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ABSTRACT 

 

Proteins are the primary targets of almost all small molecule drugs. However, even the most 

selectively designed drugs can potentially target several unknown proteins. Identification of 

potential drug targets can facilitate design of new drugs and repurposing of existing ones. Current 

state-of-the-art proteomics methodologies enable screening of thousands of proteins against a 

limited number of drug molecules. Here we report the development of a label-free quantitative 

proteomics approach that enables proteome-wide screening of small organic molecules in a 

scalable, reproducible, and rapid manner by streamlining the proteome integral solubility 

alteration (PISA) assay. We used rat organs ex-vivo to determine organ specific targets of medical 

drugs and enzyme inhibitors to identify novel drug targets for common drugs such as Ibuprofen. 

Finally, global drug profiling revealed overarching trends of how small molecules affect the 

proteome through either direct or indirect protein interactions. 
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INTRODUCTION 

 

The primary objective in small molecule drug design is to maximize the potency and 

specificity towards the target protein. This ensures that the desired pharmacological effects 

through hypothesized mechanisms of action (MoAs) are achieved while minimizing the risk of off-

target interactions that can lead to unforeseen and undesirable side effects. It has been suggested 

that most drugs exert their phenotypic effects through a variety of unknown MoAs1. Numerous 

techniques and strategies have been devised to comprehensively identify all potential protein 

targets, both intended ('ON') and unintended ('OFF'), of small molecule drugs. 

 

Indirect approaches, such as those based on genetic screens using siRNA knockdowns2, 

CRISPR knockouts3 or yeast two-hybrid systems4, offer versatility and straightforward readouts. 

However, they tend to produce higher rates of false positives due to their reliance on indirect 

detection methods, making the elucidation of MoAs more challenging. Direct methods, including 

those based on affinity purification with immobilized drugs and competitive activity 

chromatography, aim to unveil direct interactions between immobilized small molecules and their 

target proteins or protein complexes5. Other approaches capitalize on changes in protein structure 

and thermostability upon small molecule binding to identify direct and indirect protein targets6–9. 

Typically, these strategies are combined with quantitative mass spectrometry-based proteomics 

readouts to achieve comprehensive proteome coverage and target identification. Nevertheless, 

each approach possesses its unique strengths and weaknesses, and there is no single method 

or strategy capable of identifying all potential protein targets for a specific compound. Trade-offs 

must be considered with respect to method sensitivity, proteome depth, and throughput. 

 

One method that has garnered substantial interest and adoption for cellular drug target 

deconvolution is thermal proteome profiling (TPP), which integrates the cellular thermal shift 

assay with mass spectrometry-based proteome profiling for target identification8,9. The core 

concept behind TPP is based on detecting changes in protein thermal stability when proteins 

engage with a ligand or small molecule10. This change is assessed through the determination of 

the melting point, which is the temperature at which 50% of the initial protein quantity is denatured 

and becomes insoluble. The melting point is extracted from the melting curve, generated by 

gradually increasing the temperature in steps until the protein is completely denatured and 

becomes insoluble. Traditionally, thermal shift assays have been employed in drug discovery, 

using techniques such as differential scanning fluorimetry (DSF), although multiple variations of 

thermal shift assays are available. In the case of TPP, the melting curves for all identified proteins 

are determined by assessing the soluble proteome fraction following exposure to various 

temperatures. This is conventionally achieved through a multiplexed proteome analysis 

employing tandem mass tags (TMT). In this approach, the tryptic peptides from each soluble 

fraction that were subjected to different temperatures are labeled with different isobaric TMT 

reagents and combined. This process generates melting curves for peptides and proteins within 

a given TMT experiment11,12. Typically, TPP experiments involve approximately 8-15 distinct 

temperature points, spanning the range of 37°C to 70°C. As a result, melting curves for thousands 

of proteins can be simultaneously obtained within a single experiment. 
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In this study, we present a streamlined label-free workflow based on proteome integral 

solubility alteration (PISA) to address some of these limitations by automating and simplifying the 

experimental, sample preparation, data acquisition, and bioinformatics analysis procedures. Our 

workflow demonstrates an increased capability to correctly identify drug targets, both directly 

bound to the drug and indirectly affected by its presence. We applied this workflow to rat organs 

and screened 23 different compounds for target identification. Additionally, we have developed a 

bioinformatics pipeline tailored for the analysis of large datasets generated in this study and have 

successfully validated a novel drug target for a commonly used medication as proof of concept. 

RESULTS 

TEMPERATURE OPTIMIZATION 

When comparing the melting point of a specific protein in the presence or absence of a 

drug under drug-treated conditions, significant differences in stability may arise from drug binding 

or consequent conformational changes induced through perturbation in protein-protein 

interactions. These observations suggest that the protein may serve as a potential target for the 

drug or be implicated in its downstream effects (Figure 1A). In this article, we consider a protein 

as "targeted" or "engaged" by a drug if the protein is temperature stabilized or destabilized 

following drug treatment. TPP offers numerous advantages, including the capacity to identify both 

direct and indirect drug targets, along with its compatibility in cellular, in vivo, and cellular extract 

settings. While this technique provides the advantage of proteome-wide screening for potential 

drug targets, it does come with certain limitations. These include low throughput, high 

experimental complexity, and the challenges associated with downstream data analysis, which 

can constrain large-scale screening across various drugs and concentrations. Several 

adaptations have been developed to optimize extraction conditions13,14 or integrate the underlying 

melting curve such as proteome integral solubility alteration (PISA)15 (Figure 1B). 

 

To address some of the limitations of TPP, different variations have been developed. 

Some attempt to bypass the requirement for acquiring data for all temperature points for a melting 

curve altogether by integrating the peak. This involves pooling the soluble fraction from different 

temperature points and comparing global protein abundance between conditions rather than 

assessing the melting point15 (Figure 1B). Others focus on refining downstream data analysis 

strategies for melting point determination16. We analyzed three different TPP studies and found 

that the median melting point of all proteins across experiments conducted in cells and cellular 

extracts typically falls between 50-55°C, with nearly 50% of all protein melting temperatures falling 

within this range (Supplementary Figure S1, Supplementary Table 1). Based on this, we 

hypothesized that a PISA-type melting curve integration could be achieved using fewer 

temperatures within this range to yield a higher number of reliable results (see Figure 1B). From 

the same sample set, we pooled the soluble fraction at 53°C, 56°C, and 59°C (see Figure 1C). 

We used elevated temperatures over the median to increase the likelihood of detecting 

temperature stabilized drug targets with higher statistical confidence. Although this could bias 

against targets that are temperature destabilized, we hypothesized that measuring changes in 

solubility at higher temperatures where the relative abundance of a target protein could drastically 

increase would increase the likelihood of identifying protein targets. 
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To test this hypothesis, we conducted a standard TPP experiment using the broad kinase 

inhibitor Staurosporine within a temperature range of 37°C to 67°C (see Figure 1C). We then 

identified the proteins with significantly regulated melting points in presence of 10 µm 

Staurosporine by comparing: 1) the melting points for the TPP experiments between control 

DMSO-treated and Staurosporine-treated replicates; 2) the differences in protein abundance 

between the two pooled samples for TPP-PISA (Figure 2A). Using both TPP and TPP-PISA 

(Figure 2B, 2C), we successfully identified kinase targets of Staurosporine (Supplementary Table 

2). However, the integrated approach yielded >2x the number kinase and non-kinase targets with 

better statistical significance (Figure 2D) and higher fold changes compared to standard TPP 

(Figure 2B-E, Supplementary Table 2). These results confirm that the PISA strategy, using a 

limited number of temperatures, results in a larger number of identified Staurosporine targets 

while substantially increasing the throughput of MS analysis, as all experiments can be conducted 

within a single TMT multiplexed run. Furthermore, this approach simplifies data analysis, as 

determining the complete melting curve is not necessary to identify Staurosporine targets. 

 

LABEL FREE QUANTITATIVE ANALYSIS USING DATA-INDEPENDENT ACQUISITION 

 We sought to further improve the protocol by bypassing TMT peptide labeling for TPP 

style experiments. Although TMT provides the benefit of multiplexing and low missing values, the 

technique requires additional labeling, pooling, and sample preparation cleanup steps which leads 

to a significant reduction in throughput. TMT data also suffer from lower peptide identification 

rates and the well-known phenomenon of batch effects that poses extra downstream data 

analysis challenges17. More specifically, it has the disadvantage that once an experimental 

dataset is acquired, it is not trivial to compare the data across different batches of samples and 

conditions. Although it is indeed possible to analyze up to 18 multiplexed samples within a single 

run using the latest version of TMT18, in the context of large-scale compound screening, the 

number of samples could be severely limiting. This is further exacerbated when accounting for 

large compound libraries with controls and replicates, even for integrated TPP type experiments 

where melting curve generation is not required. Subsequently, we decided to use a label-free 

quantitation (LFQ)-based data-independent acquisition (DIA) approach for mass spectrometry 

proteomics analysis of integrated TPP-PISA samples. Although DIA analysis requires 

independent measurement of each sample, latest developments in mass spectrometry 

hardware19 and search algorithms20 enables higher throughput of proteomic samples with high 

quantitative precision and fewer missing values. From our analysis, DIA analysis resulted in a 

larger number of identified proteins compared to TMT TPP and TMT TPP-PISA while utilizing only 

~25% of the MS analysis time (Supplementary Figure S2A). Furthermore, DIA analysis also led 

to lower number of missing values across runs, with over 90% of the protein identifications 

containing intensities in all of the samples based on analysis of DMSO and Staurosporine treated 

samples. (Supplementary Figure S2B). This was substantially higher compared to TMT TPP 

samples (~66%) and TMT TPP-PISA samples (~72%), demonstrating the advantages of DIA over 

TPP for identifications, throughput, and data completeness (Supplementary Figure S2C, D). 

 

INSOLUBLE PROTEIN REMOVAL 
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One of the significant bottlenecks in TPP experiments involves laborious separation of the 

insoluble fraction from the soluble supernatant after heating at various temperatures. Traditionally, 

this is achieved through manual pipetting and transfer of the soluble portion to another tube or 

well, a time-consuming process that demands meticulous handling to avoid disturbing the 

insoluble fraction. Furthermore, the number of samples processed simultaneously is limited by 

the available positions in the centrifuge. Typically, centrifugation is conducted at speeds 

exceeding 20,000xg for 30-60 minutes, and this limitation is exacerbated when using an 

ultracentrifuge as the number of samples that can be centrifuged simultaneously is typically less 

than 10. As a result, the scalability and throughput of TPP and similar experiments is substantially 

restricted. 

 

To address this challenge, we explored the use of filter plates as an alternative to 

centrifugation for removing insoluble proteins after a TPP-PISA experiment. Filter plates have 

been utilized for removal of insoluble protein aggregates but their advantage over traditional 

centrifugation based insoluble protein removal for TPP has not been thoroughly reported. Filter 

plates offer the capability to process up to 96 samples simultaneously, significantly reducing the 

time required for this step. Consequently, this also reduces pipetting time and errors as multi-

channel pipettes or automated liquid transferring robots can be utilized for this crucial step. For 

instance, after just a 2-minute centrifugation, soluble proteins can be effectively separated and 

collected in a collection plate. To determine the extent of this advantage, we compared 30-minute 

centrifugation (with 20,000x relative centrifugal force) with 0.45 µm polytetrafluoroethylene 

(PTFE) filter plate on TPP-PISA samples treated with DMSO or Staurosporine (Figure 3A, B, 

Supplementary Table 2). We also observed enhanced reproducibility when PTFE plates were 

used to remove insoluble proteins as demonstrated by the negative log10-transformation of the 

p-values for the kinase hits (Figure 3C). Consequently, this strategy resulted in >2x the number 

of kinases and 7x higher number of non-kinase targets identified after Staurosporine inhibitor 

treatment when PTFE was utilized to remove insoluble proteins compared to centrifugation for 30 

minutes (Figure 3D). 

 

96-WELL FORMAT WORKFLOW 

 Our optimizations of TPP have allowed us to establish a comprehensive 96-well plate-

based experimental workflow (Figure 4A). In this workflow, cellular extracts are distributed into 

96-well PCR plates, and small molecule compounds are introduced into these extracts followed 

by incubation at 37°C for 10 minutes. Subsequently, the cellular extracts are divided and 

transferred to different wells, each representing distinct temperature blocks for post-incubation 

heating. In our case, we employed three temperature blocks (at 53°C, 56°C, and 59°C) for thermal 

profiling. Each block received one-third of the volume of the original compound-incubated extracts 

and was heated for four minutes (Supplementary Figure S3). After heating, the contents of the 

temperature blocks are merged back into their original well and the well's content is transferred 

to a filter plate to remove insoluble proteins. The soluble proteins are collected into a new 96-well 

plate and are then prepared for overnight Lys-C/Trypsin protease digestion via protein 

aggregation on magnetic beads21. The samples are acidified after protease digestion and 

prepared for mass spectrometry analysis. Throughput was increased further via the transfer and 

loading of the overnight proteolytic digests directly into EvoTips in a 96-well plate format. EvoTips 
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are disposable trap columns for the EvoSep One liquid chromatography (LC) system, which allow 

for the peptides storage and analysis22. This strategy bypasses the requirement for peptide elution 

from StageTips23 or similar hydrophobic solid phase extraction that require additional steps of 

peptide loading, washing, elution followed by evaporation of organic solvent and reconstitution in 

aqueous buffer prior to loading on the analytical column with a traditional liquid chromatography 

system. EvoSep One was coupled with the mass spectrometer operating in DIA mode and 

subsequent analysis of the raw data was facilitated by the DIA-NN software20. Consequently, the 

entire TPP and integrated TPP-PISA workflow can be automated in a 96-well format, significantly 

improving throughput and reproducibility. 

 

EVALUATION OF RAT ORGAN EXTRACTS 

Finally, we assessed the suitability of rat organs as a source for TPP-PISA experiments. 

Rats serve as common animal models in preclinical pharmacological studies to investigate the 

toxicological effects of various drugs before human administration. While the phenotypic response 

to a drug in rats may not always mirror that observed in humans, rat studies still offer valuable 

pharmacological insights. Despite the inherent differences between humans and rats as species, 

they share 95% sequence similarity in orthologous protein coding genes, suggesting that a small 

molecule targeting a human protein is likely to target the corresponding protein in rats24. We 

specifically used an Ensembl FASTA file of the rat proteome and mapped orthologous human 

proteins for each rat protein, which enabled us to determine targets for the human proteins. Using 

rat organs can broaden our proteome coverage covering different cell types and contexts and 

provide substantial quantities of cellular protein extracts that are often challenging to obtain from 

cultured human cell lines. 

 

To evaluate this, we extracted the following organs from rats: liver, spleen, kidneys, quadriceps 

muscle, and two distinct brain regions: the hippocampus and cerebellum, in addition to whole 

brain samples (Figure 4B). We anesthetized Wistar rats and perfused them with PBS saline to 

minimize blood contamination before organ removal and subsequent snap-freezing for native 

protein extraction. We assessed if our strategy was sensitive enough to identify protein melting 

differences in these organ extracts by treating extracts with Staurosporine for 10 minutes and 

applied our TPP-PISA pipeline. We observed a broad response in all organ extracts, except for 

those obtained from the whole brain (Supplementary Figure S4A). This discrepancy could be 

attributed to the high lipid content in both white and gray matter of the brain, which could 

potentially interfere with temperature-based stability assays. Nevertheless, we obtained a 

response (as determined from the number of targets with a q-value ≤ 0.05) from the hippocampus 

regions of the rat brain. We also observed that a larger number of protein hits passing the 

statistical threshold for Staurosporine-treated extracts were not kinases, contrary to cell line 

analysis (Supplementary Figure S4B, Supplementary Table 2). Furthermore, we found 133 

different Staurosporine kinase targets across different rat organ extracts. The kinase targets 

covered 8 different kinase families (Figure 4C), including 3 kinase targets which are considered 

atypical kinases. Different Staurosporine kinase target profiles were observed across different rat 

organs (Supplementary Figure S5). For example, we found kinases which were targeted by 

Staurosporine across rat organs, as well as kinase targets more exclusive to 1 or 2 organs (Figure 

4D, Supplementary Figure S5).  We also observed that some kinases could be temperature 
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stabilized in one environment and temperature destabilized in another upon Staurosporine 

treatment (Figure 4D, Supplementary Figure S5). 

 

DRUG SCREENING 

 We tested 22 compounds (excluding Staurosporine) spanning multiple clinical indications 

such as cancer, metabolic and neurological diseases, and applied the complete workflow to 

different rat organ extracts as well as two human cell lines, HeLa and HepG2 (Supplementary 

Table 3). We developed a dedicated bioinformatics strategy to facilitate the identification of drug 

targets from large scale TPP-PISA type experiments. For a given sample, we compared protein 

quantities in a drug-treated condition with all the other conditions, relying on the hypothesis that 

two drugs will not impact the same protein melting points. To ensure the independence of control 

conditions, drugs were excluded from the control set of other drugs if they shared at least one 

common target according to the DrugBank25 repository and/or if their pairwise structure similarities 

based on the Tanimoto index was ≥ 0.6 (Supplementary Table 4). We visualized this information 

in a drug similarity plot that shows the similarity of the compounds used in this study (Figure 5A). 

 

We applied this approach to analyze the entire dataset generated from screening different 

compounds across different rat organs and human cell lines. From this combined dataset, we 

identified an average of 4493 protein groups per experiment with a maximum of 666 protein 

targets across various rat organs and human cell lines for the 22 drugs profiled (Figure 5B). We 

verified the specific targets of well-known compounds across different organs and cell lines, such 

as for Cobimetinib and SHP099, where Map2k1 (MEK1 protein kinase) and PTPN11 (Shp2 

tyrosine phosphatase) consistently exhibited significantly increased temperature solubility in the 

presence of the respective drugs (Figure 5D). Interestingly, we also observed that the extent of a 

drug's effect could vary across different proteome backgrounds. In other words, a protein target 

could be confirmed or observed for a drug in one set of cellular extracts, while the same protein 

might not be a target in a different extract, even if the protein was present. This observation implies 

that drugs may induce distinct responses in different samples, emphasizing the significance of 

considering diverse proteome contexts in TPP experiments. A notable observation was the 

prevalence of temperature destabilization in proteins following compound treatment, as opposed 

to stabilization. This trend was consistently observed across cell lines and rat organ extracts for 

most compounds (Figure 5E).  

 

 We constructed protein–drug networks to visualize protein targets identified across 

different rat organ extracts and human cell lines. This enabled us to home in on high confident 

targets for all the drugs tested in this study. For example, we mapped all identified protein targets 

of Cobimetinib found in different rat organs and human cell lines (Figure 6A). Additionally, 

information about the nature of the protein–drug interaction was also represented, i.e. whether 

the identified target was found to be temperature stabilized or destabilized upon drug treatment 

in different biological backgrounds (see legend in Figure 6A). Furthermore, shared protein drug 

targets between different drugs are also visualized as demonstrated in the Naproxen network 

where we added Ibuprofen and highlighted its targets shared with Naproxen (Figure 6B). Lastly, 

we incorporated information about known protein targets (based on DrugCentral) as well as 

protein homology between any of the targets (previously known or hits in this study).  This allowed 
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us to identify targets of interest due to their homology to known targets even if the known target 

was not identified as a significant hit in our dataset. For example, the cytochrome P450 enzyme 

3A4 (CYP2C9), which is a known Ibuprofen target (based on DrugCentral), is shown along with 

other homologous cytochrome P450 enzymes in the drug–target network of Ibuprofen (Figure 

6C). However, the known target CYP2C9 was not identified as a target in our analysis, 

nonetheless its homologs were found to be targets of Ibuprofen and thus part of this network. This 

visualization strategy highlights the advantage of constructing protein-drug networks from such 

an analysis. 

 

Using this strategy, we found the protein Pirin (PIR) to be stabilized by Ibuprofen in many 

different proteome backgrounds suggesting a novel target of this drug (Figure 7A). Like many 

common medications, the Ibuprofen MoA is not fully understood. Although it is hypothesized to 

inhibit cyclooxygenase enzymes 1 and 2, evidence for direct inhibition or other mechanism of 

actions have been proposed that suggest complete understanding of its clinical effect remains 

elusive26. We utilized surface plasmon resonance (SPR) with recombinant human Pirin to 

experimentally evaluate the potential Ibuprofen-Pirin interaction suggested by the TPP-PISA 

dataset. SPR is a label-free technique commonly employed for the study of protein-ligand 

interactions and the screening of potential drug candidates. It excels in elucidating the specificity 

and selectivity of ligand binding while providing valuable insights into binding kinetics27. We used 

Nicotinamide and acetylsalicylic acid (commonly referred to as Aspirin) as negative controls. 

These were selected due to their similar small size, and both contain aromatic rings similar to 

Ibuprofen (Figure 7B). To confirm binding to a recombinant version of human Pirin by SPR, we 

used a previously reported Pirin specific inhibitor Triphenyl Compound A (TPhA)28 that binds Pirin 

with a KD of 0.7 μM as a positive control (Supplementary Figure S6). Using SPR, we observed a 

dose dependent response of Ibuprofen binding to Pirin (Figure 7C). In contrast, the negative 

controls, Aspirin and Nicotinamide did not display a similar response (Figure 7D). Furthermore, 

we tested the potential competitive binding between Ibuprofen and TPhA by repeating the SPR 

experiment for Ibuprofen in a running buffer containing 3 μM TPhA and observed that the 

Ibuprofen dose response was reduced. This would suggest that both molecules target the same 

site within Pirin (Figure 7D). Contrarily, we found the beta-hexosaminidase (HexB) to be 

destabilized in multiple rat organs and HeLa cell line protein extracts upon treatment with 

Metformin (Figure 7E). HexB is a lysosomal protein that hydrolyzes GM2 gangliosides and the 

specific activity of the HexB can be assayed using a fluorometric reporter29. However, we did not 

observe a large reduction in recombinant HexB activity caused by 1 mM Metformin when the 

assay was performed in neutral or acidic buffer to mimic the acidic pH of lysosomes30 (Figure 7F). 

Although reduction in activity was observed when using very high Metformin concentration at 

neutral pH (Figure 7F), it can be hard to determine whether this reduction in activity was due to 

specific activity of Metformin. The assay was also performed on HeLa protein extracts and a 

similar trend was observed (Supplementary Figure S7).  
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DISCUSSION 

In this study, we present a comprehensive workflow for high-throughput TPP-PISA based 

on LFQ-DIA analysis, offering a robust framework for screening extensive compound libraries 

using the described methodology. Specifically, we introduced a specialized bioinformatics 

pipeline tailored for the analysis of large-scale compound screens in TPP-PISA experiments. This 

unique workflow harnesses datasets generated from expansive TPP-PISA-style experiments and 

simultaneously considers compound structural similarities. It enables the screening of a 

substantial number of drugs while utilizing the entire dataset as an internal control for each 

individual drug, thus providing enhanced statistical confidence in identifying potential drug targets. 

In an era of advancing mass spectrometry-based proteomics with ever-increasing sensitivity and 

throughput capabilities31, the experimental workflows and bioinformatics pipelines presented 

herein assume a pivotal role. They could prove to be instrumental in handling the screening and 

analysis of substantial compound libraries, potentially comprising hundreds to thousands of 

unique small molecules. 

  

 Our study underscores the advantages of leveraging diverse proteome sources and the 

suitability of utilizing organs from model organisms such as Wistar rats. While human cell lines 

are invaluable for target engagement experiments due to their wide availability, comprehensively 

covering the proteome across different cell types and contexts necessitates the cultivation of 

numerous cell lines in large quantities. Furthermore, it could be difficult to discern whether the 

proteomes of cell lines differ sufficiently enough to cover different proteome contexts. In contrast, 

animal models present a compelling alternative, as the inherent differences in various organs are 

mirrored in their proteome compositions. Consequently, they offer a substantial advantage in 

screening different molecules to encompass a range of proteome backgrounds and the contexts 

in which these proteins are expressed. They also provide a surplus of protein extract material in 

comparison to cell lines. Obtaining a similar quantity of material typically required for TPP-PISA 

type experiments from traditional cultured human cell lines could prove impractical. 

 

 We used our workflow to identify Pirin as a novel target for the common nonsteroidal anti-

inflammatory drug Ibuprofen. Pirin is a broadly conserved protein that is found in different domains 

of life including plants, fungi, and bacteria32. In humans, Pirin is ubiquitously expressed in various 

human tissues and organs33. Limited research into Pirin proteins has implicated Pirin as a 

transcriptional regulator that plays an important role in the immune response and oxidative 

stress34–37. However, subcellular proteomics studies have primarily found the protein to be 

exclusively located in the cytosol38,39. Dysregulation of Pirin has been reported to play a role in 

various tumorigenesis pathways and cancers such as melanoma and colorectal cancer for 

instance40,41. Corollary, Ibuprofen which is a nonsteroidal anti-inflammatory drug (NSAID), has 

been reported to potentially reduce risk significantly for colorectal cancer42,43. Nonetheless, the 

results demonstrate how this workflow can be employed to find novel targets for different drugs, 

even those with relatively weak interaction as is the case with Ibuprofen and Pirin. The weak 

interaction of Ibuprofen with Pirin is not unexpected given the small size and molecular weight of 

Ibuprofen. However, the results underscore the benefits of screening small compounds and 

fragments using this technique to aid drug design and test new hypotheses for their mechanism 

of action, which are often not well understood. 
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One of the surprising findings in our analysis was that, on average, a greater number of 

proteins exhibited a temperature destabilization effect rather than stabilization when treated with 

various drugs in different protein extracts (Figure 5E). Thermal shift assays are grounded on the 

assumption that specific small molecule interactions with the target protein, like van der Waals 

forces or hydrogen bonding, reduce the Gibbs free energy, resulting in increased thermal 

stabilization. While it is theoretically possible that a protein-drug interaction could lead to 

conformational changes exposing potential hydrophobic patches which decrease thermal protein 

stabilization, this phenomenon is seldom observed44–46. Previous research has shown that 

changes in protein-protein interactions and large protein complexes can influence the thermal 

stability of component proteins47,48. Thus, the temperature destabilization of proteins upon drug 

treatment could predominantly result from downstream (secondary or tertiary) effects of the drug 

rather than direct engagement with the drug. The findings from this study would suggest that the 

effect of small molecules on the proteome could be through perturbation of protein-protein 

complexes or interactions, rather than through the direct targeting of protein binding pocket or 

inhibition. Consequently, the results of our analysis suggest that a significant portion of the 

physiological effects of small molecule compounds may arise from downstream or in-direct protein 

perturbations that may require us to re-evaluate the question of what constitutes a drug “target”. 

This distinction may prove challenging to discern but could nonetheless have profound 

implications for drug discovery and development. This was exemplified by the lysosomal protein 

HexB, which exhibited destabilization in numerous organ and cell extracts following metformin 

treatment, despite no direct impact on its enzymatic activity at Metformin concentration below 

1mM. It is also possible that the effect observed between HexB and Metformin could be an artifact 

as no effect was observed on HexB activity in acidic pH buffer which was similar to what is 

expected in lysosomes. 

 

One of the limitations in methods and variations of TPP, as employed in this study, is its 

bias against proteins that are difficult to monitor with the strategy presented here, such as 

membrane proteins. Although substantial efforts have been made to broaden membrane protein 

coverage, there remain inherent constraints within the technique itself that hinder complete 

coverage13. Furthermore, in our pursuit of increased throughput, our workflow entailed the use of 

native cellular protein extracts rather than conducting experiments within live cells or in vivo. While 

this approach aims to preserve the native conformation of proteins and protein complexes, it does 

result in the disruption of cellular compartments, potentially introducing inaccuracies into target 

identification which might explain why we observed HexB as a metformin target. The native 

cellular environment of proteins could explain why a particular protein was observed as a target 

in one rat organ or cell line protein extract but not in another, despite being detected. This could 

be caused by lower abundance and lower reproducibility in certain organs such that protein 

targets do not pass statistical threshold criteria. It is also possible that the presence or absence 

of interaction partners of the target protein might be required for the observed action of a drug on 

a protein, which may occur in some rat organs or cell lines in a context dependent manner. 

Additionally, there is the likelihood that an unknown number of direct or indirect target proteins of 

small molecule drugs simply fall below the detection threshold of this workflow due to the limited 

temperature resolution. Furthermore, we did not assess the impact of post-translational 
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modifications on the stability of the protein which could further complicate the analysis. Despite 

these limitations, we aimed to strike a balance between throughput, sensitivity, and proteome 

depth with our workflow. As such, we anticipate future optimizations in thermal proteome profiling 

based methods that will complement other techniques in drug development and target 

identification.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure legends 

Figure 1 - TPP and optimized TPP-PISA analysis 

A) Graphical illustration of the concept of thermal proteome profiling (TPP) or cellular thermal shift 

assay (CESTA) where a protein’s drug interaction is determined through a melting curve that is 

generated based on the analysis of the soluble fraction after drug treatment followed by thermal 

heating at different temperatures. Differences in the melting point (Tm: the temperature at which 

only 50% of the protein is soluble) are used to determine whether a protein is a drug target. B) 

Concept the TPP-based method proteome integral stability assay (PISA). The melting curve is 

integrated by pooling only a few heat-treated fractions to analyze the relative quantity of soluble 

proteins. Consequently, a melting curve is not required to determine whether a protein is a drug 

target. C) Illustration of the TPP and TPP-PISA experimental setup utilized to determine the 

effectiveness of profiling the soluble fraction over a temperature range (TPP, 37-67°C) vs pooling 

fewer number of temperature points (TPP-PISA, 53, 56, 59°C). DMSO is used as control and 

compared against Staurosporine-treated protein extracts. Experiments are performed with 4 

replicates each. 

 

Figure 2 - Comparison between TPP and optimized TPP-PISA 

A) Data processing workflow for TPP and TPP-PISA are graphically presented on the left and 

right side, respectively. TPP requires the determination of melting curves which are compared 

across drug treatments to determine whether a protein is a potential drug target. TPP-PISA 

integrates the melting curve and thus only the difference in total protein abundance is required 

between drug treatment and control to determine whether a protein is a potential target. B-C) 

Volcano plots showing the statistical output of the TPP (B) and TPP-PISA (C) experiments. -

log10(p-values) are plotted on the vertical axis, and the log2-transformed differences between the 

Staurosporine- and DMSO-treated conditions are presented on the horizontal axis: differences of 

melting points (TM) for (B), and differences between the corrected log2-transformed MS intensities 

of the TMT reporters for (C). Proteins on the right side of the volcano plot were stabilized by 

Staurosporine while proteins on the left side were destabilized. D) Comparison of the p-values 

obtained for the protein groups identified in both TPP and TPP-PISA experiments. E) Number of 

kinase and non-kinase protein groups identified in the two experiments with q-value <0.05. See 

Supplementary table 2 for additional technical replicates of the TPP-PISA experiment. 

 

Figure 3 - Comparison between centrifugation and filtration for removal of insoluble proteins 

following temperature treatment. 

A-B) Volcano plots showing the statistical output of a TPP-PISA experiment using centrifugation 

(20,000xG centrifugation for 20 minutes) (A) or filtration with a 0.45 μm pore size hydrophilic 

polytetrafluoroethylene filter plate followed by 2-minute centrifugation at 500xG (B) for separating 

soluble and insoluble proteins. -log10(p-values) are plotted on the vertical axis, and the 

differences between the log2-transformed corrected MS intensities of the TMT reporters in the 

Staurosporine- and DMSO-treated conditions are presented on the horizontal axis. C) 

Comparison of the p-values obtained for the protein groups identified in the two experiments 

presented in (A) and (B). D) Number of Staurosporine kinase and non-kinase targets identified at 

q-value <0.05 for the two experiments. 
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Figure 4 - Streamlined label-free TPP-PISA workflow and evaluation of rat organ extracts for TPP-

PISA. 

A) 96-well plate based workflow based on label-free MS analysis using data-independent 

acquisition method is illustrated. Briefly, protein extracts from different biological samples are 

aliquoted into a 96-well plate and compounds are added to the plate and incubated in a PCR 

machine at 37°C. This is followed by splitting each well into three wells for heating at three 

different temperatures in the same PCR machine. After temperature treatment, the split aliquots 

are pooled into their original wells and transferred to a 96-well filter plate. Soluble proteins are 

collected in a collection plate where the samples are prepared using PAC protocol and overnight 

LysC/Trypsin digestion. Resulting peptides are loaded onto EvoTips and analyzed using DIA 

mass spectrometry. Data is searched using library free DIA-NN 1.81 prior to downstream data 

analysis. B) Organs extracted from Wistar rats are illustrated. C) Staurosporine kinases targets 

found in rat organ extracts are mapped on the kinase phylogenetic tree as orange circles using 

KinMap49. D) Representative dot plot of selected kinases identified as Staurosporine targets in rat 

organ extracts. Normalized fold change values log2(MS Staurosporine) – log2(MS DMSO) are 

color coded for each point, and the size of the point reflects the q-value. Stroke color for each 

points displays whether the kinases pass statistical threshold based on q-value. Full heatmap can 

be found in Supplementary Figure S5.  

 

Figure 5 - Global analysis of drug targets and their effect on the proteome. 

A) Drug similarity plot of the number of common protein targets based on DrugCentral and 

structural similarity (Tanimoto index) for all the pairs of drugs used in this study. The points are 

ordered by hierarchical clustering based on their number of common targets (horizontal) and their 

structure similarity (vertical). B) Number of proteins identified from TPP-PISA experiments for all 

the biological sources. C) Overlap of the identified proteins from rat organs and human cell lines 

based on the gene names in the protein groups. D) Temperature stabilization of Map2k1 and 

Ptpn11 upon incubation with Cobimetinib and SHP099 respectively, after TPP-PISA analysis in 

different rat organ and human cell line protein extracts. Points represent the mean log-

transformed fold change between treated and control condition, and the standard deviation is 

represented by error bars. E) Total number of significantly stabilized/destabilized protein groups 

identified upon heating in presence of the different drugs tested in the study for human cell lines 

and rat organ extracts (top and bottom panel, respectively). 

 

Figure 6 - Drug target network visualization 

Networks consist of drugs (orange rectangles), known drug targets (dark gray diamonds), and 

significant targets from our study (light gray rectangles), which can be dark gray if they are also 

known targets. Solid non-grey edges represent a significant association between a tested drug 

and a target protein and are colored based on the rat organ extract or human cell line, in which 

they were identified. The arrow heads indicate the direction of temperature stabilization (delta for 

stabilizing and square for destabilizing). Edges between drugs and known targets from 

DrugCentral are shown as solid gray lines, while protein-protein homology and drug-drug 

similarity edges are represented as gray dashed lines. This legend applies to all subsequent 
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network figures. A) Protein target network of Cobimetinib showing all its protein targets identified 

across different extracts and the nature of the target (i.e. protein stabilized or destabilized). B) 

Protein targets of Naproxen and common protein targets with Ibuprofen are shown in this network 

to demonstrate the analysis of common targets and the drug crosstalk. C) Network of selected 

cytochrome P450 enzyme targets of Ibuprofen that share sequence homology with a known target 

of Ibuprofen according to DrugCentral.  

 

Figure 7 - Validation of Pirin as a novel Ibuprofen target 

A) Protein target network of Ibuprofen highlighting Pirin as a target (via temperature stabilization) 

in multiple biological protein extracts. B) Compound structures of Ibuprofen, the negative controls 

Nicotinamide and Aspirin as well as the positive control Triphenyl Compound A (TPhA) used for 

surface plasmon resonance (SPR) on recombinant human Pirin (hPirin). C) SPR sensorgram of 

Ibuprofen at different concentrations on immobilized hPirin showing concentration-dependent 

increase in SPR response. D) SPR dose-responses for Ibuprofen, negative controls, and 

Ibuprofen after TPhA pretreatment on hPirin. E) Protein target network of Metformin highlighting 

HexB as a temperature destabilized target in multiple biological protein extracts. F) Normalized 

Recombinant HexB (20ng) activity using a fluorescent assay with 1mm and 10mm metformin at 

pH 4.5 and pH 7.4 is presented. Relative fluoresece unit was normalized to the mean of 0 mM 

value for pH 4.5 and pH 7.4 respectively. Individual replicates are plotted (n=4). The legend of the 

networks can be found in Figure 6. 
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MATERIALS AND METHODS 

Cell lines protein extraction 

HeLa and HepG2 adherent cell lines were purchased from ATCC (Manassas, Virginia, USA). 

Both cell lines were cultured in DMEM (Gibco) containing 100 U/mL penicillin (Invitrogen), and 

100 mg/mL streptomycin (Invitrogen) and supplemented with 10% bovine calf serum (Gibco) at 

37°C in a humidified incubator with 5% CO2. Cells were grown to 80% confluency and washed 

with phosphate-buffered saline (PBS) 5 times to ensure removal of all media and serum 

components. Cells were scraped and collected with cold PBS buffer. Cells were then collected by 

centrifugation at 400xG for 3 minutes and the supernatant was removed. Cold PBS buffer was 

added and the cells were gently resuspended again followed by another centrifugation and 

collection step. This was repeated two more times for a total of 4 washes. After the last 

centrifugation step, the supernatant was removed, and a precooled native protein extraction buffer 

added to the cells and gently resuspended. The extraction buffer composition was: 30 mM HEPES 

(Sigma-Aldrich) pH 7.4; 0.2% NP-40, 100 mM NaCl, 2mM MgCl2, 2.7 mM KCl, 10 mM Na2HPO4, 

and 1.8 mM KH2PO41. The extraction buffer was additionally supplemented with 5mM β-

glycerophosphate, 1mM sodium orthovanadate, 5mM sodium fluoride, 1mM phenylmethylsulfonyl 

fluoride and EDTA free protease inhibitor cocktail (Roche). After addition of protein extraction 

buffer, the sample was flash frozen with liquid nitrogen and stored at -80°C or thawed at room 

temperature followed by two additional freeze thaw cycles in a similar manner. Benzonase was 

then added to the sample and rotated in a cold room (4°C) for 1 hour. Sample was centrifuged at 

2000xG for 10 minutes at 4°C and the supernatant was collected in a new tube. The collected 

supernatant was passed through a 0.45 µm filter after which the protein concentration was 

determined using a Bradford assay and aliquoted prior to storage at -80°C. The resulting material 

was then utilized for TPP and TPP-PISA assays. 

 

Rat organ extraction 

Adult male Wistar rats (200-220 g at arrival; Charles River, Sulzfeld, Germany) were anesthetized 

with pentobarbital (200 mg/ml) mixed with lidocaine (20 mg/ml) and transcardially perfused with 

ice-cold 0.9% saline supplemented with 10 U/ml heparin (Heparin LEO, LEO pharma, Denmark). 

Additional perfusion was performed with ice-cold 0.9% saline solution supplemented with 5mM β-

glycerophosphate, 1mM sodium orthovanadate, 5mM sodium fluoride, 1mM phenylmethylsulfonyl 

fluoride and solubilized EDTA free protease inhibitor cocktail (Roche). Dissected organs were 

immediately snap-frozen in liquid nitrogen and stored at -80 °C until further processing. Frozen 

rat organs were either stored at -80°C or further processed for native protein extraction. Organs 

were transferred to 15 ml conical tubes, and cold native protein extraction buffer as described 

above was added to the organs with the exception that 0.4% NP-40 was used instead of 0.2%. 

Organs were pulverized using a Ultra Turbax blender (IKA, Staufen, Germany) until solubilization 

of the organ material was sufficiently achieved. Sample was kept on ice and centrifuged at 4°C 

for 20 minutes at 5000xG. Supernatant was transferred to another conical tube and benzonase 

was added to the sample and rotated in a cold room (4°C) for 1 hour. Following benzonase 

treatment, the supernatant was passed through a 0.45 µm filter after which the protein 

concentration was determined using a Bradford assay and aliquoted prior to storage at -80°C and 

the resulting material was utilized for TPP-PISA assays. 
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TPP Experiment 

In the Thermal Proteome Profiling (TPP) experiment, samples were treated with Staurosporine or 

DMSO for 10 minutes and then divided into 10 different temperature conditions (37, 41, 44, 47, 

50, 53, 56, 59, 63, 67°C) for 3 minutes. After temperature treatment, the samples underwent 

centrifugation for 30 minutes at 20,000xG, and the resulting supernatant was carefully transferred 

to new tubes. For mass spectrometry analysis, the Protein Aggregation Capture protocol (PAC) 

was applied as described previously21. This was followed by sequential digestion with Lys-C 

(Wako-Fujifilm, Tokyo, Japan) at a 1:100 (protease to protein ratio) at 37°C for 2 hours, followed 

by an overnight digestion with Trypsin (Promega, Madison, Wisconsin, USA) at a 1:100 ratio at 

37°C. After the overnight digestion, acetonitrile was added to achieve a final concentration of 50% 

and the beads were magnetically removed. Tandem Mass Tags (TMT) labeling was then carried 

out as described in the subsequent section. 

 

TPP-PISA 

For TPP-PISA analysis, the procedure involves treating samples with a drug at 37°C in a 96-well 

plate. Subsequently, each sample is evenly divided into three wells of the same volume. These 

divided wells are then subjected to heating at different temperature blocks (50, 53, and 56°C, 

respectively) for 4 minutes using a Applied Biosystems Veriti Thermo Cycler (Thermo Fisher 

Scientific) followed by a ramp down to cool the plate to 4°C. To consolidate the samples, the 

contents from the divided wells were pooled back into the original well. 

 

Insoluble Protein Removal 

To eliminate insoluble proteins, two methods are employed. In the first method, centrifugation is 

performed for 30 minutes at 20,000xG. Alternatively, for the optimized protocol, the insoluble 

fraction is removed by transferring TPP-PISA treated samples to a hydrophilic 

polytetrafluoroethylene 96-well filter plate with a 0.45 μm membrane pore size (MSRLN0410, 

Millipore, Burlington, Massachusetts, USA). The filter plate is pre-wetted with 100 μl of PBS and 

centrifuged for 2 minutes at 500xG. TPP-PISA samples are added, centrifuged for 5 minutes at 

500xG and the flowthrough is collected in a new plate. 

 

Sample Preparation and Digestion 

Following the removal of insoluble proteins, 4% SDS is added to the filtered samples. Reduction 

and alkylation are performed simultaneously using 5 mM tris(2-carboxyethyl) phosphine and 

5.5 mM chloroacetamide respectively for 30 minutes. Subsequently, samples are prepared using 

the protein aggregation protocol (PAC) in the same well plate. Sequential digestion is carried out 

with Lys-C (Wako-Fujifilm, Tokyo, Japan) at a 1:200 ratio (protease to protein) at 37°C for 2 hours, 

followed by overnight digestion with Trypsin (Promega, Madison, Wisconsin, USA) at a 1:100 ratio 

at 37°C. Post-overnight digestion, samples are acidified with TFA (1% final). Magnetic beads are 

removed by magnet and the supernatants are transferred to a new plate. For label free analysis 

of samples, the supernatants are directly transferred to Evotips (Evosep, Odense, Denmark).  

 

TPP TMT Labeling 

Tandem mass tags 10-plex reagents (Thermo Fisher Scientific, San Jose, USA) were utilized to 

label the resulting peptide samples with the temperature points representing different mass tags. 
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The labeling process involved allowing the reaction to proceed for 1 hour at room temperature. 

The reaction was quenched by adding 1% hydroxylamine for 15 minutes, and the mixture was 

acidified with trifluoroacetic acid (1% final concentration). Samples labeled with different TMT-

plexes were pooled, and acetonitrile was evaporated using a SpeedVac (Eppendorf, Germany) 

operating at 45°C. Peptides were reconstituted in 0.1% TFA, and subsequent steps included 

solid-phase extraction using C18 Sep-Paks (Waters Corporation, Milford, MA, USA), washing with 

0.1% formic acid, and elution with a buffer containing 40% acetonitrile and 0.1% formic acid. 

Acetonitrile from the eluted samples was evaporated using the SpeedVac at 45°C, and peptide 

concentration was determined using a NanoDrop 2000 spectrometer (Thermo Fisher Scientific, 

Waltham, MA, USA).  

 

 

Mass spectrometry analysis 

All samples were analyzed using a Q-Exactive HF-X or Orbitrap Exploris 480 mass spectrometer 

(Thermo Fisher Scientific) operating in positive ion mode coupled to an EvoSep One (EvoSep, 

Odense, Denmark) or EASY-nLC 1200 (Thermo Fisher Scientific) liquid chromatography system. 

Samples injected with the EASY-nLC 1200 system were separated on a in house emitter-column 

packed with 1.9 μm C18 beads (Dr. Maisch GmbH, Entringen, Germany). Peptides were loaded 

and washed using a 0.1% formic acid, 5% acetonitrile buffer in Buffer A, and the peptides were 

eluted using Buffer B composed of 0.1% formic acid and 80% acetonitrile. For samples analyzed 

with a coupled EvoSep One LC system, a PepSep (Bruker, Bremen, Germany) 15cm C18 column 

was used to load and separate peptides using the Evosep 30 samples per day method. For TMT 

labeled samples, a data-dependent acquisition (DDA) top 12 method with 120,000 and 45,000 

MS1 and MS2 resolution, respectively. For label free samples analyzed using DDA, a Top 20 

method was used with 120,000 MS1 resolution and 15,000 MS2 resolution. For data-independent 

analysis (DIA) on the Exploris 480 Orbitrap mass spectrometer, MS1 resolution of 120,000 and 

MS2 resolution of 15,000 for the DIA scans. Isolation window size of 13.7 mass-to-charge (m/z) 

was used with 1 m/z charge overlap between the isolation bins. DIA mass range of 361-1033 m/z 

was used for a total of 49 scan events and HCD normalized collision energy of 27% was utilized 

for fragmentation. 

 

Mass spectrometry raw file analysis 

DDA raw files generated from mass spectrometry analysis were analyzed by MaxQuant version 

1.5.7.0 software with Andromeda search engine50. Raw data was searched against the human 

UniProt FASTA database (UP000005640) with “Trypsin/P” used for protease specificity. 

Contaminant FASTA from MaxQuant was utilized to search and filter for common contaminant 

proteins. Additionally, 2 missed cleavages were allowed, carbamidomethylation of cysteine was 

set as a fixed modification while methionine oxidation and protein N-terminal acetylation were set 

as variable modifications. Mass tolerance for MS1 in the first search was set to 20 parts per million 

(ppm) followed by 4.5 ppm after calibration. Mass tolerance for MS2 was set to 20 ppm. For TMT 

analysis, “Reporter ion MS2” was used as a search parameter and 10-plex TMT was utilized for 

reporter groups. 
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DIA raw files were analyzed using DIA-NN version 1.820. Library free search was accomplished 

using an in silico generated spectral library within DIA-NN. Trypsin/P was used as a protease, 1 

missed cleavage was allowed, carbamidomethylation of cysteine was set as fixed modification, 

precursor charge state 2-5 was used. For human cell line analysis, the UniProt FASTA database 

(UP000005640) was used. For searching data generated from rat organ extract experiments, the 

protein sequences from Rattus norvegicus were retrieved from Biomarts the 28th of March 2021. 

A contaminant FASTA protein database from MaxQuant was also used alongside both human 

and rat sequences for in silico generation of spectral libraries. Match between runs was selected 

and double-pass mode setting was used as a neural network classifier. Robust LC (high accuracy) 

and RT-dependent settings were used for quantification strategy and cross-run normalization 

respectively.  

 

Proteomics data analysis 

For TPP-PISA data (Figure 2), the corrected TMT reporter intensities were retrieved from the 

“proteingroups.txt” file generated from MaxQuant analysis. Data were log2-transformed and 

normalized using quantile-based normalization after removing reverse sequences, potential 

contaminants, and protein groups with no quantified proteotypic peptides. “0” were replaced by 

NAs. For TPP analysis, corrected reporter intensities of TPP raw files analyzed by MaxQuant 

were used. Reporter intensities from different temperatures for all TPP samples were normalized 

to the TMT channel corresponding to 37°C (TMT-126 for all samples) to convert the intensity 

values to ratios. The converted ratios were used for melting point analysis of identified proteins 

using the TPP package as described previously11. For comparison between TPP and TPP-PISA, 

we performed two-sided unpaired t-tests (equal variance) followed by Storey correction for 

multiple testing on the protein group melting temperatures and relative quantities. For the figures, 

protein groups were labeled kinase according to the information retrieved from 

kinhub.org/kinases.html (01/12/2020). 

 

For the other experiments, DIA data were analyzed using DIA-NN, and we utilized the search 

outputs “pg_matrix” for downstream analysis. Contaminant proteins were removed, and the 

protein group intensity values were log2 transformed before re-alignment of median signal across 

runs. Runs with more than 40% of missing values were excluded from the analysis. Protein group 

signals from replicate MS runs of the same condition (drug treatment) were averaged. When 

independent MS-search outputs from the same species were combined (for Euler diagrams for 

example), we mapped the exact same protein group identifiers as provided by DIA-NN. When 

comparing species, rat protein identifiers from Ensembl were matched to their gene names as 

well as to human homologs using the Ensembl Compara ortholog mapping51 provided by BioMart 

from the FASTA rat identifiers (download 2nd of August 2021). 

 

Surface plasmon resonance 

All SPR experiments were performed at 25°C on a Biacore T200 instrument equipped with a 

Series S CM5 sensor chip (Cytiva, Uppsala, Sweden). SPR running buffers and amine-coupling 

reagents (1-ethly-3-(3-dimethlyaminoproply)carbodiimide hydrochloride (EDC), N-

hydroxysuccinimide (NHS), and ethanolamine hydrochloride-NaOH pH 8.5 were purchased from 

Cytiva. DMSO was from Sigma Aldrich (34943). 1x PBS-P, 2% DMSO (11.9 mM NaH2PO4-
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Na2HPO4 pH 7.4, 137 mM NaCl, 2.7 mM KCl, 0.005% (v/v) surfactant P20, 2% DMSO) was used 

as running buffer. Recombinant human pirin (Abcam, ab123170) was buffer exchanged to PBS 

and immobilized at 25 μg/ml to ~ 10,000 RUs on flow cell 2 (Fc2) of the CM5 chip using standard 

EDC/NHS coupling chemistry and following the manufacturer’s protocol. The flow cell 1 (Fc1) was 

as well EDC/NHS treated and used as a reference cell for subtraction of systematic instrumental 

drift. Triphenyl Compound A (TPhA) was purchased from MedChemExpress (HY-14454 catalog 

number). Nicotinamide was purchased from Sigma Aldrich (72340). Ibuprofen and Aspirin were 

purchased from Merck Sigma-Aldrich. Concentrations of stock compounds in DMSO were 10 mM 

(TPhA) or 135 mM (Ibuprofen, Aspirin, Nicotinamide). For SPR experiments the compounds were 

diluted first in DMSO free SPR running buffer to 200 μM (TPhA) or 2700 μM (Ibuprofen, Aspirin 

and Nicotinamide) and then further diluted with SPR running buffer containing 2% DMSO to 9000 

nM (TphA) or 300 μM (Ibuprofen, Aspirin, Nicotinamide) highest concentrations. Three- or two-

fold serial dilutions were subsequently prepared in running buffer, and each concentration series 

was injected sequentially for 90 s from lowest to highest concentration over flow cells 1, 2 at a 

flow rate of 60 μl/min and 120 s (TPhA, Ibuprofen, Aspirin, Nicotinamide) dissociation times. 

Ibuprofen was tested as well in a SPR running buffer supplemented with 3 μM TPhA to test for 

the possibility of competitive binding between TPhA and Ibuprofen. Eight solutions with increasing 

concentrations of DMSO (1.5% - 2.8%) were prepared to build a solvent correction curve that 

accounts for variations in bulk response due to small percentage variation in DMSO concentration 

across samples. Data processing and analysis was done using the BiaEvaluation software (v. 

3.2.1, Cytiva, Uppsala, Sweden). The raw sensorgrams were solvent corrected, double 

referenced (referring to the subtraction of the data over the reference surface and the average of 

the buffer injections from the binding responses), and the equilibrium dissociation constant, KD, 

was determined using a steady state model (for TPhA, Ibuprofen). 

 

Beta Hexosaminidase (HexB) Activity Assay 

HexB assay was conducted according to manufacturer instructions (Cell Biolabs Inc, San Diego, 

California, USA). Briefly, 20ng of recombinant human HexB was incubated with substrate for 30 

minutes at 37°C in a 96-well black plate followed by reaction quenching using a neutralization 

buffer. Tecan (Männedorf, Switzerland) Spark microplate spectrometer was used for fluorescent 

measurements with an excitation and emission wavelengths of 365 and 450 nm respectively. 

Relative fluorescent units (RFU) were used for reported data analysis. For Figure 7F, all points 

were normalized to the mean RFU of 0 mM Metformin for pH 4.5 and pH 7.4 respectively.  

 

Statistical analysis of the TPP experiments 

Data from the same experiment were analyzed together with two-sided unpaired t-tests (equal 

variance). For the Pilot experiments, we compared the 4 drug-treated replicates with the 

corresponding DMSO controls of the experiment. In the screen data (human cells and rat organs), 

we compared the 4 replicates of a given drug and concentration to all other conditions excluding: 

i) the same drug at different concentrations; ii) drugs with a Tanimoto index ≥ 0.6; iii) drugs with 

minimum one common target. p-values were adjusted for multiple testing using Storey (“qvalue” 

package v2.22.0 in R). The combined outputs of each statistical test are available at the Zenodo 

data repository (https://doi.org/10.5281/zenodo.10635028), drugs excluded from the controls are 
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in Supplementary Table 4. For the screen, we considered significantly regulated protein groups 

with a q-value ≤ 0.05 and an absolute log2-transformed fold change ≥ 0.5.  

 

Drug similarity 

Known drug target interactions and drug structures (smiles) were retrieved from DrugCentral25 on 

drugcentral.org the 13/01/2021 and 03/08/2021, respectively. The smiles of SHP099 and RMC-

4550 were not available in DrugCentral and were retrieved from biomol.com (06/09/2021). The 

Tanimoto index reflecting pairwise drug similarity was calculated with Open Babel v3.1.052. The 

outputs of this analysis are in Supplementary Table 4. 

 

Protein–drug network construction and visualization 

A protein–drug network was constructed from the data such that each edge corresponds to a 

significant association between a tested drug and a target protein (q-value ≤ 0.05 and an absolute 

log2-transformed fold change ≥ 0.5, see the paragraph “Statistical analysis of the TPP 

experiments” for more details), identified in at least one of the rat organ extracts or human cell 

lines. Some targets were identified in multiple experiments resulting in several parallel edges 

between this target and the drug. To combine the rat and human data in one network visualization, 

rat proteins were mapped to their human orthologs using BioMart as described for the proteomics 

data analysis and the first identifier in each group was used as a representative. The network was 

further expanded by drug–drug similarity edges based on a Tanimoto index > 0.6 as well as 

protein–protein similarity edges based on their homology scores retrieved from STRING v11.5 for 

human without further cutoff53. Known drug–target associations from DrugCentral were retrieved 

on 13/01/2021 and added as edges to the network for the tested drugs. Network visualizations 

were created using Cytoscape54 and available at https://doi.org/10.5281/zenodo.10635028.  
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