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Abstract 

Identifying structural variants (SVs) remains a pivotal challenge within genomic 

studies. The recent advent of chromosome conformation capture (3C) techniques 

has emerged as a promising avenue for the accurate identification of SVs. 

However, development and validation of computational methods leveraging 3C 

data necessitate comprehensive datasets of well-characterized chromosomal 

rearrangements, which are presently lacking. In this study, we introduce Charm 

(https://zenodo.org/doi/10.5281/zenodo.10653353): a robust computational 

framework tailored for Hi-C data simulation. Our findings demonstrate Charm's 

efficacy in benchmarking both novel and established tools for SV detection. 

Additionally, we furnish an extensive dataset of simulated Hi-C maps, paving the 

way for subsequent benchmarking endeavors. 
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Introduction 

Structural variations (SVs) serve as significant contributors to genetic diversity, 

playing pivotal roles in driving species evolution [1] and being associated with 

human diseases [2]. While karyotyping facilitates the identification of large SVs, 

pinpointing their breakpoints at nucleotide resolution and detecting submicroscopic 

rearrangements prove to be intricate tasks, particularly for balanced variants.  

Originally developed to study chromatin architecture, Hi-C and related C-methods 

have recently been recognized for their potential in the precise detection of SVs. 

For example, our recent study illustrated the capability of Hi-C to discern balanced 

inversions in non-human genomes [1]. Computational methods, including but not 

limited to Breakfinder [3], HiCTrans [4], Harewood et al [5], and the more recent 

contributions like HiNT [6], HiSV [7], and EagleC [8] were applied to find 

translocation breakpoints. The evolution and refinement of these computational 

algorithms mandate the availability of validation datasets comprising known SVs. 

Given the substantial costs associated with experimentally profiling a myriad of 

SVs, computational simulations emerge as a viable alternative, offering insights 

into SV patterns. In addition to large scales, simulations allow for tight control of 

SV parameters, such as distributions of SV length, type, and genomic location. 

There are several algorithms developed to simulate (or model) Hi-C patterns. 

Sim3C [9] and FreeHi-C [10] allow in silico generation of Hi-C data. Nevertheless, 

they fall short in modeling patterns specific to chromosomal rearrangements. 

AveSim [4] simulates SVs based on the contacts scaling function extracted from 

the reference Hi-C dataset. However, it overlooks the modeling of locus-specific 
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biases in contact patterns. These biases, emanating from both biological sources 

(e.g., chromatin compartmentalization) and technical factors (like non-uniform 

coverage distribution), exert a profound impact on the efficacy of SV-detection 

algorithms. The integration of tools capable of accurately simulating locus-specific 

biases could refine the estimation of SV detection accuracy, paving the way for the 

evolution of heightened predictive methodologies.  

In this context, we introduce Charm, a novel simulator for Hi-C maps, also referred 

to as Chromosome rearrangement modeler. Charm captures different aspects of the 

Hi-C data structure, encompassing aspects like coverage bias and compartment 

patterns. We elucidate how Charm serves as an efficacious platform for 

benchmarking SV detection tools, underscoring its application in benchmarking 

the recently developed Hi-C SV caller, EagleC [8]. Finally, we provide the 

community with a rich dataset of modeled SV that can be used for future 

benchmarks.  

 

Methods 

The Charm algorithm 

To simulate a Hi-C map representing a structural variant, Charm follows four 

steps: 1) computation of reference Hi-C map statistics; 2) genomic coordinates 

liftover between reference and rearranged datasets (similar to [11]); 3) computation 

of expected contact counts 4) randomization.  

1. Compute statistics 
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Based on reference data, we calculate statistics: 

- the average contacts count on every distance and observed/expected (OE) values 

for every contact:  

�����, ��� � ����, ���
	
 ����� , ��� 

where ���� , ��� is contact count for a pair of genomic bins �� and ��, ���� , ���  is 

genomic distance between bins �� and ��, and 	
 is average contact counts for 

given distance. 

- the mean cross coverage: 

cov��������� �  ∑ ��
���� � ��
�������,���
�
  

��
�������� �  ∑ ��
���� � ��
�������,���
�
  

where ��
���� is coverage of Hi-C bin �� by Hi-C reads, N is the total number of 

bins.  

Since the observed contact counts are defined by features of 3D-architecture, such 

as for example A/B-compartments and TADs, we estimate this preference ��� as 

follows:  

�����, ��� �  
∑ ����, �������,�����,

����,�����
∑ ��
�������� ,�����   � ∑ ��
��������,�����    
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������, ��� �  �����, ���
	
 ����� , ���  

where ����� , ��� is the sum of contact counts of all contacts between all bins 

separated by distance �  �  from bins ��  and ��; 	
� is average �� for all pairs 

of bins separated by the same distance as bins �� and �� . 

2. Liftover coordinates between reference and rearranged genomes 

Since the genomic coordinates of loci are changed after rearrangement, we 

generate liftover maps that reflect correspondence between the reference and 

rearranged genomes. 

Then we calculate the mutual intersection (mi) of bins between reference and 

rearranged genomes: 

�����, �̌�� � |��| �  �!� 
|��|  

where �� is bin i in the reference genome, �!� is bin k in the rearranged genome, 

and ���� и ����� are the lengths of syntenic regions of correspondent bins. 

We define the remapping coefficient for bins in the mutated and reference 

genomes: 

#��� , �$�� �  ����� , �$�� � ����$�, ��� 

3. Computation of contact counts 
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We compute contact counts between the bins �!�, �!�in the rearranged genome 

as follows: 

���!� , �!�� � ∑ 	
��!�, �!�� � #���, �!�� � #��� , �!�� � �����, �!����,�  
∑ #��� , �!�� � #��� , �!����,�

 

where �� and  �� are bins in the reference genome. If we liftover contacts from 

rearranged genome to reference: 

�� �� ,  ��� � % #��$� ,  ��� � #��$�,  ��� � ���$�, �$�
��,�

� 

If the contact count is zero or interchromosomal, we use a predicted 

observed/expected (����) instead. Observed/expected values for 

interchromosomal contacts in enriched Hi-C are estimated by the mean multiplies 

of coverages:  

������� , ��� � ������ , ��� � & !"����# !"$��%
&'()))))����

  

This method is used to calculate ���� for whole genome Hi-C data, too.   

Observed/expected value for zero intrachromosomal contacts are estimated by the 

mean sum of bin coverages:  

�������, ��� � ������, ��� � ��
���� � ��
����
��
��������

 

Then, this ���� values  are liftovered between genomes. 

4. Randomization 
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To simulate noise in Hi-C maps, we perform contacts randomization using 

binomial distribution: 

��*�+��!�, �!�� �  '�(̌, ���!� , �!��
() � 

where  ( – total contact counts in reference data, () * total contact counts in 

simulated data. 

Datasets 

The whole genome Hi-C reads for K562 cells were taken from [3]. The exome-

enriched capture Hi-C data for K562 cells were taken from [12]. The whole 

genome Hi-C reads for IMR90 cells were taken from [13]. The promoter-capture 

Hi-C reads for IMR90 and lung cell lines were taken from [14].  

The statistical analysis 

The similarity between Hi-C maps of replicas and wild-type simulations was 

estimated by Pearson’s correlation coefficient of contact frequencies. To avoid an 

overestimation of correlation due to the dependence of contact counts from the 

genome distance, we compute correlations on logarithmic observed/expected 

values. Since promoter-capture Hi-C maps are sparse and the contact enrichment is 

affected by bin coverages, we correlate chromosome-wide Hi-C maps at 1 

megabases (Mb) and 500 kilobases (kb) resolutions, and Hi-C maps of the 

individual loci (i.e. simulations of K562 SVs) at 50kb resolution. 

The K562 karyotype is characterized by numerous SVs and CNVs affecting 

frequency of contacts involved in these chromosomal rearrangements and therefore 
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biasing estimation. Thus, for K562 data, expected frequencies for each genomic 

distance were calculated based on the IMR90 cells data and corrected for a 

difference in K562 and IMR90 sequencing depth. 

Benchmarking EagleC tool for SVs detection 

We employed Hi-C maps simulating different SV types to benchmark EagleC 

deep-learning framework [8]. EagleC predicts SV breakpoint as a pair of genomic 

coordinates and provides four probability scores for each SV depending on the 

genomic orientation of rearranged loci (“++”, “--”, “+-”, “-+”). We ran EagleC 

with standard parameters and calculated statistics for each type of rearrangement. 

We calculated values for TP-FP curves using probability score cutoffs from 0.6 to 

0.95. For every designated cutoff and specific type of chromosomal rearrangement, 

we computed both true positive and false positive values. Briefly, we consider 

prediction as true positive if it matches modeled SV or if it is located “not too far 

away” from modeled SV (see formal definition below). Although we can model 

SV of any length, in the benchmark we only consider SV above specific genomic 

length, because practically most SVs are identified with cytoband or array-CGH 

resolution. 

Formally, we define SV as a record characterized by four elements: 

�+,��1��,+, �+,��2��,+, �,/1��,+, �,/2��,+  , and four scores (“++”, “--”, “+-”, 

and “-+” score), where �+,��1��,+ and �+,��2��,+ are chromosomes of 

breakpoints predicted by EagleC; �,/1��,+ and �,/2��,+ are coordinates of 

breakpoints for corresponding chromosomes. 
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Translocations. 

In the case of translocations, the record i is defined as true positive prediction if 

�+,��1��,+,� , �+,��2��,+,�, �,/1��,+,�, �,/2��,+,� satisfied the following criteria: 

1) “++” or “--” or “+-”  or “-+” scores for this record 0 cutoff 

2) �+,��1��,+,� � �+,��1�!+,�, �+,��2��,+,� � �+,��2�!+,�  

where �+,��1��,+,� and �+,��2��,+,� are chromosomes of breakpoints predicted 

by EagleC,   �+,��1��,+,� and �+,��2�!+,� are an actual pair of chromosomes 

involved in a simulated translocation. 

We defined the record i as false positive prediction if it meets the following 

conditions: 

1) ��+,��1��,+,� 1 �+,��2��,+,�� 	��  
���+,��1��,+,�  1 �+,��1�!+,� � �# ��+,��2��,+,� 1 �+,��2�!+,��  
2) for each prediction j �2 1 ��:  

�+,��1��,+,� 1 �+,��1��,+,� �# �+,��2��,+,� 1 �+,��2��,+.�  �# 

���,/1��,+,� * �,/1��,+,�� 3 35� 	�� ��,/2��,+,� * �,/2��,+,�� 3  35� 

The letter condition implies that translocated fragment length is above 3 Mb, i.e. it 

can be confidently detected by cytological methods. 

Inversions. 

For inversions, we defined true positive values as predictions meet the following 

conditions: 

1) “++” or “--” score 0 cutoff 
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2) �+,��1��,+ � �+,��2��,+ �  �+,��1�!+,� � �+,��2�!+,�  

3) �,/1��,+6 7�,/1�!+,� * 8,,; �,/1�!+,� � 8,,:  
4) �,/2��,+6 7�,/2�!+,� * 8,,; �,/2�!+,� � 8,,:  

where �,/1��,+ and �,/2��,+ are predicted genomic coordinates of breakpoint, 

�,/1�!+,� and �,/2�!+,� are genomic coordinates of  simulated SV, 8,, = 3 Mb. 

The rest of predictions were considered as false positive values, if: 

1) “++” or “--” score 0 cutoff 

2) ��,/2��,+ * �,/1��,+� 3 3 5�, �,/2��,+ 3 �,/1��,+ 

Сopy-number variants (CNVs). 

In case of CNVs, we counted predictions as true positive values, if: 

1) “+-” or “-+” score 0 cutoff 

2) �+,��1��,+ � �+,��2��,+ �  �+,��1�!+,� � �+,��2�!+,�  

3) �,/1��,+6 7�,/1�!+,� * 8,,; �,/1�!+,� � 8,,: 
4) �,/2��,+6 7�,/2�!+,� * 8,,; �,/2�!+,� � 8,,: 

where 8,, = 250 Kb. 

The rest of predictions were computed as false positive values, if: 

1) “++” or “--” score 0 cutoff 

2) ��,/2��,+ * �,/1��,+� 3 500 =�, �,/2��,+ 3 �,/1��,+ 

We filtered out predicted rearrangements that match neither true positive nor false 

positive criteria. 
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Results and Discussion 

Overview of Charm  

The observed patterns of Hi-C contacts during chromosomal rearrangements 

predominantly arise due to changes in genomic distances between loci caused by 

structural variants. With specific characteristics of chromatin architecture or biases 

in data coverage being able to either imitate or hide chromosomal rearrangements, 

simulating the distance dependence alone is not enough. The bias that can be 

caused by non-uniform coverage is illustrated in Figure 1 (panels A-D), where we 

juxtapose whole-genome (wg) and promoter-capture (pc) Hi-C data across high-

confidence SVs in K562. The comparative analysis reveals that the inherent 

sparsity of pcHi-C data can potentially diminish the visibility of certain loci, while 

enrichment at specific loci could elevate the risk of erroneous SV detection. For a 

precise simulation of the impact of structural variants on pcHi-C and comparable 

Hi-C maps, it's imperative to incorporate multiple parameters. These encompass 

the noise level, locus-specific coverage biases, and distinct genomic architecture 

features, such as TADs and compartments. 

The main idea of Charm is to use the experimentally-derived wild-type (also 

defined as “reference”) data to calculate both global and locus-specific parameters 

of Hi-C data (Fig. 1 E). These parameters are specific for each experimental 

technique, and once calculated can be used to simulate Hi-C maps of structural 

variants. We utilize the reference Hi-C map to estimate the following statistics 

(Methods):  
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1) contact frequency dependency: a noticeable relationship existed between conta

frequency and genomic distance; 2) locus-specific architectural features: the da

normalized for distance reveals locus-specific patterns reflecting chromat

architecture nuances such as TADs and compartments; 3) locus-specific rea

coverage bias: the biases observed in capture Hi-C experiments, such as target lo

enrichment, can be attributed to the complexity of specific experiment

methodologies, additionally, some biases seemed to mirror the skewe

representation of loci in NGS data. 

 

Figure 1. The Charm pipeline. A-C. Comparison of SV patterns between wgHi-C map and  pcHi-C map of K562 cell line. Th

wgHi-C maps (A and C) have a sequencing depth around 46 million read pairs. The pcHi-C maps (B and D) have a sequencing

depth around 51 million read pairs. А and В show high confidence3 intrachromosomal translocation on chr6 16.7-51.8 Mb. C 

D show insertion of the locus chr18:24555000-24910000 to chr6:135750000 confirmed by FISH3. E. Workflow of Charm 

framework. F. The heatmap of Pearson’s coefficient correlation between the simulated data, technical and biological replicas. 
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By these statistics and the user-defined parameters (desired sequencing depth and 

list of rearrangements), Charm simulates the contacts map that could result from 

the alignment of Hi-C reads on the rearranged genome. Then, the simulated contact 

map is liftovered to the reference genome. 

In theory, Charm can use reference samples derived from a diverse array of Hi-C-

analogous techniques. This includes standard whole-genome (wgHi-C), high-

resolution whole-genome Hi-C data derived using sequence agnostic enzymes 

MNAse [15], DNase I [12], or S1 Hi-C [16], and different capture Hi-C methods, 

such as promoter-capture (pcHi-C) and exome-capture (ecHi-C) Hi-C [17]. 

Nonetheless, a recurring challenge we observed is the absence of a deeply 

sequenced reference sample. This limitation, when coupled with target locus 

enrichment, often culminates in a reference dataset characterized by a significant 

prevalence of zero contact counts. This is particularly pronounced for 

interchromosomal interactions discerned at finer resolutions. Such instances of 

zero contact counts present a significant hurdle, as they preclude the accurate 

estimation of locus-specific statistics, which are pivotal for simulating 

chromosomal rearrangements. 

In response to the challenges posed by sparse reference datasets, we proposed 

solutions for handling sparse data. Primarily, in situations where the contact 

frequency is unavailable, we estimate it using information about the coverage of 

contacting bins (see Methods). While this method effectively catches coverage 

bias, it overlooks the biological nuances of 3D-chromatin contact enrichment, such 
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as the predominant homotypic interactions exhibited by loci within the same 

compartment. To overcome this, we compute the contact enrichment score for the 

sparse data at a set of resolutions from 25 kb to 1 Mb. Subsequently, this 

estimation is extrapolated to matrices of finer resolution. Together, these dual 

estimation methods have empowered us to adeptly utilize Charm, even for sparse 

reference data at high resolution (see examples below).  

To simulate experimental noise, the calculated contact probability is transformed 

into contact counts using the binomial distribution. We note that this simple 

transformation can be applied to the reference data as well, thus allowing Charm to 

simulate either a wild-type or rearranged data replicates with any desired 

sequencing depth. Of course, this simulation can not correct the sampling error 

which is present in reference Hi-C data due to the limited sequencing depth. 

Despite this limitation, the approach is invaluable when there's a need to simulate 

maps at depths lower than the reference. This is also possible to simulate 

heterozygosity or sample-to-sample variability by summing two Hi-C-like maps 

predicted for homozygous reference and alternative states (see examples below). 

Validation of Charm 

To test the Charm approach, we performed a simulation of technical and biological 

replicas of wild-type data (Fig 1 F). For this assessment, we utilized pcHi-C data 

sourced from IMR90 (fibroblasts), LG1 (lung tissue), and LG2 (lung tissue) 

samples. The latter two datasets serve as biological replicas originating from an 

identical lung tissue specimen. Through Charm, we synthesized eight pseudo-
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replicas: four pseudo-replicas based on the IMR90 reference and four pseudo-

replicas based on the LG2 reference. The results demonstrate that Hi-C data 

generated by Charm cluster together with relevant cell types (Fig. 1, F). The 

similarity between the simulated pseudo-replicas and the technical and biological 

replicas is close to the similarity between the real experiment replicas. 

Next, we shifted our focus towards assessing the correctness of the rearrangement 

patterns simulated using Charm. For this aim, we simulated ecHi-C maps for 

several loci involved in chromosomal rearrangements in K562 cell line [12]. Our 

selection criteria for these rearrangements were multifaceted: they had to be visibly 

discernible on the ecHi-C maps, situated in regions devoid of other 

rearrangements, corroborated by external research, and straightforward in 

interpretation, as illustrated in Figure 2. Based on these criteria, we focused on 

three distinct loci. Firstly, we looked at the heterozygous deletion occurring at 

locus chr4:160490000-163620000, labeled “chr4_del”. Next, we examined the 

inversion at locus chr16:21575000-22700000, denoted as “chr16_inv”. Lastly, we 

explored a complex structural variant encompassing loci chr9:130900000-

131100000, chr9:131400000-131475000, and chr9:132425000-132675000. This 

complex variant on chromosome 9 was subject to simulation using two divergent 

methodologies: one portraying it as three independent tandem duplications (termed 

“chr9_cnv_mod1”) and the other conceptualizing it as three translocations, giving 

rise to a novel extra chromosome with sequential duplications (tagged as 
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“chr9_cnv_mod2”). The copy numbers for these variants were inferred from the 

contact counts observed on the K562 wgHi-C map. 
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Figure 2. The comparison of simulated and observed Hi-C maps for three structural variants specific for K562 cells. T

simulation was based on IMR90 Hi-C data statistics and description of K562 SV breakpoints. 

* - the model “chr9_cnv_mod1”, ** - the model “chr9_cnv_mod2” 

s. The 
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For each of the selected loci we did two simulations: first, assuming the presence 

SVs described above; second, assuming that there is no SV, i.e. the locus of 

interest has the reference sequence. In both cases, we used IMR90 data to estimate 

global and local parameters of Hi-C maps, avoiding “leakage” from K562 Hi-C 

data during simulation. If our SV simulation approach is correct, we expect Hi-C 

maps simulated under assumption of  SV to be more similar to the experimental 

K562 Hi-C maps than Hi-C maps simulated under assumption of the absence of 

SV. We measured similarity between Hi-C maps using a distance-adjusted 

correlation coefficient (Methods).  

The results reveal similarity of the “chr4_del”, “chr16_inv”, and “chr9_cnv_mod2” 

models to the experimental Hi-C maps of the corresponding K562 loci. In contrast, 

simulations that assume absence of SV produce substantially lower correlations 

with experimental data. The only exception was observed for the model 

“chr9_cnv_mod1” (Fig. 2, Table 1). This indicates that SV configuration of locus 

on chromosome 9 in K562 cells is in agreement with “chr9_cnv_mod2” but not 

“chr9_cnv_mod1” model. These data confirm that Charm can simulate SVs with 

reasonable accuracy, and also suggest how Charm can be used to decide which 

structure of chromosomal rearrangement better fits the observed experimental data.  

 Simulated SV  

vs  

Experimental K562 ecHi-C 

Simulated wild-type  

vs.  

Experimental K562 ecHi-C  

chr4_del 0.567 0.286 

chr16_inv 0.612 0.542 
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chr9_cnv_mod1 0.342 0.446 

chr9_cnv_mod2 0.747 0.446 

Table 1. Pearson’s correlation coefficients for rearranged loci on K562 ecHi-C and simulations 

Public dataset of simulated Hi-C maps for diverse set of structural variations 

We and others previously developed tools predicting Hi-C maps of normal and 

rearranged genomes [18,19], as well as a specialized benchmarking platform for 

these tools [20]. However, the sample sizes of these benchmarks are limited. To 

assist further benchmarking and development of tools for SVs detection and Hi-C 

maps prediction, we generated and made publicly available two sets of 4400 

models corresponding to various structural variants (Fig. 3, A-C). 

(https://github.com/genomech/Charm/tree/main/simulations).  
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Figure 3. Generation of SVs collection and benchmarking SV callers. (A) SV types, size and chromosomal distribution.  (B-F

TP versus FP curves for SVs detection for wgHi-C and ecHi-C simulation data. Thresholds from 0.6 to 0.95. There were no tru

positive values among predicted translocations for ecHi-C data. (G) Region of simulated translocation with visible translocatio

pattern for wgHi-C and ecHi-C data. 

F) 

 true 

tion 
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Both datasets include 1760 translocations, 880 inversions, and 1760 CNVs, with 

sizes ranging from 100 kb to 20 Mb (Fig. 3, A-C). Every rearrangement was 

simulated as the ecHi-C and as the wgHi-C data, with the reference for ecHi-C 

taken from human peripheral blood cell [12] and the reference from wgHi-C taken 

from IMR90 Hi-C sample [13]. 

Benchmarking tools for SVs detection using Charm datasets 

We next used 160 simulated Hi-C maps describing different SVs types (tandem 

duplications, deletions, inversions, and interchromosomal translocations; 40 SVs 

per type) to benchmark the recently published EagleC deep-learning framework. 

Surprisingly, EagleC shows poor performance in translocation detection 

benchmark. In particular, the tool did not report any translocation present in the 

simulated ecHi-C dataset, although the simulated data contained a clearly visible 

translocation pattern both in the case of wgHi-C and ecHi-C data (Fig. 3 G). For 

wgHi-C data, EagleC detected several translocations, although multiple false 

positive events were called (Fig. 3, F).  

We noticed that 320 false positives predicted for simulated ecHi-C data results 

from two unique translocations repeated between samples. We found that these 

predictions correspond to the translocation-like pattern in experimentally-derived 

reference Hi-C maps of IMR90 cells (Suppl. Fig. 1 A). We also revealed the same 

pattern on Hi-C maps derived from other cell types (Suppl. Fig. 1 B, C), thereby 

these specific calls are due to artifacts of genome assembly.  

For other SV types, EagleC shows moderate performance (Fig. 3, B-E). EagleC 
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demonstrates better performance on wgHi-C data compared to ecHi-C, reporting 

~1.5-2 X more true-positive results and several times fewer false-positive results.   

This benchmark study shows how Charm can be applied to assess the sensitivity of 

SV callers for different datasets, SV types, locations, and other parameters. 
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