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The accurate prediction of binding between T-cell receptors (TCR) and their cognate epitopes
is key to understanding the adaptive immune response and developing immunotherapies. Current
methods face two significant limitations: the shortage of comprehensive high-quality data and the
bias introduced by the selection of the negative training data commonly used in the supervised
learning approaches. We propose a novel method, TULIP, that addresses both limitations by lever-
aging incomplete data and unsupervised learning and using the transformer architecture of language
models. Our model is flexible and integrates all possible data sources, regardless of their quality or
completeness. We demonstrate the existence of a bias introduced by the sampling procedure used
in previous supervised approaches, emphasizing the need for an unsupervised approach. TULIP
recognizes the specific TCRs binding an epitope, performing well on unseen epitopes. Our model
outperforms state-of-the-art models and offers a promising direction for the development of more
accurate TCR epitope recognition models.

I. INTRODUCTION

T cells detect foreign invaders such as viruses, bacteria
and cancer cells through their membrane-bound T-cell
receptor (TCR), which recognize specific epitopes pre-
sented on the surface of infected or tumor cells. Epi-
topes are short (8-17 amino acid) peptide fragments pre-
sented by the major histocompatibility complex (MHC)
on the surface of presenting cells, which are bound to
by the TCR (Fig. 1A). The TCR is a heterodimer com-
posed of the alpha and beta chains, which are coded by
separate genes that randomly recombine during thymic
development, giving rise to a large diversity of possible
TCRs. Binding between the TCR and the peptide-MHC
(pMHC) complex is highly specific [1, 2] and plays a key
role in the activation of the adaptive immune response.
Predicting pMHC-TCR binding from their amino-acid
sequences is an important challenge in immunology. It
has important applications to diagnostics, cancer im-
munotherapy, and vaccination, including the engineering
of TCR against target antigens [3], or the design of opti-
mized antigens in personalized cancer vaccines [4].

Given the difficulty to predict the structure and bind-
ing interface of pMHC-TCR pairs, predicting their bind-
ing affinity from general rules of protein interactions re-
mains a promising but arduous approach [5, 6]. Recent
experimental advances [7, 8] have allowed for the gener-
ation of an increasing amount of data linking TCR se-
quences to peptide-MHC (pMHC) complexes, providing
a large number of binding pairs. These data are gath-
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ered in several freely available databases: VDJdb [9],
IEDB [10], McPAS-TCR[11]. However, the number of
possible 7-16 amino-acid peptides is very large, and the
potential number of possible TCRs even larger (> 1060

[12]), meaning that experiments may only assay a small
fraction of possible pairs. This calls for machine-learning
methods capable of predicting the binding properties of
unobserved pairs from a limited set of training data, by
learning general rules of pMHC-TCR interactions.

Several studies have attempted to predict TCR speci-
ficity from sequence using a variety of machine learn-
ing techniques (see [13] for a recent benchmark), includ-
ing deep convolutional networks (NetTCR2 [14]), deci-
sion trees and random forests (SETE [15], TCREX [16])
Gaussian process classification (TCRGP [17]), distance-
based methods (TCRdist3 [18]), and language models
(TITAN [19], Pan-Pep [20], ERGO2 [21], STAPLER
[22]), and ensemble methods of Convolutional neural net-
works (DLpTCR [23]) . Many approaches are inherently
incapable of, or show poor performance at, predicting
TCR affinity to epitopes that were not present in the
training set (unseen epitopes), either by design or by lack
of generalizability across epitopes [19, 22]. This funda-
mentally limits their applicability, in particular in the
context of cancer neoantigens which are often unique to
each patient.

Existing models are often trained on a subset of all
available data, because of requirements on quality and
consistency. Experiments rarely report all four elements
of the binding complex: the peptide, the MHC, the alpha
and beta chains of the TCR (Fig. 1B). Because informa-
tion about pMHC specificity is shared across both chains
[7, 24], many methods choose to focus on data that report
both chains, leaving out the large amount of information
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FIG. 1. A Recognition: The TCR is composed of an α chain and a β chain, each one interacting with the epitope through
its CDR3. The epitope is presented by the MHC. B Incomplete Data: Schematic representation of the current state of data
availability for this binding problem. C The bias of Supervised Learning: Comparison of Supervised and Unsupervised approach.
The unsupervised approach is only seeing positive pairs, it will only learn to recognize the specific signal of interacting pMHC-
TCR. On the contrary, the supervised approach needs to sample negative examples, and the model will also try to capture the
signature of none interacting pMHC-TCR. This may introduce a bias as the model can be learning to recognize some specific
signal coming from the method used to generate the negative examples. Created with BioRender.com

contained in incomplete datasets.

Another limitation of existing approaches is that they
treat the binding prediction as a supervised learning task,
which requires both positive and negative examples to
train a binary classifier. However, the biological data at
our disposal is not of this type, consisting only of posi-
tive examples. To address this issue, negative examples
are often generated using random association, but these
can lead to subtle biases [22]. The fraction of random
pMHC-TCR functional associations is estimated to be
≈ 10−6–10−4 [25], meaning that non-binding pairs widely
outnumber binding ones. Therefore sampling the nega-
tive space properly for training a supervised classifier is
difficult. Using a supervised approach may push models
to learn the biases in the negative data provided, rather
than biologically meaningful patterns.

The case of having only data from one class is usually

called One Class Classification (OCC), and is not new
in biology [26]. Generative models are one solution to
tackle this task, as we do not need any negative example
to train it [27].

In this paper we present Transformer-based unsuper-
vised language modeling for Interacting pMHC-TCR
(TULIP-TCR), an encoder-decoder language model,
which addresses these limitations. The model is flexi-
ble, leveraging all possible data sources regardless of their
quality or completeness and including single-chain data,
but also learning useful representations of the TCR and
epitope space from examples where only one of them
is present. The approach is unsupervised in the sense
that we do not predict explicitly a binary variable that
indicates binding, but a probability score trained only
on interacting sequence pairs. This allows us to avoid
the pitfalls associated with creating artificial samples of
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non-interacting sequence pairs [27]. TULIP outperforms
state-of-the-art methods on the most studied peptides for
which data is abundant, and shows significant predictive
power on unseen epitopes.

II. RESULTS

A. Model overview: a flexible and unsupervised
architecture

Our model is inspired by techniques used in Natu-
ral Language Processing (NLP), where models are com-
monly trained on large text corpora [28]. In our ap-
proach, we adapt these techniques by replacing words
with amino acids. The central concept behind our model
is translation, which involves predicting the next token
(word or word pieces in NLP, or amino acid in protein
sequences) based on the previously generated tokens, as
well as the source (sentence in NLP, or amino-acid se-
quence in proteins). During training, the model learns
the patterns and dependencies that govern the relation-
ships between tokens. By training only on positive ex-
amples, the model learns the rules that govern token or-
dering.

Models that predict each amino acid conditioned on
the previous ones are called autoregressive. This al-
lows us to compute the probability of each sequence
as p(a1, ..., an) =

∏n
i=1 p(ai|a1...ai−1), and to efficiently

sample new sequences, with tremendous recent success
in modeling language [29] .

The training process involves maximizing the con-
ditional likelihood of the observed sequences (positive
pairs), effectively defining a probability distribution over
the space of sequences. As a result, the model is trained
to assign higher probabilities to positive pairs (binding
pairs) compared to negative pairs (non-binding pairs)
without having been trained on any negative pairs.

Our model uses the Transformer architecture, specif-
ically the encoder-decoder variant originally developed
for translation tasks [30]. In this architecture, the en-
coder receives a protein sequence as input (a sentence in
the source language in NLP), and the decoder aims to
generate an interacting protein sequence (the translated
sentence in NLP) as its objective. The decoder coupled
with the encoder is an autoregressive generative model,
which defines the conditional probability distribution of
the output given the input. The encoder-decoder ap-
proach has been successfully applied to investigate inter-
acting amino acid sequences [31, 32].

Our problem implies interactions between 4 elements:
the epitope, the MHC, and the alpha and beta chains of
the TCR. We reduce the chains to their third complemen-
tarity determining regions (CDR3) known to be primar-
ily contacting the epitope [33]. We denote the α-CDR3,
β-CDR3 and epitope sequences as α = (aα1 , ..., a

α
Nα

),

β = (aβ1 , ..., a
β
Nβ

) and e = (ae1, ..., a
e
Ne

). We extend the ex-

isting architecture and define 3 encoders and 3 decoders

for the α-CDR3, β-CDR3, epitope sequences and a spe-
cial embedding layer for the MHC, which we treat as a
categorical variable MHC (its protein sequence is ignored,
as we expect only the MHC class to be relevant). The
details of this architecture are shown in Fig. 2A. Each
model takes the MHC and the 3 chains as input, and try
to predict each chain given the two other ones and the
MHC.

They define conditional probabilities such as
p(e|α, β,MHC). These conditional probabilities can
be used to match interacting protein sequences [31],
since pairs that bind are expected to have higher
probabilities than non binding ones.

This model can be used with incomplete data by deter-
mining, e.g., restricted conditional like p(e|α) when the
beta chain and the MHC class are not available. This
flexibility enables us to use every known data source
available for model training and for prediction. More
details about the architecture and the training can be
found in the Methods section IV B.

B. Predicting new TCRs binding to known
epitopes

We first evaluate the performance of TULIP for epi-
topes presented on the common HLA-A*02:01 allele,
which is commonly used to assess such models [14]. We
compare TULIP with NetTCR-2.0, a state-of-the-art su-
pervised model [14]. We collected data for which the
epitope, alpha chain, and beta chain were all present.
We then created a random split of 85% for training and
15% for testing, excluding any sequences from training in
which the TCR was also present in the test set. Negative
examples were generated within each split by randomly
pairing TCRs to a different epitope, and this process was
repeated five times for each sequence. To avoid over-
lap between the training and test sets, negative exam-
ples were sampled within each split. We refer to this
database, comprising both the training and test sets, as
the Specialized Dataset (SD). NetTCR was trained on
the training SD and its performance was evaluated on
the testing SD for each epitope separately using the area
under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve as a performance metric.

The primary aim of TULIP is to be trainable on a
larger database. To ensure a fair comparison, we trained
it using the following protocol: Firstly, we removed all
sequences from the full database that shared the same
alpha or beta chain as the test set of the SD. We trained
the TULIP on this filtered dataset for 100 epochs and
then fine-tuned it for an additional 40 epochs using the
positive examples of the training SD. To compute the
AUC, we approximated the probability of binding as
log(p(e|α, β,MHC)) − log(p(e|MHC)) (see IV C), which
quantifies the increase in the odds of observing e upon
being recognized by the TCR.

We compared the performance of TULIP with
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FIG. 2. A - TULIP architecture: Amino acids of each chain are embedded, then encoded by its chain-specific encoder. The
MHC is also embedded. The MHC embedding and the encoded chains are then concatenated (all except the embedding of the
sequence to decode) and given to the decoders. The decoders are then modeling the conditional probabilities of each chain
given the MHC and the other available chains. B - Results of a finetuned TULIP on the most abundand peptides. Comparison
is made with NetTCR2.0. C - ROC curve and PPV curves for the most studied peptide. The average of these ROC curves
appears in red. D - We compare two ways of selecting the negative example. We compare the loss of performance of NetTCR2
and TULIP between an easy and a hard case of negative sampling. In the easy case the TCRs are randomly selected from the
test set, whereas in the harder case, the TCRs are reweighted in order to have a uniform distribution over the true cognate
epitope. This second choice removes the bias of having most negative examples using TCRs from the few highly over-represented
peptides. Because TULIP is unsupervised it is more robust to change in the negative sampling.

NetTCR-2.0 on the testing set of SD, and computed the
AUC separately for each epitope in Fig. 2B. Rare epi-
topes were grouped by similar training set size, and their
AUC averaged. The results indicate that TULIP outper-
forms netTCR2.0 on almost all epitopes. For complete-
ness, we plotted the ROC curves of TULIP in Fig. 2C.
These curves reveal a very good performance on the top-
ranked prediction as ROC curves start with a vertical
line up to 0.5 of True Positive Rate before observing the
first False Positives. This steep start is extremely inter-
esting as it implies that the model is extremely good for
the sample for which it is the most confident.

Because the AUC treats positive and negative ex-
amples symmetrically, it is particularly sensitive to the
choice of negative samples, which the supervised method
can exploit to artificially boost its performance [22]. To
illustrate this bias, we implemented a different sampling

approach for negative examples within our specialized
datasets. Instead of uniformly sampling non-binding
TCRs, we uniformly sampled another epitope and then
selected one of its associated TCRs. This alternative
sampling procedure aims to counteract the bias intro-
duced by the over-representation of TCRs from the most
commonly observed epitope in the negative sets, which
leads supervised methods to learn the features of TCRs
binding to that epitope, instead of learning the features
of the positive TCRs. Fig. 2D shows that performances
of both TULIP and NetTCR-2.0 decrease when this al-
ternative sampling is applied, demonstrating the impor-
tance of this bias. This alternative sampling does not
affect the TULIP model itself, whose training does not in-
volve negative examples, but it does affect its AUC which
relies on negative examples. However, the bias is more
pronounced for a supervised method such as NetTCR-
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2.0, as evidenced by the fact that most points fall below
the diagonal.

C. Generalization to unknown epitopes

A major challenge of pMHC-TCR binding models is
to be able to generalize, i.e. to make binding predic-
tions on epitopes that were not used in the training set
(unseen epitopes). This ability varies a lot depending
on the considered epitope, notably as a function of how
similar it is to other epitopes used during training, mak-
ing comparisons between methods and different contexts
difficult. Here, we propose a systematic approach for
assessing generalization across thousands of unseen epi-
topes, by stratifying them according to their distance to
the training set.

We split the full database into a test set comprised
of epitopes with fewer than 20 examples, and a train-
ing set composed of those with more than 20 examples.
TULIP was subsequently trained on the training set for
100 epochs, following which its performance was evalu-
ated on the testing set, yielding 1796 AUCs. The Leven-
shtein distance between each unseen epitope and its clos-
est counterpart in the training set was then computed.
To mitigate potential bias from deep mutational scan-
ning (DMS) experiments, which contain large numbers of
closely related sequences, we identified TCRs that were
associated to similar peptides and deleted them from the
training set. For each peptide in the test set, the sub-
set of peptides with minimal distance in the training set
was identified, and all TCRs associated to them were re-
moved from the test set. All TCR sequences associated
with both the peptide from the test set and any pep-
tide in the subset of closest peptides within the training
set were removed from the training set. Despite these
corrections, the dataset is still very biased. The distri-
bution of TCR per epitope is skewed with a heavy tail
(SI Fig. S1), and epitope representation is mostly biased
towards COVID peptides and neoantigens (SI Fig. S2).

We computed the average AUC of epitopes as a func-
tion of their distance to the training set (Fig. 3A and
SI Fig. S3, and SI Fig. S4 as a function of normalized
distance). TCR similarity between the training and the
testing sets is shown in SI Fig. S5. Machine learning
methods tend to perform better in the region closer to its
training set. It is a common phenomenon in all machine
learning approaches for the model’s capacity to extrapo-
late and generalize to decrease as one moves further away
from the training set. We used 3 different methods for
sampling the negative examples in the model evaluation
(Fig. 3B). In the Unseen Unconnected Random Asso-
ciation (UURA) and Unseen Connected Random Asso-
ciation (UCRA) methods, negative pairs are drawn by
picking a random TCR and a random epitope that were
not in the training set. In the UURA, which is more rig-
orous, the true cognate epitope of the picked TCR is also
unseen, while in the UCRA it can be any epitope (seen or

unseen). In the Healthy Repertoire Sampling (HRS), the
TCR is chosen at random from the repertoire of healthy
individuals (for which the epitopes are unknown) taken
from Ref. [34]. The results obtained with the most con-
servative negative sampling procedure (UURA, in blue)
indicate that TULIP shows good generalization for epi-
topes that are close to the training set. This performance
decays quickly with distance, reaching 1/2 (chance level)
around at an edit distance of around 4.

For comparison, we also investigated the perfor-
mance of existing models, PanPep [20], Ergo2 [21], and
DLpTCR [23], but re-evaluated using the more rigorous
UURA negative sampling method not used in the original
studies (as the training/testing split of STAPLER [22]
was not available at the moment of writing, we could
not compare performance with that method). For in-
stance, the performance of PanPep on unseen epitopes,
which was originally assessed using the HRS method,
drops to chance level when using the more stringent
UURA (Fig. 3C). By contrast, TULIP, when tested on
the same dataset (and re-trained on data that excluded
that test set) retains some predictability. Similar results
for DLpTCR are reported in SI Fig. S6A. We also com-
pared our findings with ERGO2, which was trained using
the UCRA method for negative sampling. Conducting a
test by resampling the TCRs with the more conserva-
tive UURA shows that the resulting AUC also decays to
values close to chance level (SI Fig. S6B). Note that STA-
PLER [22] was also evaluated using UCRA, potentially
inflating its performance on unseen epitopes.

These findings underscore the risks of using negative
samples during training. Since most pairs are negative,
identifying a non-binding pair carries very little infor-
mation. Any signal captured from negative examples is
likely a result of batch effects introduced by the negative
sampling procedure. This justifies the choice of an unsu-
pervised architecture for pMHC-TCR binding. Thanks
to this structure, TULIP is robust in the face of changes
in negative sampling approaches, since training does not
use any negative samples.

D. Predicting the effect of neoantigen mutations
on TCR activation

To further test our model’s ability to predict bind-
ing to different epitopes, and to predict epitope muta-
tions that may evade immune recognition, we applied
it to deep mutational scans of epitopes against fixed
TCRs from [35]. A deep mutational scan of the epi-
tope binding with a fixed TCR is a systematic analy-
sis that explores the effects of multiple genetic muta-
tions within the epitope on its interaction with a spe-
cific T-cell receptor. The study involved 6 deep mu-
tational scans of two epitopes (HLA-A*02:01 restricted
NLVPMVATV and IMDQVPFSV also present in the
training set) against three TCR targets each. For each
of the 19 × 9 single-amino acid variant of the epi-
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FIG. 3. A. Performance of TULIP on unseen peptides as a function of the distance to seen peptides. Up to edit distance 4, a
clear signal can be seen. This analysis is done on a large set of peptides (171 at distance 1, 43 at distance 2, 44 at distance 3,
161 at distance 4, 501 at distance 5, 500 at distance 6, 103 at distance 7, 54 at distance 8, 219 at distance 9 and more). We also
illustrate the role of negative sampling by showing the performance with three different Negative sampling methods. The details
of these methods are explained in B. Our unsupervised methods show less variability with respect to the sampling methods
compared with other supervised methods as shown in C and SI Fig.S6 B - We detail here three different methods to sample the
negative of unseen epitopes. We illustrate the fact that in the original data, several TCR can be binding a single epitope, by
putting two TCR in front of each epitope in the plots. Unseen Unconnected Random Association: the epitope and the TCRs
are unseen and the TCRs used for the negative are binding with an unseen epitope. Unseen Connected Random Association:
the epitope and the TCRs are unseen and the TCRs used for the negative can be binding to any epitope. We emphasize in red
the association with a unseen connectd TCR, as it is the difference with UURA. Healthy Repertoire Sampling: Negatives are
sampled from a healthy repertoire. Created with BioRender.com C - Testing the effect of change of the negative sampling on
unseen peptides for PanPep and TULIP. We realize that PanPep performance does not resist changing the negative sampling
process for unseen peptides contrary to TULIP. For the HRS, we reused the negative example from the original paper.

topes, the affinity to the TCR was assessed by measur-
ing the epitope concentration at which 50% of T-cells
were activated in culture (EC50). Observing binding
in an experiment requires both the binding of the pep-
tide with the MHC, and of the TCR with the pMHC.
We used the joint probability of binding as a score
log p(binding(e−MHC), binding(e−TCR)|α, β, e,MHC)
We approximate this quantity following the method in
IV C by log p(e|α, β) − log p(e) + log p(e|mhc) − log p(e)
as a predictor of this affinity. The comparisons between
model and experiments are shown in Fig. 4A. Despite
high variability, our model was able to capture the funda-
mental properties of binding in epitope space. To quan-

tify performance, we measured the Spearman correlation
between our score and the measured EC50. The score
correlates up to 0.47 for the best TCRs. While pre-
dictability is limited, these results are encouraging con-
sidering that the model was trained on data with a large
excess of TCRs relative to epitopes, and applied to data
with a large excess of epitopes relative to TCRs. To
assess how much of this predictability is due to peptide-
MHC only (irrespective of the TCR), we compared these
results with NetMHCpan [36], which is based solely on
the epitope-MHC interaction, and found a lower correla-
tion (SI Fig. S7). This highlights the importance of the
TCR-epitope interaction in the experiment.
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Epitope Repertoire Known TULIP TULIP Random TULIP HO TULIP HO
Size TCR Best Rank quantile Best Rank Best Rank quantile

HMTEVVRHC 36376 4 2960 0.287 7275 30 0.0032
HMTEVVRHC 53216 4 4491 0.297 10643 40 0.0030
HMTEVVRHC 16964 4 1441 0.298 3363 7 0.001
ALIHHNTHL 36376 4 8750 0.667 7275 832 0.0883
ALIHHNTHL 53216 4 12722 0.664 10643 1439 0.1038
ALIHHNTHL 16964 4 4029 0.661 3363 419 0.0951
LLGATCMFV 36376 7 214 0.0404 4457 1134 0.1988
LLGATCMFV 53216 7 309 0.0399 6652 1550 0.1869
LLGATCMFV 16964 7 104 0.0421 2120 486 0.1841
RLARLALVL 36376 7 12583 0.948 4457 1 0.00019
RLARLALVL 53216 7 18301 0.947 6652 1 0.00013
RLARLALVL 16964 7 5850 0.948 2120 1 0.00041
YLEPGPVTA 36376 5 584 0.107 6062 5 0.0009
YLEPGPVTA 53216 5 841 0.105 8869 12 0.0015
YLEPGPVTA 16964 5 244 0.096 2867 3 0.0012

YLQPRTFLL 100613 52 25 0.0128 1953 1 0.0005

Table 1: Your table with alternating row colors.

Peptide CDR3a CDR3b
ALIHHNTHL CAVNSNSGYALNF CASSQSETGDGYTF
ALIHHNTHL CAMHRDDKIIF CASSLAVQRPSGNTIYF
ALIHHNTHL CVVSGVNVWGTYKYIF CASSIESGSKQRNEQFF
ALIHHNTHL CAVSDLNSGGYQKVTF CASSPRDRVHEQYF

HMTEVVRHC CAMSGLKEDSSYKLIF CASSIQQGADTQYF
HMTEVVRHC CAFMGYSGAGSYQLTF CAISELVTGDSPLHF
HMTEVVRHC CALDIYPHDMRF CASSLDPGDTGELFF
HMTEVVRHC CVVQPGGYQKVTF CASSEGLWQVGDEQYF
LLGATCMFV CAADSWGKLQF CATSDSTGSYGYTF
LLGATCMFV CAVNPSNQFYF CASRGPYHNEQFF
LLGATCMFV CVVSEEYTNAGKSTF CASSLERLRVYSGYTF
LLGATCMFV CAMDSSYKLIF CASSALAGGQADTQYF
LLGATCMFV CAAGGSYIPTF CASSGTGGYSGANVLTF
LLGATCMFV CAVNDYKLSF CASSWTGANYGYTF
LLGATCMFV CAVYSGGYNKLIF CASSFVNTGELFF
RLARLALVL CASMYSGGGADGLTF CASSFFSNTGELFF
RLARLALVL CASGGGADGLTF CASSFLTDTQYF
RLARLALVL CSSGGGADGLTF CASMDLAFKQYF
RLARLALVL CAYRSGSDGGSQGNLIF CASSQVSGYEQYF
RLARLALVL CAVRDDYGQNFVF CASSPQGDNEQFF
RLARLALVL CAVPDDAGNMLTF CASSELPAGGTNEQFF
RLARLALVL CAGGGGADGLTF CASSYMGPEAFF
YLEPGPVTA CAPGIAGGTSYGKLTF CASSLAYSYEQYF
YLEPGPVTA CGTETNTGNQFYF CASSLGRYNEQFF
YLEPGPVTA CAASTSGGTSYGKLTF CASSLGSSYEQYF
YLEPGPVTA CAVLSSGGSNYKLTF CASSFIGGTDTQYF
YLEPGPVTA CATDGDTPLVF CASSIGGPYEQYF

Table 2: Your table with alternating row colors.

1

FIG. 4. A. Effect of single epitope mutations on the TULIP score (logP ) predicts TCR binding (dissociation constant K
in µg.ml−1) measured by deep mutational scan experiments [35]. The reported ρ and p-values correspond to Spearman
correlations. B. Repertoire mining for neoantigen-binding TCRs. The TCR repertoires of 3 healthy HLA*A02:01 donors from
[34] were spiked with TCRs known from the literature to bind to 5 neoantigens. Sequences from the augmented repertoires were
ranked by the model according to their predicted affinity to the neoantigen of interest. Reported is the rank of the best-scoring
neoantigen-binding TCR. The p value corresponds to the probability of achieving that rank by chance. Two training procedures
were used: one where all TCRs associated to the neoantigen of interest and related peptides were removed from the training
set (TULIP), and one where only the TCR to be ranked was removed (leave-one-out; TULIP LOO). We also integrated the
quantile of our prediction under the null model. This is easily interpretable as the probability that a random model would
achieve equal or better performance than TULIP.

E. Repertoire mining for neoantigen recognition

We then asked whether the model could pick
TCRs binding to a particular epitope from whole
repertoires. We focused on TCRs binding to 6
HLA-A*02:01 restricted epitopes, including 5 cancer-
associated neoantigens (Cyclin D1: LLGATCMFV [37];
p53: HMTEVVRHC [38, 39]; HER2: ALIHHNTHL [40];
TPBG: RLARLALVL[41]; and gp100: YLEPGPVTA
[42], see Table S1 for the full list). In addition, we
looked for TCRs specific to the SARS-CoV-2 spike pro-
tein epitope YLQPRTFLL in the CD8+ repertoire of a
COVID-19 infected donor at the peak of the response
at day 15 [43]. YLQPRTFLL-specific TCR harbored by

the same donor were identified in a separate study using
a multimer-binding assay [44].

We first considered a scenario where no prior knowl-
edge about TCRs binding the epitope was available, by
removing these entries from the training set, as well as
all TCR-epitope pairs whose epitope is similar to the epi-
tope of interest (less than 4 amino acid substitutions).
For the SARS-CoV-2 epitope, we also removed all TCRs
associated with YLQPRTFLL as well as similar epitopes
(’YLRPRTFLL’ and ’YYVGYLQPRTFLL’) to mitigate
potential leakage effects. In the second scenario (hold
out, or HO), we only removed from the training set the
TCR that we want to find: one neoantigen-associated
TCR at a time in the case of neoantigen, and all epitope-
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specific TCR from the donor as reported by the multi-
mer assay in the SARS-CoV-2 repertoire. In both cases,
we removed redundancies of the alpha and beta chains:
when several TCRs has the same alpha chain, we only
retained one of them, and likewise for beta chains.

For each neoantigen, we mixed neoantigen-associated
TCRs (all of them in the first scenario, and only the
removed one in the LOO scenario) with 3 unrelated
TCRαβ repertoires of HLA*A02:01 positive donors from
Ref. [34]. For the SARS-CoV-2 epitope, we simply con-
sidered the CD8+ TCRβ repertoire at day 15 from [43].
We then asked TULIP to rank each TCR according to the
predicted binding to the epitope of interest. The results,
reported in Fig. 4B, show that TULIP in many cases
narrows down the list of candidate TCR to a relatively
small number, even when it was trained with no knowl-
edge about the neoantigen-associated TCRs. When it
does (TULIP LOO first index column), it can even iden-
tify the neoantigen-associated TCR within the very best
ranked ones. In the case of the SARS-CoV-2 epitope,
performance was excellent even when in the first scenario
(no prior knowledge about the epitope), and perfect (best
rank 1) in the hold-out scenario.

That analysis focuses on the top-ranking TCR for each
neoantigen, emphasizing precision in detecting potent
binders within the repertoire. This deliberate emphasis
on the upper tiers of the score distribution provides in-
sights into the model’s discriminative power and its abil-
ity to identify TCRs with high binding affinity to specific
epitopes.

III. DISCUSSION

In this study, we have presented a novel approach
for TCR-epitope binding prediction that overcomes key
limitations of current methods. We demonstrated the
model’s ability to generalize to unseen epitopes, which is
a critical factor in real-world applications where the spe-
cific epitope of interest may not be known in advance.
Furthermore, we addressed the recurrent bias that can
arise from using negative examples generated through
random pairing in previous supervised approaches. To
mitigate this bias, we proposed an unsupervised learning
framework that trains the model exclusively on positive
examples, allowing it to focus on recognizing patterns
within these interactions.

The elimination of negative examples in our approach
was driven by the recognition that randomly generated
negative examples can introduce biases, potentially com-
promising the model’s predictive accuracy. By training
solely on positive examples, our model avoids such bi-
ases and can more effectively capture the specific signal
of interacting pMHC-TCR complexes.

One difficulty in evaluating and comparing methods
is that the exact TCR-epitope binding prediction task
may differ across studies and applications. For instance,
looking for epitope-specific TCR within the peripheral

repertoire is a different task than finding them within
responding clones in lymph nodes or in tumor tissues.
Likewise, identifying TCRs binding to a neoantigen but
not to the wildtype is not the same as identifying the re-
sponse to a specific antigen within a repertoire. Some of
the biases discussed earlier arise from unclear or unrealis-
tic definitions of the tasks. When the objective is to rec-
ognize patterns in binding complexes, the unsupervised
approach emerges as the more natural choice. Supervised
approaches can only demonstrate their potential in spe-
cific use cases where negative samples can be precisely
defined (e.g. sorting cells that do not carry an activa-
tion marker or do not bind a tetramer, although these
negative examples are typically not reported in studies).
Careful consideration should also be given to the sam-
pling of negative examples. Negative examples should be
selected to be close enough to the classification bound-
ary, making them challenging examples (referred to as
Hard Negative Sampling). The combination of these con-
straints, including a well-defined and restricted negative
subspace, the difficulty of examples, presents significant
challenges for most use cases, lead us to conclude that
unsupervised approaches should be preferred for most
applications.

We emphasize the importance of utilizing all available
data sources, regardless of their completeness or quality.
The same is true for NLP approaches, which usually start
by collecting and training on as much data as possible.
The TCR-epitope binding prediction task often suffers
from the scarcity of comprehensive data, as obtaining
complete TCR sequences along with corresponding epi-
topes and MHC information is challenging. However,
our approach is designed to be flexible, leveraging the
available data and accommodating situations where only
partial data is accessible. By using both alpha and beta
chains when available, while being able to learn from one
chain alone, our model can make the most of the data at
hand and extract valuable insights.

While our proposed model shows promise, it is essential
to conduct fair and rigorous model comparisons to assess
its performance accurately. The field of TCR-epitope
binding prediction often lacks standardized benchmark
datasets and evaluation protocols (but see [13]), leading
to difficulties in comparing different models. To address
this challenge, future research should focus on establish-
ing standardized benchmarks and evaluation procedures
that encompass diverse datasets and evaluation metrics
beyond classification.

One limitation of our approach is that the model yields
only probabilities of pairs of sequences, rather than a
proper binding constant, for which titration data (where
the concentration of the epitope is varied) would be
needed. Another limitation is that large areas of the
epitope space have not been measured, and some parts
are extremely hard to measure. For example, having a
model able to determine the risk that a TCR binds to
self-proteins, would be extremely useful for predicting the
safety of T-cell therapy, but such TCRs are by construc-
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tion hard to observe, and the lack of data is a major
limitation for further progress in this direction.

Since our model is generative in nature, it would be
interesting to experimentally test its ability to generate
de novo TCR sequences for given epitopes, or for com-
binations of related epitopes to which it would be cross-
reactive. This avenue of research could provide valuable
insights into the design and discovery of TCRs with spe-
cific binding capabilities.

IV. METHODS

A. Data collection

Data acquisition in the field of immunology presents
a major challenge. The intricate process of T cell re-
ceptor (TCR) binding to its respective epitope depends
on four critical elements: the epitope itself, the major
histocompatibility complex (MHC), and the alpha and
beta chains of the TCR. While each component has been
extensively studied in isolation, the number of instances
where all four components are jointly available remains
remarkably scarce.

In this study, we present a novel computational aim-
ing approach at constructing a model capable of learning
from incomplete data. To achieve this goal, we curated
data from multiple sources, maximizing the total sam-
ple size at our disposal. Specifically, we first accessed
the VDJdb database [9] in its entirety, which boasts the
highest data quality among our available resources (see
Table I).

We also added the IEDB database of Tcell receptors
and McPAS-TCR dataset [10, 11] (see Table I).

The IEDB database is more diverse but we observed
a much poorer quality of the data, and there was never
used for finetuning.

This accounts for 209779 not redundant data points
containing the epitope and at least one chain of the TCR.

The instances listed above consist of T-cell receptors
along with their respective epitopes and major histocom-
patibility complex (MHC). Regrettably, the MHC or one
of its two chains is frequently absent. Additionally, the
diversity of epitopes is relatively low compared to that
of TCRs, with each epitope possessing multiple T-cell
receptors.

To supplement our data, we incorporated the training
database of netMHC, which is solely composed of MHC
and epitope information. Although this dataset does not
directly aid in comprehending the correlation between
TCR and epitope, it is advantageous in two ways. Firstly,
the dataset encompasses a wide range of epitopes, which
assists the model in comprehending the true diversity
of potential epitopes. Secondly, in order to achieve ef-
fective transfer learning between MHC, the model must
comprehend what is distinct to each MHC and what can
be transferred. Therefore, the netMHC database aids in

better modeling the specific role of MHC in the epitope
modeling process. We gather 663, 767 peptides with their
MHC (see Table I).

We gathered all this data in a single one that we will
refer to as the Full Dataset (FD).

B. Model definition

Our model is an extension of the well-known Trans-
former model, in its encoder-decoder version. In the
original version [30], the method was used for transla-
tion. During training the encoder was given a sentence
in the source language and the decoder was given the
translation in the target language as an objective to pro-
duce.

In our specific problem, we would like to condition our
model on more than one interacting element. We, there-
fore, need to extend the existing architecture. We define
3 encoders, 3 decoders, and two embedding layers: an α-
encoder that is specialized in encoding the α-CDR3, an
α-decoder that is specialized in decoding the α-CDR3, a
β-encoder that is specialized in encoding the β-CDR3, a
β-decoder that is specialized in decoding the β-CDR3, an
epitope-encoder that is specialized in encoding the epi-
tope, an e-decoder that is specialized in decoding the
epitope and finally an amino acid embedding and an
MHC embedding, (as we decided to represent the MHCs
as categorical variables). First experiments on initializ-
ing the decoders with the weights of pretrained general
purpose proteins masked language models did not show
any sign of improvement. TCRs α and β chains exhibit
unique characteristics and patterns that are distinct from
general protein sequences. The core of the loops of the
CDR3 is extremely variable. On the other hand, epi-
topes are much smaller than usual proteins and presented
inside an (MHC). All these factors imply that general
rules for proteins do not transpose easily to our scenario.
By utilizing dedicated encoders and decoders tailored to
the specific nature of TCRs and epitopes, we can cap-
ture and encode their domain-specific features more ef-
fectively. This specificity enables the model to focus on
relevant information and potential interactions specific
to TCR-epitope binding.

While we refer to the original work on Transformer [30]
for precise details on the attention layers and the encoder-
decoder architecture, we review here the key components.

Sequences are encoded by their specific encoder and
used as the input for the decoders. They are processed
through alternating blocks of self-attention and linear
layers.

Typical vocabulary sizes in NLP are in the order of
104 to 105, while in our case we have a vocabulary V is
composed of the 20 amino acids and some special token
(PAD for padding, EOS for End-od-Sentence, SOS for
Start-Of-Sentence, UNK for the Unknown characters).
The sequence embedding is composed of two parts, one
for the amino acid identity and one for the position in
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VDJdb VDJdb McPAS-TCR McPAS-TCR IEDB IEDB netMHC

epitope epitope epitope epitope epitope epitope epitope

with MHC without MHC with MHC without MHC with MHC without MHC with MHC

Alpha and Beta 29251 0 5021 77 5021 77 0

Alpha alone 6750 0 1065 87 1065 87 0

Beta alone 23011 0 9898 218 145332 11 0

No TCR 0 0 0 0 451 11 663767

TABLE I. Summary of the data sources used for training.

the sequence. We learn a dictionary, mapping each of
the amino-acids to a vector of dimension dmodel. The
sequence position is embedded as a vector in the same
way, learning an embedding vector for every position.
We also learn a specific embedding for the most common
HLA types. The embedding of each sequence is taken as
the sum of the amino-acids and positional embeddings.
The embedded amino-acid sequences are then passed to
the respective encoders, mapping them to a latent rep-
resentation zT = (z1, . . . , zn), T ∈ (α, β, e). The encoded
sequences are then concatenated with the MHC embed-
dings before being sent to the decoder. For each decoder,
we concatenate the MHC embedding with all the encoded
sequences except the one that the decoder will reproduce,
as we do not want to give a decoder the sequence it is
supposed to reproduce. The details of these groups can
be seen in Fig2. For example, we concatenate the encod-
ing of the α-CDR3 , the β-CDR3, and the MHC for the
Epitope decoder, as the epitope decoder should be condi-
tioned on everything but himself. The decoders are then
trained to predict their respective amino-acid sequences
conditioned on the encoded pieces of information.

The decoder implements an auto-regressive distribu-
tion, for example

P (aαi |aα<i, zβ , ze,mhc), (1)

defining the probability of the ith amino acid in the α−
CDR3 sequence given the preceding amino acids aα<i and
the hidden representation of the others elements. During
training, we use the true amino acids for aα<i. This way
of predicting the next amino acid in a sequence is called
Causal Language Modeling (CLM). The loss associated
with this task for a single sequence is simply the cross
entropy for every predicted token.

LossCLM =−
Nα∑
i

log(P (aαi |aα<i, zβ , ze,MHC))

−
Nβ∑
i

log(P (aβi |a
β
<i, z

α, ze,MHC))

−
Ne∑
i

log(P (aei |ae<i, zα, zbeta,MHC))

(2)

We schematize the forward pass of Tulip in the follow-
ing pseudo-code:

Algorithm 1 TULIP

1: for C ∈ (α, β, e) do . In parallel
2: embedaaC ← (embedding(aC1 , )..., embedding(aCNα))
3: embedposC ← (Posembedding(1), ..., Posembedding(NC))
4: inputC ← embedaaC + embedposC

5: zC ← C-encoder(inputC)
6: end for
7: rα ← concat(zβ , ze, embedMHC)
8: rβ ← concat(zα, ze, embedMHC)
9: re ← concat(zα, zβ , embedMHC)

10: for C ∈ (α, β, e) do . In parallel
11: for i ∈ (1, .., NC) do . In parallel
12: p(aTi |rC , aC1 , ...aCi−1)← C-decoder(rα, a

T
1 , ...a

T
i−1)

13: end for
14: end for
15: p(α|β, e,MHC) =

∏Nα
i p(aαi |rα, aα1 , ...aαi−1)

16: p(β|α, e,MHC) =
∏Nβ

i p(aβi |rβ , a
β
1 , ...a

β
i−1)

17: p(e|β, α,MHC) =
∏Ne

i p(ae
i |rα, aα1 , ...aαi−1)

This approach has already been used for proteins in
many works. Especially in [31] an encoder-decoder model
was used to investigate interacting amino-acid sequences.
The first thing to remark is that the decoder defines au-
toregressively a probability distribution over the gener-
ated sequence. It is generative as we can sample new
examples but if we give it an existing specific sequence it
will give us its probability. When coupling this to an en-
coder the probability distribution becomes a conditional
probability distribution (conditioned on the input of the
encoder). These conditional probabilities can be used for
matching interacting protein sequences [31].

One interesting property of the Attention mechanism
of the transformer is that it is position-blind and flexible
with respect to the length of its input. This implies that
it does not hard code in its weights where it is expect-
ing to find specific elements. If a chain is missing, let’s
say the α-CDR3, we can only gather the MHC and the
β-CDR3 before giving it to the epitope decoder. The en-
coded β amino acids end up in the first position of the
gathered encoding. This is not a problem thanks to the
position-blindness of the encoder-decoder attention. To
be more precise, the missing α-CDR3 is not completely
skipped but replaced by a learned vector, to inform the
model that the chain is missing.

Because of the incompleteness of the data we want to
learn as much as possible from every piece of data avail-
able. The decoder is in itself a language model, so it is
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able to learn without or with little conditioning. In a
standard encoder-decoder Transformer learning the en-
coder is only trained through the decoder. We want to
avoid this so that the encoder learning will not be entirely
dependent on another piece of data to predict. Luckily,
encoders are also trainable alone (without a decoder) by
doing Masked Language Modeling (MLM). During MLM
training we pick 15% of the amino acid positions, we’ll
call this set of amino acids M. From these ones 80 %
are replaced by a mask token, and 20 % are replaced by
a random amino acids. This deteriorated sequence is fed
to the encoder. We learn a linear classifier on top to pre-
dict the original amino acids inM. The logits output by
this classifier are then passed by a softmax, defining for
every position i a distribution over the amino acids ai:
Pcls(ai|zmasked). The final MLM loss is simply the cross
entropy:

LossMLM =−
∑
i∈Mα

log(Pcls(a
α
i |zαmasked))

−
∑
i∈Mβ

log(Pcls(a
β
i |z

β
masked))

−
∑
i∈Me

log(Pcls(a
e
i |zemasked))

(3)

For example, it enables the epitope-encoder to still
learn from the 600000 samples where we do not have
TCRs.

In the end we combined the two losses, using a param-
eter λ that we always use equal to 0.5 in this paper, and
sum over the sequence in the training set:

Loss(θ) =
∑

x∈train
(1− λ)LossMLM(x) + λLossCLM(x) (4)

where x = (xα, xβ , xe,MHC) is our raw datapoint and
θ are the parameters of the model. Details on the training
of a transformer can be found in appendix.

Code and weights for the model can be found at https:
//github.com/barthelemymp/TULIP-TCR/

C. Mutual information as a proxy to the binding
probability

The model presented before is autoregressive. The
structure of the probabilities defined by the model
is simply P (aαi |aα<i, zβ , zepitope,MHC) (resp β, epi-
tope) and a simple multiplication over the position
gives us a conditional probability on the sequences
(p(e|α, β,MHC), p(α|e, β,MHC), p(β|e, α,MHC). How-
ever, we should be more precise on what we want to
evaluate. These conditional probabilities can be good
for generating sequences, but here we first want to eval-
uate the probability of binding. We will show in this
section how to approximate this quantity from the ones
evaluated by our model. Let’s introduce the random bi-
nary variable of binding or not b such that e T becomes

dependant conditionally on b. The first thing we need
to observe is that our TULIP model is trained only on
positive, i.e., binding examples. As a first simplification
let’s look at the link between the binding posterior for a
simple case of e being the epitope and T the alpha and
beta chain of the TCR A simple bayesian approach will
help us here.

p(b = 1|e, T ) =

p(e|T, b = 1)p(T |b = 1)p(b = 1)

p(e, T )

(5)

we can start to do some approximation here.

• All TCR sequenced in blood should have passed
some positive thymic selection for epitope binding.
This implies that p(T |b = 1) = p(T )

• p(e, T ) = p(e)p(T ) by construction as the depen-
dence only appears when conditioning on b.

Leading to:

p(b = 1|e, T ) =
p(e|T, b = 1)p(b = 1)

p(e)
(6)

noticing the p(b = 1) are constants of the problem,
we see that the binding posterior is proportional to the
pointwise mutual information (PMI) between T and e:

log p(b = 1|e, T ) ∝ log p(e|T, b = 1)− log p(e)

= PMI(e;T |b = 1)
(7)

This quantity is the one we used to validate our models
in the previous sections. Pushing further the derivation
to include the role of the MHC, did not improve the re-
sults.

A similar computation can be done for the interaction
between the epitope and MHC, by simply replacing T
with MHC in the previous equation. This second term is
used in Section. II D, where the experimental EC50 are
the results of the simultaneous binding of the TCR with
epitope and of the epitope with the MHC.

V. DATA AND CODE AVAILABILITY

Code is available at https://github.com/
barthelemymp/TULIP-TCR/. The data used
were collected from https://vdjdb.cdr3.net/,
https://www.iedb.org/ and http://friedmanlab.
weizmann.ac.il/McPAS-TCR/.

ACKNOWLEDGMENTS

A.M.W. and T.M. were supported by grant COG
724208 from the European Research Council, and grant

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 2, 2024. ; https://doi.org/10.1101/2023.07.19.549669doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549669


12

ANR-19-CE45-0018 “RESP-REP” from the Agence Na-
tionale de la Recherche. This work was granted access to

the HPC resources of IDRIS under the allocation 2022-
AD011013872 made by GENCI.

[1] O. Feinerman, J. Veiga, J. R. Dorfman, R. N. Germain,
and G. Altan-Bonnet, Variability and robustness in t cell
activation from regulated heterogeneity in protein levels,
Science 321, 1081 (2008).

[2] P. François, G. Voisinne, E. D. Siggia, G. Altan-Bonnet,
and M. Vergassola, Phenotypic model for early t-cell acti-
vation displaying sensitivity, specificity, and antagonism,
Proceedings of the National Academy of Sciences 110,
E888 (2013).

[3] M. Poorebrahim, N. Mohammadkhani, R. Mahmoudi,
M. Gholizadeh, E. Fakhr, and A. Cid-Arregui, Tcr-like
cars and tcr-cars targeting neoepitopes: An emerging po-
tential, Cancer gene therapy 28, 581 (2021).

[4] L. A. Rojas, Z. Sethna, K. C. Soares, C. Olcese, N. Pang,
E. Patterson, J. Lihm, N. Ceglia, P. Guasp, A. Chu,
et al., Personalized rna neoantigen vaccines stimulate t
cells in pancreatic cancer, Nature , 1 (2023).

[5] P. Bradley, Structure-based prediction of t cell receptor:
peptide-mhc interactions, eLife 12, e82813 (2023).

[6] D. S. Shcherbinin, V. K. Karnaukhov, I. V. Zvya-
gin, D. M. Chudakov, and M. Shugay, Large-scale
template-based structural modeling of t-cell receptors
with known antigen specificity reveals complementarity
features, bioRxiv , 2023 (2023).

[7] P. Dash, A. J. Fiore-Gartland, T. Hertz, G. C. Wang,
S. Sharma, A. Souquette, J. C. Crawford, E. B. Clemens,
T. H. Nguyen, K. Kedzierska, et al., Quantifiable predic-
tive features define epitope-specific t cell receptor reper-
toires, Nature 547, 89 (2017).

[8] J. Glanville, H. Huang, A. Nau, O. Hatton, L. E. Wa-
gar, F. Rubelt, X. Ji, A. Han, S. M. Krams, C. Pettus,
et al., Identifying specificity groups in the t cell receptor
repertoire, Nature 547, 94 (2017).

[9] D. V. Bagaev, R. M. Vroomans, J. Samir, U. Stervbo,
C. Rius, G. Dolton, A. Greenshields-Watson, M. Attaf,
E. S. Egorov, I. V. Zvyagin, et al., Vdjdb in 2019:
database extension, new analysis infrastructure and a t-
cell receptor motif compendium, Nucleic Acids Research
48, D1057 (2020).

[10] R. Vita, S. Mahajan, J. A. Overton, S. K. Dhanda,
S. Martini, J. R. Cantrell, D. K. Wheeler, A. Sette, and
B. Peters, The immune epitope database (iedb): 2018
update, Nucleic acids research 47, D339 (2019).

[11] N. Tickotsky, T. Sagiv, J. Prilusky, E. Shifrut, and
N. Friedman, Mcpas-tcr: a manually curated catalogue
of pathology-associated t cell receptor sequences, Bioin-
formatics 33, 2924 (2017).

[12] T. Mora and A. M. Walczak, Quantifying lymphocyte
receptor diversity, in Systems Immunology (CRC Press,
2018) pp. 183–198.

[13] P. Meysman, J. Barton, B. Bravi, L. Cohen-Lavi, V. Kar-
naukhov, E. Lilleskov, A. Montemurro, M. Nielsen,
T. Mora, P. Pereira, et al., Benchmarking solutions to
the t-cell receptor epitope prediction problem: Immrep22
workshop report, ImmunoInformatics 9, 100024 (2023).

[14] A. Montemurro, V. Schuster, H. R. Povlsen, A. K.
Bentzen, V. Jurtz, W. D. Chronister, A. Crinklaw, S. R.

Hadrup, O. Winther, B. Peters, et al., Nettcr-2.0 enables
accurate prediction of tcr-peptide binding by using paired
tcrα and β sequence data, Communications biology 4,
1060 (2021).

[15] Y. Tong, J. Wang, T. Zheng, X. Zhang, X. Xiao, X. Zhu,
X. Lai, and X. Liu, Sete: Sequence-based ensemble learn-
ing approach for tcr epitope binding prediction, Compu-
tational Biology and Chemistry 87, 107281 (2020).

[16] S. Gielis, P. Moris, N. De Neuter, W. Bittremieux,
B. Ogunjimi, K. Laukens, and P. Meysman, Tcrex: a
webtool for the prediction of t-cell receptor sequence epi-
tope specificity, BioRxiv 373472 (2018).

[17] E. Jokinen, J. Huuhtanen, S. Mustjoki, M. Heinonen,
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APPENDICES

Appendix A: Training details

In all the examples presented in this paper, we used the following architecture: embedding dim = 128, hidden size
= 128, and each encoder and each decoder have 2 layers. The MHC embedding was limited to the 50 most represented
MHC. In all the examples presented in this paper, we used the following architecture: embedding dimension = 128,
hidden size = 128, and 2 layers for each encoder and each decoder. The MHC embedding was limited to the 50 most
represented MHC, and none in the training with unseen epitopes. For the repertoire mining experiment, we used 100
epochs in the zero shot setting. During the training we use the Adam optimizer [45] with a learning rate of 0.0001 for
100 epochs. During the finetuning process, we freeze the encoder and the embedding. We train using the same losses
with adam optimizer. The finetuning is done for 40 epochs (but on much smaller dataset) keeping the loss function
the same.

Appendix B: Comparison to other methods

For comparing with DLpTCR we fine-tuned our model on HLA-A02*01 in the same way as for the experiments
of section II.A. For ERGO, metrics are computed on the subset of peptide that were both left out by TULIP and
ERGO.
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Peptide CDR3a CDR3b

ALIHHNTHL CAVNSNSGYALNF CASSQSETGDGYTF

ALIHHNTHL CAMHRDDKIIF CASSLAVQRPSGNTIYF

ALIHHNTHL CVVSGVNVWGTYKYIF CASSIESGSKQRNEQFF

ALIHHNTHL CAVSDLNSGGYQKVTF CASSPRDRVHEQYF

HMTEVVRHC CAMSGLKEDSSYKLIF CASSIQQGADTQYF

HMTEVVRHC CAFMGYSGAGSYQLTF CAISELVTGDSPLHF

HMTEVVRHC CALDIYPHDMRF CASSLDPGDTGELFF

HMTEVVRHC CVVQPGGYQKVTF CASSEGLWQVGDEQYF

LLGATCMFV CAADSWGKLQF CATSDSTGSYGYTF

LLGATCMFV CAVNPSNQFYF CASRGPYHNEQFF

LLGATCMFV CVVSEEYTNAGKSTF CASSLERLRVYSGYTF

LLGATCMFV CAMDSSYKLIF CASSALAGGQADTQYF

LLGATCMFV CAAGGSYIPTF CASSGTGGYSGANVLTF

LLGATCMFV CAVNDYKLSF CASSWTGANYGYTF

LLGATCMFV CAVYSGGYNKLIF CASSFVNTGELFF

RLARLALVL CASMYSGGGADGLTF CASSFFSNTGELFF

RLARLALVL CASGGGADGLTF CASSFLTDTQYF

RLARLALVL CSSGGGADGLTF CASMDLAFKQYF

RLARLALVL CAYRSGSDGGSQGNLIF CASSQVSGYEQYF

RLARLALVL CAVRDDYGQNFVF CASSPQGDNEQFF

RLARLALVL CAVPDDAGNMLTF CASSELPAGGTNEQFF

RLARLALVL CAGGGGADGLTF CASSYMGPEAFF

YLEPGPVTA CAPGIAGGTSYGKLTF CASSLAYSYEQYF

YLEPGPVTA CGTETNTGNQFYF CASSLGRYNEQFF

YLEPGPVTA CAASTSGGTSYGKLTF CASSLGSSYEQYF

YLEPGPVTA CAVLSSGGSNYKLTF CASSFIGGTDTQYF

YLEPGPVTA CATDGDTPLVF CASSIGGPYEQYF

TABLE S1. TCRs used in the repertoire mining tests.
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FIG. S1. For each epitope in our database, we counted the number of known T-cell receptors (TCRs) binding to that epitope.
The histogram shows a strong imbalance in the dataset, where a handful of epitopes harbor a substantial number of known
TCRs, while the majority of epitopes have only a limited number of associated TCRs.

Human (646)

Covid (596)

Hepatitis (28)
Influenza (16)
Tuberculosis (48)
Epstein Virus (9)
HIV (35)

Other or not defined (502)

FIG. S2. Distribution of peptides by organism of origin.
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FIG. S3. Distribution of the AUCs for the different distance groups. The plot complements Fig. 3A.

FIG. S4. Mean AUC of the different distance groups. Equivalent to Fig. 3A, but with normalized distance (Hamming distance
divided by length).
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FIG. S5. A. Scatter plot of AUC of individual peptides, versus the normalized distance (Hamming distance divided by CDR3
length) to closest peptide in the training set. The color indicates the average distance between a TCR associated to the peptide
of interest, and the closest TCR associated to its closest peptides. B. Distribution of Hamming distances between a sequence
from the test set and its closest TCR in the train set.
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FIG. S6. Performance of DLpTCR and ERGO2 on unseen peptides (complement to Fig. 3C).
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FIG. S7. Effect of single epitope mutations on the NetMHCPan [36] score (logP ) predicts TCR binding (dissociation constant
K, in µg.ml−1) measured by deep mutational scan experiments [35]. The reported ρ and p-values correspond to Spearman
correlations.
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