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A real-time, high-performance brain-computer interface for finger decoding and 39 

quadcopter control  40 

Abstract 41 

People with paralysis express unmet needs for peer support, leisure activities, and sporting 42 

activities. Many within the general population rely on social media and massively multiplayer 43 

video games to address these needs. We developed a high-performance finger brain-computer-44 

interface system allowing continuous control of 3 independent finger groups with 2D thumb 45 

movements. The system was tested in a human research participant over sequential trials 46 

requiring fingers to reach and hold on targets, with an average acquisition rate of 76 47 

targets/minute and completion time of 1.58 ± 0.06 seconds. Performance compared favorably to 48 

previous animal studies, despite a 2-fold increase in the decoded degrees-of-freedom (DOF). 49 

Finger positions were then used for 4-DOF velocity control of a virtual quadcopter, 50 

demonstrating functionality over both fixed and random obstacle courses. This approach shows 51 

promise for controlling multiple-DOF end-effectors, such as robotic fingers or digital interfaces 52 

for work, entertainment, and socialization. 53 

 54 

  55 
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More than 5 million people in the United States live with severe motor impairments1. 56 

Although many basic needs of people with paralysis are being met, unmet needs for peer 57 

support, leisure activities, and sporting activities are reported, respectively, by 79%, 50%, and 58 

63% of surveyed people with paralysis from spinal cord injury.2 People with motor impairments 59 

that spare enough function to manipulate a video game controller have turned to video games for 60 

social connectedness and a competitive outlet3,4. In a survey of players with and without 61 

disabilities3, a variety of themes emerged (e.g., recreation, artistic expression, social 62 

connectedness); however, in those with disabilities – in contrast to those without – many 63 

expressed a theme of enablement, meaning both equality with able-bodied players and 64 

overcoming their disability. Even with assistive/adaptive technologies, gamers with motor 65 

impairments often have to play at an easier level of difficulty5 or avoid multiplayer games with 66 

able-bodied players6 that often require dexterous multi-effector control.4,7 Brain-computer 67 

interfaces (BCIs) could enable sophisticated control of video games for people with paralysis – 68 

and more broadly, control of digital interfaces for social networking or remote work. BCIs are 69 

being increasingly recognized as a potential solution for motor restoration and have been used 70 

for controlling a robotic arm with somatosensory feedback8; controlling computer tablets9 and 71 

cursors10; decoding handwriting11; producing text12; and synthesizing speech13.  72 

In motor BCIs, most effort has focused on controlling single effectors such as computer 73 

cursors for point-and-click cursor control and robotic arms for reaching/grasping (where fingers 74 

moved as a group)10,14-17. However, fine motor restoration with dexterous finger control would 75 

allow better object manipulation, and could enable activities such as typing, playing a musical 76 

instrument, or manipulating a multi-effector digital interface such as a video game controller. To 77 

expand object manipulation, Wodlinger et al.18 continuously decoded linear combinations of 4 78 
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distinct grasping postures, although fingers themselves were not individuated. Furthermore, 79 

several groups have shown that finger movements can be differentially classified using neural 80 

activity recorded from BCIs in human research participants19-21. Recent work in non-human 81 

primates (NHPs) has moved beyond simple classification, demonstrating continuous decoding 82 

for the dexterous (i.e., individuated) control of two individuated finger groups22,23.  83 

Expanding on this work, we developed the most capable finger BCI system to date adapting 84 

recently introduced non-linear decoding techniques23, providing continuous decoding of three 85 

finger groups with 2D thumb movements (4 total degrees of freedom (DOF)) in a human 86 

research participant with paralysis – doubling the decoded degrees of freedom in animal 87 

studies22,23. We determined how the dimensionality of the neural representation increases with 88 

the number of decoded fingers and also estimated the dependence of decoding accuracy on the 89 

number of recording electrodes. Finally, we used the decoded finger movements to provide 90 

independent digital endpoints that control a virtual quadcopter with 4 DOF to demonstrate that 91 

intracortical BCIs (iBCIs) can allow a multi-effector, high-throughput brain-to-digital connection 92 

for video game play. This system allows an intuitive framework to control a digital interface 93 

(similar to a video game controller) that can be broadly applied to a variety of control 94 

applications including remote work and recreation.  95 

 96 

Results 97 

Multi-unit neural activity was recorded from two 96-channel silicon microelectrode 98 

arrays placed in the hand ‘knob’ area of the left precentral gyrus in one participant (‘T5’) 99 

enrolled in the BrainGate2 pilot clinical trial (Extended Data Fig. 1a). A virtual hand was 100 

displayed to the participant using Unity (version 2021.3.9f1, Unity Technologies, San Francisco, 101 
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CA, USA), as shown in Fig. 1a. The thumb was designed to move along a 2-dimensional surface 102 

defined by the flexion-extension and abduction-adduction axes (Fig. 1b). Both the index-middle 103 

and ring-small fingers moved as separate groups in a 1-dimensional arc constrained to the 104 

flexion-extension axis.  105 

 106 

Closed-loop, real-time control of a 2- and 4-DOF finger task 107 

To perform closed-loop continuous decoding, a temporal-integrated feed-forward neural 108 

network, adapted from Willsey et al.23, mapped spike-band power (SBP)24 to finger velocities 109 

used to control virtual finger movements on screen (Extended Data Fig. 2). Two sets of tasks 110 

were performed. First, we sought to translate findings from earlier NHP studies22,23  111 

demonstrating decoding of two finger groups (2D task) to our human research participant (where 112 

in this task the thumb was constrained only to the flexion-extension axis). T5 was cued to move 113 

both the thumb and index-middle groups from a center position to a random target within the 114 

active range of motion of the fingers. On the subsequent trial, the targets were placed back at the 115 

center. To successfully complete a trial, the fingers had to hold on the targets for 500 ms, and 10 116 

s were allowed to complete the trial (sample trajectories in Extended Data Fig. 3a; see Movie 1). 117 

To expand on the functionality demonstrated in NHP studies, task complexity was 118 

increased by introducing a 4D task with 2D thumb movements and 1D movements of the index-119 

middle group and the ring-small group (Fig. 1c). On each trial, 2 finger groups were randomly 120 

selected for new targets while the target for the third finger group remained in the same position 121 

as the previous trial, and movements of all fingers were continuously and simultaneously 122 

decoded and controlled. Typical target trajectories for this expanded 4D task are shown in Fig. 123 
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1c, and 2D trajectories of the thumb movements are illustrated in Fig. 1d. A video of this task is 124 

shown in Movie 2. 125 

The closed-loop decoding performance for the 2D and 4D decoder was compared using 126 

529 trials (3 days) for the 2D decoder and 524 trials (6 days) for the 4D decoder (Fig. 1e). For 127 

the 2D decoder, the mean acquisition time was 1.33 ± 0.03 s, the target acquisition rate was 88 ± 128 

6 targets/min, and 98.1% of trials were successfully completed. For the 4D decoder, the mean 129 

acquisition time was 1.98 ± 0.05 s, target acquisition rate was 64 ± 4 targets/min, and 98.7% of 130 

trials were successfully completed. The acquisition times for each trial (population data) is 131 

shown graphically in Extended Data Fig. 3b for the 2D decoder and Extended Data Fig. 3c for 132 

the 4D decoder. Typical finger distances per trial are shown graphically in Extended Data Fig. 4a 133 

for the 2D task and Extended Data Fig. 4b for the 4D task. 134 

 In comparison to the 2D decoder and task, the acquisition times were increased by 50% 135 

for the 4D decoder and task (P < 10-10, t = -11.00, df = 1051, CI = -774 to -540). However, after 136 

the participant grew more accustomed to the task (final 4 blocks), acquisition time for the 4D 137 

decoder dropped by an average of 0.4 s to 1.58 ± 0.06 s (a target acquisition rate of 76 ± 2 138 

targets/min), and 100% of trials were completed. To compare this work with the previous NHP 139 

2-finger task where throughput varied from 1.98 to 3.04 bps with a variety of decoding 140 

algorithms23,25, throughput for the current method was calculated as 2.64 ± 0.09 bps (see 141 

Methods for details). Table 1 summarizes statistics for the 4D decoder/task and 2D decoder/task.  142 

To graphically illustrate the degree of finger discrimination during closed-loop control, 143 

the 4D decoder was also run on a 4D task in which only 1 finger group was cued to move on 144 

each trial (1 finger group had a new target and the other 2 finger groups had the same target as 145 

the previous trial). During movement of the cued finger group, the mean velocity of the non-cued 146 
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finger groups was calculated during the ‘Go’ period of the trial. The movement of the non-cued 147 

fingers was substantially less than the movement of the cued finger (Fig. 1f), demonstrating that 148 

finger groups can be individuated to allow for dexterous finger tasks.  149 

To understand how simplifying the task complexity would affect the trade-off between 150 

acquisition time and target acquisition rate, the 4D decoder was compared for tasks with 1 and 2 151 

cued finger-group movements on each trial. For 1 cued finger (178 trials), the mean acquisition 152 

time was 1.37 ± 0.06 s and target acquisition rate was 45 ± 4 targets/min (see Movie 3), and for 2 153 

cued fingers (187 trials), the mean acquisition time was 1.66 ± 0.07 s and target acquisition rate 154 

was 74 ± 6 targets/min (see Extended Data Fig. 5a and Extended Data Table 1). Thus, cueing 1 155 

finger group led to shorter trial times (P = 0.0036, t = -2.93, df = 363, CI = -485.4831 to                   156 

-95.7223), and cueing 2 finger groups led to higher target acquisition rate (P = 0.0092, t = -3.78, 157 

df = 6, CI = -47.7206 to -10.1928).  158 

 159 

Dimensionality of the neural activity 160 

Intuitively, one would expect that as the dimensionality of decoded DOF increases, the 161 

dimensionality of the neural activity should also increase. To determine the relationship between 162 

the dimensionality of the neural activity and decoded DOF, the dimensionality of the neural data 163 

during 4D and 2D decoding was calculated using the metric defined by Willett et al.11, which 164 

uses the participation ratio to quantify dimensionality (see Methods). The average dimensionality 165 

of neural activity was 2.4 for the 2D decoder, 3.1 for the 4D decoder with 1 new target/trial, and 166 

7.5 for the 4D decoder with 2 new targets/trial (Fig. 2a). If the dimensionality of the neural 167 

activity varied linearly with the decoded DOF, the dimensionality of the 4D decoder would be 168 
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twice that of the 2D decoder, i.e., 2 � 2.4 � 4.8; however, dimensionality using the 4D decoder 169 

was found to be 7.5, 56% more than the expected value of 4.8 (P = 0.028, t = -2.77, df = 7, CI =  170 

-4.9901 to  -0.3908). Thus, the dimensionality of combined finger movements was greater than 171 

the sum of the individual components, implying that some neurons may encode both single 172 

movements and movement combinations. 173 

 174 

Effect of number of active DOF on decoding  175 

Even though there is increased dimensionality in neural activity when decoding more 176 

DOF, it is unclear whether decoding more DOF impacts the mapping of the neural activity when 177 

decoding a lower number of DOF. The neural representation of the DOF decoded in the 2D task 178 

(thumb and index-middle flexion/extension) could change during the 4D task, for example, if a 179 

different control strategy is required for the 4D compared to the 2D task – similar to how new 180 

control strategies can be developed to account for a perturbation in the mapping from neural 181 

activity to the DOF26. Alternatively, the original neural representation could be suppressed when 182 

tasked with decoding additional fingers, as is the case when decoding unilateral vs bilateral 183 

movements27. A third competing hypothesis is that the neural representation of finger movement 184 

in the 2D task is preserved in the 4D task, similar to preservation of neural representation 185 

between open-loop motor imagery and closed-loop control28.  186 

To explore these hypotheses, 2D and 4D decoders were trained and compared by testing 187 

on the 2 shared DOF (thumb flexion/extension and index-middle group flexion/extension) over 2 188 

days (662 trials), in alternating trials (see Fig. 2b, Extended Data Table 2). The mean acquisition 189 

time was 1.11 ± 0.05 s for the 2D decoder on the 2D task (N = 233), 1.73 ± 0.07 s for the 4D 190 

decoder on the 4D task (N = 284), and 1.21 ± 0.04 s for the 4D decoder on the 2D task (N = 191 
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329). A movie of the 4D decoder on the 2D task is shown in Movie 4. The trial-by-trial 192 

acquisition times for this comparison are given in Extended Data Fig. 5c. The 4D decoder 193 

performed much closer to the 2D decoder when restricted to the same 2D task (9.2% increased 194 

acquisition times, P = 0.10, t = -1.64, df = 560, CI = -224.3189 to 20.1014).  Thus, training a 195 

decoder on an expanded set of movements does not appear to substantially degrade decoding 196 

performance (summarized in Fig. 2b and Extended Data Table 2).  197 

 The mapping from neural activity to the original 2 DOF was compared for both 2D and 198 

4D decoders. To do this, the 4D decoder was used to predict the velocities decoded by the 2D 199 

decoder on the 2D task and vice versa. The predicted velocities from the 4D decoder were 200 

similar to those decoded in online blocks by the 2D decoder (Fig. 2c). To quantify this 201 

comparison, the normalized cross-correlation (CC) function was calculated between the decoded 202 

and predicted velocities during the 8 blocks (Fig. 2d). The results were separated based on 203 

whether the online decoded velocities were from the 4D or 2D decoders. The CC when the 4D 204 

algorithm predicted the 2D decoded velocities was 0.69 ± 0.02, and when the 2D algorithm 205 

predicted the 4D decoded velocities, the CC was 0.68 ± 0.02 (Fig. 2c). Thus, both the 2D and 4D 206 

decoding algorithms had similar mapping when reducing the dimensionality of the original input 207 

channels. 208 

 209 

Dependency of decoding accuracy on channel count  210 

Newer implantable BCI devices are expected to have more input channels than the device 211 

used in this study. To explore whether increasing the channel count could increase decoding 212 

accuracy, a vector-based, sample-by-sample signal-to-noise ratio (SNR) metric was formulated 213 

(Fig. 3A). In this formulation, the predicted/decoded finger velocities are compared with 214 
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idealized velocities inferred from intended finger movements. The component of the 215 

predicted/decoded velocities consistent with idealized velocities (i.e., the component parallel to 216 

the idealized vector of finger velocities) is considered the signal component, while the 217 

predicted/decoded velocities inconsistent (i.e., the component orthogonal to the idealized 218 

velocity vector) are considered noise. The ratio of the expected signal mean over the square root 219 

of the noise power was denoted as the directional SNR (dSNR). 220 

The value of dSNR was calculated during a “go” period of closed-loop trials (defined as 221 

200-700 ms from trial onset) of 2- and 3-finger decoding (Extended Data Table 4). On each day, 222 

linear regression was used to train a mapping (against the intended finger direction) to convert 223 

SBP to finger velocities (using 6-fold cross-validation). Predicted velocities (calculated from all 224 

192 input channels) grouped along the idealized, intended directions (Fig 3b).  225 

To determine the dependency dSNR on channel count, a linear mapping of SBP to 226 

velocities was trained for a given number of N channels, which was used to calculate dSNR 227 

(using 6-fold cross-validation and where dSNR was the average using 25 sets of N randomly-228 

selected channels; see Methods for details). For both the 2D and 4D tasks requiring movement of 229 

2 simultaneous finger groups, dSNR did not saturate with increasing numbers of input channels 230 

(Fig. 3c). Since the dSNR metric assumes that both finger groups are simultaneously moving 231 

toward their respective targets (as opposed to moving one at a time), a simpler 4D task that 232 

required only 1 cued finger movement/trial was also performed (Fig. 3c). Using the dSNR data 233 

for the highest 75% of channel counts of each curve, a log-log relationship between channel 234 

count and dSNR was empirically fit to a linear relationship. The empirical fit of the log-log 235 

relationship was strongly linear, with a coefficient of determination, R2, between 0.99-1.00 and a 236 

slope, m, of 0.34 for the 2D task moving 2 fingers, 0.38 for the 4D task moving 2 fingers, and 237 
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0.43 for the behaviorally simpler 4D task moving 1 finger. Given the high R2 value, the empirical 238 

relationship between the dSNR and channel count fit the relationship in Eq. 1, 239 

��	
 � � · 	��         Eq. 1 240 

where B is an arbitrary constant, m is the slope (varying 0.34-0.43), and NC is the channel count. 241 

The empirically determined growth (m = 0.34 to 0.43) could be less than the ideal of 
 � 0.5 242 

because of behavioral confounders or violations of noise assumptions (independent, identically 243 

distributed, i.i.d., gaussian noise; see Methods).  244 

   245 

Translation of a finger iBCI to virtual quadcopter control  246 

While an obvious clinical application of a finger iBCI is to restore fine motor control for 247 

a robotic arm8 or to reanimate the native limb14, a finger iBCI system could also be an intuitive 248 

approach to controlling multiple simultaneous digital endpoints, extending the functionality of 249 

2D cursor control10. Another application for multiple-DOF finger control is video gaming, aimed 250 

at enabling people with disabilities to participate in this activity with others. To this end, each 251 

finger movement was mapped to a DOF for control of a virtual quadcopter (Fig. 4a). Unlike a 252 

previous implementation of a flight simulator29, the finger positions were mapped directly to 253 

velocity control of the quadcopter and not transformed into “quadcopter space” during retraining. 254 

Mapping finger positions to velocity control could also allow a general-purpose control paradigm 255 

for a variety of games. The only task-specific adaptation was to apply a low-level velocity back 256 

to neutral when the fingers were within 10% (of the total range of motion) of the neutral position. 257 

This kept the fingers in the neutral position unless the participant deliberately moved them. The 258 

positions of the fingers were visible in the bottom left portion of the screen with annotations 259 
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indicating the neutral position of each finger and the cardinal directions for the thumb 260 

movements (Fig. 4b, top panel). 261 

 To demonstrate all the possible 4-DOF movements, an obstacle course was created (Fig. 262 

4b, bottom panel) where each course segment could demonstrate at least one of the movements. 263 

On a single day of testing, the participant controlled the quadcopter over the complete obstacle 264 

course on 12 blocks with an average block time of 222 s and a standard deviation of 45 s. An 265 

exemplary block, completed in 163 s, is shown in Movie 5 with the flight path depicted in Fig. 266 

4c. Since all fingers could be simultaneously decoded, multiple quadcopter movements could be 267 

combined with multiple finger movements, such as when the quadcopter moves forward and 268 

turns during the figure-8 segment of the obstacle course. Furthermore, since the finger positions 269 

lie along a continuum, a range of velocities can be provided for quadcopter control, which allows 270 

for high-velocity movements to cover large distances or low-velocity movements for fine 271 

adjustments.  272 

 While the obstacle course demonstrates 4-DOF control, the quadcopter was also tested in 273 

a less scripted, free-form task in which the participant was instructed to fly the quadcopter 274 

through randomly appearing rings (timeout every 20 s). This task illustrates reaction time, 275 

corrective maneuverability, and the ability to combine simultaneous DOF. After training the 276 

decoder, the participant was asked to fly through the rings. Over 10 min, he flew through 28 277 

rings (2.8 rings/min); an illustrative segment from this session is given in Movie 6. Importantly, 278 

performance was impacted not only by decoding accuracy but also largely by behavioral factors, 279 

as even able-bodied operators using a unimanual quadcopter control might find the task 280 

challenging. 281 

 282 
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Discussion 283 

Motor BCIs have the potential to restore function for people with severe motor deficits 284 

from a variety of neurological diseases and injuries. While considerable work has advanced 285 

reaching/grasping for robotic arms and pointing/clicking for digital cursors10,14-17, continuous 286 

control of finger movements in human participants – necessary for fine motor movements – has 287 

received much less attention. In this work, real-time, closed-loop, 4D dexterous decoding 288 

demonstrated control of 3 highly-individuated finger groups with 2D thumb movements and 289 

allowed positioning of fingers at randomly selected targets within 1.58 ± 0.06 s (76 ± 2 290 

targets/min) with peak performance reaching 1.30 ± 0.08 s (92 targets/min). This finger decoding 291 

BCI was mapped to control 3 digital effectors (with 1 effector moving in 2 dimensions) for high-292 

performance, 4-DOF control of a virtual quadcopter. Although decoding an additional 2 DOF led 293 

to a nonlinear increase in the dimensionality of neural activity, training a decoder for an 294 

expanded set of movements did not degrade performance when testing the decoder on a smaller 295 

subset of movements where the neural representation was largely preserved. Finally, decoding 296 

accuracy, as measured by dSNR, was found to increase with input channel count at a sublinear 297 

rate for this channel count regime.  298 

 Simultaneously decoding 3 individuated finger groups with 2D thumb movements 299 

doubled the number of decoded DOF and achieved a similar level of performance as previous 300 

NHP finger-decoding work22,23. Acquisition times for the 2D task averaged around 1.3 s, and 301 

98% trials completed and reached acquisition times as low as 0.84 s. This compares favorably to 302 

the 1.27 s acquisition time in NHPs, although the NHP task was a more complex random finger 303 

task.23 304 
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 While dexterous decoding of 3 individualized finger groups with 4 DOF is a step toward 305 

fine motor control, decoding more DOF may be needed. When transitioning from 2D to 4D 306 

decoding, a greater than 2-fold increased dimensionality of neural activity was observed. The 307 

nonlinear increase in dimensionality supports the hypothesis that neural encoding for 308 

combinations of finger movements is not an exact linear superposition of the individual 309 

components, and this nonlinearity has been hypothesized by others22,30. In a recent study 310 

examining how simultaneous finger movements are encoded30, the dimensionally-reduced neural 311 

activity (in vector space) was found to be similar in angle but reduced in amplitude when 312 

compared to the sum of the individual component movements.  313 

 It is becoming increasingly evident that multiple effectors and DOF may be represented 314 

within the same neural population in motor cortex18,27. We demonstrated that decoder 315 

performance did not substantially decline when using a higher-DOF decoder to decode a lower-316 

DOF closed-loop task, and the neural representation of finger movements appeared similar 317 

regardless of how many DOF could be actively controlled. How motor cortex represents 318 

movements of multiple effectors and limbs is an area of active investigation, with high-DOF 319 

representations emerging as a general principle27.  320 

Although motor cortex can represent both 4D and 2D movements, acquisition times on 321 

the 4D task were longer than acquisition times on the 2D task. Many factors could lead to a 322 

slower performance on the 4D task (such as the increased difficulty inherent in the task), and our 323 

participant reported that keeping fingers stationary on the targets was challenging. Decoding 324 

nonzero velocities when trying to hold a finger stationary (i.e., signal-independent noise) caused 325 

the decoded finger position to drift off target. Several nonlinear approaches have been developed 326 

that could help mitigate this issue23,31,32, such as using hidden Markov models to estimate 327 
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movement and stationary periods32. These approaches may be increasingly important with higher 328 

numbers of independently decoded effectors. 329 

We also introduced a surrogate for decoding accuracy, dSNR, and found that dSNR was 330 

not saturating at our current channel count of 192 channels. This suggests that BCI systems are 331 

likely to improve with higher channel count systems. Improved decoding accuracy could not 332 

only lead to improvement in current BCI applications (i.e., cursor control, robotic arms, and 333 

finger BCI systems) but also allow for expanded functionality and new, more sophisticated 334 

applications.  335 

The finger iBCI system developed in this work was used to control a high-performance 336 

virtual quadcopter. Compared with a state-of-the-art electroencephalographic (EEG)-controlled 337 

quadcopter that navigated through 3.1 rings in 4 minutes33, our system allowed navigation 338 

through or around 18 rings – at peak performance – in less than 3 minutes on a similar flight 339 

path, a more than sixfold increase in performance. The system was also capable of spontaneous 340 

free-form flight through randomly appearing rings. This level of performance demonstrates the 341 

feasibility using iBCI systems to control video games, virtual reality, or other digital interfaces. 342 

Importantly, these systems may address the unmet needs of people with paralysis for peer 343 

support, leisure activities, and sporting activities34, and may also allow more functionality 344 

compared to other assistive technologies such as mouth styluses or eye tracking software.  345 

 Although high performance was achieved using this decoding system, potential 346 

improvements to increase the likelihood of clinical adoption include reducing the calibration 347 

times and increasing the robustness to neural instabilities. Several approaches could be applied to 348 

this decoding system, including rapid decoder calibration35, training decoders using a long 349 

history of previously recorded data36, adaptive decoders using task knowledge37,38, and 350 
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algorithms that perform dimensionality reduction to a stable manifold followed by 351 

realignment39,40.  352 

 In summary, we developed a high-performance finger iBCI system that could be mapped 353 

to multiple digital endpoints to allow people with paralysis to interact with others socially 354 

through video game play, virtual reality, or other digital connections.  355 
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 392 

Methods 393 

Clinical trial and participant  394 

The participant, T5, was enrolled as a participant in the BrainGate2 Neural Interface 395 

System clinical trial (NCT00912041, registered June 3, 2009) with an IDE from the FDA (IDE 396 
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#G090003). This study was approved by the Institutional Review Board (IRB) of Stanford 397 

University (protocol #20804) and the Mass General Brigham IRB (protocol #2009P000505). All 398 

research was performed while following all relevant regulations. 399 

The participant, T5, was a 69-year-old right-handed man with C4 AIS C spinal cord 400 

injury. In 2016, 2 96-channel microelectrode arrays (Neuroport arrays with 1.5-mm electrode 401 

length; Blackrock Microsystems, Salt Lake City, UT) were placed in the anatomically identified 402 

hand ‘knob’ area of the left precentral gyrus. Detailed array locations are depicted on an MRI-403 

reconstructed graphic in the Extended Data Fig. 1a (from Deo et al.31 in Extended Data Fig. 1a). 404 

Below the level of injury, T5 had very low amplitude movements that consisted primarily of 405 

muscle twitching. Tuning of the microelectrode arrays to these finger movements was confirmed 406 

(Extended Data Fig. 1b-c).  407 

 408 

Participant sessions 409 

A total of 9 sessions of 2-5 h/session between March and August of 2023 were used to 410 

demonstrate online, closed-loop finger decoding and quadcopter control. The participant laid flat 411 

in bed with the monitor positioned above and slightly to his left so that he could keep his neck in 412 

the neutral position. Data were collected in roughly 1–10-min blocks. In between blocks, T5 was 413 

encouraged to rest as desired. Descriptions of the data collection sessions are shown in Extended 414 

Data Table 3. 415 

 416 

Finger tasks 417 

 A virtual finger display was developed in Unity (2021.3.9f1) that allows control of virtual 418 

fingers. The thumb was programmed to allow movement in 2 dimensions (flexion/extension and 419 
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abduction/adduction), the index-middle fingers were grouped to move together within a 1-420 

dimensional flexion/extension arc, and the ring-small fingers were grouped together to move in a 421 

1-dimensional flexion/extension arc. By supplying a value between 0 and 1 for each of the 4 422 

DOF, the finger position could be placed at continuously varying positions between full flexion 423 

and extension or abduction and adduction. Finger position values were set to follow pre-424 

programmed trajectories during the open-loop blocks and were specified by the decoding 425 

algorithm during the closed-loop blocks.  426 

 427 

Open-loop finger task  428 

Center-out-and-back trials were paired together. On the “center-out” trials, one of the 3 429 

finger groups was randomly chosen (or 2 finger groups when training the 2D decoder) to move 430 

from the neutral position to either full flexion or full extension in 2 s and then hold for 1 s. The 431 

participant was asked to attempt movement of his fingers in sync with the virtual fingers 432 

following a smoothly varying trajectory. On the “back” trial, the previously flexed or extended 433 

finger group would move back toward the neutral position and then hold for 1 s. Rest trials 434 

without finger movement were also included. To allow comparison with previous and future 435 

finger work19,20,30, finger movements were also classified using neural activity over long time 436 

windows typically used in classification (2 s) and short time windows typically used for closed-437 

loop decoding (150 ms; Extended Data Fig. 1). 438 

 439 

Closed-loop 2D finger tasks 440 

 The closed-loop 2-finger task was used for both training and testing the decoding 441 

algorithm. In this task, the participant controlled 2 simultaneous finger groups within a 1-442 
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dimensional arc: the thumb and index-middle group. On paired trials, the participant was cued to 443 

simultaneously move the finger groups from a center “neutral” position toward random targets 444 

within the active range of motion. Once reaching the target, all fingers were required to be within 445 

the target for 500 ms for the trial to be successfully completed. On the subsequent trial, targets 446 

were placed back at the center. The target width was 20% of the range of motion, and the trial 447 

timeout time was 10 s. 448 

 449 

Closed-loop 4D finger tasks 450 

 There were several 4D finger tasks used for training and testing the decoding algorithm. 451 

The most frequently tested 4D task, denoted 4T, allowed the participant to simultaneously 452 

control 3 finger groups: thumb with 2D movements of flexion/extension and 453 

abduction/adduction, the index-middle group with 1D movements of flexion/extension, and the 454 

ring-small group with 1D movements in flexion/extension. In the first of paired trials, 2 new 455 

random targets would appear for 2 randomly selected finger groups, and the participant would be 456 

cued to move the fingers to the targets while keeping the third finger group stationary within its 457 

original central position target. The trial was completed successfully, if all 3 finger groups were 458 

within their respective targets for 500 ms before a 10 s trial timeout. On the second of 2 paired 459 

trials, all targets would return to the center position, prompting the 2 moving fingers from the 460 

previous trial to return to center targets. A similar task (Extended Data Fig. 5a), had only 1 new 461 

target/trial. Finally, when training the quadcopter, a closed-loop random finger task was used, 462 

where 2 new random targets per trial appeared in the active range of motion for the finger 463 

groups, i.e., there were no paired center-out-back trials, and each trial was independent of the 464 

previous. 465 
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 The most used task for training, denoted TTRAIN, was a 4-DOF task similar to 4T above 466 

with several key differences so that intended decoder movements could be accurately inferred 467 

from a poorly/partially trained decoder. First, at the end of each trial, the positions of the fingers 468 

would return to the center position, which prevented fingers from becoming permanently stuck in 469 

flexion or extension. When 2 new targets were presented on a trial, the finger without a new 470 

target was artificially held fixed in the center position so that the participant could focus on only 471 

2 finger groups per trial. The required hold time to successfully complete a trial was lengthened 472 

to 1.5 s to provide more training data when trying to steady the fingers, and trial timeout was 473 

reduced to 5 s so that the participant would not decrease his effort at the end of a longer trial. 474 

Finally, every other trial held the targets in the center position and the virtual fingers were fixed 475 

in place to provide an abundant amount of data where the participant was trying to remain 476 

stationary on the targets.  477 

 478 

Quadcopter tasks 479 

 To demonstrate the utility of closed-loop, online dexterous finger decoding in an applied 480 

task, finger control was mapped to 4D control of a virtual quadcopter. Specifically, the finger 481 

positions were mapped to a velocity-control paradigm, as shown in Fig. 4a. A physics-based 482 

quadcopter environment used the Microsoft AirSim plugin41 as a quadcopter simulator in Unity 483 

(2019.3.12f1). Two main tasks were developed to test this control: the quadcopter obstacle 484 

course that demonstrates control with all 4 DOF and the random ring acquisition task in which 485 

the participant demonstrates spontaneous control using multiple DOF at the same time. The 486 

participant was given time to become comfortable with the control paradigm in some preliminary 487 

sessions and was then evaluated on the obstacle course and random ring task for 1 day each.  488 
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 489 

Quadcopter obstacle course 490 

A virtual basketball court was created in Unity with two large rings placed along the 491 

long-axis of the basketball court (see Fig. 4b). To demonstrate control of all 4 DOF, a path 492 

through and around the rings was designed (Fig. 4b). The participant was instructed to complete 493 

all segments of the obstacle course as quickly and accurately as possible, but no penalty was 494 

assessed for not staying exactly on course. During the day, he completed 12 blocks, and the 495 

decoder was retrained periodically to optimize performance. 496 

 497 

Random ring acquisition 498 

On 1 day of testing, only 1 ring was displayed, which was randomly generated both in its 499 

location in space and orientation, and the participant navigated the quadcopter through these 500 

random rings. The rate of ring acquisition during the first 10 min was calculated, and a movie of 501 

a representative time segment is included.  502 

 503 

BCI rig and front-end signal processing 504 

The BCI rig was set up in 3 distinct configurations as our lab transitioned from an older 505 

analog setup to the newer digital setup. In the first setup used until 7/10/2023, 2 patient cables 506 

were connected to the transcutaneous pedestals, which were routed to the Neural Signal Front 507 

End Amplifier (Blackrock Neurotech, Salt Lake City, Utah) where the raw voltage was bandpass 508 

filtered (0.3 Hz first-order high-pass and 7.5 kHz third-order low-pass), sampled at 30 kHz with 509 

250 nV resolution, converted to an optical signal, and then sent to the Neural Signal Processor42. 510 

From 7/26/2023 and later, 2 Neuroplex E headstages were connected to 2 transcutaneous 511 
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pedestals, and the signal was analog filtered and sampled at the headstage and then sent to the 512 

digital hub via a micro-HDMI cable. At the digital hub, the signal was converted to an optical 513 

signal transmitted via optical cable to the Neural Signal Processor. In the final mixed 514 

configuration, used between 7/12 and 7/24/2023, the setup using the analog patient cable was 515 

connected to the anterior pedestal, and a Neuroplex E headstage with its subsequent 516 

configuration was connected to the posterior pedestal.  517 

The Neural Signal Processor sends the digital signal to a SuperLogics machine running 518 

Simulink Real-Time (v2019, Mathworks, Natick, MA). For most sessions, common average 519 

referencing (CAR) was used to reduce the electrical noise on the input channels. However, 520 

during both quadcopter sessions (sessions 8 and 9), CAR was switched to linear regression 521 

referencing to predict a reference from the combined input channels that is subtracted from each 522 

input channel43. The signals then passed through a 250-Hz digital high-pass filter. The data were 523 

binned into 50-ms windows. The sum of the squared magnitude was calculated for each window. 524 

This signal was denoted as spike-band power (SBP). Every 50 ms, UDP packets of neural 525 

features are communicated to a Linux computer running Ubuntu with Python (v3.7.11), PyTorch 526 

(v1.12.1, https://pytorch.org/), and Redis (v7.02), where the neural features pass into the 527 

decoding algorithm. The entire system was interfaced with an additional Windows computer 528 

running Matlab (v2019, Mathworks, Natick, MA) that was interfaced with the system to stop and 529 

start experimental runs during sessions. 530 

 531 

Decoding algorithm  532 

The decoding algorithm presented by Willsey et al.23 was adapted for this work. The 533 

algorithm is a shallow-layer feed-forward neural network with an initial time-feature learning 534 
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layer implemented as a scalar product of historical time bins and learned weights. A rectified 535 

linear unit (ReLU) was used as the non-linearity after the convolutional layer and each linear 536 

layer except for the last linear layer. The input YIN was an EN x 3 input matrix, where EN is the 537 

number of electrodes (192) and 3 represents the 3 most recent 50-ms bins. The time feature 538 

learning layer converts 3 50-ms bins into 16 learned features using weights that are shared across 539 

all input channels. The output was flattened and then passed through 4 fully connected layers. 540 

The intermediate outputs were highly regularized with batch normalization (batchnorm)44 and 541 

50% drop out. The output variable, ��, represents an array of decoded finger velocities, that if 542 

ideally trained, would be normalized with zero mean with unit variance. However, an empirical 543 

mean value and standard deviation were subsequently calculated from the training data set, 544 

which were used to normalize ��, and then an empirically-tuned gain was applied to the decoded 545 

finger velocities. 546 

In a change from Willsey et al.23, to reduce the ability of the neural network to produce 547 

velocities with non-zero means, the final linear layer was changed to disallow an affine output 548 

and the final batchnorm layer was not allowed to learn a bias. Furthermore, during training and 549 

testing, the final batchnorm was not allowed to apply a mean correction, as only a variance 550 

correction was allowed. The purpose of these changes was to penalize the preceding algorithmic 551 

blocks during training if the decoded signal had a non-zero mean.  552 

 553 

Closed-loop decoding software  554 

The SBP was imported to a script that calculated �� from the input data (3 time bins, 192 555 

channels). The signal �� was normalized using the values calculated during training and the 556 
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empirically tuned gain was also applied. No smoothing was applied. The positions of the fingers 557 

were updated at each time step using the velocities. 558 

 When the positions of the virtual fingers were used to control the quadcopter, “gravity” 559 

was applied to the fingers when the fingers were near the neutral position so that the fingers did 560 

not appear to jitter when the intention was to hold them steady. Specifically, when the fingers 561 

were within 10% of the range of motion of the neutral position, a position-independent, constant, 562 

low-amplitude value was added to the decoded velocity of the finger to bias the velocity toward 563 

the neutral position. Decoded velocities were scaled to a maximum of ±10 m/s and ±90 deg/s for 564 

linear and rotational velocities, and each DOF was tuned empirically with gain values equal to 565 

0.6 for thumb flexion/extension, 0.8 for thumb abduction/adduction, 0.4 for index-middle 566 

flexion/extension, and 0.6 for ring-small flexion/extension.   567 

 568 

Offline algorithm training  569 

The algorithm was trained on a combination of open- and closed-loop trials. For each 570 

day, the algorithm was trained on 2 blocks of 100 open-loop trials. The SBP data were organized 571 

into batches of 64x256x3 (64 randomly selected time steps, 256 input channels, 3 previous time 572 

bins adjacent in time to the current time step). The velocities of the virtual fingers during the 573 

open-loop block were normalized by the standard deviation of the velocity and then multiplied 574 

by 0.2 (referred to as stretchFactor), as a reduced amplitude of open-loop finger velocities 575 

was previously observed to yield a better offline fit23. Thus, the finger velocities used for training 576 

were (in pseudocode):  577 

YTrain = 0.2*YRAW/torch.std(YRAW,axis=0)     Eq.2 578 

where YRAW was an array of d finger velocities for N training samples (	 � �). 579 
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 The algorithm (Extended Data Fig. 2) was initialized using the Kaiming initialization 580 

method45. The neural network minimized the mean-squared error (torch.nn.MSELoss) between 581 

the actual finger velocities during open-loop training and the algorithm output using Adam 582 

optimization algorithm46 (torch.optim.Adam). The optimizer was used with a learning rate of  583 

10-4 and weight decay of 10-2 (parameters: lr=1e-4, weight_decay=1e-2), and the algorithm was 584 

trained over 10 epochs.  585 

After training the algorithm, a mean offset value, µoffset, was calculated (Eqs. 3 and 4) to 586 

give the output of the neural network algorithm the same mean as the unnormalized training data. 587 

vhat = model.forward(XTRAIN)       Eq. 3 588 

µoffset= np.mean(vhat,axis=0) - np.mean(YRAW,axis=0)   Eq. 4 589 

The variable vhat is the (	 � �) output tensor after applying the trained neural network algorithm 590 

(model), XTRAIN is a 	 � �� � 3 tensor array for the N training time steps, EN input channels, 591 

and 3 preceding time steps to the current time step. The variable vhat was converted to a numpy 592 

array and input to Eq. 3, and YRAW was defined in Eq. 2. A gain for the algorithm output, G, was 593 

calculated to normalize the standard deviation of the algorithm output and further reduce the 594 

output amplitude by a factor of 3 (which was empirically determined): 595 

 G = 1/(3*np.std(vhat,0))       Eq. 5 596 

Thus, when running the algorithm for online, closed-loop decoding, the output for each time step 597 

was adjusted according to Eq. 6: 598 

 ����� � ���� � 1� � 0.05 · � · ������	����� � !�

���"    Eq. 6 599 

where PF[n] denotes the position of d finger groups at time step n. 600 

 601 

ReFIT training 602 
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After the offline algorithm training, the online, closed-loop sessions were performed. 603 

After a closed-loop session, the adapted recalibrated feedback intention-trained (ReFIT) 604 

algorithm23,47 was used to update the parameters of the neural network. Similar to above, SBP 605 

data were organized into 64x256x3 batches, with the 64 time steps randomly selected. The 606 

corresponding finger velocities used for training were assigned a value equal to the decoded 607 

velocity when the velocity is pointed toward the target, and the sign is inverted when the velocity 608 

is directed away from the target (Eq. 7): 609 

YREFIT = torch.sign(PT - PF)*torch.sign(YRAW)*YRAW    Eq. 7 610 

where PT is the position of the target, PF is the position of the fingers, and YRAW was an array of d 611 

finger velocities for N training samples (	 � �). Similar to offline training, the velocities were 612 

then scaled by the standard deviation and a stretchFactor of 1.3 (promoting higher 613 

velocities toward the target), except when the finger positions lie within the target when 614 

stretchFactor divides the value of YREFIT (promoting lower velocities). These steps were 615 

implemented by executing the 2 consecutive lines of pseudocode given in Eqs. 8-9: 616 

 YTrain = 1.3*YRAW/torch.std(YREFIT,axis=0)     Eq. 8 617 

  YTrain[PT-PF < TS/2] = YTrain[PT-PF < TS/2]/1.3/1.3   Eq. 9  618 

Of note, dividing twice by 1.3 in Eq. 9 is required to undo the 1.3 multiplication factor in Eq. 619 

8. Starting with the same parameters for the neural network algorithm used during the online 620 

session, the Adam optimization algorithm (lr=1e-4, weight_decay=1e-2) was applied and trained 621 

over 500 additional iterations. A new value for µoffset was calculated according to Eq. 8 using 622 

np.median instead of np.mean, and G was calculated as before in Eq. 5. 623 

µoffset= np.median(vhat,0) - np.median(YREFIT,0)    Eq. 10 624 

When running the algorithm online, the finger positions were again updated according to Eq. 6.  625 
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 626 

Training protocols for the 4D decoder 627 

After the algorithm parameters were trained from the open-loop session, closed-loop 628 

control using TTRAIN, which was easier to control with a suboptimal decoder, was used until 629 

approximately 80% of trials were completed. Then the 3-finger task, 4T, was used for 50 630 

additional trials. After each closed-loop session, the algorithm parameters were updated 631 

according to the above section (ReFIT training).  632 

As a control to understand how neural instabilities48 could affect decoding performance, 633 

the stability of the 4D decoder was evaluated during 2 research sessions by training an initial 634 

decoder, fixing the parameters, and using this fixed decoder on consecutive blocks until trials 635 

could not be reliably completed. This occurred after 20 minutes (5 blocks) on the first day and 53 636 

minutes (11 blocks) on the second. On the first day, the decoder was re-trained to demonstrate 637 

recovery of performance with re-training (Extended Data Fig. 5b).   638 

On occasion the decoder was trained but the parameters required updating either to 639 

improve performance from an instability or for a fair comparison with another decoder. When 640 

this was required, a combination of TTRAIN and 4T were used. The training of each decoder used 641 

in closed-loop sessions is described in Extended Data Table 4.  642 

 643 

Training protocols for the 2D decoder 644 

 The 2D finger decoder was trained with open-loop sessions first and then with closed-645 

loop sessions, like the 4D decoder. Unlike the 4D decoder, the 2-finger task for the 2D decoder 646 

was the only task performed. Furthermore, on some occasions, the 2D decoder was trained until 647 

100% of trials were completed successfully, and on other occasions training was continued even 648 
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after 100% of trials were completed. The training of these decoders is also described in Extended 649 

Data Table 4. 650 

 651 

Online performance metrics 652 

 Various metrics were calculated to characterize online performance. Trials in which 653 

fingers started within a “new” target were excluded from the analysis. Performance metrics were 654 

only calculated from successful trials. The acquisition time was defined as the time from the start 655 

of the trial to when the fingers had successfully held on each of the targets for the required hold 656 

time of 500 ms subtracted by 500 ms. The time to target was defined as the time from the start of 657 

the trial to when all fingers reached the target (and did not require all fingers to be on the target 658 

simultaneously). The orbiting time was the acquisition time subtracted by the time to target. 659 

Targets per minute was the number of new targets per trial divided by the mean acquisition time 660 

(excluding hold time). Successfully completing the tasks required completing the task within 10 661 

s (i.e., acquisition time of 9.5 s). For completeness, the path length efficiency was calculated, 662 

although a metric perhaps more suitable for single-effector d-dimension control. Path length for 663 

each trial was calculated according to Eq. 11: 664 

 #
 � ���������������
∑ ����������������
���

        Eq. 11 665 

where $·$ denotes the L2 norm, Lp is the path length efficiency for that trial, N+1 is the elapsed 666 

samples until all fingers are on the target, and PF is a vector of the positions of all d fingers. 667 

Thus, Lp close to unity implies the fingers traveled a direct path to the targets, and a value close 668 

to zero implies a circuitous path to the target.  Finally, when calculating the throughput in bits 669 

per second (bps), Tbps, the same adaption of Fitt’s law for fingers developed in Willsey et al.23 670 

was used and is repeated in Eq. 12: 671 
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 %��� � 	�������∑ 	���� ������	
�
�


 
��
�        Eq. 12 672 

where k indexes through all 3 finger groups, Dk is the distance of the k-th to the target, S is the 673 

circular target radius, and tacq is the target acquisition time. Tbps was then averaged over all trials. 674 

For this calculation, the only trials included are those for which all fingers begin a distance from 675 

the center of the target that is greater than twice the target radius. In an adaption to the approach 676 

in Willsey et al.,23 log2(3) bits was added on each trial to account for the information needed to 677 

convey which finger is stationary. An alternative approach would be to not add these additional 678 

bits and allow the Tbps to decrease with the understanding that the total corpus of targets is 679 

higher.  680 

 To illustrate how decoded finger movements could be discriminated, the mean decoded 681 

velocity was calculated during single-finger movements. This analysis is shown in Fig. 1f. Four 682 

blocks of the 4D task with 1 new target/tr (Extended Data Fig. 5a) were used for this analysis. 683 

On each trial, the mean velocity of all fingers was calculated during the ‘Go’ period (200-700 ms 684 

after trial start) and normalized by the mean value of the finger group with the highest mean 685 

value (which was the cued finger). 686 

 687 

Offline analyses 688 

The offline analyses were conducted in Python (v3.9.12) using a Jupyter notebook 689 

(https://jupyter.org/) and in Matlab (v2022a, Mathworks, Natick, MA). The following python 690 

packages were used: scipy (v1.7.3), torch (v1.12.0), torchvision (v0.13.0), numpy (v1.21.5), 691 

matplotlib (v3.5.3), PIL (v9.0.1), sklearn (v1.0.2). 692 

 693 

Statistical analysis 694 
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 All statistical comparisons used a two-sample, two-tailed t-test in Matlab using the 695 

function: ttest2.m. 696 

 697 

Confusion matrices 698 

 The fingers were classified during open-loop trials to relate the tuning of these arrays to 699 

other reports focusing on classification19,20,30. Classification over a 2-s movement window was 700 

used to illustrate performance over typical windows used for classification and over a shorter 701 

150-ms window similar to windows used for closed-loop decoding. The open-loop data from a 702 

typical day, session 6, were used for this analysis (200 trials and 192 input channels of SBP). 703 

Both a 10-fold cross-validation and a linear discriminant analysis classifier that assumes a shared 704 

diagonal covariance matrix across conditions were used. The analysis was performed in Matlab 705 

2022a using the functions: fitcdiscr.m (with 'DiscrimType' as 'diaglinear'), crossval.m, 706 

kfoldLoss.m, and kfoldPredict.m. 707 

 708 

Dimensionality 709 

While there are numerous approaches to calculate dimensionality49, the participation ratio 710 

was used, which is roughly equivalent to the dimensions needed to capture 80% of the 711 

variance11,50. The ‘Go’ period during the trial, 200-700 ms after a new target appeared, was 712 

averaged for each condition. A � � 1 condition vector, CDOF, was defined according to whether 713 

each respective DOF at the beginning of the trial needed to flex/abduct (+1), extend/adduct (-1), 714 

or remain stationary (0) to reach the targets. Thus, for 4D closed-loop decoding during the 4D 715 

finger task,  &!"� � �1,1,0,�1�# if the thumb needed to flex and abduct to reach the target, the 716 

index-middle group needed to remain on the target, and the ring-small group needed to extend. 717 
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The SBP for each electrode during the ‘Go’ period was z-scored and smoothed using 718 

scipy.ndimage.gaussian_filter1d with a sigma of 3 50-ms time bins. The data were then 719 

organized into a matrix, D4d, that was �� � �(	� , where EN is the integer 192 for the number of 720 

input channels, c is the integer 20 for the number of conditions in the 4D task with 2 new 721 

targets/trial, and NM is the integer 10 for the number of 50-ms bins in the ‘Go’ period. Similar 722 

data matrices were calculated for the 2D task, D2d, and for the 4D task with 1 target/trial, D4d1t. 723 

The eigenvalues, ui, were then calculated for the cross-validated covariance matrix, )�)$# 724 

(where Dp and Dq were data matrices from 2 folds of the data). The participation ratio was 725 

calculated (Eq. 12). 726 

 �
 � �∑ %�� ��
∑ %���

          Eq. 12 727 

 728 

Analysis of the 2D and 4D decoders on the 2D task 729 

 To determine whether mapping changes when mapping neural activity to a 4D vs 2D 730 

task, decoders were trained on the 4D and 2D tasks as explained above and both of these 731 

decoders were used for the 2D task (thumb flexion/extension and index-middle 732 

flexion/extension). To compare these mappings, the 2D decoding algorithm was used to predict 733 

the velocities when using the 4D decoder in closed-loop trials, and the 4D algorithm was used to 734 

predict the closed-loop decoded velocities of the 2D algorithm. Fig. 2c illustrates velocities 735 

decoded online by the 2D decoder and predicted by the 4D decoder. To quantify the similarity 736 

between these signals, the normalized cross correlation, rn, function was calculated as defined 737 

below in Eq. 13, 738 

 *& � ∑ '(��&�·'(��&��

*∑ '(��&�·'(��&�� *∑ '(��&�·'(��&��
       Eq. 13 739 
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where +,! is the velocity decoded during the online block and +,
  is the velocity predicted offline. 740 

The value for rn was then averaged for both DOF. For paired blocks with the 4D and 2D 741 

decoders, the normalized cross correlation function was calculated, and these data are displayed 742 

in Fig. 2d. 743 

 744 

Directional signal-to-noise ratio 745 

 While SNR metrics have been proposed for offline analyses, a vector-based SNR51 was 746 

adapted specifically for closed-loop decoding, denoted directional SNR (dSNR). In this 747 

formulation, ���� � �+����, ++���,-+�����# is a normalized target vector, $����$ � 1, for d 748 

DOF with positive amplitudes for flexion/abduction and negative amplitudes for 749 

extension/abduction. Thus, in the 2D task, v[n], at a given 50-ms time bin, n, is represented 750 

graphically in Fig. 3a, where, as an example, � � �0.707,0.707�# is a 2-dimensional vector 751 

indicating that both fingers require flexion to reach the target. The array of d decoded/predicted 752 

finger velocities, ����� � �+,����, +,+���,-+,�����# , is assumed to be a time-varying, d-753 

dimensional vector. This vector can be decomposed into orthogonal components, including a 754 

signal component, ��,���, that is the projection of ����� along ����, and a noise component, 755 

��-���, orthogonal to ����, as graphically depicted in Fig. 3a for the 2D task. Using this 756 

formulation, dSNR is defined in Eq. 14: 757 

 ��	
 � ��$+,.$�
/��$+,&$+�0 .       Eq. 14 758 

The value of dSNR was empirically calculated from closed-loop blocks of 2 and 3 759 

decoded fingers (Extended Data Table 4) during the ‘Go’ period of the trials (200-700 ms after a 760 

new target was presented) before fingers were on their respective targets. To empirically 761 

calculate dSNR, the SBP data are divided into 6 folds: 5 training folds and 1 testing fold. To 762 
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regularize the number of regressors (i.e., 192 channels) for linear regression, PCA decomposition 763 

was used (sklearn.decomposition.PCA) on the n 50-ms time bins by EN = 192 input channels 764 

(� � 192) of SBP training data, XTRAIN, to reduce the number of dimensions to an � � 20 data 765 

set, 23#/01�. Using LinearRegression from sklearn.linear_model toolbox, a linear mapping is 766 

trained to map 23#/01�  to the � � � training velocities, VTRAIN., (i.e., v in Fig. 3a). These 767 

commands are represented with the pseudocode in Eqs. 15-18. 768 

pca = PCA(n_components = 20)      Eq. 15 769 

pca.fit(XTRAIN)          Eq. 16 770 

�������= pca.transform(XTRAIN)        Eq. 17 771 

reg1 = LinearRegression().fit(XTRAIN, VTRAIN)    Eq. 18 772 

Finally, the predicted velocities, 45#2.# , of the test data, 23#2.#  were determined from Eq. 19:  773 

 ������ = reg1.predict(������)       Eq. 19 774 

The predicted finger velocities, 45#2.# , for the 2D decoder are shown in Fig. 3b. The magnitude 775 

of the signal component of the predicted velocity, $��,$ as in Fig 3a, was calculated from the dot 776 

product of 45#2.#  and 4#2.#  according to Eq. 20: 777 

����� = np.sum(������*�����,axis=1)      Eq. 20 778 

where $���$ is length-n array for n time steps. To compute the noise component, $��&$, θ, the 779 

angle between ��� and v in Fig. 3a, and $��&$ were calculated according to Eqs. 21 and 22. 780 

Finally, in Eq. 23, the value of dSNR was calculated. 781 

θ = np.arccos(�����/np.sqrt(np.sum(������**2,axis=1)))  Eq. 21 782 

���	� = np.sin(θ)*np.sqrt(np.sum(������**2,axis=1))   Eq. 22 783 

 dSNR = np.mean(�����)/np.sqrt(np.var(���	�)+np.mean(���	�)**2) Eq. 23  784 
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The value of dSNR was then averaged over all 6 folds. The data in 45#2.#  for all folds and all 785 

days are the population data, shown for the 2D decoder in Fig. 3b. 786 

 To calculate dSNR as a function of channel count, dSNR was calculated for an array of 787 

input channels, NC[k], indexed by k and ranging from 5 to the full EN = 192 at a step size of 788 

�� 20⁄ . At each step, the value of dSNR was averaged over 25 iterations where at each iteration, 789 

NC[k] random input channels were selected. 790 

 The empirical fit for the log of dSNR averaged over all days and log of NC was calculated 791 

using data from the highest 75% of values of NC and using numpy.linalg.lstsq for the empirical 792 

fit and sklearn.metrics.r2_score for the coefficient of determination, R2. 793 

 794 

Theoretical SNR dependency on channel count 795 

 For a theoretical comparison for the dependency of dSNR on channel count, a 1D signal, 796 

S, measured independently on N channels was defined according to the form: 797 

  7 � �
�∑ �9� � :� �         Eq. 24 798 

where sk is the signal and ηk is i.i.d. Gaussian samples from the distribution 	�0, ; . Assuming 799 

for simplicity and without loss of generality that sk are equal, then Eq. 24 simplifies to: 800 

 7 � 9 � �
�∑ :��         Eq. 25 801 

Thus, the value of the expected signal in Eq. 14 equals simply s. The expected square of the 802 

noise, ��<+�, can be simplified to: 803 

��<+� � � =>�
�∑ :�� ?+@ � �

�� ���∑ :��  +� � �
��∑ ��:�+��   Eq. 26 804 

where the last equality follows since the terms ηk are independent. Finally,  805 

 ��<+� � �
��∑ ��:�+�� � �

��	;+ � 3�
� .     Eq. 27 806 
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Thus, the SNR in this simplified case is: 807 

 �	
 � ��7�
/��<+�0 � √	 · 9 ;⁄ .      Eq. 28 808 

Thus, for our definition of SNR as defined in Eq. 14, the SNR increases proportionally with √	 809 

in this theoretical, simplified 1D formulation.  810 

  811 
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Tables 812 

Table 1: Performance metrics for 2D and 4D finger decoding 813 

 814 

Statistical data are reported as mean ± standard error of the mean. 815 

  816 

 2D Decoder 4D Decoder 4D Decoder 
(last 4 runs) 

Number of trials 529 524 192 
Number of days 3 6 3 
Acquisition time (ms) 1330 ± 30 1980 ± 50 1580 ± 60 
Time to target (ms) 1110 ± 30 1380 ± 30 1200 ± 40 
Orbiting time (ms) 220 ± 20 600 ± 40 380 ± 50 
Targets per minute 88 ± 6 64 ± 4 76 ± 2 
Percent completed 98.1% 98.7% 100% 
Path length 0.718 ± 0.007 0.524 ± 0.007 0.580 ± 0.010 
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Extended Data Table 1: Performance metrics for 4D finger decoding with 1 and 2 new targets 817 

per trial 818 

 819 

 1 New target/trial 2 New targets/trial 
Number of trials 178 187 
Number of days 1 1 
Acquisition time (ms) 1380 ± 70 1660 ± 70 
Time to target (ms) 890 ± 50 1260 ± 50 
Orbiting time (ms) 480 ± 60 400 ± 50 
Targets per minute 45 ± 6 74 ± 6 
Percent completed 100% 100% 
Path length 0.674 ± 0.014 0.607 ± 0.012 
 820 

Statistical data are reported as mean ± standard error of the mean.  821 

   822 
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Extended Data Table 2: Performance metrics for finger decoding using 4D decoder on 2D task 823 

 824 

Statistical data are reported as mean ± standard error of the mean. 825 

826 

 2D Decoder, 
2D task 

4D Decoder, 
4D task 

4D Decoder, 
2D task 

Number of trials 233 284 329 
Number of days 3 3 3 
Acquisition time (ms) 1110 ± 50 1730 ± 70 1207 ± 40 
Time to target (ms) 1040 ± 40 1210 ± 40 1060 ± 30 
Orbiting time (ms) 60 ± 10 530 ± 50 150 ± 20 
Targets per minute 111 ± 8 70 ± 3 101 ± 2 
Percent completed 99.1% 99.6% 100% 
Path length 0.782 ± 0.010 0.558 ± 0.010 0.678 ± 0.009 
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Extended Data Table 3: Data sessions 827 

 828 

Session 
no. 

Date (post-implant 
day) Description 

1 3/9/2023 (2395) Closed-loop finger decoding 
2 3/14/2023 (2400) Closed-loop finger decoding 
3 3/16/2023 (2402) Closed-loop finger decoding 
4 3/21/2023 (2407) Closed-loop finger decoding 
5 3/23/2023 (2409) Closed-loop finger decoding 
6 4/6/2023 (2423) Closed-loop finger decoding 
7 4/13/2023 (2430) Closed-loop finger decoding 
8 7/12/2023 (2520) Quadcopter obstacle course  
9 8/28/2023 (2567) Quadcopter random rings 

  829 
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Extended Data Table 4: Training the closed-loop decoding algorithm  830 

S # Date Day D # DOF OL runs 
(trials) 

CL 
blocks 
(trials)a 

Figureb Notes 

1 3/9/2023 2395 3 4 2 (200) 7 (437) 1, 3, ED3, ED4  
2 3/14/2023 2400 4 4 2 (200) 3 (180) 1, 3, ED3, ED4  
3 3/16/2023 2402 5 4 2 (200) 5 (252) 1, 3, ED3, ED4, ED5  
   5b   +5 (250) ED5  

4 3/21/2023 2407 6 2 2 (200) 2 (100) 1, 3, ED3, ED4  
5 3/23/2023 2409 7 4 2 (200) 9 (450) 1, 3, ED3, ED4, ED5  
   8 2 2 (200) 2 (100) 1, 3, ED3, ED4  

6 4/6/2023 2423 9 4 2 (200) 13 (635) 1-3, ED1, ED3-5 
Open-loop data were used for the confusion 

plots in Extended Data Fig. 1. Closed-loop data 
were used in Figs. 2-4. 

   9b   +2 (100) 2, ED5  

   10 2 2 (200) 7 (297) 1, 3, ED3, ED4 
Attempted to overtrain the decoder by ReFIT 
training it over many closed-loop blocks after 

100% of trials were completed 

   10b   +3 (150) 2, ED5 Includes 1 block (50 trials) using the 4D 
decoder 

7 4/13/2023 2430 11 4 2 (200) 3 (150) 1, ED3, ED4  
   11b   +2 (100) 2, ED5  
   11c   +1 (50) 2, ED5  
   11d   +7 (331) 1-3 ED5 Used in Fig. 3-4 because more trials here than 

earlier blocks this day    11e   +1 (50) 1-3, ED5 
   12 2 1 (100) 1 (50) 2, ED5  
   12b   +1 (50) 2, ED5  

8 7/12/2023 2520 13 4 2 (200) 3 (150)   
   13b   +4 (200) 4  
   13c   +2 (100)   
   13d   +2 (100)   

9 8/30/2023 2569 14 4 2 (200) 6 (269)  
Open-loop blocks were performed using 

common average referencing, and closed-loop 
blocks used linear regression referencing 

CL, closed-loop; DOF, degrees of freedom; OL, open-loop; S, session. 831 
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a“+” refers to additional training blocks and trials. 832 
b“ED” refers to Extended Data Figure.  833 (w
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Figures 834 

 835 

 836 

Figure 1. Intracortical brain-computer interface system for dexterous finger movements. a, A 837 

computer display is placed in front of the participant so that he can perform a finger task with a 838 

virtual hand. During closed-loop control, the electrical activity from the array is mapped to a 839 

control signal for the virtual fingers. Panel adapted from Willet et al. (2021)11. b (left), Thumb 840 

moves in two dimensions, abduction (Ab) and adduction (Ad) (flexion/extension and 841 

abduction/adduction), while index-middle and ring-small move in a 1D arc. F, flexion; E, 842 

extension. b (right), Trials showing typical targets for all 3 finger groups for the 4-degree-of-843 
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freedom task. c, A 100-s time segment of typical decoded movements are depicted for the 3-844 

finger group, 4-degree-of-freedom (DOF) task. Trajectories are described along a range of -1 to 845 

1, where 1 denotes full flexion or abduction and -1 denotes extension or adduction. d, The 2D 846 

thumb trajectories for the full 50-target block shown in c. Titles for each panel indicate the 2D 847 

thumb distance from the neutral position in arbitrary units (where 1 is 100% 1D 848 

flexion/abduction and 0 is 100% 1D extension/adduction). e, Summary statistics comparing the 849 

2- and 4-DOF tasks for acquisition time (Acq Time), time to target (T2T), orbiting time (Orb), 850 

acquisition rate (Rate), path length efficiency (Path Len Eff), and the percent of trials 851 

successfully completed (Percent Complete). The error bars represent the standard error of the 852 

mean. f, Four blocks in which only 1 finger was cued per trial, illustrating individuated control of 853 

fingers. The mean velocity per trial was calculated during the ‘Go’ period for each finger and 854 

normalized by the mean value of the finger group with the highest mean value.   855 

  856 
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 857 

Figure 2. Dimensionality and dimensionality reduction. a, The dimensionality of the neural 858 

activity during closed-loop decoding using either the 2D decoder and task or 4D decoder and 859 

task for either 1 or 2 new finger-group targets (1 FG or 2 FG) per trial. Each light blue dot 860 

represents data from a single day, and the black diamond represents the mean value. The mean, 861 

µ, is given for each decoder/task pairing. DOF, degree of freedom. b, Summary statistics 862 

comparing the 2D decoder on the 2D task (2D, 2T), the 4D decoder on the 2D task (4D, 2T), and 863 

the 4D decoder on the 4T task (4D, 4T) based on the acquisition time (Acq Time), time to target 864 

(T2T), orbiting time (Orb), acquisition rate (Rate), path length efficiency (Path Len Eff), and the 865 

percent of trials successfully completed (Percent Complete). The error bars represent the 866 

standard error of the mean. c, A typical online block showing the decoded index-middle finger 867 

group velocities using the 2D on 2T (blue) during an online block. Offline, the 4D decoding 868 
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algorithm was used to predict index-middle group velocities from the same block (orange). The 869 

normalized cross correlation (CC) between the online and offline signals, which quantifies the 870 

similarities between the signals, is given in the bottom right corner. The units of velocity are 871 

calculated using a distance of 1 to denote the full active range of motion. d, For the 10 blocks on 872 

the 2D task, the 4D decoding algorithm was used to predict finger velocities during online blocks 873 

using the 2D decoder (online 2D in blue, offline 4D in orange), and the 2D decoding algorithm 874 

was used to predict online velocities using the 4D decoder (online 4D in blue, offline 2D in 875 

orange). Each dot represents the normalized cross-correlation value between the offline and 876 

online signals averaged across both finger groups. The average of all 5 blocks for each paired 877 

comparison is indicated with a black diamond, and µ denotes the mean value. 878 
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 880 

Figure 3. Signal-to-noise ratio vs. channel count. a, Graphical representation for vectorized 881 

directional signal-to-noise ratio (dSNR) for the 2D decoder and task. The positive x axis 882 

represents velocities flexing the thumb and negative values represent velocities extending the 883 

thumb. The y axis represents velocities flexing the index-middle finger group when positive and 884 

extending the finger group when negative. Since the signal vector, v, is assumed to be a 885 

normalized target vector, the values of v can be only the 4 points indicated on the circle. The 886 

decoded/predicted velocity, ��, will lie at an angle θ to v and can be decomposed into a parallel 887 

signal component, ��
�
, and a perpendicular noise component, ��

�
. These components can be used 888 

to calculate dSNR. b, Velocities predicted by linear regression (using all Nc = 192 channels) that 889 

maps neural activity to finger velocities, which together with the intended finger movements are 890 

used to calculate dSNR. The arrows represent the ideal/truth value for each possible finger 891 

position based on the assumed intended finger movement. au, arbitrary unit. c, The dSNR as a 892 

function of channel count for the 2D decoder on the 2-target/trial task (red), 4D decoder on the 2-893 

target/trial task (blue), and 4D decoder on the 1 target/trial task (purple). An empirical 894 

calculation of dSNR for each day is depicted in lightly colored lines and the mean value as the 895 

dark solid line. The dashed lines correspond to a linear, least-squares fit for the log-log 896 

relationship in Eq. 1, where m denotes the log-log slope and R2 denotes the coefficient of 897 

determination of the linear fit.   898 
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 899 

Figure 4. Finger intracortical brain-computer interface translated to virtual quadcopter control. a, 900 

Mapping finger position to quadcopter velocities. The thumb position is mapped to forward 901 

(Fw), backward (Bk), left (Lt), and right (Rt) translation velocity. The index-middle finger group 902 

position is mapped to velocities directed up and down in elevation. The position of the ring-small 903 

finger group is mapped to right rotation (Rt Rot) and left rotation (Lt Rot) velocities. b (top 904 

pane), The layout for quadcopter control showing the virtual quadcopter in the center of the 905 

screen. A visualization of the hand indicating the neutral points for the finger groups and cardinal 906 

directions of the thumb is also visible. The rings are seen in the center of the display, and the 907 

green straight line indicates the trajectory the quadcopter is to follow along the obstacle course. b 908 

(bottom pane), The quadcopter obstacle course demonstrates the 4-DOF control required to 909 

complete the 4.5-lap obstacle course. The top-left path requires the quadcopter to move forward, 910 

turn around, and move forward through the same rings to return to the starting point (1 lap). The 911 

top-right path requires the participant to simultaneously move forward and turn to complete 2 912 

“figure-8” paths around the rings and back to the starting point (1 lap). The bottom-left path 913 

requires him to move left through both rings, stop, and then move right back through the rings (1 914 
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lap). The bottom-right path requires moving forward through the rings, increasing the elevation, 915 

moving backward over top of the rings, decreasing elevation, and then moving forward through 916 

both rings to the ending point (1.5 laps). c (top pane), An exemplary full-flight path during a 917 

block of the obstacle course. c (bottom pane), The flight path is separated into laps 918 

corresponding to the planned flight path for each lap in b (bottom pane). 919 

920 
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 921 

Extended Data Fig. 1. The intracortical brain-computer interface system for dexterous finger 922 

movements. a, MRI reconstruction of the participant’s brain with the implant locations depicted 923 

as blue squares. Two 96-channel silicon microelectrode arrays were placed in hand ‘knob’ area 924 

of left precentral gyrus in 2016. The red line indicates the central sulcus (CS). Panel from Deo et 925 

al. (2023)31. b and c, Confusion matrices showing the probability of correctly classifying 926 

attempted finger movements using 2 s, b, and 150-ms, c, windows from an offline analysis. IM, 927 

index-middle; RS, ring-small; TH, thumb. 928 
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 930 

Extended Data Fig. 2. Decoding algorithm. The input YIN is EN x 3 input matrix, where EN is 931 

the number of electrodes (192) and 3 represents the most recent 3 50-ms bins. The output 932 

variable, ��, represents a normalized vector of each of d finger velocities. The actual decoded 933 

velocities were calculated by applying an empirically calculated mean value and gain value. 934 

Linear layers (WT, W1-W3) included a learnable bias term except for the final linear layer, W4, to 935 

reduce the magnitude of non-zero means. All instances of batchnorm, BNA, were implemented 936 

with affine = True except for the final batchnorm, BN, where affine = False in an attempt to 937 

reduce the reliance of the decoding algorithm on an offset correction from the final batchnorm 938 

block. During training mode batchnorm layer, BN, did not correct for non-zero means or apply a 939 

mean correction to force the final linear layer, W4, to learn an output signal with zero mean. BN, 940 

batchnorm; FC, fully connected; ReLU, rectified linear unit. Figure adapted from (Willsey et al., 941 

2022)23. 942 
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 944 

Extended Data Fig. 3. Closed-loop decoding for a 2- and 4-degree-of-freedom (DOF) finger 945 

task. a, A 100-s time segment of typical decoded movements is depicted for the 2-finger group, 946 

2-DOF task. Trajectories are described as a percentage of flexion (%Flex). Distributions of target 947 

acquisition times (ms) for the 2-DOF task, b, and 4-DOF task, c, over multiple blocks of each 948 

task. Each dot corresponds to a trial, and the black diamond indicates the mean value. N denotes 949 

number of trials per block, R denotes the rate of targets acquired in targets/min, and µ  denotes 950 

the mean value.   951 
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 952 

Extended Data Fig. 4. Distribution of finger distances. For the 2D and 4D task with 2 new 953 

targets/trial (in Figs. 2b, 2d), the distribution of distances for successful trials for the (a) 2D 954 

decoder and (b) 4D decoder. The histogram is normalized so that the area under the curve equals 955 

1. In a, the green curve represents the distance for index-middle (IM) finger and ring-small (RS) 956 

finger flexion/extension combined over all trials for the 2D decoder and task trials in Fig. 1e. In 957 

b, the green curve represents combined IM finger and RS finger flexion/extension distances, and 958 

the orange curve represents the 2D distance for the thumb (combining the 2D components of 959 

flexion/extension and abduction/adduction) for trials using the 4D decoder and task in Fig. 1e. 960 

a.u., arbitrary units; DOF, degree of freedom; PDF, probability distribution function. 961 
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Extended Data Fig. 5. Target acquisition times for a variety of comparisons. a, Performance 964 

comparison for 1 vs. 2 new targets/trial (targ/tr). Population data for the target acquisition times 965 

(ms) using the 4D decoder for 2 new targets/trial (blue) and 1 new target/trial (red) over blocks 966 

of the task. Each dot corresponds to a trial, and the black diamond indicates the mean value. N 967 

denotes the number of trials per block, µ denotes the mean value, and R denotes the rate of 968 

targets acquired in targets/min. b, Decoder stability test for 2 trial days using the 4-DOF decoder 969 

for 2 new targets/trial. For days 2402 (blue and light blue) and 2409 (red), the decoder was 970 

trained (upside down triangle with “Decoder Trained”) and then used in consecutive blocks until 971 

trials could not be reliably completed. On day 2402, the decoder was re-trained (“Decoder 972 

Updated”) to demonstrate the recovery of performance on 2 subsequent blocks (light blue). c, 973 

The 4D and 2D decoders on 2D task. Target acquisition times (ms) for the 4D and 2D decoders 974 

are compared on the 2D task with 2 new targets/trial task (2T). The 4D decoder is also run on the 975 

3-finger group, 4D task (4T) with 2 new targets/trial. The blocks on the 2423 and 2430 trial days 976 

of data collection represent consecutive blocks without re-training unless otherwise indicated. 977 

The labels 4D/4T indicate the 4D decoder run on 4T; 4D/2T indicates the 4D decoder on 2T; and 978 

2D/2T indicates the 2D decoder on 2T.  979 
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Extended Data Movie 1: The 2D decoder on the 2D task with a mean acquisition time of 0.84 ± 981 

0.05 s, corresponding to a target acquisition rate of 142 targets/min.  982 

Extended Data Movie 2: The 4D decoder on the 4D task with 2 new targets/trial with a mean 983 

acquisition time of 1.30 ± 0.08 s, corresponding to a target acquisition rate of 92 targets/min.  984 

Extended Data Movie 3: The 4D decoder on the 4D task with 1 new target/trial with a mean 985 

acquisition time of 1.08 ± 0.09 s, corresponding to a target acquisition rate of 56 targets/min.  986 

Extended Data Movie 4: The 4D decoder on the 2D task when 2 DOF are fixed and not allowed 987 

to move (thumb abduction/adduction and ring-small flexion/extension). The mean acquisition 988 

time was 1.07 ± 0.06 s, corresponding to a target acquisition rate of 112 targets/min. 989 

Extended Data Movie 5: Exemplar block of the finger intracortical brain-computer interface 990 

translated to control a quadcopter with 4 DOF during an obstacle course presented in Fig. 4b and 991 

flight path shown in Fig. 4c. 992 

Extended Data Movie 6: Using the finger intracortical brain-computer interface translated to 993 

quadcopter control to navigate through randomly appearing rings to demonstrate spontaneous, 994 

free-form control.  995 
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