provide example MPC simulations of other flight maneuvers in Extended Data Fig. 7, and 
Supplementary Video 2. It is noteworthy that even though our CCN network of the wing hinge was trained 
using muscle activity data that was filtered by the time CGaMP7f kinetics, the model fly could nevertheless 
accomplish rapid maneuvers that closely resemble those of real flies. This result may seem counter-
intuitive, but it is consistent with the known physiology of the steering muscles. While GCaMP7f dynamics 
are slow relative to the time course of individual muscle spikes, the more relevant physiological feature is 
twitch duration, which is limited by the surface area of sarcoplasmic reticulum. Even tonic muscles such 
as b1 that exhibit changes in dynamic stiffness due to activation phase have twitch durations lasting 
several wingbeats20. The largest saccades are associated with activation of phasic muscles b2 and i1, which 
act to rapidly increase and decrease wing stroke amplitude, respectively27. These large phasic muscles are 
expected to exhibit twitch durations much longer than the tonic muscles due to their specialization for 
maximizing rapid force production via a large cross sectional area of contractile fibers at the expense of 
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sarcoplasmic reticulum for Ca2+ sequestration44. We suspect that our model might be less reliable for 
longer duration flight behaviors such as maintaining a constant heading following wing damage22, which 
require the extremely precise regulation of wing kinematics offered by the smaller, dynamically faster 
tonic muscles.  
 
Latent variable analysis 
In the simulated experiments summarized in Fig. 4, we deliberately incorporated the correlation patterns 
among muscles (Extended Data Fig. 4), so that the results could be most accurately compared to prior 
work and were similar to the conditions under which we trained the network. However, the strong 
correlations among muscles makes it difficult to isolate their individual effects on wing motion. To gain 
more insight into the mechanical function of the individual wing sclerites, we constructed and trained an 
encoder-decoder4, with a network architecture that deliberately partitions the input data from the 
steering muscles into four nodes according to the sclerites on which they act, with an additional node 
assigned to wingbeat frequency (Extended Data Fig. 8). This narrow bottleneck of nodes forces the 
network to project muscle activity into a 5-dimensional latent-variable space, effectively performing a 
non-linear principal component analysis4. A subsequent layer of the network correlates each of these 
latent variables to independent changes in wing motion. After training this modified network on the 
dataset, we could then predict the changes in wing motion resulting from the activity of the muscle groups 
associated with the four wing sclerites (Fig. 6).  
 
Our analysis suggests that tension exerted on each sclerite modulates distinct aspects of wing motion (Fig. 
6). For example, the b1 and b2 muscles act agonistically to increase stroke deviation and stroke amplitude 
during the downstroke, as well as advancing the phase of wing rotation at the start of the upstroke. The 
increased tension on the ligament connecting the basalare to the radial vein caused by contraction of b1 
and b2 could explain these results (Fig. 6b), with the b3 muscle having an antagonistic effect. Increased 
downward tension on the 1st axillary caused by the activation i1 and i2 decreases stroke amplitude and 
reduces stroke deviation at the start of the upstroke (Fig. 6d). It is noteworthy that activation of iii2 and 
iii3 has almost precisely the opposite effect on wing motion as those caused by activation of ax1 muscles 
(Fig. 6e). The positions of the ax1 and ax3 muscle insertions relative to ax2 may provide a simple 
explanation for these antagonistic influences on wing motion. Although the ax2 has no control muscles, 
this critical sclerite forms the fulcrum upon which the wing oscillates via its joint with the PWP. Whereas 
the muscle insertions on ax1 sits medial to this fulcrum (Fig. 6d), those on ax3 reside distally2,9,10,45 (Fig. 
6e). Thus, whereas downward tension created by the i1 and i2 would tend to bias the mean stroke position 
of the wing upward (by pulling inboard of the fulcrum), tension created by the muscles of iii2 and iii3 
would bias the wing downward (by pulling outboard of the fulcrum). The large iii1 muscle is rarely active 
during flight27 and is likely homologous with the ancestral retractor muscle that is used for folding the 
wing along the body axis45. When the wing is extended during the flight, however, the common tendon 
to which the iii2 and iii3 insert upon ax3 bend around the PWP so that the muscles exert a downward 
tension on the sclerite10. 
 
Our latent-variable analysis suggests that the ax4 muscles exert a strong influence on wing motion (Fig 
6a,b,f). In particular, the large iv1 muscle decreases the magnitude of stroke amplitude, stroke deviation, 
and angle-of-attack throughout the entire wingbeat, actions that are agonized by the activity of iv2, 
consistent with both of these muscles inserting at the same location on ax4 with a line of action that would 
pull the sclerite downward and inboard. In contrast, the latent variable analysis suggests that iv4 has 
effects opposite to that of iv1 and iv2: increasing stroke amplitude and stroke deviation and lowering 
angle of attack throughout the stroke, actions that are mildly agonized by iv3. These results are roughly 
consistent with our virtual activation experiments using the CNN model (Fig. 4). A functional stratification 
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of the ax4 muscles into two antagonistic groups has not been observed in previous physiological studies, 
although these muscles have proven particularly difficult to record due to their small size and tight 
clustering. However, prior morphological investigations have noted that the two muscle groups insert via 
separate tendons that would cause different defections of ax4, which could influence wing motion via the 
mechanical linkage to ax310,46. Our own morphological analysis (Fig. 1h, 6f, Supplementary Video 1) 
uncovered an intriguing feature of hinge morphology that further supports this functional stratification. 
In particular, the small, tonically active iv4 muscle does not insert on ax4 directly, but rather is connected 
laterally to the tendon of iv3 by a conspicuously broad ligament that would act to pull the sclerite 
outboard, antagonistic to the action of iv1 and iv2.  
 
Possible role of passive wing flexion  
Based on our morphological and experimental results, we hypothesize that the action of the iv1 and iv2 
muscles causes an inward movement of ax4 that depresses the anal vein of the wing during the 
downstroke via its linkage to ax3, thereby greatly increasing the angle-of-attack and reducing the lift-to-
drag ratio (Fig. 6f). Whereas our the latent variable analysis predicts a large influence of ax4 muscles on 
stroke amplitude and deviation, the anatomical analysis of previous authors suggest that this sclerite 
would primarily effect the wings angle-of-attack10. We hypothesize that the presence of a chord-wise 
flexure joint at the wing root enables a passive response in the stroke and deviation angles to changes in 
the aerodynamic and inertial forces on the wing. Evidence for just such a flexure line has been proposed 
for other fly species47 and is evident in high speed imaging data collected during free flight in Drosophila 
hydei, which clearly show that the wing blade extends beyond the maximum angular limit of the wing 
base during stroke reversal, with the deformation concentrated along a narrow line (Extended Data Fig. 
9a). Using confocal microscopy, we detected a strong autofluorescence signal with 405 nm excitation 
(Extended Data Figure 9b), consistent with the presence of the elastic protein resilin along a chord-wise 
line at the base of the wing blade48. Resilin is a rubber-like protein first discovered by Weis-Fogh in the 
wing hinge of locusts and flight muscle tendons of dragonflies49. The existence of a resilin-rich flexion joint 
provides a passive mechanism that could explain how alterations in the in angle-of-attack caused by 
activity of the ax4 muscles could generate large changes in both stroke position and deviation throughout 
the wingbeat, and might also play a role permitting the storage and recovery of inertial energy via elastic 
storage50–52. 

Conclusions 
In this study, we used machine learning to construct both a CNN model and an encoder-decoder of the 
fly’s wing hinge based on the simultaneous measurement of steering muscle activity and wing kinematics. 
There are several reasons suggesting that our CNN model provides an accurate representation of the 
biomechanical processes that transform steering muscle activity into wing motion. First, when we used 
the network to predict the pattern of wing motion generated by the maximal activity of each muscle, the 
model’s output was consistent with all prior experiments for which the pattern of muscle activity has been 
measured directly with electrodes (Fig. 4). Second, when we embedded the CNN hinge model into a state-
space simulation and used MPC to determine the pattern of muscle activity that generated an array of 
different canonical flight maneuvers, the results in each case resemble the known behavior of freely flying 
flies32,43,53,54 (Fig. 5). Third, when we constructed an encode-decoder in which the steering muscle activity 
was parsed into nodes representing the muscle groups inserting on each of the four wing sclerites (Fig. 6), 
the model’s predictions were consistent with known features of hinge morphology and differences in the 
insertion patterns of control muscles. Collectively, our results generate a suite of specific hypotheses (Fig. 
6c-f) that can be tested via a combination of additional experiments and a detailed, physics-based model 
of the hinge. Further, with the recent availability of a connectome for the ventral nerve cord of 
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Drosophila55,56, we expect that these results will help provide a deeper understanding of flight control 
circuitry that underlies the recruitment of steering muscles during flight maneuvers.  

Until recently, the morphologically complex wing hinge of flies and other neopterous insects was 
considered a derived trait that allows the wing to fold along the body axis when not in use, and for wing 
motion to be driven by the contraction of indirect flight muscles that do not insert at the base of the wing. 
The hinge found in extant paleopterous insects (dragonflies, damselflies, and mayflies), which is actuated 
by direct flight muscles and does not permit folding, was considered representative of the ancestral 
condition57. However, a new phylogeny derived from a comprehensive genetic analysis of the 
Polyneoptera provides a compelling reinterpretation58, in which the unfoldable wing of the paleopterous 
orders is more parsimoniously interpreted as a radical simplification of the ancestral condition. According 
to this hypothesis, many features of the odonates—including the inability to fold their wings—are 
secondary specializations of their large size, perching habit, and predatory lifestyle59–61. Thus, despite the 
fact that Drosophila is a crown taxon, the analysis of its wing hinge could provide general insight into 
biomechanical innovations underling the evolution of insect flight. 

Methods 

Flies  
We generated flies expressing GCaMP7f in steering muscles by crossing w[1118];+;P{y[+t7.7] 
w[+mC]=R22H05-Gal4}attP2 and +[HCS];P{20XUAS-IVS-GCaMP7f}attP40;+. All experiments were 
conducted on the 3-day old female offspring. We anesthetized flies on 4℃ cold plate to immobilize them 
and remove the anterior two pairs of legs at the coxa. The flies were then attached to a tungsten wire at 
the notum using UV-curing glue (Bondic) and placed into our experimental setup after a 10-minute 
recovery period. 
 
Imaging and constructing 3D model of the wing hinge 
Our reconstruction of cuticle morphology using a confocal microscopy was based on a previously 
published method62. Flies were anesthetized with acetone and briefly washed with 70% ethanol. We 
placed the animals in PBS with 2% paraformaldehyde and 0.1% Triton X-100 and before carefully removing 
their abdomen. After overnight fixation at 4°C, we isolated the thoraces and bleached the preparations 
for 24 hours in 20% hydrogen peroxide. The samples were then embedded in 7% agarose and cut into 0.3 
mm sagittal sections using a vibratome (Leica VT1000s). The slices were incubated overnight at 37° C in 
PBS, 0.1% Triton X-100, and 0.2 mg ml-1 of trypsin to remove soft tissues. We then gradually dehydrated 
the preparations in a glycerol series (2% to 80%), followed by ethanol series (20% to 100%), before 
mounting them between two cover slips in methyl salicylate for imaging. Serial optical sections were 
obtained on a laser confocal microscope (Zeiss 980) at 1 µm intervals using a LD-LCI 25x, 0.8 NA objective, 
or at 0.3 µm intervals, using a Plan-Apochromat 40x, 0.8 NA objective. We detected the green 
autofluorescence characteristic of hard, sclerotized cuticle by exciting the tissue with 488 nm light. We 
extracted 3D meshes from the confocal stacks using a viewer plugin for Fiji (http://fiji.sc/) and imported 
the data into Blender (http://www.blender.org.). The resulting image data from the 0.3 mm sections were 
then processed to segment individual structures (e.g. sclerites, muscles, and apodemes) and reconstruct 
the continuous 3D morphology of the thorax in the vicinity of the wing hinge. The results we used to 
create the 2D cartoons in Fig. 1, and the animation in Supplementary Video 1.  
 
High-speed camera recordings 
We used three synchronized high-speed cameras (SA5, Photron) to image the flies from orthogonal views. 
The cameras recorded continuously at a rate of 15,000 frames per second (fps) with an electronic shutter 
speed of 33.3 µs, telecentric lenses (0.5X PlatinumTL, Edmund Optics) and collimated infrared (850nm) 
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backlights (M850LP1 LED and SM2P collimation lens, Thor Labs). The 3D calibration of the high-speed 
cameras was achieved using the Direct Linear Transformation (DLT) method63. The recorded images had 
a resolution of 256x256 pixels with 8-bit depth. To optimize data storage, we divided the camera memory 
buffers into 8 partitions, each accommodating one 1.1 s sequence of 16,376 frames. Once all partitions 
were full, the data were transferred to a hard drive. During each experiment, we also operated a low-
speed tracking system called kinefly64, which tracked the stroke amplitude of the left and right wings so 
that we could implement visual closed-loop of the cylindrical array of LEDs28 surrounding the fly.   
 
Real-time calcium imaging 
We employed a previously described technique27 to visualize muscle activity using GCaMP7f in the fly by 
utilizing single photon excitation through the cuticle. A blue LED (M470L3, Thor Labs) served as the 
excitation light source, which was directed through a 480/40 nm excitation filter (Chroma) and focused 
onto the fly using a 4x lens (CFI Plan Fluor, Nikon). The resulting fluorescent light passed through a 535/50 
nm emission filter (Chroma) and was captured by a machine vision camera (BF3-U3-04S2M-CS, FLIR). To 
synchronize the imaging process, we utilized an optoelectronic wingbeat analyzer65 to strobe the blue 
excitation LED for 1 ms at the dorsal stroke reversal of each wingbeat. The fluorescence camera was 
strobed at half the wingbeat frequency (~100 fps), resulting in each frame representing the sum of two 
consecutive illuminations. To synchronize the high-speed and fluorescence image streams, we employed 
a microcontroller (Teensy 3.2) that received synchronization pulses from the Photron cameras and ventral 
stroke reversal signals from the wingbeat analyzer, and coordinated the strobe signals to the blue 
excitation LED and the machine vision camera. The fluorescence images, along with a high-speed pulse 
count serving as a timestamp, were saved by our data acquisition software implemented in Robotic 
Operating System (ROS, www.ros.org) using Python scripts. An unmixing algorithm, described 
elsewhere27, was applied to extract the Ca2+ signal from the overlapping muscles. To initialize an 
experiment, a GUI was used to orient and scale the 3D muscle model to the image using an affine 
transformation. The resulting fluorescence image and data vector capturing the activity of the steering 
muscles were saved in an hdf5 file. The muscle activity vector was stored in a rolling buffer within ROS, 
covering approximately 30 seconds of data. 

Our objective was to trigger the data sequences during rapid changes in muscle activity. To achieve this, 
a separate ROS node monitored the activity of a predefined muscle of interest throughout the experiment. 
At the start of each trial, we selected a muscle and an activity threshold for the trigger level. During the 
experiment, the trigger node calculated the gradient of muscle activity over 3 frames (equivalent to 6 
wingbeats) and normalized this signal by dividing it by the standard deviation over a 30-s rolling buffer. 
Whenever the absolute value of the gradient exceeded the activity threshold, indicating a significant 
increase or decrease in muscle activity, the high-speed cameras were triggered in center mode, such that 
we saved 8,188 frames before the trigger event and 8,188 frames after. A 30-s refractory period after 
each trigger event ensured there was no overlap between subsequent high-speed sequences. In total, we 
recorded data from 82 flies, resulting in 485 high-speed videos (Extended Data Table 2). We aimed to 
record sequences triggered on all 12 muscles from a minimum of 5 flies each. However, the iii1 muscle 
exhibited sporadic activity, primarily during flight starts and stops, whereas iii2 displayed more gradual 
changes in activity compared to other muscles. As a result, we were only able to capture data from 1 fly 
for iii1 and 4 flies for iii2.  
 
Automated wing pose reconstruction  
We developed an automated tracking system to extract body and wing pose, called Flynet, which consists 
of two steps: (1) a trained CNN that predicts pose vectors of the body and wing, and (2) a Particle Swarm 
Optimization (PSO) step that refines the CNN prediction via 3D model fitting. A GUI was created to load 
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images, scale the 3D fly model, annotate frames, and run the automated tracking algorithm. The 3D fly 
model includes the head, thorax, abdomen, left wing, and right wing, each with a pose vector comprising 
a quaternion, q, and position, p. The CNN, built using Tensorflow (www.tensorflow.org) and Keras 
(keras.io) in Python 3, consists of a convolutional block to extract image features in each camera view, 
followed by a fully connected layer of 1024 neurons with SELU activation functions66 and a final layer of 
37 neurons with linear activations corresponding to the pose vectors of the five 3D model components 
(Extended Data Fig. 2a). Further details regarding the training and operation of the automated wing 
tracker are provided in Supplementary Information. 

We defined the Strokeplane Reference Frame (SRF) by conducting a Principal Component Analysis on the 
left and right wing root traces; the first, second, and third principal components of the root traces 
determined the y, x, and z axes of the SRF, respectively. Once the SRF was defined, we used three Tait-
Bryan angles to specify the orientation of the leading edge of the wing: stroke angle ϕ, deviation angle θ, 
and wing pitch angle, η. Additionally, we defined a fourth angle, ξ, to describe chord-wise wing 
deformation (i.e. camber) along three flexure lines roughly corresponding to wing veins L3, L4, and L5 (Fig. 
1a). We assumed equal division of the total deformation angle among these three span-wise flexure lines 
(Extended Data Fig. 2b). 

Following the tracking process with Flynet, we applied an Extended Kalman Filter (EKF)67 to achieve 
temporal smoothing of body and wing pose. Each pose vector was independently filtered, incorporating 
the first and second order temporal derivatives to ensure smooth motion. The system matrix utilized the 
temporal derivative of quaternions and a Maclaurin series of position and wing deformation. To achieve 
optimal smoothing with no phase shift, we performed both a forward pass of the EKF and a backward 
pass using a Rauch-Tung-Striebel smoother. The Flynet GUI enables users to adjust the system covariance, 
allowing control over the degree of filtering for each pose parameter. To facilitate comparison between 
wingbeats of different durations, we normalized the wingbeat period to 1 and computed the wingbeat 
frequency, f, for each wingbeat, starting and ending with dorsal stroke reversal. To accurately quantify 
the complex time history of wing motion, we fit Legendre polynomials to the 4 wing kinematic angles for 
each wingbeat as described more fully in Supplementary Information. 
 
Outlier rejection, normalization, and training of the CNN  
From the initial dataset of 83,056 wingbeats, we removed unrealistic flight conditions by excluding 
wingbeats with frequencies outside the range of 150 to 250 Hz and outliers exceeding biologically 
plausible angle limits for each wing kinematic angle ([-120o ≤ φ ≤ 120o], [-60o ≤ θ ≤ 60o], [-150o ≤ 
 η≤ 150o], [-90o ≤ ξ ≤ 90o]). These two criteria eliminated 8.2% of the data, resulting in a final dataset of 
72,219 wingbeats. Prior to training the CNN, we normalized the muscle activity dataset by dividing the 
GCaMP7f traces by their respective standard deviations over the entire experiment duration such that 0 
corresponds to -2σ and 1 to +2σ, and normalized wingbeat frequency by mapping 150 Hz to 0 and 250 Hz 
to 1. These normalized values formed a 13x9 input matrix representing muscle activity and wingbeat 
frequency over 9 wingbeats. The output data consisted of the 80 Legendre coefficients for the left wing 
kinematic angles, normalized to range between -1 and 1 by dividing by π. The CNN employed a sliding 
window of 9 wingbeats as input and predicted the Legendre coefficients for the first wingbeat of the 
window. Because the muscle fluorescence was recorded at half the wingbeat frequency, we interpolated 
the data to predict a value for each wingbeat. We allocated the first 30 wingbeats from each high-speed 
video sequence for validation, while the remaining wingbeats were used for training. The training and 
validation datasets, consisting of 61,351 and 10,868 wingbeats respectively, were randomly shuffled. The 
CNN was trained for 1000 epochs using a batch size of 100, a learning rate of 10-4, and a learning rate 
decay of 10-7 per epoch, with the mse serving as the loss function. Gaussian noise with a standard 
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deviation of 0.05 was added to the network input to enhance noise robustness. After shuffling the dataset 
following each epoch, the training and validation losses reached mse values of 10-3.33 and 10-3.07, 
respectively (Fig. 3d). To evaluate the accuracy, the trained CNN was used to predict wing motion for each 
validation sequence based on the muscle activity data. The predicted coefficient vector was multiplied by 
π and separated into coefficients for the four wing kinematic angles. Multiplication of the Legendre 
coefficient vectors by the Legendre polynomial bases recovered the four wing kinematic angles during 
each wingbeat. Figure 3 and Extended Data Fig. 3 illustrate examples of different sequences of wing 
motion predicted from muscle activity and wingbeat frequency.  
 
Muscle activity correlation analysis  
We conducted a linear correlation analysis on the muscle activity in our dataset. For each steering muscle, 
we selected samples with an average gradient larger than 0.005 over the 9-wingbeat window of muscle 
fluorescence, a criterion based on the sharp rise and slow decay of the GCaMP7f fluorescence kernel. 
Scatterplots illustrating the correlations between steering muscle fluorescence and wingbeat frequency 
for the gradient-selected wingbeats are presented in External Data Fig. 4. By employing linear models with 
RANSAC fitting68, we determined the slopes and intercepts for all correlations. Excluding the wingbeat 
frequency, muscle activity can be assumed to reside on a 12-dimensional plane. To ensure that all linear 
correlations in muscle activity share a common origin, we defined a baseline muscle activity pattern. This 
involved identifying sequences in the dataset with no significant changes in muscle activity or wing motion 
and setting the wingbeat frequency to 200 Hz. In Extended Data Fig. 5, the intercepts of the linear model 
were adjusted such that the baseline muscle activity pattern aligns with the 12-dimensional plane 
(Extended Data Table 1). 
 
Virtual experiments  
To conduct virtual experiments on the wing hinge (Fig. 4), we utilized the measured muscle activity 
correlation (Extended Data Fig. 4, Extended Data Table 1) in conjunction with the trained CNN. In order to 
obtain realistic inputs to the CNN, we used a linear model to find steering muscle activity patterns that 
were within the manifold of the dataset that was used to train the CNN. First, we determined the baseline 
wing kinematics through the CNN's prediction of the wing motion corresponding to the baseline pattern 
of muscle activity repeated over 9 wingbeats. To find the maximum muscle activity patterns for each 
muscle, we traversed the 12-dimensional surface from the baseline muscle activity pattern to a point 
where the specific muscle reached an activity value of 1. 
 
Robotic wing experiments  
The aerodynamic forces generated by the baseline and maximum muscle activity patterns predicted by 
the CNN were assessed using a dynamically scaled robotic wing consisting of a stepper motor (IMS M-
2231-3) controlling φ through two gears with a 1:3 ratio, and two servo motors (HiTec D951TW) controlling 
θ and η. A 6-degree-of-freedom sensor (ATI Nano 17) captured forces and torques along three orthogonal 
axes at the wing's base. A microcontroller (Teensy 3.2), operating at 100 Hz, updated stepper and servo 
positions and collected sensor data (Extended Data Fig. 5a). The wing itself consisted of four acrylic panels 
and three micro-servos (HiTec HS-7115TH) at the base, collectively controlling the fourth wing kinematic 
angle, ξ. Each trial involved repeating the programmed motion pattern for seven wingbeats. The 
commands for the first and last wingbeats of each sequence were multiplied by the first and second 
quarter, respectively, of a sin2(t/T) function, ensuring that the wing began and ended at the home position 
(φ, θ, η, ξ = 0). To reach steady-state conditions for wake effects, the measurements from the first three 
wingbeats were discarded69, and we calculated median force and torque values over wingbeats 4, 5, and 
6. In a separate experiment, gravitational and buoyancy forces acting on the wing were measured by 
playing back the wing motion at a 0.2X speed, enabling subtraction of the gravity measurement from the 
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corresponding 1X speed experiment to isolate aerodynamic forces and torques. As described in 
Supplementary Information, the values for total forces and torques that we report (Ftotal, Ttotal) are the sum 
of aerodynamic components measured using the dynamically scaled wing and inertial components 
calculated using the Newton-Euler equations.  
 
Model Predictive Control simulations  
To simulate free flight maneuvers, we integrated a non-linear, discrete-time, state-space model of a flying 
fly, described in the Supplementary Information, into a Model Predictive Control70 (MPC) loop using the 
do-mpc Python package40 (Extended Data Fig. 7, Supplementary Video 2). Each MPC simulation involved 
defining a start state (xinit), a goal state (xgoal), and a time period for the maneuver execution. The 
optimization process computed the trajectory that minimizes the mse between the current state and the 
goal state, aiming to reach the goal state in the shortest possible time. The MPC controller utilized 
dynamic programming to optimize the state-space trajectory over a finite horizon, considering the 
objective cost function and non-linear constraints. In our simulations, the finite horizon was set to 10 
wingbeats, ensuring continuous trajectory computation toward the goal state. The control inputs were 
the activity patterns of the left and right steering muscles. We restricted the muscle activity patterns 
based on the correlation analysis shown in Extended Data Fig. 4. Specifically, we limited the steering 
muscle activity to lie within 10% of the normalized 12D muscle activity plane for both wings. The muscle 
activity of each muscle was also bounded between -0.2 and 1.2. We assigned a penalization weight of 1 
for each muscle was set to 1, with the exception of muscles b2 and iii1, which were assigned penalization 
weights of 2 and 10, respectively. These higher weights were chosen because muscles b2 and iii1 are so 
seldom active27. In a similar fashion, the importance of the different components of the objective function 
was be adjusted by setting weights. For instance, for symmetrical maneuvers (e.g. forward acceleration, 
ascent, descent), we assigned higher weights to state variables that break symmetry. 
 
Latent variable analysis 
As described more fully in the Supplementary Information, we employed an encode-decoder architecture 
for latent variable analysis4, in which the latent variables predicted both muscle activity and wing motion 
(Extended Data Figure 9a). The encoder split the input data into five streams, each processed by a separate 
CNN, to project onto an individual latent variable. The muscle activity decoder reconstructed the input 
matrix using a fully-connected dense layer with hyperbolic tangent (tanh) activation and a deconvolutional 
layer with SELU activation. To focus on the effects of sclerite state on wing kinematics, we introduced a 
back-propagation stop between the latent space and the muscle activity decoder. Instead of relying on 
the muscle activity reconstruction error, we used the wing kinematics decoder's reconstruction mse to 
update the encoder weights. The wing kinematics decoder utilized a dense layer of 1024 neurons with 
SELU activation to predict the 80 Legendre coefficients representing wing motion during a wingbeat. After 
training the latent network for 1000 epochs with mse as the error function, the training error for wing 
kinematic reconstruction was mse = 6.0 ⋅ 10-4, and the validation error was mse = 7.9 ⋅ 10-4 (Extended Data 
Fig. 2d). The changes in wing motion predicted by variation in the latent variables associated with each 
wing sclerite (Fig. 6b) were roughly consistent with the results of our virtual muscle activation experiments 
(Fig. 4c). Besides sclerite functionality, the latent variable analysis also predicts the effect of wingbeat 
frequency on wing motion. Our analysis predicted a decrease in stroke amplitude and downstroke-to-
upstroke ratio for increasing frequency, consistent with a study on the power requirements of forward 
flight39. In Extended Data Fig. 8d, we present four aerodynamic parameters: absolute angle of attack, 
wingtip speed, and non-dimensional lift and drag in the SRF, where the quasi-steady model was used to 
compute lift and drag forces. The computed lift and drag values were lower than the measurements from 
the dynamically scaled model wing, a discrepancy that might be due to the omission of wing deformation 
in the quasi-steady calculations. 
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Main Text Figure legends 

Figure 1 | The wing hinge of a fly is actuated by large power muscles and controlled by small steering 
muscles. The schematic drawings are based on a synthesis of prior work2,7-18 and our own new 
morphological analysis (Supplementary Video 1). a, Contraction of the dorso-longitudinal muscles (DLMs) 
causes the scutellum (SCL) to move downward. b, Contraction of the dorso-ventral muscles (DVMs) cause 
the SCL to move upward. These motions are transferred to the wing hinge via the PS and SLA, with the 
wing's fulcrum located at the pleural wing process (PWP). c, Side view of a flying fly indicating orientation 
in panels (a) and (b). d, Schematic top view of the thorax, hinge, and wing, illustrating wing veins (L1-5), 
scutum (SC), and scutellum (SCL). Dotted lines represent hypothesized flexure lines on the wing. e, Close-
up of the wing hinge highlighting the parascutal shelf (PS), anterior notal process (ANP), scutellar lever 
arm (SLA), posterior-medial notal process (PMNP), first, second, third, and fourth axillary sclerites (ax1, 
ax2, ax3, ax4), costal vein (CO), radial vein (RV), anal vein (AV), and a previously unnamed we term the 
canoe.  f, Layout of the steering muscles and sclerites in the thorax. g, Close-up view of the basalare, 
axillary sclerites, and steering muscles. Tendons are marked in gray. h, Steering muscles grouped 
according to the sclerite to which they attached: basalare (b1, b2, b3), first axillary (i1, i2), third axillary 
(iii1, iii2, ii3), and fourth axillary (iv1, iv2, iv3, iv4) muscles. 

Figure 2 | Simultaneous imaging of muscle activity and wing motion. a, Three high-speed cameras with 
IR-backlighting capture a tethered fly from three orthogonal angles. An epifluorescence microscope 
projects blue light onto the left side of the fly's thorax for imaging muscle activity using GCaMP7f. Visual 
stimuli are provided by an array of orange LED panels surrounding the fly. A prism splits the top view 
between a high-speed camera and a kinefly camera (see online methods) that tracked the stroke 
amplitude of the two wings for use in epochs of closed-loop control of the visual display. b, Wing pose is 
determined from the high-speed camera footage using custom machine vision software. The wing state 
is subsequently described by four angles relative to the Strokeplane Reference Frame (SRF). The SRF is 
established by performing principal component analysis (PCA) on the motion of the left and right wing 
roots, with the x-y plane representing the mean strokeplane. Two angles, φ (stroke angle) and θ (deviation 
angle), describe the left wing's orientation in the SRF (the +/- sign indicates the direction of rotation). c, 
The wing pitch angle, η, indicates the orientation of the leading edge relative to the z-axis of the SRF. The 
deformation angle, ξ, represents the uniform rotation along three hinge lines that roughly align with the 
L3, L4, and L5 veins. 

Figure 3 | A trained CNN predicts wing motion from steering muscle activity and wingbeat frequency. 
a, Muscle activity recording displaying normalized muscle fluorescence (grouped according to sclerite) 
and wingbeat frequency. b, The trained CNN takes a 13x9 matrix as input, consisting of normalized muscle 
fluorescence and wingbeat frequency data over a temporal window of 9 wingbeats. Two convolutional 
(conv) layers with SELU activations extract features from the input matrix. A fully connected (dense) layer 
with 1024 neurons learns the relationships between the extracted features and an output layer of 80 
neurons with linear activations. These 80 neurons correspond to 80 Legendre coefficients, encoding the 
four wing kinematic angles during the first wingbeat in the 9-wingbeat window. The wing kinematics can 
be reconstructed by multiplying the Legendre coefficients with the corresponding Legendre basis 
functions (Xϕ, Xθ, Xη, Xξ). See Supplementary Information for more details regarding the CNN. c, 
Comparison between predicted (red) and tracked (black) traces of the four wing kinematic angles 
throughout the example recording. d, Training and validation error as a function of training epoch. 
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Figure 4 | Modulation of wing motion by steering muscle activity revealed through virtual experiments. 
a, Distribution of normalized muscle activity (ϵ) for all 12 steering muscles. b, Muscle activity patterns 
generated in series of virtual experiments perform on our trained CNN model of the wing hinge. Each of 
the twelve set of bars beneath each muscle indicates the normalized pattern of activity across all 12 
steering muscles under two conditions: 1) baseline activity when no changes in were motion were 
detected (inner grey bars), and 2) the activity patterns obtained by adjusting the activity of each muscle 
to its maximum value (outer colored bars). Note that the pattern of grey bars is identical for each muscle, 
because the same background pattern of activity is plotted for each case. Also note that when we changed 
the activity pattern of each individual muscle to ϵ=1 (marked by asterisk) we also adjusted the activity 
levels of all the other muscles according to the correlation patterns we observed over our entire dataset 
(Extended Data Fig. 4, Extended Data Table 1). This constraint helps ensure that the virtual manipulations 
were performed under conditions that approximated those under which the CNN was trained. Wingbeat 
frequency is maintained at a constant level for all patterns. c, CNN-predicted wing kinematics for the 
baseline and maximum activity patterns shown in (b) over a single wingbeat period (T). The kinematics 
from the baseline muscles activity patterns are shown in gray; the colored lines represent the kinematics 
resulting from the maximum activity patterns of the corresponding muscles; the change in kinematics 
induced by the simulated muscle activation is plotted as a single trace below each panel. 

Figure 5 | Model Predictive Control (MPC) simulation of a rightward saccade. a, Top view of a 30 ms 
simulation, showing red and blue traces for the left and right wingtips, respectively. b, Orthographic view 
of wingtip traces of the simulation in a stationary body frame. c, Control inputs during the saccade, 
representing the activity of left and right steering muscles, grouped according to sclerite. d, Body state 
during the saccade, including linear (v) and angular (ω) velocities in the SRF, as well as body quaternion 
(q) and position (p) relative to an inertial reference frame. e, CNN-predicted wing kinematic angles derived 
from the steering muscle activity in (c). Left wing motion is indicated in red, right wing motion in blue. The 
baseline wingbeat (black) is repeated throughout the maneuver for comparison. Additional MPC 
simulation results can be found in Extended Data Figure 7 and Supplementary Video 2.  

Figure 6 | Latent variable analysis reveals the role of sclerite function in the control of wing motion. a, 
Steering muscle activity predicted by the muscle activity decoder as a function of the sclerite latent 
parameters (see extended Data Fig. 8). The z-scored latent variables representing each sclerite state were 
sampled in 9 steps, ranging from -3σ to +3σ (σ = standard deviation) and indicated by color bars. b, Wing 
kinematic angles predicted by the wing kinematics decoder, showing their dependence on sclerite state. 
The colors of the 9 traces correspond to the color bars in (a). c-f, Patterns of wing motion corresponding 
to extreme sclerite states (-3σ, blue; +3σ, red). Each figure plots the instantaneous wing pitch angle and 
wing deformation angle at regular intervals superimposed over the wingtip traces. The leading edge of 
the wing is indicated by a circle, and the wing's cross-section is represented by a curved line that shows 
camber. c, Cartoon illustrating proposed mechanism of action for the basalare, drawn for a left wing from 
an external view. The b1 and b2 rotate the basalare clockwise, exerting tension on a ligament attached to 
the base of the radial vein (RV), extending the wingbeat forward and advancing wing supination during 
the downstroke and ventral stroke reversal. The b3 rotates the basalare counter-clockwise and has the 
opposite effects. d, Cartoon illustrating proposed action of ax1 drawn for a left wing in cross section 
through the winge hinge. Contraction of the i1 and i2 muscles pull ax1 ventrally, resulting in a decrease in 
the extent of the ventral stroke due to the inboard position of ax1 relative to ax2. e, Same view as in (d). 
illustrating action of ax3. The iii2 and iii3 muscles pull ax3 ventrally, causing an increase in the ventral 
stroke extent due to its outboard position relative to ax2. f, Same view as in (e), illustrating action of ax4. 
Ax4 is connected to ax3 and the Anal Vein (AV) via the long canoe sclerite. The iv1 and iv2 muscles pull 
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ax4 inward, leading to an increased angle of attack during the downstroke via the ax4-US-ax3-AV linkage. 
The iv4 muscle pulls ax4 outward via its unusually thick ligament attached to the tendon of iv3, reducing 
the angle of attack during the downstroke. 

 

Extended Data Figure Legends 
 
Extended Data Figure 1 | Automated setup for simultaneous recording of muscle fluorescence and wing 
motion. a, High-speed cameras, equipped with 0.5X telecentric lenses and collimated IR back-lighting 
capture synchronized frames of the fly from three orthogonal angles at a rate of 15,000 frames per 
second. An epi-fluorescence microscope with a muscle imaging camera records GCaMP7f fluorescence in 
the left steering muscles at approximately 100 frames per second, utilizing a strobing mechanism 
triggered every other wingbeat. A blue LED provides a brief, 1 ms illumination of the fly's thorax during 
dorsal stroke reversal. A camera operating at 30 fps captures a top view of the fly for the kinefly wing 
tracker. b, Image of the flight arena featuring the components of the setup: LED panorama, IR diode and 
wingbeat analyzer for triggering the muscle camera and blue LED, prism for splitting the top view between 
the high-speed camera and kinefly camera, IR backlight, 4X lens of the epi-fluorescence microscope, and 
a tethered fly illuminated by the blue LED. 
 
Extended Data Figure 2 | Flynet workflow and definitions of wing kinematic angles. a, The Flynet 
algorithm takes three synchronized frames as input. Each frame undergoes CNN processing, resulting in a 
256-element feature vector extracted from the image. These three feature vectors are concatenated and 
analyzed by a fully connected (dense) layer with Scaled Exponential Linear Unit (SELU) activation, 
consisting of 1024 neurons. The output of the neural network is the predicted state (37 elements) of the 
five model components represented by a quaternion (q), translation vector (p), and wing deformation 
angle (ξ). Subsequently, the state vector is refined using 3D model fitting and particle swarm optimization 
(PSO). Normally distributed noise is added to the predicted state, forming the initial state for 16 particles. 
During the 3D model fitting, the particles traverse the state-space, maximizing the overlap between binary 
body and wing masks of the segmented frames (Ib) and the binary masks of the 3D model projected onto 
the camera views (Ip). The cost function (Ib ∆Ip)/(Ib∪Ip) is evaluated iteratively for a randomly selected 3D 
model component. The PSO algorithm tracks the personal best cost encountered by each particle and the 
overall lowest cost (global best). After 300 iterations, the refined state is determined by selecting the 
global best for each 3D model component. See Supplementary Information for more details. b, Training 
and validation error of the Flynet CNN as a function of training epoch. 
 
Extended Data Figure 3 | CNN-predicted wing motion for example flight sequences. a, The top five traces 
show activity of the steering muscles in the four sclerite groups as well as wingbeat frequency during a 
full, 1.1 second recording. The bottom four traces indicate comparison between the tracked (black) and 
CNN-predicted (red) wing kinematic angles throughout the sequence. Expanded plots of a 100-ms 
sequence (0.5 to 0.6 seconds) are plotted on the right. b, c, d. Same as but for a different flight sequences. 
 
Extended Data Figure 4 | Correlation analysis of steering muscle fluorescence and wingbeat frequency. 
Linear models (colored lines) fitted to wingbeats in the entire dataset of 72,219 wingbeats from 82 flies.  
Gray dots represent the normalized baseline muscle activity level, while colored dots represent the 
normalized maximum muscle activity level. The correlation coefficients associated with these plots are 
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provided in Extended Data Table 1. For more detail on regression methods, see Supplementary 
Information. 
 
Extended Data Figure 5 | Aerodynamic force measurements and inertial force calculations. a, 
Dynamically scaled flapping fly wing model immersed in mineral oil. b, Non-dimensional forces and 
torques in the SRF for the baseline wingbeat. The four traces in each panel correspond to the total (black: 
Ftotal, Ttotal), aerodynamic (blue: Faero, Taero), inertial components due to acceleration (green: Facc, Tacc), and 
inertial components due to angular velocity (red: Fangvel; Tvel). See Supplementary Information for more 
details. c, Representation of total forces during the baseline wingbeat, viewed from the front, left, and 
top. Gray trace represents the wing trajectory; cyan arrows represent instantaneous total force on the 
wing. At the wing joint, three arrows depict the total mean force, half the body weight, and half the 
estimated body drag. 
 
Extended Data Figure 6 | Aerodynamic and inertial forces for maximum muscle activity wingbeats. 
Figures depict the CNN-predicted wing motion for maximum muscle activity patterns, viewed from the 
front, left, and top. Instantaneous vectors depicting the sum of aerodynamic and inertial forces are shown 
in cyan. The wingbeat-averaged force vector is indicated by the color corresponding to the specific 
steering muscle set to maximum activity. Note that the scaling for the wingbeat-averaged forces differs 
from that for the instantaneous forces. The black gravitational force and blue body drag force are plotted 
as in Extended Data Fig. 6c. 
 
Extended Data Figure 7 | Simulation of free flight maneuvers using the state-space system and Model 
Predictive Control. a, Schematic of the state-space system and MPC loop, including system matrix (𝐴𝐴), 
control matrix (B), the state vector (x), temporal derivative (ẋ) left and right steering muscle activity (uL, 
uR), initial state (xinit) and goal state (xgoal). b, Forward flight simulation with wingtip traces in red and 
blue. c, Wing motion during forward flight simulation plotted in stationary body frame. d, Backward 
flight simulation. e, Wing motion during backward flight simulation plotted in stationary body frame. f, 
Left and right steering muscle activity during the forward flight maneuver. g, State vector during forward 
flight maneuver. h, Steering muscle activity for the backward flight maneuver. i, State vector for the 
backward flight maneuver. j, CNN-predicted left (red) and right (blue) wing kinematics for the forward 
flight maneuver. Note that the left wing kinematics are displayed underneath the right kinematics, and a 
baseline wingbeat is shown to emphasize the relative changes in wing motion. k, CNN-predicted wing 
motion for the backward flight maneuver. 
 
Extended Data Figure 8 | Latent variable analysis reveals sclerite function using an encoder-decoder. a, 
The network architecture consists of an encoder (red), muscle activity decoder (green), and wing 
kinematics decoder (blue). The encoder splits the input data into five streams corresponding to different 
muscle groups and frequency. Feature extraction is performed using convolutional and fully connected 
layers with SELU activation. Each stream is projected onto a single latent variable. In the muscle activity 
decoder, the latent variables are transformed back into the input data. A backpropagation stop prevents 
weight adjustments in the encoder based on the muscle activity reconstruction. The wing kinematics 
decoder predicts the Legendre coefficients of wing motion using the latent variables. See Supplementary 
Information for more details. b, Predicted muscle activity and wingbeat frequency as a function of each 
latent parameter varied within the range of -3σ to +3σ. Color bar indicates the latent variable value in 
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panels (c) and (e). c, Predicted wing motion by the wing kinematics decoder for the five latent parameters. 
d, Absolute angle of attack (|α|), wingtip velocity (utip) in mm s-1, non-dimensional lift (L mg-1), and non-
dimensional drag (D mg-1). The non-dimensional lift and drag were computed using a quasi-steady model. 
 
Extended Data Figure 9 | Flexible wing root facilitates elastic storage during wingbeat and allows wing 
to passively respond to changes in lift and drag throughout stroke. a, Top view of ventral stroke 
reversal in tethered and free flight. Red circles mark the estimated position of the wing hinge, dotted 
lines indicate the expected position of the wing if a chord-wise flexure line was not present. Images are 
reproduced from previously publish data32. b, Composite confocal image of the wing base, indicating a 
bright blue band of auto-fluorescence consistent with the presence of resilin and existence of a chord-
wise flexure line (dashed arrows). 
 
Supplementary Video Legends 
 
Supplementary Video 1: The left side of a Drosophila thorax, annotated to illustrate the arrangement of 
wing sclerites and associated musculature; color scheme is consistent with Figure 1.  
 
Supplementary Video 2:  Animations of simulated flight maneuvers shown in world and body frames 
(forward, ascent, descent, sideways, left saccade, and right saccade) generated using the CNN model of 
the wing hinge and state-space model operating with a Model Predictive Control loop (see Fig. 5, Extended 
Data Fig. 7).  
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Supplementary Information

Initial prediction of wing pose with using a convolutional neural network (Flynet)

Our pose estimation strategy required constructing an anatomically accurate 3D model of a fly that we would
fit, frame-by-frame, to the data in our three high speed video sequences. We based our 3D model from images
of a tethered flying fly taken at different angles, from which we extracted aspect ratios and curvatures of the
head, thorax, and abdomen. These 2D contours were converted into 3D surfaces via Non-Uniform Rational
B-splines (NURBS)[1] Like B-splines, NURBS surfaces may be manipulated by changing the locations of
control points. By collapsing control points at the edges of NURBS surfaces onto each other, we created
spheres for the head, thorax, and abdomen and then manipulated the control points to reshape the objects
according to the aspect ratios and curvatures derived from the fly images.

Observations from high-speed videos show that the wings exhibit chord-wise deformations during flight
that are concentrated at the L3, L4, and L5 veins (Fig. 1d). Accordingly, our model wing consists of four rigid
panels connected by three hinge lines. To reduce the number of parameters representing wing deformation,
we assumed that the deformation angle along each hinge line was equal (Fig. 2c). We thus modeled the total
deformation angle, 𝜉, as the sum of the local deformation angle of each hinge line (𝜉 = 𝜉/3 + 𝜉/3 + 𝜉/3), an
assumption that was supported by manual inspection of the raw images.

Each wing pose vector consisted of 8 values: 4 parameters for a quaternion describing the orientation
of the leading edge panel of the wing relative to the world reference frame, 3 parameters for a translation
vector describing the distance between the wing root and the origin of the world reference frame, and the
wing deformation parameter 𝜉. For the head, thorax, and abdomen pose vectors we used 7 parameters: 4
for the quaternion and 3 for the translation vector. Our total fly pose vector thus required 37 parameters to
account for the head (7), thorax (7), abdomen(7), left wing (8), and right wing (8). Besides this pose vector,
we defined a vector that contained 5 parameters for scaling the body and wing components independently.

We developed software, called Flynet, to implement the entire wing pose estimation process, including
the manual annotation required for creating a training set. A module in the Flynet GUI constructed in Python
with the PyQt and PyQtGraph packages allows the user to load the 3D fly model and scale, rotate, translate,
and deform all the components. The GUI uses the DLT-calibration[2] of the high-speed cameras to project
a wireframe of the fly model onto the three camera views. By adjusting the pose and scaling vectors of each
component until it matches the images in each view, an accurate label can be created for each frame triplet.
Using this GUI, we collected a manually annotated a final dataset of 2905 frame triplets and associated pose
vectors. Neural networks work best with data centered around 0 with a standard deviation of 1. Thus, the
8-bit pixels of the high speed images were rescaled by dividing by 255. To reduce computation time, the
normalized frames were cropped into 224 × 224 pixel images centered around the thorax of the fly.

The CNN was implemented in Python using the Tensorflow library with Graphics Processing Unit
(GPU) support. The CNN architecture started with three convolutional blocks, one for each camera view. A
graphical representation of the complete Flynet code (created using the the model plotting utility in Keras
3.0) is shown in Appendices A and B; the full code is available as described in the Data Availability Section
of the main manuscript.

We randomly split our set of manually annotated data into groups of 95% and 5% for for training an
validation, respectively. The network was trained for 1000 epochs with a batch size of 50. After some
testing, we chose a dropout rate of 0.1 as it gave the lowest validation error. Lower dropout rates reduced the
training error but increased validation error; higher dropout rates increased the training error and therefore
also the obtainable validation error. Mean squared error (MSE) served as the loss function. We used a
learning rate of 1.0 · 10−4 and a decay of 1.0 · 10−7. The decay value was subtracted from the learning rate
after each epoch, resulting in a linear decrease of the learning rate during training. Using a Nvidia Geforce
GTX 1080 graphics card with 8 GB of memory, it took approximately 24 hours to train Flynet. During the
training phase, the MSE for the independent components of the pose vector decayed up to 400 epochs and
remained constant afterwards (Extended Data Fig. 2b). Stabilization of the validation error indicates that

1
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the network’s performance did not improve with more epochs, even though the training error continued to
decline. The weights of the trained network were saved in an hdf5 file and loaded in the Flynet GUI for the
pose prediction.

Refining pose with Particle Swarm Optimization

The neural network predictions of body and wing pose were close to the actual wing pose as observed in
the images, but not accurate enough to study the influence of muscle activity and resulting aerodynamic
forces, which are extraordinarily sensitive to small changes in kinematics[3]. A larger training set might
have resolved this issue, but many additional frames would likely have been required. Instead, we opted to
refine the pose estimate in a second step using Particle Swarm Optimization (PSO)[4]. This approach avoids
an extensive manual annotation process while still maintaining the benefits of time-independent tracking.

To implement the refinement step, it was necessary to segment the images and create binary masks of the
body and wing pixels (Extended Data Fig. 2a). Instead of using a median image for background subtraction,
we determined a minimum pixel intensity image over a batch of 100 frames. Body pixels were found by a
simple threshold (intensity>200) of the raw, 8-bit image data. Wing pixels were identified by subtracting the
minimum image from the frame and subsequently selecting all pixels that had an intensity >10. Subtracting
the minimum image removed all stationary pixels, thereby identifying those corresponding to moving body
parts.

Our refinement approach used area matching as a measure of how well the 3D model aligned with the
images. The advantage of area matching is that it is simple and computationally efficient; however, the
disadvantages are that the cost function is not continuous and gradient-based optimization algorithms will
not work well. Fortunately, PSO is a gradient-free optimization algorithm that has the ability to find the
global minimum, even when the cost function contains multiple local minima. PSO is not guaranteed to
converge on the global minimum in a finite number of iterations, but for complex problems such as area
matching, it is one of the few optimization methods available.

PSO relies on a swarm of particles that move through the state space with a position and a velocity.
The state vector consists of all variables that affect the cost function. At the start of the PSO algorithm, the
particles in the swarm are given random positions and random velocity vectors. For a set number of iterations,
the algorithm updates the position and velocity of each particle according to the following equations:

𝑥𝑘𝑖 = 𝑥𝑘−1
𝑖 + 𝑣𝑘𝑖 , (1)

𝑣𝑘𝑖 = 𝑤𝑣𝑘−1
𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑘−1

𝑖 ) + 𝑐2𝑟2, (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑘−1
𝑖 ), (2)

where 𝑖 is the particle index, 𝑥𝑘
𝑖

is the particle position at iteration 𝑘 , 𝑣𝑘
𝑖

is the particle velocity, 𝑟1 and 𝑟2
are random weight vectors drawn from a normal distribution, 𝑝𝑏𝑒𝑠𝑡

𝑖
is the personal best of the particle, 𝑔𝑏𝑒𝑠𝑡

is the global best for the whole particle swarm, and 𝑤, 𝑐1, and 𝑐2 are weights. A particle’s personal best
is the position with the lowest value for the cost function throughout the travel history. The global best is
the position with minimum cost value in the travel history of all particles of the swarm. In each iteration,
the cost function is evaluated for the current position of each particle in the swarm. Subsequently, the cost
function values of the personal and global best are compared to the cost evaluations for the current positions.
If the current cost function of a particle position is lower than the personal or global best, these values and
the associated position vectors are updated. Additionally, in each iteration vectors 𝑟1 and 𝑟2 are updated by
randomized weights drawn from a normal distribution.

The velocity update of each particle (equation 2) consists of three parts. The inertia term, 𝑤 · 𝑣𝑘−1
𝑖

, is
the previous velocity multiplied with weight, 𝑤. The second term points towards the personal best of the
particle with some added random noise and multiplied by the scaling factor, 𝑐1. The third term is a vector
pointing towards the global best of the swarm with added random noise multiplied by a scaling factor, 𝑐2.
This scaled randomization introduces stochasticity in the search process, thus insuring that the particles will
sample the space near a minimum more often. The vectors pointing towards the personal and global best

2
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positions help the particles converge towards a minimum value. The inertia term controls how quickly the
swarm converges to a global best. If the inertia term is small, the swarm will converge quickly and risks
getting stuck in a local minimum. Setting the inertia term too high, however, may result in no convergence
at all or convergence only after a large number of iterations.

In our particular application of PSO, the cost function was based on the projected images of the 3D
model. In order to speed up evaluation, the PSO algorithm and the cost function were implemented in C++.
The PSO algorithm lends itself well for parallel processing, as the cost function evaluations of all particles
can be executed at the same time. Using the std-library in C++17, a separate thread for evaluating the cost
function was assigned to each particle. The cost function relies on matrix operations that were implemented
using the Armadillo library. To integrate the C++ code within the Flynet GUI, the Boost library was used to
make the functions callable in Python.

The 37-dimensions pose vector was a large parameter space in which to search. However, we simplified
the process by splitting the pose vector into 5 different components (head, thorax, abdomen, left wing, and
right wing), with 7 or 8 state parameters each. Although the pose vectors of the five model components are
independent, the cost function evaluation is not, as different model components can overlap in the projected
view of the 3D model. To address this dependence, the PSO algorithm updated one randomly selected
component at a time.

The variables in the pose vector are all linear, except for the quaternion. A unit quaternion, ∥𝑞∥ = 1,
can be seen as a point on a 4D sphere with radius 1. However, when updating the quaternion according to
equations 1 and 2, the result is not likely to be a unit quaternion. Determining the quaternion difference
that satisfies the constraint of a 4D sphere with radius 1 requires application of the concepts of quaternion
multiplication and the quaternion conjugate[5]. The details by which we implemented the PSO algorithm
using quaternion operations are detailed elsewhere[6].

The cost function for each model component 𝑗 , 𝐶 𝑗 , is given by:

𝐶 𝑗 =
𝐼𝑏Δ𝐼

𝑝

𝑗

𝐼𝑏 ∪ 𝐼
𝑝

𝑗

, (3)

for body components, and

𝐶 𝑗 =
𝐼𝑤Δ𝐼

𝑝

𝑗

𝐼𝑤 ∪ 𝐼
𝑝

𝑗

, (4)

for the wings, where 𝐼𝑏, and 𝐼𝑤 are the dynamic bitsets of the body and wing pixels respectively, 𝐼 𝑝
𝑗

is the
dynamic bitset of the model component projections in all 3 views, and Δ and ∪ are the bitwise symmetric
difference and union operators, respectively. We vectorized both the images masks and the projected images
to accelerate these operations.

Before the tracking started, we set the number of particles, the number of iterations, and the standard
deviation of the normal distribution that is used to perturb the initial state and search parameters. The initial
particle pose vectors were created by adding random noise to the predicted pose vector from the CNN.
Similarly, the particle velocities were randomly sampled from a normal distribution. By specifying the
standard deviation of the normal distribution used to generate the random noise vectors, we specified how
close the particles searched around the initial pose. We chose a standard deviation of 0.1, which meant that
most particles searched around the initial pose value.

With 300 iterations and 16 or more particles, the PSO algorithm converged on the manually annotated
pose if the initial CNN prediction was sufficiently accurate. After refining wing pose using PSO, we smoothed
the data using an extended Kalman filter as described in detail elsewhere[6].

Representing wing motion in the strokeplane reference frame

Although mathematically preferable, quaternions do not provide an intuitive sense of wing motion. Instead,
we defined a set of Tait-Bryan angles relative to a thorax-fixed reference frame. Prior studies of free flight
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kinematics[3, 7, 8] have used this approach to define a reference frame at a fixed angle relative to the
longitudinal body axis. In case of tethered flight, however, the animal often deflects its head and abdomen for
prolonged periods as it attempts to fictively steer. This is problematic, as the body’s longitudinal axis does
not necessarily align with the symmetry plane of the thorax under these conditions. Using the pose vector
of only the thorax is problematic because its quaternion is not sufficiently accurate. Instead of determining
a reference axis based on the body, we defined our wing reference frame using the positions of the left and
right wing roots. Because the fly is tethered, the wing roots move in a sable, ’c’-shaped trajectory around the
thorax (Fig. 2b). Performing a principle components analysis (PCA) on the left and right root traces provides
a convenient means of defining a strokeplane reference frame (SRF). The first three principal components
correspond to the 𝑦-, 𝑥-, and 𝑧-axis of the SRF, respectively. Although the axes defined in this way are
orthogonal, they are not fixed consistently in space. To create a reference frame that has the 𝑥-axis pointing
forward and the 𝑧-axis pointing upward, we used the thorax pose vector to establish directionality. Using the
normalized axes of the SRF, it is possible to compute the quaternion of the SRF, 𝑞𝑆𝑅𝐹 . The left and right
wing quaternions relative to the SRF may be obtained by multiplying the left and right wing quaternions
with the conjugate, 𝑞∗

𝑆𝑅𝐹
. The left and right wing root traces can then be expressed relative to the SRF by

subtracting the origin location of the SRF and multiplying by the rotation matrix of 𝑞∗
𝑆𝑅𝐹

.
The mechanics of the wing hinge are complex and the root of the wing is not realistically approximated

as a single point. This is why we choose not to define any constraints between the wing and thorax in Flynet.
However, to simplify the analysis of wing motion and aerodynamics, we assumed the hinge to act as a ball
joint at a fixed position on the thorax with 3 degrees of freedom. From an aerodynamics perspective, this
assumption is not likely to change computed or measured aerodynamic forces substantially, as the arm of the
wing root is relatively small and does not increase wing velocity significantly.

The three Tait-Bryan angles that specify wing orientation are: 1) the stroke angle, 𝜙, that describes the
angle between the 𝑦-axis of the SRF and the projection of the wingtip on the 𝑥-𝑦 plane, 2) the deviation
angle, 𝜃, that is the angle between the wingtip and the 𝑥-𝑦 plane, and 3) the wing pitch angle, 𝜂, that specifies
the orientation of the leading edge panel of the wing with respect to the 𝑧-axis (Fig. 2c). Wing shape is
described by 𝜉 and remains unaltered from the Flynet definition. The wing kinematic angles of the right
wing are similarly defined such that the signs are symmetric with respect to the left wing.

With the wing kinematic angles defined, we parsed the left and right wing motion into distinct wingbeats.
A wingbeat was defined as the time between two subsequent dorsal stroke reversals. We computed the
derivative of the stroke angle, 𝜕𝜙/𝜕𝑡, and used the condition 𝜙 > 0 and 𝜕𝜙/𝜕 > 0 to find the dorsal stroke
reversal times of the left and right wings in each video sequence. The dorsal reversal time of the left wing
does not necessarily align with the right wing, and can be up to 3 frames apart. To remedy these small
phases differences, we computed an average time point between the dorsal reversals of the two wings and
subsequently rounded to the closest time point. For each high-speed video video sequence, the average
dorsal stroke reversal times were determined and used to parse out individual wingbeats, which we indexed
so as to preserve the instantaneous frequency and the numerical position within each sequence.

Encoding wing motion with Legendre polynomials

Depending on the activation level of the indirect power and tension muscles, wingbeat frequencies can vary
between 150 Hz and 250 Hz[9]. This variation in wingbeat duration makes it difficult to compare wing
kinematics between different high-speed video sequences. A wingbeat frequency of 200 Hz corresponds to
about 75 high-speed video frames when captured at 15,000 frames per second. As there are four kinematic
angles per wing, there are thus 300 data points representing wing motion during one wingbeat. In order to
reduce the number of data points per wingbeat and allow for comparison across wingbeats, we used Legendre
polynomials to parameterize wing kinematic traces. Legendre polynomials are well suited for encoding wing
kinematics, as they can fit non-periodic traces and asymmetric waveforms. Fourier coefficients, which are
often used for fitting time series, require periodic boundary conditions and are biased to symmetric wave
forms when a low number of harmonics is used. Similar to Fourier series, Legendre polynomials form
a complete and orthogonal system. An easy way to generate a Legendre polynomial is using Rodrigues’
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formula:

𝑃𝑛 (𝑥) =
1
2𝑛

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)2
(𝑥 − 1)𝑛−𝑘 (𝑥 + 1)𝑘 , (5)

where 𝑛 is the order of the Legendre polynomial and 𝑥 ranges between -1 and 1. A Legendre basis of order 𝑛
is formed by all polynomials from order 0 up to order 𝑛. By specifying sample points in the range 𝑥 = [−1, 1]
and computing the values for each polynomial in the Legendre basis, a Vandermonde matrix is created. The
Vandermonde matrix, 𝑋 , can be used in a least-squares fit of a wing kinematic trace, 𝑌 :

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌, (6)

where 𝛽 is a vector of 𝑛 + 1 coefficients corresponding to the order of the Legendre basis. With sufficient
coefficients it is possible to fit any trace throughout a wingbeat with very little error. When using too many
coefficients, however, the the polynomial fit may exhibit high frequency oscillations at the beginning and
end of the waveform known as the Runge phenomenon. This may be remedied by lowering the order of the
Legendre basis and imposing boundary conditions at the start and end of the wingbeat. Boundary conditions
on polynomial fits can be imposed using restricted least-squares[10]. By this method, the restricted least-
squares fit, 𝛽∗, makes use of the the unrestricted least squares fit, 𝛽, a restriction matrix, 𝑅, and restriction
vector 𝑟:

𝛽∗ = 𝛽 − (𝑋𝑇𝑋)−1𝑅𝑇 (𝑅(𝑋𝑇𝑋)−1𝑅𝑇 )−1(𝑅𝛽 − 𝑟). (7)

To reduce the Runge phenomenon, we chose the restriction matrix and vectors such that the transition
between subsequent wingbeats was continuous up to the fourth derivative. The 𝑗 𝑡ℎ derivative of a Legendre
polynomial is computed from:

𝑃
𝑗
𝑛 (𝑥) = 𝑛 · 𝑃 𝑗−1

𝑛−1 + 𝑥 · 𝑃 𝑗

𝑛−1. (8)

The 1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 , and 4𝑡ℎ derivatives of the actual wing kinematic trace were computed over a 9 frame time
window centered around the start and end time points of the wingbeat. By requiring that the Legendre fit
matches the actual values of the wing kinematic trace and the derivatives, the relationship between the least
squares fit, 𝛽∗, the restriction matrix, 𝑅, and the restriction vector, 𝑟 is:

𝑅𝛽∗ = 𝑟. (9)

The restriction matrix contains the Legendre basis and the derivative Legendre bases up to the 4𝑡ℎ derivative
for 𝑥 = −1 and 𝑥 = 1 (start and end of the wingbeat). Matching values of the wing kinematic trace and the
1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 , and 4𝑡ℎ derivatives are contained in the restriction vector 𝑟 . Inserting 𝑅 and 𝑟 in the restricted
least-squares solution of equation 7 provides the Legendre coefficients that make the transitions between the
previous and next wingbeat continuous up to the 4𝑡ℎ derivative.

After finding the restricted least-squares solution, we fit the waveforms using higher order Legendre
polynomials, making sure to stay below the number of coefficients that induced Runge oscillations. Using
higher order polynomials is preferable as it allows for a more accurate fit. For each wing kinematic angle,
we tested various number of Legendre polynomials. The stroke angle, 𝜙, could be fitted accurately with
16 polynomials. The deviation and deformation angles (𝜃 and 𝜉) required 20 polynomials each. The wing
pitch angle, 𝜂, required 24 polynomials. Thus, a we used a total of 80 Legendre coefficients to accurately
describes the motion of a single wing during each wingbeat.

Convolutional neural network predicting wing motion from muscle activity

We created a CNN to perform non-linear regression between muscle activity, as measured by GCaMP
fluorescence[11], and wing motion, as extracted from the high speed video data using Flynet and PSO. A
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graphical representation of this code (created using the the model plotting utility in Keras 3.0) is shown in
Appendix C; the full code is available as described in the Data Availability Section of the main manuscript.

Before the CNN could be trained, we first normalized the input and output data. To rescale muscle
activity traces, the mean, 𝜇, and standard deviation, 𝜎, were computed for the periods when the fly was
flying. A boolean value that specified whether the fly was flying (as determined from wingbeat frequency)
was saved to an hdf5 file with a timestamp during each experiment, and could be subsequently used to
identify flight bouts and exclude sequences when the animal stopped flying. For all steering muscles, except
the 𝑏2 and 𝑖𝑖𝑖1 muscles, the activity was rescaled such that a value of 0 corresponds to 𝜇−2𝜎 and 1 to 𝜇+2𝜎.
The 𝑏2 and 𝑖𝑖𝑖1 muscles are typically quiescent during flight, and in some some experiments were not active
at all. To accommodate sequences when these muscles were quiescent, the values of 𝑏2 and 𝑖𝑖𝑖1 were not
rescaled if the standard deviation was below 0.01. If the standard deviation was above this threshold, the 𝑏2
and 𝑖𝑖𝑖1 traces were rescaled such that a value of 0 corresponded to 𝜇 and a value of 1 to 𝜇 + 3𝜎. Although
we tracked wing kinematics for both wings, steering muscle activity was only recorded from the left side of
the thorax; thus, we only used the kinematics data from the left wing in our analysis. The 80 values of the
Legendre coefficients are in units of radians, which we normalized by dividing by 𝜋. Wingbeat frequency
was rescaled by subtracting 150 Hz from the raw values and subsequently dividing by 100 Hz, such that a
value of 0 corresponds to 150 Hz and a value of 1 to 250 Hz.

Although neural networks are capable of handling outliers, too many outlying data points could result
in decreased performance. We excluded wingbeats from the dataset under any of the following conditions:
1) the normalized muscle activity was lower than −0.5 or larger than 1.5, 2) the normalized wingbeat
frequency was lower than 0 or larger than 1, and 3) if any of the normalized Legendre coefficients were
not inside specified ranges: [−1/3 <= 𝐶𝜃 <= 1/3], [−2/3 <= 𝐶𝜂 <= 2/3], [−2/3 <= 𝐶𝜙 <= 2/3], and
[−1/3 <= 𝐶𝜉 <= 1/3]. After removing all outliers, the final dataset consisted of 72,219 wingbeats. For
the validation set, we selected the first 30 wingbeats of each high-speed video sequence (10,868 total). The
remaining wingbeats in each sequence (61,351 total) were used for the training set.

In the first layer of our CNN (Fig. 3), the network processes the GCaMP7f fluorescence signal via a
number of convolutional kernels over a fixed time window. After evaluating several different values, we
found that a time window length of 9 wingbeats (approximately 45 ms) worked well. A shorter time window
did not contain sufficient information and prediction accuracy was worse as a consequence. Longer time
windows improved the training error, but the validation error tended to be higher, especially for very long
windows (>50 wingbeats).

Our CNN architecture consisted of 2 convolutional layers and 2 dense layers (Fig. 3a). Input of
the network consisted of a 13 × 9 matrix of normalized muscle activity and normalized frequency of 9
subsequent wingbeats. The output of the network is a prediction of the 80 normalized Legendre coefficients
corresponding to the first wingbeat in a 9 wingbeat time window. Before the input data was fed into the first
convolutional layer, Gaussian noise with a standard deviation of 0.05 was added to the input matrix, which
helps the CNN to generalize on the data and makes the network more robust to noise in the fluorescence
recordings. The first convolutional layer of the CNN consisted of 64 kernels with a 1 × 9 kernel window, a
1 × 9 stride and SELU activation (Fig. 3a). A total of 256 kernels were used for the second layer, with a
13× 1 kernel window and stride, and SELU activation. The output of the second layer was a vector with 256
elements. A fully connected dense layer of 1024 virtual neurons takes in the output of the second layer and
applies a SELU activation for each virtual neuron. The last layer of the CNN has 80 neurons with a linear
activation function, corresponding to the 80 normalized Legendre coefficients.

The CNN was trained for a total of 1000 epochs with a batch size of 100 samples. After every epoch, the
network was evaluated using the validation set. The learning rate was set as 10−4 with a decay of 10−7 per
epoch with MSE as a loss function. After the first 200 epochs, the validation error stabilized at approximately
10−3.7, whereas the training error continued to decline (below 10−3.33) after 1000 epochs (Fig. 3d). After
training, the prediction performance of the network was tested on all videos in the dataset. Examples of
the CNN prediction performance are given in Fig. 3c and Extended Data Fig. 3. For most sequences, the
wing motion predicted from muscle activity was within ±2◦ of the tracked wing motion for each angle. This
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accuracy was quite remarkable, given the complex waveforms of the wing kinematic angles, as well as the
sparse and filtered nature of the input data.

Virtual experiments using the trained CNN

After developing a CNN to predict wing motion from observed muscle activity, we used it as an in-silico
model of the hinge to conduct virtual experiments. The wing kinematics predicted by baseline muscle
activity was determined by inspecting the the dataset for sequences that contained no significant changes
in muscle activity or wing motion, and subsequently averaging data over those sequences. The baseline
values of activity for each muscle and wingbeat frequency, kept constant over the 9 wingbeats, were fed into
the trained CNN to yield the baseline pattern of wing motion wingbeat (gray traces, Fig. 4). A naive way
of using the CNN to predict the action of individual muscles would be to simply vary the activity of each
muscle independently, while keeping that of all other muscles constant constant. However, we observed
strong correlations among the activity patterns of many of the muscles within our dataset, determined using
RANSAC[12] (Extended Data Fig. 4, Extended Data Table 1). Thus, if we performed virtual experiments
by independently changing the activity of each muscle, the input patterns would likely reside outside the
data subspace on which the CNN was trained, making the network predictions unreliable. To make more
reliable predictions of wing motion from the trained CNN, we deliberately interrogated the CNN using input
patterns that would not deviate substantially from those used to train the network by making use of the
measured muscle correlations (Extended Data Fig. 4). According to this strategy, we used the trained CNN
to probe the influence of each muscle by changing its input value to the maximum normalized value, while
simultaneously changing the activity of the other 11 muscles according to the measured correlations.

Evaluating the function of individual sclerites using latent variable analysis

The CNN that we constructed and trained to predict wing kinematics from muscle activity deliberately
mixed input from all 12 control muscles, making it difficult to draw conclusions on the mechanical function
of individal wing sclerites. As a complementary approach, we trained a CNN with an encoder-decoder
architecture to learn how the activity of all the muscles that attached to a particular sclerite were correlated to
changes in wing motion (Fig. 6; Extended Data Fig. 8). The encoder block contained deliberate bottlenecks
that forced the network to learn how to represent the input data by a small set of latent variables representing
the state of each sclerite and wingbeat frequency. Training the encoder-decoder with a bottleneck is roughly
equivalent to performing a non-linear PCA on the dataset[13]. A graphical representation this code (created
using the the model plotting utility in Keras 3.0) is shown in Appendix D; the full code is available as
described in the Data Availability Section of the main manuscript.

We constructed the encoder-decoder with two decoder heads, one that predicts muscle activity from
the latent variable space and another that predicts wing kinematics (Extended Data Fig. 8). Input to the
encoder-decoder was split into 5 streams, grouping the activity of muscles that insert on each of the 4 wing
sclerites with a separate stream for wingbeat frequency. Each stream uses two convolutional layers, as in our
original CNN model (Fig. 3a), but followed by a dense layer of 512 neurons and a final layer of one neuron
with linear activation that corresponded to one of the five latent variables. After the latent space, the network
is split into two streams: one stream uses a decoder to predict the input to the network (i.e. the muscle
activity), the second stream uses two dense layers to predict the Legendre coefficients of the wing motion.
We placed a back-propagation stop between the latent space and the muscle activity decoder layers, such that
the latent space is only trained on correlations with wing motion. The muscle activity decoder layers are still
functional, as the decoder predicts the correlation between the latent space and muscle activity, but without
the noise of the input to the network.

We trained the network on the muscle activity and wing motion dataset using 1000 epochs, a batch size
of 100, a learning rate of 10−4, and a decay rate of 10−7. The network predicts two vectors: the latent space
(5 × 1) and Legendre coefficients (80 × 1), and one matrix: muscle activity and wingbeat frequency over 9
wingbeats (13 × 9). It is important to note that the prediction error of the wing kinematics by the sclerite
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function encoder-decoder is expected to be worse than our original CNN, as the bottleneck required to create
the latent variable space greatly restricts the amount of information that can be used to learn the correlations.
In Figure 6 and Extended Data Fig. 8, only the decoder sections of the network were used to predict muscle
activity and wing motion for each latent variable, which we varied systematically between −3𝜎 and +3𝜎 in
9 steps while keeping the other latent variables constant at 0. The muscle activity and wing motion were
then predicted from the latent input by the two decoders.

Dynamically-scaled flapping wing experiments

In the last three decades, our laboratory has developed several versions of a dynamically-scaled flapping wing
robot[14–18]; however, none of these had the capability of creating the chord-wise deformations that we
observed and tracked in our high-speed videos. The robotic wings we designed for this study were actuated
by one stepper motor and two servo motors each (Extended Data Fig. 5a). Stroke angle was controlled by
a stepper motor (10 kHz clock) via two gears with a 1:3 gear ratio. The position of the stepper motor was
controlled via micro-stepping, which permitted fine motor control (7.8 · 10−3 degrees per microstep). Two
magnets were positioned on the gear so that a Hall-effect sensor was activated when the wing moved out of
bounds. Besides protecting the wing, the Hall-effect sensor was also used to home the stepper motor. During
an experiment, a Teensy 3.2 microcontroller tracked the number of microsteps travelled relative to the home
position. To account for motor slip, which sometimes occurred due to large torques, the steppers were homed
after each experiment. During an experiment, the stepper’s position, 𝜙, and velocity, ¤𝜙, were controlled via
a feed-forward process. The stepper made micro-steps on a 10 kHz clock; position and velocity set points
were updated at 200 Hz. The custom instrumentation software computed the required stepping frequency
and direction to reach the specified position and velocity values after each update.

The deviation and wing pitch angles were controlled by two servos (HiTec D951TW). The deviation
angle servo operated via two gears (1:1 gear ratio), and the wing was directly attached by the wing pitch
servo. The position of the servos was specified by a pulse-width modulation (PWM) signal at 50 Hz. The
deviation servo could move between −45◦ and +45◦ and the wing pitch servo could move between −90◦ and
+90◦. During an experiment, the position of the servo was updated at 50 Hz in a feed-forward control loop.

We measured forces and torques on the wing using a 6 degree-of-freedom force and torque (FT) sensor
(ATI Nano 17), mounted on the rotation axis of the wing pitch servo. Custom-machined aluminium mounts
coupled the base of the FT sensor to the servo axis and the wing. During each experiment, six 16-bit unsigned
integers corresponding to all forces and torques (𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧 , 𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧) were sampled at 200 Hz. The robot
was submerged in an acrylic tank (2.4× 1× 1.2 𝑚 ) filled with mineral oil (Chevron Superla white oil), with
a kinematic viscosity of 115 · 10−6 𝑚2 · 𝑠−1 and a density of 880 𝑘𝑔 · 𝑚−3 at 22 𝐶◦[19]. The oil level in
the robofly tank was approximately 1 m. The robot had the wingtip radius of 31 cm and was submerged at
a depth of 50 cm. A previous study that systematically mapped the effects of the tank boundaries on lift an
drag determined that the system approximated the forces generated within an infinite volume, provided the
wing remains further than 12 cm from any boundary (top, bottom, or side)[14].

Besides the three Tait-Bryan angles describing wing orientation, Flynet tracked a fourth angle describing
wing shape, the deformation angle 𝜉. To implement this fourth angle on the robot, the wing was composed
of four panels connected by three hinge lines (Exended Data Fig. 6a). The four panels were cut out of an
acrylic sheet (2.75 mm thickness). Each hinge consisted of a 2 mm steel rod core, surrounded by an acrylic
tube with inner and outer diameters of 2 mm and 4 mm, respectively. The acrylic tube was cut into sections
of 20 mm and these sections were glued in an alternating pattern to two adjacent panels. The rotation angle
between two subsequent panels was controlled by a micro servo (HiTec HS-7115TH), which was screwed
onto one panel and connected to the next panel via a 1 mm metal rod that was coupled to the servo arm.
Three micro servos were used to deform the wing. Following the assumption that the wing bending angle
was uniformly distributed over the three hinge lines, the deformation angle 𝜉 was divided by 3 to obtain the
rotation angle per hinge line.

Dynamic scaling was ensured by matching the Reynolds number of the robotic wing and a real fly, which
requires:
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𝑛 𝑓 𝑙𝑦 · 𝑅2
𝑓 𝑙𝑦

𝜈𝑎𝑖𝑟
=
𝑛𝑟𝑜𝑏𝑜 · 𝑅2

𝑟𝑜𝑏𝑜

𝜈𝑟𝑜𝑏𝑜
, (10)

where 𝑛 𝑓 𝑙𝑦 is the fly’s wingbeat frequency, 𝑛𝑟𝑜𝑏𝑜 the wingbeat frequency of the robot, 𝑅 𝑓 𝑙𝑦 the fly’s wing
length, 𝑅𝑟𝑜𝑏𝑜 the wing length of the robot, 𝜈𝑎𝑖𝑟 the kinematic viscosity of air and 𝜈𝑟𝑜𝑏𝑜 the kinematic
viscosity of the mineral oil. Rewriting the Reynolds number equality yields:

𝑛𝑟𝑜𝑏𝑜 =
𝑅2

𝑓 𝑙𝑦
𝜈𝑟𝑜𝑏𝑜

𝑅2
𝑟𝑜𝑏𝑜

𝜈𝑎𝑖𝑟
𝑛 𝑓 𝑙𝑦 . (11)

By entering the values for a typical fly (𝑅 𝑓 𝑙𝑦 = 2.7𝑚𝑚, 𝜈𝑎𝑖𝑟 = 15.7 · 10−6𝑚2𝑠−1 at 25◦𝐶, 𝑛 𝑓 𝑙𝑦 = 200𝐻𝑧)
and the RoboFly parameters (𝑅𝑟𝑜𝑏𝑜 = 310𝑚𝑚, 𝜈𝑟𝑜𝑏𝑜 = 115 · 10−6𝑚2𝑠−1 at 22◦𝐶), the required flapping
frequency for the robot is 0.11𝐻𝑧. The force scaling factor may be written as[6]:

𝐹 𝑓 𝑙𝑦

𝐹𝑟𝑜𝑏𝑜
=

𝜌𝑎𝑖𝑟 · 𝑛2
𝑓 𝑙𝑦

· 𝑅4
𝑓 𝑙𝑦

𝜌𝑟𝑜𝑏𝑜 · 𝑛2
𝑟𝑜𝑏𝑜

· 𝑅4
𝑟𝑜𝑏𝑜

, (12)

with relevant density values of 𝜌𝑎𝑖𝑟 = 1.18𝑘𝑔𝑚−3 and 𝜌𝑟𝑜𝑏𝑜 = 880𝑘𝑔𝑚−3. The torque scaling factor is the
product of force and moment arm:

𝑇 𝑓 𝑙𝑦

𝑇𝑟𝑜𝑏𝑜
=

𝜌𝑎𝑖𝑟 · 𝑛2
𝑓 𝑙𝑦

· 𝑅5
𝑓 𝑙𝑦

𝜌𝑟𝑜𝑏𝑜 · 𝑛2
𝑟𝑜𝑏𝑜

· 𝑅5
𝑟𝑜𝑏𝑜

. (13)

Any experiment using the robotic wing required an input file that specified the following angles: 𝜙, ¤𝜙, 𝜃,
𝜂 and 𝜉 at intervals of 5 ms. A C++ program read the five angles and sent them to the Teensy microcontroller
via a USB-cable at 200 Hz (RawHID protocol). The Teensy microcontroller converted the angles to PWM
commands for the servos and step&direction commands for the stepper motors. At the same time, the
force and torque data were sent from the Teensy micro-controller to the C++ program, which logged the
measurements.

At the start of an experiment, the wing was moved to the home position (𝜙 = 0, 𝜃 = 0, 𝜂 = 0, 𝜉 = 0).
In order to prevent rapid acceleration of the wing, the wing kinematic angles during the first wingbeat of an
experiment were multiplied with the following function:

𝑔𝑠𝑡𝑎𝑟𝑡 (𝑡) = sin2
( 𝜋𝑡
4𝑇

)
, (14)

where 𝑇 corresponds to the wingbeat period. Similarly, the last wingbeat of the experiment ends at the home
position and the wing kinematic angles are multiplied by:

𝑔𝑒𝑛𝑑 (𝑡) = sin2
(𝜋
4
+ 𝜋𝑡

4𝑇

)
. (15)

When wings start flapping in the oil, it takes approximately two to three wingbeats before the wake is
fully developed[15]. In order to exclude these start-up effects, a wing kinematic pattern was repeated
for 9 wingbeats and only wingbeats 4 through 8 were used for analysis. After each experiment, the data
were converted from 16-bit unsigned integers into actual force and torque vectors and smoothed using a
linear Kalman filter. Besides aerodynamic forces, the FT-sensor also measured inertial and gravitational
components. The low flapping frequency of the robot assures that the inertial forces may be ignored;
however, the gravitational forces are significant. To remove the gravitational force from the analysis, every
wing kinematic pattern was replayed at a 5x slower frequency, which reduces aerodynamic forces by a
factor of 25. The forces and moment measured during the slow frequency, which approximate the gravity
component, were subtracted from the fast frequency data after interpolation.
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The aerodynamic and gravitational forces were measured by the FT sensor in the wing reference frame.
For subsequent analysis it is useful to translate the forces and torques to the stroke reference frame (SRF),
which was accomplished by the following Tait-Bryan operations:

𝐹𝑤 = 𝑅𝜂 · 𝑅𝜃 · 𝑅𝜙 · 𝐹𝑆𝑅𝐹 , (16)

and

𝐹𝑆𝑅𝐹 = 𝑅𝑇
𝜙 · 𝑅𝑇

𝜃 · 𝑅𝑇
𝜂 · 𝐹𝑤 . (17)

where 𝐹𝑤 and 𝐹𝑆𝑅𝐹 are the forces in the two different reference frames, and 𝐹𝑤 and 𝑅𝜂 , 𝑅𝜃 , 𝑅𝜂 , correspond
to the rotation matrices. More details on thse operations are provided elsewhere[6].

Computing inertial forces via the Newton-Euler equations

Besides aerodynamic forces, wing inertia plays a significant role in fly flight. Although the wing mass is
only ∼ 0.2% of the body mass[9], the angular velocity and acceleration of wing motion is very high. We
estimated the inertial forces and torques of a rotating rigid body using the Newton-Euler equations:[

𝐹𝐼

𝑇𝐼

]
=

[
𝑚𝑤 −𝑚𝑤 [𝑐𝑤×]

𝑚𝑤 [𝑐𝑤×] 𝐼𝑤 − 𝑚𝑤 [𝑐𝑤×][𝑐𝑤×]

] [
𝑎

¤𝜔

]
+
[

𝑚𝑤 [𝜔×][𝜔×]𝑐𝑤
[𝜔×](𝐼𝑤 − 𝑚𝑤 [𝑐𝑤×][𝑐𝑤×])𝜔

]
, (18)

where 𝑚𝑤 corresponds to the wing mass, 𝑐𝑤 is the position of the center of gravity on the wing, 𝐼𝑤 is
the inertia tensor of the wing, 𝑎 is the linear acceleration of the wing, ¤𝜔 is the angular acceleration, and
𝜔 the angular velocity, with all values relative to the wing reference frame. We ignored the effects of the
linear acceleration of the wing because they are very small compared to the angular acceleration. The first
right-hand term in equation 18 corresponds to the inertial forces and torques due to wing acceleration, 𝐹𝑎𝑐𝑐

and 𝑇𝑎𝑐𝑐. Inertial effects dependent on angular velocity, such as the Coriolis and the centrifugal forces, are
captured by the second right-hand term and are collectively referred to as 𝐹𝑎𝑛𝑔𝑣𝑒𝑙 and 𝑇𝑎𝑛𝑔𝑣𝑒𝑙 . We assumed
that the inertial effects of wing deformation are small, and thus calculated inertial forces and torques based
on the assumption that the wing is a rigid, flat plate.

The angular velocity and acceleration had to be computed from the Legendre polynomials describing
wing motion. We computed the emporal derivatives of the Legendre polynomials ( ¤𝜙, ¤𝜃, ¤𝜂, ¥𝜙, ¥𝜃, ¥𝜂) using
equation 8. However, the temporal derivatives of the wing kinematic angles do not correspond to the angular
velocity and acceleration. Angular velocity in the wing reference frame is given by:

𝜔 = 𝑅𝜂 · 𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 ·

0
0
¤𝜃

 +

0
¤𝜂
0

 , (19)

where 𝑅𝜃 and 𝑅𝜂 correspond to the rotation matrices of the Tait-Bryan operations for 𝜃 and 𝜂, respectively.
Angular acceleration is given by:

¤𝜔 = ¤𝑅𝜂 · 𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 · ¤𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 · 𝑅𝜃 ·

¥𝜙
0
0

 + ¤𝑅𝜂 ·

0
0
¤𝜃

 + 𝑅𝜂 ·

0
0
¥𝜃

 +

0
¥𝜂
0

 , (20)

with ¤𝑅 being the temporal derivative of the rotation matrix.
To compute the inertial forces and torques, the mass, center of gravity, and the inertia tensor of the wing

must be determined. These parameters were computed using the scaled 3D model we created for Flynet, with
a wing length of 2.7𝑚𝑚, an estimated cuticle density of 1200𝑘𝑔 · 𝑚−3, and a wing thickness of 5.4𝜇𝑚[20].
The inertial parameters of the (left) wing are given by:

𝑚𝑤 = 1.61 · 10−9𝑘𝑔, (21)
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𝑐𝑤 =


−0.16
1.31

0

 𝑚𝑚, (22)

𝐼𝑤 =


6.32 0.55 0
0.55 0.36 0

0 0 6.67

 · 10−9𝑘𝑔 · 𝑚𝑚2. (23)

With the wing inertia parameters, angular velocity, and acceleration defined, it is possible to compute the
inertial forces and torques for any arbitrary pattern of wing motion pattern. Extended Data Fig. 5b shows the
aerodynamic and inertial forces and torques in the SRF for the baseline wingbeat. The aerodynamic forces
were measured on the robot and rescaled to the appropriate units for an actual fly using equations 12 and 13.
To make interpretation easier, the forces and torques have been non-dimensionalized by dividing the forces
by the body weight, and the torques by product of body weight and wing length. Using the estimated cuticle
density and the scaled body components of the 3D fly model, the body mass was found to be 1.16 · 10−6𝑘𝑔.
Inspection of the traces in Extended Data Fig. 5b indicate that the inertial forces and torques in wing motion
are substantial, as found in prior studies[21].

With the methods to measure aerodynamic forces and compute inertial forces established, it is possible
to evaluate the forces generated by changes in steering muscle activity. For each steering muscle, seven
wing kinematic patterns were tested on the robotic wing. The seven wing kinematic patterns were found
by sampling the muscle activity patterns on a line between the baseline muscle activity and the maximum
muscle activity of a selected muscle (Fig. 4), and subsequently predicting the corresponding wing motion
using the trained CNN. The workflow to obtain the control forces and torques of muscle activity consisted
of measuring the force and torque traces of 84 wing kinematic patterns on the robot, performing the gravity
subtraction, smoothing the traces with a Kalman filter, converting traces to the SRF, computing the median
force and torque traces from the measured wingbeats (𝐹𝑎𝑒𝑟𝑜 and 𝑇𝑎𝑒𝑟𝑜), estimating the inertial components
(𝐹𝑎𝑐𝑐, 𝑇𝑎𝑐𝑐,𝐹𝑎𝑛𝑔𝑣𝑒𝑙 , 𝑇𝑎𝑛𝑔𝑣𝑒𝑙), and finally, summing the inertial and aerodynamic forces and torques (𝐹𝑡𝑜𝑡𝑎𝑙

and𝑇 𝑡𝑜𝑡𝑎𝑙). A time history of the individual force and torque components are plotted over a baseline wingbeat
in Extended Data Fig. 5b. The corresponding instantaneous total force vectors are shown superimposed
over the 3D kinematics in Extended Data Fig. 5c, with comparable plots for the kinematics in each virtual
muscle activation experiment (Fig. 4) shown in Extended Data Fig 6. Further details on the construction
and operation of the robot and the analysis of aerodynamic forces and torques are provided elsewhere[6]

Simulating arbitrary free flight maneuvers with Model Predictive Control

Using our CNN, the virtual muscle activation experiments, and robotic wing experiments provides us with
the components necessary to construct a state-space simulation of a flying fly using Model Predictive Control
(MPC)[22], in which the virtual fly regulates its flight trajectory via changes in the time course of steering
muscle activation. By specifying an initial and goal state and a time period to achieve the goal state, a
MPC controller finds the optimal trajectory given a cost function and constraints. The explicit discrete
time-invariant state-space system is governed by the following equations:

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘),
𝑦(𝑘) = 𝐶 (𝑘)𝑥(𝑘) + 𝐷 (𝑘)𝑢(𝑘),

(24)

where 𝑥(𝑘) and 𝑥(𝑘 + 1) are the state vectors at times 𝑘 and 𝑘 + 1 respectively, 𝑢(𝑘) is the control vector,
𝐴(𝑘) is the system matrix, 𝐵(𝑘) is the control matrix, 𝐶 (𝑘) the output matrix, 𝐷 (𝑘) the feed-forward matrix,
and 𝑦(𝑘) the output vector. In the case of fly flight, there is no feed-forward process and the output of the
state-space system is the state vector. This means that matrices 𝐶 (𝑘) and 𝐷 (𝑘) do not need to be defined
(Extended Data Fig. 7a).

The state vector describes the orientation, position, velocity, and angular velocity of the fly’s body:
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𝑥 =
[
𝑣𝑥 𝑣𝑦 𝑣𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑞0 𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑝𝑥 𝑝𝑦 𝑝𝑧

]𝑇
, (25)

where 𝑣 and 𝜔 are the linear and angular velocity of the body in the SRF, respectively, 𝑞 is the quaternion
describing SRF orientation relative to the inertial reference frame, and 𝑝 is the position of the SRF in the
inertial reference frame. For simplicity, we assume that the head and abdomen are stationary relative to the
thorax. The temporal derivative of the state vector, ¤𝑥, is required for updating the state for each time step:

¤𝑥 =
[
𝑎𝑥 𝑎𝑦 𝑎𝑧 ¤𝜔𝑥 ¤𝜔𝑦 ¤𝜔𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧

]𝑇
, (26)

where 𝑎 and ¤𝜔 are the linear and angular acceleration of the body in the SRF, respectively.
At each time step, the state vector is multiplied with the system matrix, 𝐴(𝑘), to compute the temporal

derivative of the state vector. The time step, Δ𝑡, corresponds to the wingbeat period, which is assumed
to be constant at 1/ 𝑓 = 1/200 = 0.005 𝑠. Although flies regulate wingbeat frequency during flight, it
typically takes 20 wingbeats to increase or decrease the wingbeat frequency to a new level[3]. As our model
was developed for simulating rapid maneuvers of only 10 wingbeats, frequency was held constant in our
simulations.

The equations of motion of the system matrix include the following flight forces and torques: body
weight, body inertia, body aerodynamics, and the aerodynamic and inertial damping of the wings. The mass,
center of gravity, and inertia tensor of the body were determined from the scaled 3D body model (head,
thorax, abdomen) for the average fly in the dataset. For the wing mass, the cuticle density was assumed to
be 1200 𝑘𝑔 ·𝑚−3, and the body mass estimated as 𝑚𝑏 = 1.16 · 10−6 𝑘𝑔. The center of gravity of the body in
the SRF was estimated as 𝑐𝑏 =

[
0.04 0 −0.24

]𝑇
𝑚𝑚. The inertia tensor of the body is given by:

𝐼𝑏 = 𝑚𝑏


0.56 0 −0.19

0 0.67 0
−0.19 0 0.23

 𝑘𝑔 · 𝑚𝑚2. (27)

The inertial forces and torques on the body can be computed with the Newton-Euler equations, evaluated at
the center of gravity of the body: [

𝐹𝐼

𝑇𝐼

]
𝑏

=

[
𝑚𝑏 0
0 𝐼𝑏

] [
𝑎

¤𝜔

]
𝑏

. (28)

Obtaining the rotational accelerations of the body requires solving the inverse problem:[
𝑎

¤𝜔

]
𝑏

=

[
𝑚𝑏 0
0 𝐼𝑏

]−1 [
𝐹𝐼

𝑇𝐼

]
𝑏

. (29)

As the state is evaluated at the center of gravity, there are no torques due to the fly’s weight. Although
the aerodynamics of the wings generate larger forces, the body of the fly experiences drag during flight.
The combined 3D shape of the head, thorax, abdomen and legs is complex, but we chose to model the
body conservatively as sphere with a radius of 1 𝑚𝑚. While the actual body drag is likely to be lower, the
simplicity of the drag model makes it easier to implement in the state-space system. The drag on the sphere
can be calculated as: 

𝐹𝐷𝑥

𝐹𝐷𝑦

𝐹𝐷𝑧

 =

−𝑠𝑔𝑛(𝑣𝑥) · 1

2𝐶𝐷𝜋𝜌𝑣
2
𝑥

−𝑠𝑔𝑛(𝑣𝑦) · 1
2𝐶𝐷𝜋𝜌𝑣

2
𝑦

−𝑠𝑔𝑛(𝑣𝑧) · 1
2𝐶𝐷𝜋𝜌𝑣

2
𝑧

 , (30)

with the drag coefficient as 𝐶𝐷 = 0.5 and 𝑠𝑔𝑛 as the sign operator. Because the center of pressure of the
sphere is assumed to be at the center of gravity of the body, there are no torques due to body drag.

Because the aerodynamic and inertial damping terms due to the motion of the flapping wings are
dependent on body rotational velocity, these components are added to the system matrix. The equations of
motion to compute the relevant linear and rotational accelerations can be written as:
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[
𝑎

¤𝜔

]
𝑘+1

=

[
𝑚𝑏 0
0 𝐼𝑏

]−1 ( [
𝐹𝐺
0

]
𝑘

+
[
𝐹𝐷

0

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐴

𝑇𝑑𝑎𝑚𝑝 𝐴

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐼

𝑇𝑑𝑎𝑚𝑝 𝐼

]
𝑘

)
, (31)

where 𝐹𝑑𝑎𝑚𝑝𝐴 and 𝑇𝑑𝑎𝑚𝑝𝐴 are the aerodynamic damping terms and 𝐹𝑑𝑎𝑚𝑝𝐼 , and 𝑇𝑑𝑎𝑚𝑝𝐼 are the inertial
damping terms. 𝐹𝐺 is the gravity component, expressed in the SRF[6].

The control inputs that are available to the fly are the muscle activity patterns of the left and right steering
muscles: 𝑢𝐿 and 𝑢𝑅. The sum of aerodynamic and inertial forces and torques generated via changes in these
inputs can be computed as: [

𝐹𝐶
𝑇𝐶

]
𝑘+1

=

[ 𝑑𝐹
𝑑𝑢𝐿

𝑢𝐿
𝑑𝑇
𝑑𝑢𝐿

𝑢𝐿

]
𝑘+1

+
[ 𝑑𝐹
𝑑𝑢𝑅

𝑢𝑅
𝑑𝑇
𝑑𝑢𝑅

𝑢𝑅

]
𝑘+1

. (32)

Adding these control forces and torques to equation 31 gives the complete equations of motion for body
rotational acceleration:[

𝑎

¤𝜔

]
𝑘+1

=

[
𝑚𝑏 0
0 𝐼𝑏

]−1 ( [
𝐹𝐺
0

]
𝑘

+
[
𝐹𝐷

0

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐴

𝑇𝑑𝑎𝑚𝑝 𝐴

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐼

𝑇𝑑𝑎𝑚𝑝 𝐼

]
𝑘

+
[
𝐹𝐶
𝑇𝐶

]
𝑘+1

)
, (33)

The computed accelerations of equation 33 are subsequently be used to update the state vector. As the
body accelerations and velocities are both in the SRF, the update of the body velocity is relatively simple:[

𝑣

𝜔

]
𝑘+1

=

[
𝑣

𝜔

]
𝑘

+ Δ𝑡

[
𝑎

¤𝜔

]
𝑘+1

. (34)

The body quaternion and position are in the inertial reference frame and the angular velocity update must
be transformed from the SRF to the inertial reference frame. Using quaternion multiplication, the quaternion
update can be written as:

𝑞𝑘+1 = 𝑞𝑘 +
Δ𝑡

2
𝜔𝑘+1 ⊗ 𝑞𝑘 =


𝑞0
𝑞𝑥

𝑞𝑦
𝑞𝑧

 𝑘
+ Δ𝑡

2


0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧

𝜔𝑥 0 𝜔𝑧 −𝜔𝑦

𝜔𝑦 −𝜔𝑧 0 𝜔𝑥

𝜔𝑧 𝜔𝑦 −𝜔𝑥 0

 𝑘+1


𝑞0
𝑞𝑥

𝑞𝑦
𝑞𝑧

 𝑘
. (35)

After computing 𝑞𝑘+1, the quaternion must be normalized such that ∥𝑞∥ = 1. The position update is
given by:

𝑝𝑘+1 = 𝑝𝑘 + Δ𝑡 · 𝑅𝑇
𝑆𝑅𝐹𝑣𝑘+1, (36)

where 𝑅𝑇
𝑆𝑅𝐹

is computed using 𝑞𝑘 .
The aerodynamic and inertial forces for the maximum muscle activity patterns were measured and

computed in a stationary reference frame. During free flight, the body translates and rotates, which has an
effect on both the inertial and aerodynamic forces on the wing[23–25]. We used a quasi-steady aerodynamic
model and the Newton-Euler equations to compute the relevant aerodynamic and inertial damping coefficients
for fruit fly flight. The effects of inertial damping, can be computed given the angular velocity of the wing:

𝜔 = 𝑅𝜂 · 𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 ·

0
0
¤𝜃

 +

0
¤𝜂
0

 + 𝑅𝜂 · 𝑅𝜃 · 𝑅𝜙 ·

𝜔𝑥

𝜔𝑦

𝜔𝑧

𝑏 , (37)

where the last term adds the body angular velocity, converted to the wing reference frame. By inserting
the redefined angular velocities of the left and right wings into the Newton-Euler equations, it is possible to
compute the inertial forces and torques given a constant body angular velocity.

The wingbeat-averaged inertial forces and torques that are generated by body rotation show a linear trend
with angular velocity. Translational body velocity does not cause any changes in inertial force or torque.
The slopes of the linear trends form the inertial damping matrix:
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𝑑𝐹𝑇𝐼

𝑑𝜔
=



𝑑𝐹𝑥

𝑑𝜔𝑥

𝑑𝐹𝑥

𝑑𝜔𝑦

𝑑𝐹𝑥

𝑑𝜔𝑧

𝑑𝐹𝑦

𝑑𝜔𝑥

𝑑𝐹𝑦

𝑑𝜔𝑦

𝑑𝐹𝑦

𝑑𝜔𝑧

𝑑𝐹𝑧

𝑑𝜔𝑥

𝑑𝐹𝑧

𝑑𝜔𝑦

𝑑𝐹𝑧

𝑑𝜔𝑧

𝑑𝑇𝑥
𝑑𝜔𝑥

𝑑𝑇𝑥
𝑑𝜔𝑦

𝑑𝑇𝑥
𝑑𝜔𝑧

𝑑𝑇𝑦

𝑑𝜔𝑥

𝑑𝑇𝑦

𝑑𝜔𝑦

𝑑𝑇𝑦

𝑑𝜔𝑧

𝑑𝑇𝑧
𝑑𝜔𝑥

𝑑𝑇𝑧
𝑑𝜔𝑦

𝑑𝑇𝑧
𝑑𝜔𝑧


=



0 −63.5 0
−61.1 0 −2.53

0 1.00 0
−1.21 0 20.4

0 2.15 0
−22.2 0 −0.94


· 10−8. (38)

Rotational body velocity generates a torque in opposite direction for 𝜔𝑥 and 𝜔𝑧 , but a torque in the same
direction for 𝜔𝑦 .The positive damping torque for pitch rotation means that flight is unstable around the pitch
axis. There is a strong coupling between the roll rotation and yaw torque, and vice versa. Aerodynamic
damping was computed using a quasi-steady model, the details of which are described elsewhere[6].

The angular velocity of the body can be added to the angular velocity of the wing using equation 37.
Inclusion of the translational body velocity into the wing’s angular velocity term is difficult, however. We
therefore implemented the translational and rotational quasi-steady terms using a blade-element formulation,
in which the wing is partitioned into spanwise sections and the air velocity vector is computed on each
section[26]. Simulating the baseline wing kinematics on the left and right wings, with the relevant body
velocities yields the damping matrix for body translational velocity:

𝑑𝐹𝑇𝐴

𝑑𝑣
=



𝑑𝐹𝑥

𝑑𝑣𝑥

𝑑𝐹𝑥

𝑑𝑣𝑦

𝑑𝐹𝑥

𝑑𝑣𝑧
𝑑𝐹𝑦

𝑑𝑣𝑥

𝑑𝐹𝑦

𝑑𝑣𝑦

𝑑𝐹𝑦

𝑑𝑣𝑧
𝑑𝐹𝑧

𝑑𝑣𝑥

𝑑𝐹𝑧

𝑑𝑣𝑦

𝑑𝐹𝑧

𝑑𝑣𝑧
𝑑𝑇𝑥
𝑑𝑣𝑥

𝑑𝑇𝑥
𝑑𝑣𝑦

𝑑𝑇𝑥
𝑑𝑣𝑧

𝑑𝑇𝑦

𝑑𝑣𝑥

𝑑𝑇𝑦

𝑑𝑣𝑦

𝑑𝑇𝑦

𝑑𝑣𝑧
𝑑𝑇𝑧
𝑑𝑣𝑥

𝑑𝑇𝑧
𝑑𝑣𝑦

𝑑𝑇𝑧
𝑑𝑣𝑧


=



−19.3 0 53.4
0 1.82 0

19.7 0 −21.5
0 4.91 0

22.5 0 −46.5
0 −9.71 0


· 10−7, (39)

and the damping matrix for body angular velocity:

𝑑𝐹𝑇𝐴

𝑑𝜔
=



𝑑𝐹𝑥

𝑑𝜔𝑥

𝑑𝐹𝑥

𝑑𝜔𝑦

𝑑𝐹𝑥

𝑑𝜔𝑧

𝑑𝐹𝑦

𝑑𝜔𝑥

𝑑𝐹𝑦

𝑑𝜔𝑦

𝑑𝐹𝑦

𝑑𝜔𝑧

𝑑𝐹𝑧

𝑑𝜔𝑥

𝑑𝐹𝑧

𝑑𝜔𝑦

𝑑𝐹𝑧

𝑑𝜔𝑧

𝑑𝑇𝑥
𝑑𝜔𝑥

𝑑𝑇𝑥
𝑑𝜔𝑦

𝑑𝑇𝑥
𝑑𝜔𝑧

𝑑𝑇𝑦

𝑑𝜔𝑥

𝑑𝑇𝑦

𝑑𝜔𝑦

𝑑𝑇𝑦

𝑑𝜔𝑧

𝑑𝑇𝑧
𝑑𝜔𝑥

𝑑𝑇𝑧
𝑑𝜔𝑦

𝑑𝑇𝑧
𝑑𝜔𝑧


=



0 4.55 0
−0.39 0 −13.0

0 −21.5 0
−20.8 0 −10.1

0 −11.8 0
−41.3 0 −21.2


· 10−7. (40)

The aerodynamic damping coefficients are approximately an order of magnitude larger than the inertial
damping coefficients. Both 𝑑𝐹𝐴𝑥/𝑑𝑣𝑥 and 𝑑𝐹𝐴𝑧/𝑑𝑣𝑧 have a negative sign, which means that there is a
force opposite to the direction of body motion. In cases of 𝑑𝐹𝐴𝑦/𝑑𝑣𝑦 , 𝑑𝐹𝐴𝑧/𝑑𝑣𝑥 , and 𝑑𝐹𝐴𝑥/𝑑𝑣𝑧 , the
signs are positive, however; which indicates a force in the direction of body motion. Whether the damping
coefficient is negative or positive depends on the effects of body velocity on parameters such as angle-of-
attack, instantaneous air velocity, and wing orientation. All the aerodynamic damping torques, 𝑑𝑇𝐴/𝑑𝜔,
have a negative sign. This means that for the baseline wing motion, flight is stable to perturbations in angular
velocity, a conclusion consistent with a prior study[23].Matrices 𝑑𝐹𝑇𝐼/𝑑𝜔, 𝑑𝐹𝑇𝐴/𝑑𝑣, and 𝑑𝐹𝑇𝐴/𝑑𝜔 can be
converted into a single damping matrix. Multiplication of the damping matrix with the linear and angular
velocity vectors of the body yields the damping forces and torques:
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𝐹𝑇𝑑𝑎𝑚𝑝 = 10−7 ·



−19.3 0 53.4 0 −1.80 0
0 1.82 0 −6.50 0 −13.3

19.7 0 −21.5 0 −6.58 0
0 4.91 0 −21.0 0 −8.06

22.5 0 −4.65 0 −11.5 0
0 −9.71 0 −43.5 0 −21.3





𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧


. (41)

A central feature of our model is that the control inputs available to the fly are the muscle activity patterns
of the left and right steering muscles: 𝑢𝐿 , 𝑢𝑅. Using the measurements from the robotic wing, it is possible to
compute the Jacobians (𝑑𝐹𝑇/𝑑𝑢𝐿 , 𝑑𝐹𝑇/𝑑𝑢𝑅) of the aerodynamic force and torque production for maximum
muscle activity pattern of each muscle. Steering muscle activity is ordered as follows in the control vectors:

𝑢𝐿 =
[
𝑏𝐿1 𝑏𝐿2 𝑏𝐿3 𝑖𝐿1 𝑖𝐿2 𝑖𝑖𝑖𝐿1 𝑖𝑖𝑖𝐿2 𝑖𝑖𝑖𝐿3 ℎ𝑔𝐿1 ℎ𝑔𝐿2 ℎ𝑔𝐿3 ℎ𝑔𝐿4

]𝑇
, (42)

and

𝑢𝑅 =
[
𝑏𝑅1 𝑏𝑅2 𝑏𝑅3 𝑖𝑅1 𝑖𝑅2 𝑖𝑖𝑖𝑅1 𝑖𝑖𝑖𝑅2 𝑖𝑖𝑖𝑅3 ℎ𝑔𝑅1 ℎ𝑔𝑅2 ℎ𝑔𝑅3 ℎ𝑔𝑅4

]𝑇
. (43)

A full table of numerical values of the calculated Jacobians for the aerodynamic force and torque production
of the left and right for each steering muscles are provided elsewhere[6]. Control forces and torques can be
computed by multiplying the Jacobian with the control vector:

𝐹𝑇𝐿
𝐶 =

𝑑𝐹𝑇

𝑑𝑢𝐿
𝑢𝐿 , 𝐹𝑇𝑅

𝐶 =
𝑑𝐹𝑇

𝑑𝑢𝑅
𝑢𝑅 . (44)

The muscle activity correlation analysis in Extended Data Fig. 4 shows that not all combinations of
muscle activity are possible. It is, therefore, necessary to impose constraints on the left and right control
vectors. Specifically, this constraint is that muscle activity has to lie on a 12-D surface representing the
muscle correlation matrix (Extended Data Table 1). A mathematical formulation for the 12-D surface
constraint is:

𝐶𝑢𝐿 = 𝑢𝑏𝑎𝑠𝑒, 𝐶𝑢𝑅 = 𝑢𝑏𝑎𝑠𝑒, (45)

where 𝐶 is the 12× 12 correlation matrix (Extended Data Table 1), and 𝑢𝑏𝑎𝑠𝑒 is the baseline muscle activity
pattern.

MPC optimizes trajectories in state-space, over a finite time window, for a given cost function[22]. The
state-space system is used to predict a state trajectory over a finite time horizon. At each time step, the
controller determines the optimal control input that generates one or more trajectories that minimize the cost
function, while being subject to system constraints. This process is repeated for every time step, shifting the
horizon forward. MPC is thus also known as receding horizon control.

We used the the Python-package do-mpc[27] to implement our MPC simulation. For the free flight
simulations, the controller uses discrete time and a non-linear model. The duration of all free flight
simulations was 10 wingbeats, and the MPC horizon was set to 10 wingbeats as well. This means that the
goal state is always visible to the controller. At the center of MPC is the objective function, which is defined
in do-mpc as:

𝐽 =

𝑁−1∑︁
𝑘=0

(
𝑙 (𝑥𝑘 , 𝑢𝑘) + Δ𝑢𝑇𝑘 𝑅Δ𝑢𝑘

)
+ 𝑚(𝑥𝑁 ), (46)

with 𝑁 being the number of time steps of the problem, 𝑙 (𝑥𝑘 , 𝑢𝑘) is the Lagrange term, Δ𝑢𝑇
𝑘
𝑅Δ𝑢𝑘 is the

r-term, and 𝑚(𝑥𝑁 ) is the Meyer term. The Lagrange term provides the option to provide a reference-state
trajectory and add a penalty for any deviation. Rapid changes in control input are penalized using the r-term:
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Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1, and 𝑅 is a weighting matrix. The Meyer term evaluates how close the specified goal state
is to the final state, 𝑥𝑁 .

In case of the free flight simulations, the MPC objective function is defined as follows. First, the initial
state, 𝑥0, and the goal state, 𝑥𝑛, are specified. Subsequently, the Lagrange and Meyer terms are both defined
as:

𝑙 (𝑥𝑘 , 𝑢𝑘) = 𝑚(𝑥𝑁 ) = 𝑆𝑥 · (𝑥𝑁 − 𝑥𝑘)2 , (47)

with 𝑆𝑥 as a scaling matrix. By setting the diagonal values of the 𝑆𝑥 and 𝑅 matrix, the user can tune the
importance of certain aspects of the objective function. The Lagrange and Meyer terms we used were always
the same, as we did not want to specify any reference trajectory for the Lagrange term. In this way, the
objective function allowed the MPC controller to explore any trajectory that ends at the goal state. By setting
a diagonal element to zero in the 𝑆𝑥 matrix, the MPC controller will not optimize the trajectories for this
parameter. If a diagonal element in 𝑆𝑥 is set to a high value, the MPC controller will prioritize this element.
For example, by setting the weight for the goal, 𝑣𝑦 , to 1, the controller will punish any deviation from this
goal heavily, and allows the user to enforce straight flight. In a similar way, the user can set the diagonal
values of the 𝑅 matrix, and determine the behavior of the steering muscles during the simulation. For the
free flight simulations, we set all the diagonal values of 𝑅 to 1.

Besides tuning the cost function, the bounds of the state and control vectors must be specified. In case
of the control vectors, all steering muscle activity was bounded between 0 and 1. In the state vectors,
linear velocity was bounded by −104 and 104 𝑚𝑚𝑠−1, angular velocity was bounded by -1000 and 1000
𝑟𝑎𝑑𝑠−1, quaternion values were bounded by -1 and 1, position was bounded by −104 and 104 𝑚𝑚, and the
body quaternion was constrained to be a unit quaternion, ∥𝑞∥ = 1. Do-mpc allows the user to specify the
tolerance by which a state or control vector can deviate before a constraint will be enforced. For the free
flight simulations, we set the constraint tolerance on the control vector, 𝑐𝑡𝑜𝑙, to 0.001.

Extended Data Fig. 7a shows the workflow of the MPC controller. The user only needs to specify
the initial and goal states, time in which the fly should reach the goal state, and the weight matrix of the
objective function, 𝑆𝑥 . With these parameters, the MPC controller will try to find the optimal state trajectory
and required control inputs, that minimizes the objective function while satisfying the constraints. Further
details on the design and implementation of our MPC controller may be found elsewhere[6]. Our software is
available in the form of a Jupyter notebook as described in the Code Availability Statement associated with
our manuscript.
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Appendix A

Processes flow for CNN predicting wing pose from high speed images (Flynet, Part 1):
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Appendix B

Processes flow for CNN predicting wing pose from high speed images (Flynet, Part 2):
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Appendix C

Processes flow for CNN predicting wing kinematics from steering muscle activity:
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Appendix D

Processes flow for encoder-decoder that performs latent variable analysis:
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