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Abstract

Understanding the causal pathogenic mechanisms of diseases is crucial in clinical research. When

randomized controlled experiments are not available, Mendelian Randomization (MR) offers an alter-

native, leveraging genetic mutations as a natural “experiment” to mitigate environmental confound-

ings. However, most MR analyses treat the risk factors as static variables, potentially oversimplifying

dynamic risk factor effects. The framework of life-course MR has been introduced to address this is-

sue. However, current methods face challenges especially when the age-specific GWAS datasets have

limited cohort sizes and there are substantial correlations between time points for a single trait. This

study proposes a novel approach, estimating a unified system of structural equations for a sequence

of temporally ordered heritable traits, requiring only GWAS summary statistics. The method facili-

tates statistical inference on direct, indirect, and path-wise causal effects and demonstrates superior

efficiency and reliability, particularly with noisy GWAS data. By incorporating a spike-and-slab

prior for genetic effects, the approach can address extreme polygenicity and weak instrument bias.

Through this methodology, we uncovered a protective effect of BMI on breast cancer during a con-

fined period of childhood development. We also analyzed how BMI, systolic blood pressure (SBP),

and low-density cholesterol levels influence stroke risk across childhood and adulthood, and identified

the intriguing relationships between these risk factors.
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1 Introduction

Understanding the pathogenic mechanisms of diseases is a foundational challenge in clinical research.

Given the limitations of conducting randomized controlled experiments in certain cases, there has been

a growing reliance on Mendelian Randomization (MR) as an alternative approach. MR leverages genetic

mutations and inheritance as a natural “experiment,” effectively mitigating unmeasured environmental

confounding in epidemiological studies [1, 2]. However, most MR analyses use a cross-sectional design

and treat the risk factor as a static variable, ignoring the fact that inheritable risk factors often change

over time and may have a time-varying effect on diseases [3, 4]. As shown in earlier studies, this can

lead to oversimplified and even misleading conclusions from MR studies [5]. For instance, observational

studies have shown that vitamin D levels in childhood, but not adulthood, are associated with the

risk of multiple sclerosis. However, standard MR approaches based on the vitamin D level in adult

individuals suggest its causal effect in the etiology of multiple sclerosis [6].

To address this challenge, life-course MR has recently emerged as a framework to consider how

risk factors that are measured throughout an individual’s lifetime may influence later life outcomes

[7]. One commonly employed approach is to apply multivariable MR (MVMR) methods such as IVW-

MVMR [8] to estimate the direct causal effects of the risk factor at each time point under linear and

additive causal effect models. However, the efficiency of multivariable MR may be compromised due

to the limited cohort size in Genome-wide Association Studies (GWAS) of earlier life traits and high

auto-correlations of the risk factor across time. It is also challenging to evaluate the indirect causal

effect of the risk factor at earlier time points mediated by later time points using multivariable MR.

Alternative approaches involve g-estimations of structural mean models [4, 9], or functional principal

component analysis to aggregate the effects of a risk factor across time points [10]. However, both

methods require access to individual-level GWAS data that is typically not readily available on a large

scale. Additionally, the method from [10] is unable to distinguish between the direct and indirect effects

across different time points.

Using genetic variations as instrumental variables throughout the life course, we propose a new

approach to estimate a unified system of structural equations for a sequence of heritable traits that

are ordered temporally, only requiring GWAS summary statistics for each trait. Our estimated model

gives a “full picture” of the time-varying risk factors and enables causal mediation analysis by allowing

researchers to quantify various aspects of causal effects, including direct effects, indirect effects, and

the proportion of each path-wise effect relative to the total effect. While our model shares similarities

with simultaneous equations models in econometrics (Davidson, 1993), we can deal with weak and

invalid instruments and allow arbitrary interactions among genetic variants and environmental factors.

Furthermore, our model can simultaneously analyze multiple traits at any given time point, accounting

for known confounding exposures.

In comparison to alternative approaches, our method shows superior efficiency and reliability, partic-

ularly when dealing with noisy GWAS data from small cohorts for age-specific traits. By incorporating

a spike-and-slab prior for genetic effects, we account for the extreme polygenicity of complex traits

and avoid weak instrument bias, a common issue in MR. Additionally, we discussed sufficient condi-

tions on the identifiability of any direct and indirect causal effects, accommodating pervasive horizontal

pleiotropy and arbitrary mediator-outcome confoundings. Applying our new method, we uncover a pro-

tective effect of Body Mass Index (BMI) on breast cancer which is confined to a specific period during
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childhood development. The method also allows us to unravel the intricate relationships among BMI,

systolic blood pressure (SBP), and low-density cholesterol levels across both adulthood and childhood,

and their effects on stroke. Our analyses suggest that, among these traits, adulthood SBP may be the

only factor with a direct causal effect on stroke. Furthermore, the previously identified causal effect of

BMI on SBP in adulthood [11, 12] might be explained by the confounding effect of childhood SBP.

2 Material and methods

2.1 Structural equations on individual-level data

Consider a sequence of risk factors (X1, X2, . . . , XK−1) in temporal order, where Xi temporally precedes

Xj when i < j. We are interested in the causal relationship between these traits and their causal

effect on the outcome, Y which will be denoted as XK and is typically a specific disease status in

adulthood. Denote Z as the vector of all genetic variants. Figure 1 illustrates the causal directed acyclic

graph (DAG) showing the causal relationships among the genetic variants, risk factors, outcome, and

unmeasured environmental confounders U. Causal effects between the traits must follow the temporal

order (only an earlier trait can causally affect a later trait), but we allow the genetic variants to have

direct causal effects on any trait at any time. Based on this, we assume the following additive structural

equations for each individual:

XK := Y =
K−1∑
l=1

βKlXl + fK(U ,Z,EY ),

Xk =

k−1∑
l=1

βklXl + fk(U ,Z,EXk
), k = 2, . . . ,K − 1

X1 = f1(U ,Z,EX1).

(1)

In these equations, the functions f1(·), · · · , fK(·) are the direct effects of genetics and environmental

factors on traits, which can be non-linear and involve arbitrary interactions. Our main assumption is

linearity and homogeneity of the causal effect βkl for any earlier trait Xl (1 ≤ l ≤ K − 1) on any later

trait Xk (l+1 ≤ k ≤ K). As discussed in the next section, this assumption of linearity and homogeneity

becomes crucial, especially when our data only includes GWAS summary statistics, a condition also

shared by previous summary-data MR methods.

2.2 Model on summary statistics

Two-sample MR is a popular implementation of MR that uses two independent GWAS samples, one

for the exposure and one for the outcome [13]. Similar to many existing methods for two-sample MR,

we only require GWAS summary statistics for each trait, so one may call this design “K-sample MR”.

The fact that summary statistics are sufficient is due to the linearity and homogeneity of the causal

effect in (1). This implies a linear model with measurement error on the GWAS summary statistics, as

we will explain next.

Specifically, let γkj ≡ argminγVar[Xk−γZj ] denote the coefficient corresponding to the least squares

projection of the trait Xk on the genetic variant Zj . The GWAS summary statistics provide estimates

of these marginal associations along with their standard errors. In particular, we assume we observe

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.10.579129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.10.579129
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Model overview. The causal directed graph associated with structural equations (1).
X1, ..., XK−1 are exposure traits in temporal increasing order and Y is the outcome trait. The blue
arrows represent the causal effects of the genetic variants Z on the traits. The red arrows represent the
effects of the unmeasured non-heritable confounders U .

γ̂kj ∼ N (γkj , δ
2
kj) for any SNP Zj and trait Xk, where the variances δ2kj are known. Further, let

αkj ≡ argminαVar[fk(U,Z,EXk
)− αZj ] denote the projection of the genetic and environmental direct

effects of trait Xk onto SNP Zj . If a SNP Zj is used as an instrumental variable for trait Xk, then for

any k′ ̸= k the value αk′j can be viewed as the pleiotropic effects of SNP Zj on another trait Xk′ . Notice

that, unlike the marginal associations γkj , these direct genetic effects αkj are generally not identifiable

from GWAS data. We will make a “balanced pleiotropy” assumption in later sections that is akin to

the Instrument Strength Independent of Direct Effect (InSIDE) assumption in the literature [12, 14].

By projecting the structural equations (1) onto the SNP Zj , we obtain the following linear equations

(Supplementary Text):

γkj =
k−1∑
l=1

βklγlj + αkj , k = 1, . . . ,K.

These equations can be more conveniently expressed in matrix form as:

Γ = B̃ · Γ+A, (2)

where P is the number of SNPs and the matrices are defined as

Γ ≡


γ11 γ12 . . . γ1P

γ21 γ22 . . . γ2P
...

... . . .
...

γK1 γK2 . . . γKP

 , A ≡


α11 α12 . . . α1P

α21 α22 . . . α2P

...
... . . .

...

αK1 αK2 . . . αKP

 , B̃ ≡


0 0 . . . 0 0

β21 0 . . . 0 0
...

... . . .
...

...

βK1 βK2 . . . βK(K−1) 0

 .

Equation (2) can be alternatively represented as

Γ = (I +B)A, (3)

where I is theK×K identity matrix, andB is the lower-triangular matrix that solves (I−B̃)−1 = I+B.

Compared to (2), the parametrization in (3) avoids matrix inversion, making it more amenable for

statistical estimation. It is easy to show that B̃ can be written as a Neumann series: B̃ = B+B2+ . . . .
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Intuitively, the (k, l) entry of the matrix B denotes the total causal effects of Xl on Xk through all

directed pathways [15].

We assume that we can use separate GWAS datasets to obtain p-values for SNP selection, thereby

mitigating potential selection biases [16, 17]. The selection p-value for each SNP is defined as the

Bonferroni-corrected p-value, computed from K − 1 GWAS summary datasets corresponding to traits

X1 to XK−1. SNPs are subsequently chosen based on the selection p-values using LD clumping [18],

ensuring that selected SNPs are approximately independent. Compared to a stringent p-value threshold

(such as 10−8) for SNP selection, our method allows for a higher threshold (such as 10−4 or 0.01) and

uses SNPs that are weakly associated with the exposure traits. This can generally increase the power

of the MR analysis.

Upon selecting the SNPs, another set of GWAS datasets is used to obtain the summary statistics

for the exposure and outcome traits. For each SNP Zj , the summary statistics Γ̂j follow a normal

distribution Γ̂j ∼ N (Γj ,Σj), where Γj := (γ1j , γ2j , . . . , γKj)
T is a vector of marginal associations and

Σj is a covariance matrix obtained from the GWAS standard errors and a correlation matrix that

depends on the extent of sample overlap and the correlation between the traits. This correlation matrix

is shared across the SNPs and can be estimated from the non-statistically significant GWAS summary

statistics using the method described in [17] (Supplementary Text).

2.3 Identifiability of direct and indirect causal effects

As the MR design uses genetic variants as instrumental variables, a crucial assumption is that these

instrumental variables are valid. In particular, MR relies on the assumption that the genetic variants

have no horizontal pleiotropic effects [19]. Selecting suitable SNPs for this purpose is particularly

challenging due to the complex polygenic nature of complex traits [20, 21]. Many recent MR studies

have proposed methods to conduct MR in the presence of horizontal pleiotropy, with various additional

assumptions on the pleiotropic effects [12, 14, 22, 23].

Direct/indirect e�ects identi�able 
under independence

Direct/indirect e�ects identi�able Direct/indirect e�ects NOT identi�able 

a b c

Figure 2: Model identifiability under three scenarios

In the context of life-course MR, we confront an additional challenge that arises from unmeasured

mediator-outcome confounding, which can incur biases in the estimation of direct and indirect causal

effects even when the treatment is completely randomized [24]. This is illustrated in Figure 2 with

two exposures and a outcome (K = 3). If we only use genetic instrumental variables for the first risk

factor X1 (Figure 2a), even if all SNPs are valid IV, it is not possible to separate the direct and indirect

effects of X1 due to unmeasured mediator-outcome confounding between X2 and Y (see Supplementary
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Text for a counter-example). In contrast, if each risk factor has its own set of instrumental variables

(Figure 2b), it is possible to identify all direct and indirect causal effects under the linear structural

equation model in (1). However, given that the sequence of risk factors is often the same risk factor

measured at different time points, it may be difficult to find SNPs that only exert their effects at a

specific time point.

We propose an alternative and more realistic assumption, which generalizes the InSIDE assumption

[14] and is illustrated in Figure 2c. We allow the SNPs to exert effects on all risk factors continuously,

and they may all have pleiotropic effects on the outcome and are thus not strictly valid instrumental

variables. Nonetheless, we show that the causal coefficient matrix B̃ can still be identified provided two

key assumptions are satisfied. First, we require the direct effects α1j , . . . , αKj are independent across

the traits. Second, the number of SNPs P needs to converge to infinity; in practice, this means that P

needs to be sufficiently large. Notice that we only assume independence among αkj , and the marginal

associations γkj can still be correlated across the traits indexed by k. Additionally, we do not need to

assume that the genetic associations across SNPs within each trait are identically distributed and allow

for heterogeneity across SNPs. These new assumptions allow us to address both pleiotropic effects and

mediator-outcome confounding. A formal mathematical statement of this new identifiability result and

its proof can be found in the Supplementary Text.

2.4 Model estimation and inference

We use a hierarchical Bayesian framework and Gibbs sampler to infer the direct and indirect causal

effects, which can all be expressed in terms of the matrixB. The Gibbs sampler allows us to conveniently

use posterior samples to construct credible intervals of any function of B, including any direct and

indirect effects, and proportions of these effects out of the total effects.

Based on earlier investigations [17], both the genetic associations and pleiotropic effects can be

highly polygenic, indicating that most elements in A are likely nonzero. Although most SNPs only

have weak effects on complex traits, a small set of SNPs may be responsible for the core biological

process and have a strong effect on the traits. Thus, as the most critical component of our Bayesian

hierarchical model, we assume the following spike-and-slab distributional assumptions on αkj :

αkj | pk, σ2
k0, σ

2
k1

ind∼ (1− pk)N (0, σ2
k0) + pkN (0, σ2

k1), k = 1, 2, . . . ,K. (4)

This model assumes a two-component Gaussian mixture on the direct genetic effects, wherein all SNPs

are permitted to have non-zero genetic effects on each trait and a subset of SNPs is allowed to exhibit

larger effects. In addition, we put Gaussian priors on elements of the matrix B and conjugate priors

on the hyperparameters:

βkl | σ2 i.i.d.∼ N (0, σ2), 1 ≤ l < k ≤ K

σ2 ∼ InvGamma(α, β)

pk
ind∼ Beta(ak, bk), k = 1, 2, . . . ,K

σ2
k0

ind∼ InvGamma(α0
k, β

0
k) k = 1, 2, . . . ,K

σ2
k1

ind∼ InvGamma(α1
k, β

1
k) k = 1, 2, . . . ,K
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To estimate the above Bayesian hierarchical model, we employ a Gibbs sampler algorithm which can

efficiently generate posterior samples when K is small. Posterior samples of B directly give us posterior

samples of B̃, which can then be used to construct credible intervals for any direct and indirect causal

effects, or their functions. Additionally, we use a simplified empirical Bayes approach to choose the

hyper-parameters (α0
k, β

0
k), (α

1
k, β

1
k) and (ak, bk), recognizing their significant impact on the posterior

distributions of B. For further computational and mathematical details, see the Supplementary Text.

2.5 Extension to multiple traits at each time point

To account for known confounders, we further expand our model to accommodate multiple traits at any

given time point (Figure 3). Specifically, at each time point k, we assume there are nk ≥ 1 exposures

of interest, which are denoted as Xk1, . . . , Xknk
. To facilitate the MR analysis, we require two key

assumptions. Firstly, we assume that there is not causal effect between the traits at the same time

point. This assumption avoids the need to identify the causal directions of any two traits that are at

the same time point. If there is a known causal direction between two traits measured at time point k,

we can add a “pseudo-time point” (or stage) k+ 1 after k where we move the outcome trait of the two

traits to stage k + 1. Our second assumption is a generalization of the independence assumption on

direct genetic effects described in Section 2.3. In the more general setting considered here, we require

that the direct genetic effects αkj of any SNP j must be independent across all traits, including those

at the same and different time points. With these assumptions in place, we can adapt our model and

Gibbs sampler to infer the direct and indirect causal effects. For more details, see Supplementary Text.

𝑋!!
𝑋!"
⋮
𝑋!#!

⋯

𝑋("#$)$
𝑋("#$)&
⋮
𝑋("#$)'!"#

𝒀

Figure 3: Illustration of causal relationships across traits allowing multiple traits at each time point.

2.6 Data sources

GWAS summary statistics are downloaded from public sources. For adult BMI, data is obtained from

the GIANT consortium website (https://portals.broadinstitute.org/collaboration/giant/index.

php/GIANT_consortium_data_files) and the UK Biobank Neale’s lab (http://www.nealelab.is/

uk-biobank/) using phenotype code 21001. Adult lipid traits (LDL-C, HDL-C, and triglycerides) sum-

mary statistics are acquired from the GLGC cohort via the GLGC website (https://csg.sph.umich.

edu/willer/public/lipids2013/) and from the GERA cohort through GWAS Catalog with study

accession numbers GCST007141, GCST007140, and GCST007142. Breast cancer GWAS summary

statistics come from GWAS Catalog with study accession number GCST004988, while those for T2D

are downloaded from the DIAGRAM website (https://diagram-consortium.org/downloads.html),

and for stroke from GWAS Catalog with study accession number GCST006906.
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For childhood traits, GWAS summary statistics on 1-year-old BMI and 8-year-old BMI are con-

tributed by the Centre For Diabetes Research, University of Bergen, Norway, and the Norwegian Mother,

Father and Child study, downloadable from their website (https://www.fhi.no/en/studies/moba/

for-forskere-artikler/gwas-data-from-moba/). Childhood BMI GWAS data from the EGG Con-

sortium can be found at http://egg-consortium.org/childhood-bmi.html. The ALSPAC datasets

for childhood lipid traits, SBP, and BMI are obtained from GWAS Catalog with study accession num-

bers GCST90104679, GCST90104678, GCST90104680, GCST90104683, GCST90104677.

3 Results

3.1 Simulation studies: benchmarking with multivariable MR

We compare our Bayesian framework with the alternative approach using MVMR to perform causal

mediation analysis [6, 25]. Specifically, we benchmark our method with IVW-MVMR [8], which is

widely used in practice, and GRAPPLE [17], a frequentist approach designed to account for independent

pleiotropic effects and weak instruments. At each step k, we apply the chosen multivariable MR method

to estimate the direct causal effects of X1, · · · , Xk−1 on Xk. A major drawback of this multi-step

approach to life-course MR is that is is difficult to provide reliable statistical inference on indirect and

pathwise effects, as the estimates across the different steps are correlated.

We generate synthetic GWAS summary datasets by soft-thresholding real GWAS summary statistics,

allowing the “true” genetic effects to be exactly 0 for some SNPs. Specifically, if we observe γ̂realkj with

variance δ̂2kj for a particular SNP j in a real GWAS dataset, we set αkj = sign(γ̂realkj )(|γ̂realkj | − 0.01)+

and also randomly shuffle αkj across j within each trait k to ensure independence across traits. Once

the matrix A is generated, we further generate Γ following our linear model (2) with a pre-specified

matrix B. To specify B, we simulate three scenarios with K = 3, K = 4, and a multivariate case where

there are multiple exposures at each time point (Figure 4). Finally, we simulate our synthetic summary

statistics γ̂simu
kj ∼ N (γkj , δ̂

2
kj) independently across all SNPs and traits.

K = 3
a b c

K = 4 Multivariate

Figure 4: Simulation scenarios

To mimic real MR mediation analysis, where earlier childhood traits typically have a smaller sample

size than adulthood traits, we generate synthetic data for earlier traits based on childhood GWAS

data. Specifically, we use childhood BMI data from the Norwegian Mother, Father, and Child Cohort

Study (MoBa) [26] and childhood lipid traits from the Avon Longitudinal Study of Parents and Children

(ALSPAC) cohort [27]. Adult GWAS datasets are used to generate summary statistics for the remaining

traits. See SI test for additional details of the simulation setup.

Figure 5 shows the coverage and average lengths of the confidence and credible intervals of the direct
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and indirect causal effects when K = 3 obtained using different methods. SNPs are selected based on

cutoffs of the p-values calculated from γkj/δ̂kj , indicating the strength of the true association between

SNP j and trait k. Genetic variants that are weakly associated with the traits are selected under a large

p-value threshold. As shown in the figure, for the direct causal effects, though the IVW-MVMR method

has the shortest confidence intervals, they are also severely under-covered, possibly due to the presence

of pleiotropic effects and weak instruments. In contrast, both our Bayesian approach and GRAPPLE

do not suffer from the weak instrument bias, and have good coverage irrespective of the strength of the

SNPs. Compared to GRAPPLE, our Bayesian approach offers more efficient and powerful inference.

Additionally, regarding the indirect causal effects of X1, only our Bayesian approach provides reliable

inference, and our credible intervals demonstrate good coverage and reasonable power. We also observe

similar advantages of our Bayesian approach in the other two simulation scenarios: K = 4 and the

multivariate case (Figure S1-S2).
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Figure 5: Simulation results for K = 3. The first row illustrates empirical coverage of 95% confidence
intervals on direct effects of X1 and X2 on Y and indirect effects of X1 over 500 repeated simulations.
The second row displays the boxplots of lengths of confidence intervals over repeated simulations.

3.2 Effect of early life body size on breast cancer

Several recent studies have indicated that early-life body size serves as a protective factor against the

risk of breast cancer [28, 29, 30]. Using IVW-MVMR for the mediation analysis, [3] observed that the

protective effect of early-life body size on breast cancer is not mediated by adult body size, while adult

body size itself does not causally influence breast cancer. However, in their analysis, though the adult

body size was quantified by the adult BMI trait, the representation of early-life body size relied on

the early-life body score from UK Biobank, which is a questionnaire recall trait asking adults to recall

whether they were thinner or plumper than average at the age of 10. As discussed by the original

authors, the use of such an imprecise measure for childhood body size may raise concerns about the

credibility of the scientific conclusions when compared to using direct measurements of childhood BMI.
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To address this, we revisit the analysis, comparing the earlier results with a new approach employing

our Bayesian method and directly utilizing childhood BMI GWAS summary statistics to represent

childhood body size. Similar to [3], for the adult body size we use the adult BMI trait from UK

Biobank and use GWAS summary statistics on breast cancer from [31] for the outcome trait. To

avoid instrument selection biases, we select SNPs based on their significance in separate GIANT Adult

BMI [32] and EGG childhood BMI [33] GWAS datasets. As shown in Figure 6a, when early-life body

score from the UK Biobank is used as the exposure, our Bayesian method, along with IVW-MVMR

and GRAPPLE, replicates the findings from [3], indicating no causal effect of adult BMI and a direct

protective effect of early-life body size on breast cancer.

However, replacing the early-life body size trait with the GWAS trait of 8-year-old BMI from MoBa

yields surprising results. IVW-MVMR suggests a protective causal effect of adult BMI on breast cancer,

contradicting earlier conclusions, while childhood BMI shows no direct effect (Figure 6b). In contrast,

GRAPPLE loses its power to detect any causal effects. Only our Bayesian approach provides a similar

conclusion as the earlier analysis, affirming the direct protective effect of childhood BMI. Despite the

8-year-old BMI trait offering a more precise measurement of childhood BMI, its use in MR is challenging

due to its small sample size (3K samples compared to half a million in the UK Biobank). To assess the

change in instrument strength when replacing the early-life body size trait from UK Biobank with the

8-year-old BMI GWAS trait from MoBa, we compute the conditional F-statistics [34] of the exposure

traits. We observe a substantial decrease in the conditional F-statistics in the childhood dataset (Figure

S3), indicating a loss of instrument strength due to the limited cohort size of the MoBa study. Similar

to our simulations, the analysis demonstrates that IVW-MVMR can produce unreliable confidence

intervals, while GRAPPLE lacks power when the GWAS dataset sample size for any of the exposure

traits is small. Our new Bayesian method demonstrates both efficiency and robustness, especially in

the mediation analysis where GWAS studies for early-life traits always have small sample sizes.

To further enhance our understanding of the impact of early-life body size on breast cancer, we

include infant BMI, specifically the 1-year-old BMI GWAS trait from MoBa, in our mediation analy-

sis. As the 1-year-old BMI and 8-year-old BMI traits share the same cohort, we also incorporate the

estimated noise correlation matrix in our Bayesian approach (Figure S4). As shown in Figure 6c, we

observe a causal effect of 1-year-old BMI on 8-year-old BMI, but no direct causal effects of 1-year-old

BMI on adult BMI or breast cancer. This suggests that the protective effect of body size on breast

cancer is confined to a specific period during childhood development.

3.3 high blood pressure, BMI and stroke

High blood pressure is widely acknowledged as the primary modifiable risk factor for stroke [35].

Through univariate MR analyses, a recent study has also revealed additional potential causal risks

for stroke outcomes including the adult BMI [36]. Moreover, using univariate MR, recent studies have

suggested that BMI has a significant positive causal effect on high blood pressure in adulthood [11, 12].

We aim to unravel the intertwined impacts of high blood pressure and BMI on stroke, delving into the

dynamic evolution of these causal relationships throughout the life course. To ensure robust findings,

we will also account for potential confounding risk factors, such as lipid traits.

Specifically, we analyze the causal effects of three risk factors: systolic blood pressure (SBP), BMI

and low-density lipoprotein cholesterol (LDL-C) in both childhood and adulthood on stroke, using

our multivariate mediation analysis framework (Figure 3). As our multivariate framework does not
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Figure 6: Evaluation of the effect of body size on breast cancer at different ages. a) Estimated effects
of childhood body size (from UK Biobank) and adult BMI on breast cancer risk as estimated by MV-
IVW, GRAPPLE, and our Bayesian approach. b) Estimated effects of childhood BMI and adult BMI
on breast cancer risk from different methods. c) Estimated causal DAG from our Bayesian approach
with selection p-value threshold at 10−2. The black arrows indicate significant direct effects.

allow any causal relationships among the risk factors at the same time point, to accommodate the

potential causal effects of BMI on SBP, we create two additional “time points” (stages) for the SBP

traits (Figure 7a). For the childhood BMI, LDL-C and SBP traits we use GWAS summary statistics

from the ALSPAC cohort [27]. We use GWAS summary statistics from UK Biobank for adult BMI and

SBP, and the summary statistics from Global Lipids Genetics Consortium [37] for adult LDL-C. For

stroke, the summary statistics are from [38]. SNP selections are based on the p-values in the GERA

GWAS for SBP and LDL-C [39, 40], and the p-values in GIANT adult BMI dataset and EGG childhood

BMI dataset.

Figure 7b illustrates the estimated causal directed graph at various selection p-value thresholds

using our Bayesian method. More significant arrows emerge with milder p-value thresholds, suggesting

increased power with the inclusion of weak instruments. As anticipated, all childhood exposures exhibit
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Figure 7: Multivariate mediation analysis on LDL-C, BMI, SBP and stroke. a) Design of the stages.
Childhood traits are marked with label (C) and adulthood traits are marked with label (A). b) Estimated
causal effects with different selection p-value thresholds. Arrows correspond to the significant effects,
with thicker arrows indicating larger effects. Positive effects are red and negative effects are blue.

significant causal impacts on their corresponding adulthood exposures. Our findings indicate a positive

causal direct effect of adulthood SBP on stroke, while no compelling evidence supports direct effects

from other traits on stroke, including childhood traits and adult BMI.

A surprising result from our analysis is a lack of support for a causal effect of adult BMI on adult

SBP, which is contrary to earlier univariate Mendelian Randomization (MR) findings [11, 12]. To

take a closer examination, we also perform multivariable MR, with childhood SBP and adult BMI

as exposures and adult SBP as the outcome. Both IVW-MVMR and GRAPPLE indicate that adult

BMI no longer exerts a positive causal effect on adult SBP after accounting for childhood SBP (Figure

S5a). Additionally, we observe a stronger genetic correlation between childhood SBP and adult BMI

compared to that between adult SBP and BMI (Figure S5b). Collectively, these results suggest that

the confounding effect of childhood SBP may have contributed the association of adult BMI on SBP

identified in previous univariable MR analysis.

4 Discussion

Based on a unified model across all traits, we propose a Bayesian approach with GWAS summary

data for life-course Mendelian Randomization. This proposed method allows the assessment of time-

varying causal effects of heritable risk factors, distinguishing between direct and indirect causal effects

of traits in temporal order. Addressing a key challenge in life-course MR—specifically, the high genetic

association of a trait across different ages and the limited cohort size of age-specific GWAS—our method

exhibits superior performance. Our method enjoys robustness to bias in using weakly associated SNPs

as instruments and can efficiently integrate information across traits.

A key assumption in our causal structural equation system is linearity and homogeneity of the

risk factors’ causal effects. Concerns may arise about the use of linear structural equations when the

outcome trait or the exposure trait is binary. In the former case, MR methods based on linear models
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can still estimate meaningful but attenuated causal effects [12]. In the latter case, caveats of MR are

discussed in [41]. Interpreting the estimated linear structural equations may be challenging in practice,

particularly when there is a sequence of binary exposures across time.

For the identification of causal effects in life-course MR, a similar argument was discussed in [7].

They show that in order for the causal direct effects to be identified, genetic variants must exert different

effects on each exposure in the model, and these effects must be linearly independent, or equivalently,

the true SNP-trait association matrix has full rank. This is necessary but not sufficient for identifying all

direct and indirect effects. For instance, in univariable MR, pleiotropic effects must be restricted (such

as by the InSIDE assumption) for causal identification. Merely assuming that the pleiotropic effects are

not perfectly correlated with the genetic associations with the exposure does not suffice to ensure the

identification of the causal effect. An additional assumption, such as our independence assumption of

direct associations across traits, is needed to ensure the separation of direct and indirect causal effects.

While our independence assumption permits pervasive pleiotropy, it assumes no correlated pleiotropy

for any traits. In practice, if confounding pathways exist between traits leading to correlated pleiotropy,

we recommend collecting additional GWAS data for confounding traits and explicitly adjusting them

using the multivariate extension of our approach.

A limitation of life-course MR is missing time points, where exposures at additional time points play

a role in causal relationships but are not considered in the MR analysis [6, 42]. If the exposure trait

at the missing time point Xk is a confounder of any two later-time traits Xk1 and Xk2 in our model,

it may invalidate the assumptions in our model. Specifically, if a selected SNP Zj is associated with

Xk, its direct associations with Xk1 and Xk2 become correlated through the paths Zj → Xk → Xk1

and Zj → Xk → Xk2 , thereby violating our independence assumption. However, our independence

assumption remains true if Xk is not a hidden confounder for any pair of subsequent traits. Examples

include when Xk solely influences the outcome or the exposure at the next t time point.

Another concern about life-course MR is the possibility of reverse causality, where the outcome trait

may exert causal effects on the exposure at the latest time point [6]. Typically, life-course MR benefits

from clear causal directions owing to the temporal order of traits. However, in many applications a

notable challenge arises when the last exposure and the outcome are collected at the same time, such

as in adulthood. In cases where the selected SNPs primarily associate with the outcome through their

connections with the exposures, MR generally remains resilient to bias caused by reverse causation

[6, 17, 43]. Our framework shares this advantageous property of MR.
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7 Code availability

The R package MrMediation for conducting our Beyesian mediation MR analysis is publicly available

for installation at (https://github.com/ZixuanWu1/MrMediation).
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Supplemental materials for “Causal mediation analysis

for time-varying heritable risk factors with Mendelian

Randomization”

S1 Additional mathematical details

S1.1 Derivation of summary-data linear models from individual structural equa-
tions

Recall that we define
γkj ≡ argminγVar[Xk − γZj ]

αkj ≡ argminαVar[fk(U ,Z,EXk
)− αZj ]

Projecting Xk onto Zj , we have

Xk = γkjZj + (Xk − γkjZj) = γkjZj + ϵkj (1)

where corr(Zj , ϵkj) = 0. On the other hand, we have

Xk =

k−1∑
l=1

βklXl + αkjZj + (fk(U ,Z,EXk
)− αkjZj) =

k−1∑
l=1

βklXl + αkjZj + ẽkj , (2)

where corr(Zj , ẽkj) = 0. Substitute (1) into (2) for l = 1, . . . , k − 1, we further have

Xk =

(
k−1∑
l=1

βklγlj

)
Zj +αkjZj +

(
k−1∑
l=1

βklϵlj

)
+ ẽkj =

(
k−1∑
l=1

βklγlj + αkj

)
Zj +

(
k−1∑
l=1

βklϵlj + ẽkj

)
. (3)

Since corr(Zj , (
∑k−1

l=1 βklϵlj + ẽkj)) = 0, both (1) and (3) are linear projections of Xk on Zj , thus

γkj =

k−1∑
l=1

βklγlj + αkj , k = 1, . . . ,K (4)

S1.2 Noise correlation estimation

In section 2.3 we claim that when traits have overlapping cohorts, the estimates γ̂kj are not indepen-
dent across k, but approximately, all SNPs share the same correlation matrix which can be effectively
estimated from the GWAS summary statistics themselves As shown in [1], for any risk factor k and l
we have

Corr(γ̂kj , γ̂lj) ≈
Nkl√
NkNl

Corr(Xks, Xls), (5)

where Nk and Nl are the sample sizes of the risk factor Xk and Xl, Nkl is the size of overlapping
samples and Xks denotes the measure of Xk for individuals s. The correlation of Xk and Xl of any
shared sample is Corr[Xks, Xls]. As a consequence, we assume

γ̂1j
γ̂2j
...

γ̂Kj

 ∼ N




γ1j
γ2j
...

γKj

 ,


δ1j

δ2j
. . .

δKj

R


δ1j

δ2j
. . .

δKj


 ,
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where R is the unknown shared correlation matrix.
To estimateR, we choose SNPs where γkj = 0 for all k so that we can estimate the shared correlations

using the sample correlation of the chosen SNPs. To do this we select SNPs with p-values pj ≥ 0.5 in
all selection files.

S1.3 Identifiability

In this section, we provide a formal mathematical statement for identifying the causal effect matrix B̃
in the linear model:

Γ = B̃ · Γ+A (6)

where

Γ ≡


γ11 γ12 . . . γ1P
γ21 γ22 . . . γ2P
...

... . . .
...

γK1 γK2 . . . γKP

 , A ≡


α11 α12 . . . α1P

α21 α22 . . . α2P
...

... . . .
...

αK1 αK2 . . . αKP

 , B̃ ≡


0 0 . . . 0 0
β21 0 . . . 0 0
...

... . . .
...

...
βK1 βK2 . . . βK(K−1) 0

 .

In the main text, it was highlighted that the causal effect matrix B̃ is not identifiable when only
genetic instrumental variables for the first risk factor X1 is involved in the multivariable MR analysis.
Here we give a simple example to illustrate how the direct and indirect effects can be not inseparable
in these cases. Suppose

X1 =

P∑
j=1

αjZj ,

X2 = β1X1 =
P∑

j=1

β1αjZj ,

Y = β2X1 + β3X2 =
P∑

j=1

(β2 + β1β3)αjZj ,

where Z = (Z1, Z2, . . . , ZP ) are independent SNPs. Suppose we have infinite sample size, thus
(α1, α2, . . . , αP ), β1(α1, α2, · · · , αP ) and (β2 + β1β3)(α1, α2, · · · , αP ) are directly observed. In this case
β1 can be simply identified by looking at the ratio of the first two marginal effect. On the other hand,
for any β′

3 ∈ R, one can define β′
2 = β2 − β1(β

′
3 − β3), so that (β′

2 + β1β
′
3) = (β2 + β1β3). Hence in this

case the direct effects and indirect effects of X1 on Y are not identifiable.
Now suppose for each single exposure trait we have some instrumental strength. As discussed in

the main text, we do not assume that the SNPs are valid IVs for any single exposure trait but allow a
large number of SNPs P to be used. Unlike the identifiability problems in standard linear models, we
do not assume identical distributions across SNPs to allow for arbitrary heterogeneity. We can identify
B̃ in the following sense:

Theorem 1. Under model (6), we further assume

• Infinite GWAS data: the sample sizes nk of the GWAS data for each trait k are large enough
that the marginal associations γkj can be uniformly consistently estimated across j and k by the
summary statistics when P → ∞ and mink nk → ∞.

• Independence: αkj’s are mutually independent across k and j

• Bounded moment: supk,j E[α4
kj ] < M for some constant M .

• Well-behaved limiting average moments: For any k, l ∈ [K], we have
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1. µk := limP→∞
1
P

∑P
j=1 E[αkj ] < ∞ exists and limP→∞

1
P

∑P
j=1 |E[αkj ]− µk| = 0

2. limP→∞
1
P

∑P
j=1 E[αkjαlj ] < ∞ exists

• Non-zero instrumental effect: For any k ∈ [K − 1], we have

lim
P→∞

1

P

P∑
j=1

Var(αkj) > 0

Then elements of B̃ in (6) can be consistently estimated when P → ∞ and mink nk → ∞..

Proof. Let B =
(
I − B̃

)−1
− I. Then alternatively we can write

Γ = B ·A+A (7)

We only need to show that elements in B can be consistently estimated as by definition, B̃ = I − (I +
B)−1. Under the infinite GWAS data assumption, without loss of generality, we treat all γkj as directly
observed.

First, we prove the following lemma.

Lemma 2. Let (Xj , yj) be independent random variables. Suppose

yj = βTXj + ϵj ,

where Xj ⊥⊥ ϵj. Assume the following quantities exist:

µy : = lim
n→∞

1

n

n∑
j=1

E[yj ],

µX := lim
n→∞

1

n

n∑
j=1

E[Xj ],

SX := lim
n→∞

1

n

n∑
j=1

E[XjX
T
j ],

c := lim
n→∞

1

n

n∑
j=1

E[Xjyj ].

In addition, assume that

1. supj E[∥Xj∥22 + ϵ2j ] < M for some constant M

2. limn→∞
1
n

∑n
j=1 |E[ϵj ]− µϵ| = 0 where µϵ = limn→∞

∑n
j=1 E[ϵj ]/n

3. SX − µXµT
X is full rank.

Then
β = −(SX − µXµT

X)−1µXµy + (SX − µXµT
X)−1c

is identifiable from the data when n → ∞.

Proof of Lemma 2. First note we have

µy = lim
n→∞

1

n

n∑
j=1

E[yj ]

= lim
n→∞

1

n

n∑
j=1

E[Xj ]
Tβ + lim

n→∞

1

n

n∑
j=1

E[ϵj ]

= µT
Xβ + µϵ.
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Additionally, since

c = lim
n→∞

1

n

n∑
j=1

E[Xjyj ]

= lim
n→∞

1

n

n∑
j=1

E[Xj(X
T
j β + ϵj)]

= lim
n→∞

1

n

n∑
j=1

(
E[XjX

T
j ]β + E[Xjϵj ]

)
= lim

n→∞

1

n

n∑
j=1

(
E[XjX

T
j ]β + E[Xj ]µϵ + E[Xj ]E[ϵj − µϵ]

)
= Sxβ + µXµϵ + lim

n→∞

1

n

n∑
j=1

E[Xj ]E[(ϵj − µϵ)]

we obtain that

∥c− Sxβ − µXµϵ∥1 =

∥∥∥∥∥∥
 lim

n→∞

1

n

n∑
j=1

E[Xj ]E[(ϵj − µϵ)]

∥∥∥∥∥∥
1

≤

 lim
n→∞

1

n

n∑
j=1

E
[
∥Xj∥1

]
|E[(ϵj − µϵ)]|


≤ (1 +M)

 lim
n→∞

1

n

n∑
j=1

|E[ϵj ]− µϵ|


= 0,

where the inequality in the third line is due to E[∥X∥1] ≤ 1 + E[∥X∥22] ≤ 1 +M . Thus we have

− (SX − µXµT
X)−1µXµy + (SX − µXµT

X)−1c

=− (SX − µXµT
X)−1µX(µT

Xβ + µϵ) + (SX − µXµT
X)−1(SXβ + µXµϵ)

=(SX − µXµT
X)−1(SX − µXµT

X)β − (SX − µXµT
X)−1µXµϵ + (SX − µXµT

X)−1µXµϵ

=β

Now we prove Theorem 1 by induction. We first define the following notations. For any matrix M ,
define

M<k,j :=
(
M1j ,M2j , · · · ,M(k−1)j

)T
(8)

Mk,<j :=
(
Mk1,Mk2, · · · ,Mk(j−1)

)
(9)

(similarly for M≤k,j and Mk,≤j). We shall show by induction that for k = 1, 2, . . . ,K − 1, we have

1. Bk,<k can be consistently estimated
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2.

µk := lim
P→∞

1

P

P∑
j=1

E[αkj ],

vk := lim
P→∞

1

P

P∑
j=1

E[α2
kj ]

ck := lim
P→∞

1

P

P∑
j=1

E[γ(k+1)jA≤k,j ] ∈ Rk

exist and can be consistently estimated when P → ∞.

Note the existence of µk and vk are guaranteed by assumptions. So we will only show the existence of
ck in our induction.

Base case. When k = 1, we need to show µ1, v1, c1 exist and can be consistently estimated. Here
the existence of c1 is implied by the existence of v1 and µ2 once we observe that

lim
P→∞

1

P

P∑
i=1

E[γ2jα1j ] = lim
P→∞

1

P

P∑
i=1

E[β21α1jα1j + α2j ] = β21 lim
P→∞

1

P

P∑
i=1

E[α2
1j ] + lim

P→∞

1

P

P∑
i=1

E[α2j ]

Note here we have α1j = γ1j are directly observed. Therefore by law of large numbers, under the
bounded moment assumption, we have

1

P

P∑
i=1

α1j
p→ lim

P→∞

1

P

P∑
i=1

E[α1j ] = µ1

1

P

P∑
i=1

α2
1j

p→ lim
P→∞

1

P

P∑
i=1

E[α2
1j ] = v1

1

P

P∑
i=1

γ2jα1j
p→ lim

P→∞

1

P

P∑
i=1

E[γ2jα1j ] = c1

Induction Step. Suppose 1, 2 hold for all k ≤ k0 − 1. Then we use Lemma 2 to show Bk0,<k0 can
be consistently estimated. Denote

β = BT
k0,<k0

Xj = (α1j , α2j , · · · , α(k0−1)j)
T ,

ϵj = αk0j ,

yj = γk0j .
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To apply Lemma 2, we first check assumptions. Note

µX = lim
P→∞

1

P

P∑
j=1

E[Xj ] = lim
P→∞

1

P

P∑
j=1

(E[α1j ],E[α2j ], · · · ,E[α(k0−1)j ])
T = (µ1, µ2, · · · , µk0−1)

T

µy = lim
P→∞

1

P

P∑
j=1

E[γk0j ] = lim
P→∞

1

P

P∑
j=1

E[γk0j ] = BT
k0,<k0µX + lim

P→∞

1

P

P∑
j=1

E[αk0j ] = βTµX + µk0

(Sx)kl =

 lim
P→∞

1

P

P∑
j=1

E[XjX
T
j ]


kl

= lim
P→∞

1

P

P∑
j=1

E[αkjαlj ]

c = lim
P→∞

1

P

P∑
j=1

E[Xjyj ] = lim
P→∞

1

P

P∑
j=1

E[Xj(X
T
j β + αk0j)]

= Sxβ + lim
P→∞

1

P

P∑
j=1

(E[α1jαk0j ], · · · ,E[α(k0−1)jαk0j ])
T

By the induction hypothesis and our assumptions of existence of limits, all of these quantities exist.
Moreover, the bounded second moment assumption in Lemma 2 is satisfied by our bounded fourth
moment assumption. The condition limn→∞

1
n

∑n
j=1 |E[ϵj ]−µϵ| = 0 is directly assumed in the statement

of the theorem. The full-rank assumption of Sx −µXµT
X is implied by the non-zero instrumental effect

because

Sx − µXµT
X = diag

 lim
P→∞

1

P

P∑
j=1

Var(α1j), · · · , lim
P→∞

1

P

P∑
j=1

Var(α(k0−1)j)


To see this, note for any k, we have

1

P

P∑
j=1

Var(αkj) =
1

P

P∑
j=1

(
E[α2

kj ]− E[αkj ]
2
)

=

 1

P

P∑
j=1

E[α2
kj ]

−

 1

P

P∑
j=1

(µk + E[αkj ]− µk)
2


= vk − µ2

k − 2µk

 1

P

P∑
j=1

(E[αkj ]− µk)

−

 1

P

P∑
j=1

(E[αkj ]− µk)
2


Therefore∣∣∣∣∣∣ limP→∞

1

P

P∑
j=1

Var(αkj)− vk − µ2
k

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ limP→∞

2µk

 1

P

P∑
j=1

(E[αkj ]− µk)

∣∣∣∣∣∣+
∣∣∣∣∣∣ limP→∞

 1

P

P∑
j=1

(E[αkj ]− µk)
2

∣∣∣∣∣∣
≤ 0 +

 lim
P→∞

1

P

P∑
j=1

|E[αkj ]− µk|

2

= 0

Hence
(
Sx − µXµT

X

)
kk

= limP→∞
1
P

∑P
j=1Var(αkj) for any k. One can use similar arguments to show

the off-diagonals of
(
Sx − µXµT

X

)
are zeros.

Combining all the results we have, by Lemma 2,

BT
k0,<k0 = β = −(SX − µXµT

X)−1µXµy + (SX − µXµT
X)−1c.
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We can consistently estimateBT
k0,<k0

as long as µX , SX−µXµT
X , µy and c can be consistently estimated.

Given their definition and the induction hypotheses, we can consistently estimate µX , (SX − µXµT
X)

and c. In addition, by the law of large numbers, under the bounded moments condition, we have

1

P

P∑
i=1

γk0j
p→ lim

P→∞

1

P

P∑
i=1

E[γk0j ] = µy

This shows that Bk0,<k0 can be consistently estimated.
It remains to show µk0 , vk0 , ck0 exist and can be consistently estimated. Here ck0 exists as it is

weights sum of moments of α’s:

ck0 = lim
P→∞

1

P

P∑
j=1

E[γ(k0+1)jA≤k0j ] = lim
P→∞

1

P

P∑
j=1

E[(B(k0+1),≤k0A≤k0j + α(k0+1)j)A≤k0j ]

= B(k0+1),≤k0 lim
P→∞

1

P

P∑
j=1

E[A≤k0jA
T
≤k0j ] + lim

P→∞

1

P
E[A≤k0jα(k0+1)j ]

Since Bk0,<k0 can be consistently estimated, we know B̃k0,<k0 can also be consistently estimated.
Let B̂k0,<k0 be our consistent estimator of B̃k0,<k0 . We know

1

P

P∑
i=1

(
γk0j − B̂T

k0,<k0Γ<k0,j

)
=

1

P

P∑
i=1

(
γk0j − B̃T

k0,<k0Γ<k0,j

)
+ o(1)

p→ lim
P→∞

1

P

P∑
i=1

E[αk0j ] = µk0

1

P

P∑
i=1

(
γk0j − B̂T

k0,<k0Γ<k0,j

)2
=

1

P

P∑
i=1

(
γk0j − B̃T

k0,<k0Γ<k0,j

)2
+ o(1)

p→ lim
P→∞

1

P

P∑
i=1

E[α2
k0j ] = vk0

And for any k ≤ k0

1

P

P∑
i=1

γk0+1,j

(
γk,j − B̂T

k,<kΓ<k,j

)
=

1

P

P∑
i=1

γk0+1,j

(
γk,j − B̃T

k,<kΓ<k,j

)
+ o(1)

p→ lim
P→∞

1

P

P∑
i=1

E[γ(k0+1)jαkj ] = (ck0)k

This finishes our proof of induction. Now we have for any k ∈ [K − 1], Bk,<k, µk, vk, ck can be
consistently estimated. Following the same proof in the induction step, by Lemma 2, we know BK,<K

can be consistently estimated. This finishes the proof.

S1.4 Details of the Gibbs Sampler

We observe GWAS summary statistics, γ̂kj , of marginal associations between SNPs and traits, with stan-
dard errors δkj . Denote ∆j = diag(δ1j , . . . δKj). Denote the correlation matrix betwen trait-association
for all SNPs by R.
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The model is

Γ̂ = (I +B)A+ ϵ

ϵ∗,j ∼ N (0,Σj := ∆jR∆j), with ϵ∗,j ⊥⊥ {ϵ∗,j′ : j′ ̸= j}

βkl
iid∼ N (0, σ2) for k < l

σ2 iid∼ InvGamma(αB, βB)

αkj
iid∼

{
N (0, σ2

k0), if zkj = 0

N (0, σ2
k1), if zkj = 1

σk0
iid∼ InvGamma(α0

k, β
0
k)

σk1
iid∼ InvGamma(α1

k, β
1
k)

zkj
iid∼ Bernoulli(pk)

pk
iid∼ Beta(ak, bk)

We have K traits and P genes. The prior parameters are αB, βB, α0
k, β

0
k, α

1
k, β

1
k, ak and bk. Also let

Z = (zkj)K×P

p = (p1, p2, . . . , pK)T

σ0 = (σ10, σ20, . . . , σK0)
T

σ1 = (σ11, σ21, . . . , σK1)
T

S1.4.1 Notation

For a K × P matrix M , let

• Mi,<k denotes a row vector of all elements of M in the ith row and in columns less than k

• Mi,∗ denotes a whole row, and M∗,j a column.

• vec(M) denotes the vectorization of M , i.e.,

vec(M) =


M∗,1
M∗,2
...

M∗,P

 .

• For K = P , define LTvec(M) to be the lower-triangular vectorization of M (excluding the
diagonal):

LTvec(M) :=


M2,1

MT
3,<3
...

MT
K−1,<K−1

MT
K,<K

 ,

which is a
(
K
2

)
-dimensional vector. Let v be a K dimensional vector:
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• Define

LTstack(v) :=



0 v1 0 0 · · · 0
0 0 v1 0
0 0 v2 0
0 0 0 v1
0 0 0 v2
0 0 0 v3
...

...
...

...
...

0 0 0 0 0 v1
...

...
...

...
...

0 0 0 0 vk−2

0 0 0 0 · · · vk−1



=


0 v<2 0 · · · 0

02 02 v<3 · · ·
...

...
...

. . .

0K−2 0K−2 v<K−1 0K−2

0K−1 0K−1 · · · 0K−1 v<K

 ,

which has dimensions
(
K
2

)
×K. Here 0k denotes the zero vector of dimension k.

Hence, if M is square, lower-triangular with zero diagonal,

Mv =
[
LTvec(M)TLTstack(v)]

]T
.

Also, for random variables U and V , p(U |V ) denotes the conditional density of U given V .

S1.4.2 Updating B

With prior:
LTvec(B) ∼ N(0, σ2I), (10)

likelihood (noise distribution):

ϵ∗,j
iid∼ N(0,Σj),

so that

vec(ϵ) ∼ N

0,Σ :=


Σ1 0 · · · 0
0 Σ2 · · · 0
...

. . .
...

0 0 · · · ΣP


 (11)

We have that

Γ̂ = A+BA+ ϵ

=⇒ Γ̂−A = BA+ ϵ

=⇒ vec(Γ̂−A)T = LTvec(B)T Ã+ vec(ϵ)T

=⇒ vec(Γ̂−A) = ÃTLTvec(B) + vec(ϵ)

Where

Ã :=

(
LTstack(A∗,1) LTstack(A∗,2) · · · LTstack(A∗,P )

)
From Theorem 2.2 in [2], we know the posterior is

LTvec(B) ∼ N(m,C),

C = (ÃΣ−1ÃT + σ−2I)−1,

m = CÃΣ−1 vec(Γ̂− Ã).
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S1.4.3 Updating σ2,σ0,σ1

First observe that conditioning on B, we have

σ ⊥⊥ (A,Z,p,σ0,σ1, Γ̂) | B

(as σ is independent with A,Z,p,σ0,σ1 and depends on Γ̂ only through B)
If follows that

p(σ|B,A,Z,p,σ0,σ1, Γ̂) =
p(σ,A,Z,p,σ0,σ1, Γ̂|B)

p(A,Z,p,σ0,σ1, Γ̂|B)

=
p(A,Z,p,σ0,σ1, Γ̂|B)p(σ|B)

p(A,Z,p,σ0,σ1, Γ̂|B)

= p(σ|B)

So if suffices to consider p(σ|B).
We have prior:

σ2 ∼ InvGamma(αB, βB),

and likelihood:
βkl

iid∼ N (0, σ2),

so we have posterior:

σ2 ∼ InvGamma

(
αB +

n

2
, βB +

1

2
∥B∥2F

)
,

where n = K(K − 1)/2 is the number of degrees of freedom in B.
Similarly for σ0 and σ1, we have

σ0 ⊥⊥ (B,p, σ,σ1, Γ̂) | (A,Z)

σ1 ⊥⊥ (B,p, σ,σ0, Γ̂) | (A,Z)

Thus
p(σ0|A,Z) = p(σ0|A,Z,B,p, σ,σ1, Γ̂)

p(σ1|A,Z) = p(σ1|A,Z,B,p, σ,σ0, Γ̂)

Also for any k ∈ [K], since σk0 is independent of (Ak′,∗,Zk′,∗) for k
′ ̸= k, we have

p(σk0|A,Z) = p(σk0|αk1, . . . , αkp, zk1, . . . , zkp).

Similarly
p(σk1|A,Z) = p(σk1|αk1, . . . , αkp, zk1, . . . , zkp).

Note

αkj ∼

{
N(0, σ2

k0) if zkj = 0,

N(0, σ2
k1) if zkj = 1

,

with prior,
σ2
kq ∼ InvGamma(αq

k, β
q
k),

where q ∈ {0, 1}.
Then the posterior is,

σ2
kq ∼ InvGamma

αq
k +

1

2
nkq, βq

k +
1

2

P∑
j=1

α2
kj1{zkj = q}

 ,

where niq :=
∑P

j=1 1{zkj = q}.
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S1.4.4 Updating pk

Note
p ⊥⊥ (B, σ,σ0,σ1,A, Γ̂) | Z

Therefore
p(p|Z) = p(p|B, σ,σ0,σ1,A, Γ̂,Z)

Since pk is independent with Zk′,∗ for k′ ̸= k, we have

p(pk|Z) = p(pk|zk1, . . . , zkp)

With prior
pk ∼ Beta(ak, bk),

and likelihood
zkj ∼ Bernoulli(pk),

we have Posterior:
pk ∼ Beta(ak + nk, bk + P − nk),

where nk =
∑P

j=1 zkj .

S1.4.5 Updating (A,Z)

To sample (A,Z) we first sample marginal of Z given everything but A. Observe that

p(Z∗,j , Γ̂|B,p, σ,σ0,σ1)

=p(Z∗,j , Γ̂∗,j |B,p, σ,σ0,σ1) ·

∏
j′ ̸=j

p(Γ̂j′ |B,p, σ,σ0,σ1

 .

Divide both sides by p(Γ̂). By independence among columns of Γ̂, we have

p(Z∗,j |Γ̂,B,p, σ,σ0,σ1) = p(Z∗,j |Γ̂∗,j ,B, σ,p,σ0,σ1)

Therefore we can just inspect each Z∗,j on its own. We have a likelihood given by:

Γ̂∗,j |Z∗,j ,σ0,σ1 = (I +B)A∗,j + ϵ∗,j

∼ N (0, (I +B)ΣZ∗,j (I +B)T +Σj), (12)

where

ΣZ∗,j := diag(σ1z1j , . . . , σKzKj
),

and we have prior

zkj
iid∼ Bernoulli(pk).

In cases where K is small enough, we can easily compute the un-normalized probability weights for all
possibilities of Zj , and sample from a discrete distribution.

Now that we have a sample from the marginal of Z we can sample from the conditional of A, which
has prior of

A∗,j ∼ N (0,ΣZ∗,j ). (13)

Recall that we have the linear Guassian model,

Γ̂∗,j = (I +B)A∗,j + ϵ∗,j

with noise distribution,
ϵT∗,j ∼ N (0,Σj),
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so we get a posterior similar to before of

A∗,j |Γ̂∗,j ,B,σ0,σ1 ∼ N (m, c),

C = [(I +B)TΣ−1
j (I +B) +Σ−1

Z∗,j
]−1,

m = C(I +B)TΣ−1
j Γ̂∗,j .

S1.5 Estimation for hyper-parameters

In our empirical studies, we find that the posterior distributions of B can be sensitive to the choice of the
hyper-parameters (α0

k, β
0
k), (α

1
k, β

1
k) and (ak, bk). Here we take an empirical based approach to choose

the hyper-parameters. Specifically, these hyperparameters will be set to the corresponding maximum
likelihood estimators in the marginalized model, which can be obtained by the expectation-maximization
(EM) algorithm. Recall that our model assumes for k ∈ {1, 2, . . . ,K},

αkj ∼ (1− pk)N (0, σ2
k0) + pkN (0, σ2

k1) (14)

In particular,

γ̂1j = α1j + ϵ1j ∼ (1− p1)N(0, σ2
10 + δ21j) + p1N (0, σ2

11 + δ21j) (15)

We shall first estimate the hyper-parameters for the outcome pleiotropies. In the E step, we compute
the posterior distribution of the latent variables given our current estimates of parameters. In the M
step we solve the maximization problem of the expectation of the log likelihood over the latent variables.
To get rid of the identifiability issue, we initialize σ2

10 and σ2
11 to be far from each other. When solving

for σ2
10 and σ2

11 in the M-step, we put the restriction that they can be at most 10 times larger than the
their values from last iteration. Once we have obtained the point estimates of (p1, σ10, σ11), we choose
the hyper-parameters for their priors such that the prior means are equal to the points estimates.

For k ∈ {2, 3, . . . ,K}, however, this is theoretically unachievable because α̂kj ≡ αkj + ϵkj are no
longer accessible. In practice we set α̂kj to γ̂kj to determine the hyper-parameters. The priors will be
biased especially when the genetic effects of a trait is largely mediated by an upstream trait that is
already in the model. Nonetheless, our numerical simulations suggest that this bias may be small in
most reasonable scenarios. We point out that one possible alternative approach is to use this as a first
degree approximation and then use the Gibbs sampler to estimate B and then use that to estimate
the direct genetic association, and repeat the expectation maximization. In the optimal settings, if the
estimates of B in the first stage is close to the true value, this two-stage procedure will improve the
precision of the algorithm. Indeed it turns out that this second stage estimation can usually be quite
helpful in univariate Mendelian Randomization. On the other hand, the step of estimating the direct
genetic association aggregates the noise from multiple exposures and makes it harder for EM algorithm
to find meaning and reliable estimates for the hyperparameters. Therefore the two-state procedure is
only recommended when the number of traits are small and the noise levels are fair.

S1.5.1 EM details

Recall that our model assumes for k ∈ {1, 2, . . . ,K},

αkj ∼ (1− pk)N (0, σ2
k0) + pkN (0, σ2

k1)

In particular,
γ̂1j = α1j + ϵ1j ∼ (1− p1)N(0, σ2

10 + δ21j) + p1N (0, σ2
11 + δ21j)

For simplicity, we will drop the subscript 1 for the time being.
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E-step. Denote θ(t) = (p(t), σ
(t)
1 , σ

(t)
0 ) .With latent variable zj ∼ Bernoulli(p), where γ̂j comes from

the first distribution when zj = 1, the membership probabilities are

wj ≡ P(zj = 1|θ(t)) =
p(t)ϕ(γ̂j ; 0, (σ

(t)
1 )2 + δ2j )

p(t)ϕ(γ̂j ; 0, (σ
(t)
1 )2 + δ2j ) + (1− p(t))ϕ(γ̂j ; 0, (σ

(t)
0 )2 + δ2j )

,

where ϕ(;µ, σ) is the density of normal distribution with mean µ and standard deviation σ. Then we
can compute the expectation of the data-log-likelihood with respect to the distribution of Z given the
data and θ(t):

EZ

[
logL(θ)|γ̂j , θ(t)

]
=
∑P

j=1

(
wj log

[
pϕ(γ̂j ; 0, σ

2
1 + δ2j )

]
+ (1− wj) log

[
(1− p)ϕ(γ̂j ; 0, σ

2
0 + δ2j )

] )
=
∑P

j=1

(
wj

[
log(p)− 1

2 log(δ
2
j + σ2

1)−
γ̂2
j

2(δ2j+σ2
1)

]
+ (1− wj)

[
log(1− p)− 1

2 log(δ
2
j + σ2

0)−
γ̂2
j

2(δ2j+σ2
0)

])
+ C,

where C is a constant that does not depend on θ.

M-step. Taking derivative with respect to p and setting it to zero yields

P∑
j=1

(
wj

p
− (1− wj)

1− p

)
= 0 =⇒ p(t+1) =

∑P
j=1wj

P

For σ2
1, it is equivalent to minimize

P∑
j=1

(
log(δ2j + σ2

1) +
Γ̂2
j

(δ2j + σ2
1)

)
,

and similarly for σ2
0 .The objectives can be maximized with a numerical optimization method.

S1.6 Extension to multiple traits at each time point

In this section we propose an extension of the Bayesian framework which allows multiple traits at a
single time stage. Specifically, suppose there are K time stages and N traits in total. At each time stage
k, there are nk exposures/outcomes of interests Xk1, . . . , Xknk

, with no internal interactions. Define
X1, . . . ,XK as

X1 =


X11

X12
...

X1n1

 ,X2 =


X21

X22
...

X2n2

 ,X3 =


X31

X32
...

X3n3

 , · · · ,XK =


XK1

XK2
...

XKnK

 .

Let
γki,j = argminγVar [Xki − γZj ]

be the marginal association between Xki and Zj . Define γ1,j , . . . ,γK,j as

γ1,j =


γ11,j
γ12,j
...

γ1n1,j

 ,γ2,j =


γ21,j
γ22,j
...

γ2n2,j

 ,γ3,j =


γ31,j
γ32,j
...

γ3n3,j

 , · · · ,γK,j =


γK1,j

γK2,j
...

γKnK ,j


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Similarly define α1,j , . . . ,αK,j as

α1,j =


α11,j

α12,j
...

α1n1,j

 ,α2,j =


α21,j

α22,j
...

α2n2,j

 ,α3,j =


α31,j

α32,j
...

α3n3,j

 , · · · ,αK,j =


αK1,j

αK2,j
...

αKnK ,j


Let

Γ :=

γ1,1 γ1,2 · · · γ1,P
...

...
...

...
γK,1 γK,2 · · · γK,P

 ∈ RN×P

A :=

α1,1 α1,2 · · · α1,P
...

...
...

...
αK,1 αK,2 · · · αK,P

 ∈ RN×P

Similar to the previous setting, from the individual level equations we have

Γ = B̃Γ+A, (16)

where B̃ is the matrix of coefficients. Furthermore, since there is no interactions between Xki’s within
each time stage k, we the coefficient matrix can be written as

B̃ =



0n1 0 0 0 . . . 0

B̃2 0n2 0 0 . . . 0

B̃3 0n3 0 . . . 0

B̃4 0n4 . . . 0

· · · . . . 0

B̃K 0nK


,

where 0nk ∈ Rnk×nk represents the square matrix of zeros, B̃k represents the matrix of marginal
associations between the Xk and (Xl)1≤l<k.

Equivalently by defining B = (I − B̃)−1 − I we can write

Γ = (I +B)A (17)

Γ̂ = (I +B)A+ ϵ, (18)

where B is of the form

B =



0n1 0 0 0 . . . 0
B2 0n2 0 0 . . . 0

B3 0n3 0 . . . 0
B4 0n4 . . . 0

· · · . . . 0
BK 0nK


.

This is a direct conclusion from the fact that(
I − B̃

)−1
− I = I +

∞∑
k=1

B̃k − I =
∞∑
k=1

B̃k
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S1.6.1 Adaption of Gibbs Sampler

The implementation of the Gibbs sampler for the multivariate version is identical to the previous version
except for the updates ofB, since we impose addition structure onB. To preceed, we make the following
definitions:

• Define Nk =
∑k

i=1 ni for k = 1, 2, . . . ,K.

• For any i ∈ {n1 + 1, 2, . . . , Nk}, define f(i) to be the unique integer k in {1, 2, . . . ,K} such that
Nk−1 < i ≤ Nk. Define g(i) = Nf(i).

• For any matrix B ∈ RN×N , given n1, . . . , nk, define

BLvec(B) :=



BN1+1,1

BN1+1,2
...

BN1+1,g(N1+1)

BN1+2,1

BN1+2,2
...

BN1+2,g(N1+2)
...

BN,1

BN,2
...

BN,g(N)


• For any v ∈ RN , define

BLstack(v) =



0Tn1
v1 0 · · · 0

0Tn1
v2 0 · · · 0

...
...

...
... 0

0Tn1
vg(N1+1) 0 · · · 0

0Tn1
0 v1 · · · 0

0Tn1
0 v2 · · · 0

...
...

...
...

...
0Tn1

0 vg(N1+2) · · · 0
...

...
...

...
...

0Tn1
0 0 · · · v1

...
...

...
...

...
0Tn1

0 0 · · · vg(N)


Hence, we have

Bv = [BLvec(B)TBLstack(v)]T

Then we show how to update B. With prior

BLvec(B) ∼ N (0, σ2I)

likelihood
ϵ∗,j ∼ N (0,Σj)
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and

vec(ϵ) ∼ N

0,


Σ1 0 · · · 0
0 Σ2 · · · 0
...

. . .
...

0 0 · · · ΣP


 ,

we have

Γ̂ = (I +B)A+ ϵ

Γ̂−A = BA+ ϵ

vec(Γ̂−A)T = BLvec(B)T Ã+ vec(ϵ)T

vec(Γ̂−A) = ÃTBLvec(B) + vec(ϵ),

where
Ã =

(
BLstack(A∗,1) BLstack(A∗,2) · · · BLstack(A∗,P )

)
So

BLvec(B) ∼ N (m,C)

C = (ÃΣ−1ÃT + σ−2I)−1

m = cÃΣ−1vec(Γ̂−A)

The other parts are identical to the previous case.

S2 Additional details of the simulation setup and real data analysis

S2.1 Simulation setup

Our simulation is based on multiple real GWAS summary statistics datasets. For the K = 3 scenario,
we select SNPs using data from GIANT Adult BMI and EGG childhood BMI GWAS datasets [3]. The
chosen SNPs are then associated with traits including 8-year-old BMI from MoBa, adult BMI from
UK Biobank, and Type II diabetes (T2D) from DIAGRAM to generate “true” direct associations with
the exposure and outcome traits. Extending to K = 4, the same SNPs and traits are retained, with
an additional inclusion of the 1-year-old BMI GWAS trait from MoBa as the exposure trait. In the
simulation scenario involving multivariate traits at each time point, for SNP selection we emply summary
statistics from low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-
C), and triglycerides in Genetic Epidemiology Research on Adult Health and Aging (GERA) [4]. The
simulation comprises three time points: a first stage with childhood traits with LDL-C, HDL-C, and
TG summary statistics from [5]; a second stage with adulthood traits with LDL-C, HDL-C, and TG
summary statistics from [6]; and a third stage with the stroke trait as the outcome, utilizing summary
statistics from [7].

To generate GWAS summary data for simulation, we first select SNPs based on the selection files
with LD clumping and a p-value cutoff at 0.01. For each selected SNP j and each exposure k, we
record the estimated effects γ̂realkj along with their corresponding standard errors δ̂kj in the exposure

and outcome files. Subsequently, we set “true” direct associations αkj = sign(γ̂realkj )(|γ̂realkj | − 0.01)+,
and we perform a random shuffle of αkj across j within each trait k to ensure independence across
traits. Once the matrix A is generated, we create Γ following our linear model with a pre-specified
matrix B. In the simulation, the matrix B is typically designed as an approximation of the true
relationships among the traits in the real data. Finally, we simulate our synthetic summary statistics
γ̂simu
kj ∼ N (γkj , δ̂

2
kj) independently across all SNPs and traits. The results of experiments with K = 3

and K = 4 are based on 500 replications, while for K = 7, we conduct 100 replications.
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At each replication, in order to mimic the real case, we would like to run the algorithms with p-
values cutoffs for the selection of SNPs. Unlike the real cases, where independent selection files are
usually utilized to compute the instrumental strength without selection bias, we directly set p-values
for each SNP by computing p-values from γkj/δ̂kj and taking the minimum of p-values across k. This
can be heuristically considered as if we have independent selection files with no measurement errors.
Specially, the p-values for each SNP j is computed by

min
k<K

(
2 · Φ−1(−|γkj/δ̂kj |)

)
,

where Φ is the Gaussian cumulative distribution function. Bonferroni correction is then applied to
select the significant SNPs under different p-values cutoffs.

S2.2 Calculation of genetic correlation

We apply the LDSC package developed in [8] to compute the genetic correlation between each pair of
phenotypes. Here we briefly review the calculation of genetic correlation via LD Score regression [9].
Let Xk and Xl be two phenotypes of interests and S be a set of P SNPs Z = (Zj)

P
i=1. Define

βcor
k = argmaxα∈RPCor(Xk,α

TZ).

Define h2S(Xk), the heritability explained by SNPs in S, as

h2S(Xk) = ∥βcor
k ∥22,

and eS(Xk, Xl), the genetic covariance among SNPs in S, as

eS(Xk, Xl) = (βcor
k )Tβcor

l .

The genetic correlation between Xk and Xl is then defined as

rS(Xk, Xl) =
eS(Xk, Xl)√
h2S(Xk)h

2
S(Xl)

.

The estimation of genetic correlation involves the estimation of both heritability and genetic cor-
relation. The heritability can be estimated via the single-trait LD Score regressions from [8]. The
single-trait LD Score regression equation of phenotype Xk is

E[χ2
j | lj ] = Nkh

2lj/P +Nka+ 1,

where χ2
j is the expected χ2-statistic of variant j, Nk is the sample size, P is the number of SNPs, lj

is the LD-score, a measures the contribution of confounding biases, and h2 is the average heritability.
The cross-trait LD regression can be applied to estimate the genetic covariance. The cross-trait LD
Score regression equation is

E[zkjzlj | lj ] =
√
NkNleg
P

lj +
eNkl√
NkNl

,

where zkj denotes the z-score for study k and SNP j, Nk is the sample size for study k, eg is the genetic
covariance, lj is the LD Score, Nkl is the number of individuals included in both studies and e is the
phenotypic correlation among the overlapping samples. Then the genetic covariance can be estimated

by regressing zkjzlj against
√
NkNl
P lj .

The choices of weights of LD score regression are discussed in the details in [9]. The assessment of
statistical significance is then conducted by block jackknife.
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S3 Supplemental figures
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Figure S1: Simulation results for K = 4. The first row illustrates empirical coverage of 95% confidence
intervals of all direct/indirect effects of the exposures on Y over 500 repeated simulations. The second
row displays the boxplots of lengths of confidence intervals over repeated simulations.
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Figure S2: Simulation results for the multivariate case. a) Empirical coverage of 95% confidence intervals
of all direct/indirect effects of the exposures on Y over 500 repeated simulations. b) Boxplots of lengths
of confidence intervals over repeated simulations.
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Figure S3: Conditional F statistics. a) Conditional F statistics of the exposure traits when we use
childhood body size from UK Biobank and adult BMI from GIANT consortium as exposure GWAS
datasets b) Conditional F statistics of the exposure traits when we use 8-year-old BMI from MoBa and
adult BMI from GIANT consortium as exposure GWAS datasets. Notice that the selection files are the
same, thus both scenarios have the same set of SNPs at any given selection p-value threshold.
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Figure S4: Additional results for the breast cancer case study. a) Estimated pairwise genetic correlations
across traits. A ‘*’ indicates significantly correlated pairs. b) Estimated noise correlation across traits.
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Figure S5: Additional results for the stroke case study. a) MVMR results estimating the joint causal
effects of adult BMI and childhood SBP on adult SBP. b) Estimated pairwise genetic correlations across
traits. A ‘*’ indicates significantly correlated pairs.

S4 Supplemental tables

Selection p-value thresholds 10−8 10−6 10−4 10−2

Breast cancer (K=3, body size) 56 119 305 811

Breast cancer (K=3, BMI) 56 118 304 810

Breast cancer (K=4) 55 117 303 739

Stroke (K=7) 116 204 464 847

Simulation (K=3) 250 274 312 362

Simulation (K=4) 156 175 207 248

Simulation (K=7) 356 420 489 NA

Table S1: Number of SNPs used in simulations and real data analysis at any given selection p-value
threshold
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