
PRS-Net: Interpretable polygenic risk scores via geometric learning1

Han Li1, Jianyang Zeng2,∗, Michael P. Snyder3,∗, and Sai Zhang4,5,6,∗
2

1 Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China3
2 School of Engineering, Westlake University, Hangzhou, Zhejiang, China4

3 Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA5
4 Department of Epidemiology, University of Florida, Gainesville, FL, USA6

5 J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA7
6 The Genetics Institute, University of Florida, Gainesville, FL, USA8

∗ Correspondence: zengjy@westlake.edu.cn; mpsnyder@stanford.edu; sai.zhang@ufl.edu9

Abstract. Polygenic risk score (PRS) serves as a valuable tool for predicting the10

genetic risk of complex human diseases for individuals, playing a pivotal role in ad-11

vancing precision medicine. Traditional PRS methods, predominantly following a linear12

structure, often fall short in capturing the intricate relationships between genotype and13

phenotype. We present PRS-Net, an interpretable deep learning-based framework de-14

signed to effectively model the nonlinearity of biological systems for enhanced disease15

prediction and biological discovery. PRS-Net begins by deconvoluting the genome-16

wide PRS at the single-gene resolution, and then it encapsulates gene-gene interac-17

tions for genetic risk prediction leveraging a graph neural network, thereby enabling18

the characterization of biological nonlinearity underlying complex diseases. An atten-19

tive readout module is specifically introduced into the framework to facilitate model in-20

terpretation and biological discovery. Through extensive tests across multiple complex21

diseases, PRS-Net consistently outperforms baseline PRS methods, showcasing its22

superior performance on disease prediction. Moreover, the interpretability of PRS-Net23

has been demonstrated by the identification of genes and gene-gene interactions that24

significantly influence the risk of Alzheimer’s disease and multiple sclerosis. In sum-25

mary, PRS-Net provides a potent tool for parallel genetic risk prediction and biological26

discovery for complex diseases.27
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PRS-Net 1

1 Introduction28

Complex human diseases display polygenicity in their genetic architectures, characterized by a29

multitude of common genetic variants with minor individual effects accumulatively influencing the30

disease risk1–4. The polygenic risk scores (PRSs) are developed to quantitatively characterize the31

genetic susceptibility of individuals to specific traits or complex diseases based on the common32

genetic variants5–7. This methodology empowers the early deployment of targeted therapeutic33

interventions and facilitates the practice of personalized medicine8–10.34

PRS is typically calculated using the summary statistics derived from genome-wide association35

studies (GWAS)11–17, a widely-used statistical method for identifying disease-associated genetic36

variants18–20. While GWAS can identify disease risk genetic variants, such as single nucleotide37

polymorphisms (SNPs), that exhibit significant differences in frequencies between cases and con-38

trols, these variants tend to have modest individual effects on the phenotype, resulting in limited39

prediction capability. In an effort to enhance predictive modeling, various statistical methods have40

been applied to aggregate the effects of individual SNPs. The widely adopted method for calculat-41

ing PRS, exemplified by PLINK21 and PRSice12, is known as clumping and thresholding (C+T)11,42

which involves summing allele counts weighted by effect sizes estimated from GWAS. More recent43

approaches like LDpred216 utilize Bayesian modeling to infer the posterior mean effect size of each44

marker by incorporating prior information on effect sizes and linkage disequilibrium (LD) data from45

an external reference panel. Similarly, lassosum217 estimates PRS using summary statistics and46

a reference panel within a penalized regression framework. With the notable increase in dataset47

sample sizes for GWAS, these methods have achieved enhanced predictive power22. Nonethe-48

less, these techniques primarily rely on univariate effect sizes derived from linear GWAS models,49

thus often overlook potential non-linear associations between genetic factors and phenotypes,50

which can undermine their predictive performance.51

Efforts have also been made to construct models capable of capturing non-linear interac-52

tions in PRS calculation. These include tree-based methods like random forests23,24, gradient53

boosting25,26, and AdaBoost27,28, as well as deep learning-based techniques such as multiple-54

layer perceptrons (MLP)29 and convolutional neural networks30. However, these methods only55

take a limited number of variants as their input, and lack the integration of versatile prior biological56

knowledge. Indeed, these approaches have demonstrated either comparable or, in many cases,57

less effective performance in predicting phenotypes when compared to linear models31,32.58

In this study, we propose PRS-Net, a geometric deep learning-based approach designed to59

effectively model the intricate non-linear relationships among genetic factors such as genes in60

predicting the disease risk, thus delivering more accurate and robust PRSs. Based on the sum-61

mary statistics of GWAS, PRS-Net first maps PRS onto a gene-gene interaction (GGI) network62

through the derivation of gene-level PRSs using the C+T method. Subsequently, a graph neural63

network is employed to iteratively update the embedding of the genes via performing message64

passing on the GGI network, thus capturing the complex GGIs from the network. An attentive65

readout module is then introduced to provide interpretable PRS predictions. PRS-Net also inte-66

grates a mixture-of-expert module33 designed to enhance the accuracy of PRS predictions when67

dealing with multi-ancestry datasets. Our comprehensive evaluation encompasses six complex68

diseases extracted from the UK Biobank database34, including Alzheimer’s disease, atrial fib-69

rillation, rheumatoid arthritis, multiple sclerosis, ulcerative colitis, and asthma. The results con-70

sistently demonstrated the superiority of PRS-Net over baseline methods, including PLINK21,71

PRSice214, LDpred-216, and lassosum217 in PRS prediction. Notably, through case studies fo-72

cused on Alzheimer’s disease and multiple sclerosis, we illustrated that PRS-Net provided biolog-73

ically meaningful interpretability by identifying specific genes and GGIs that significantly influence74
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2 H. Li et al.

disease risk. In summary, PRS-Net stands as a potent and innovative tool for precise PRS pre-75

diction, addressing the limitations of current linear models and offering a more comprehensive76

approach to unraveling the genetic underpinnings of complex traits and diseases.77

2 Method78
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Fig. 1: An illustrative diagram of PRS-Net. a The proposed framework is based on summary statis-
tics, including variants, risk alleles, P-values, and effect sizes derived from GWAS. b A gene-gene
interaction network is constructed based on the protein-protein interaction network. Gene-level
PRSs are calculated with the C+T method to serve as the node features for the nodes within the
network. c A graph neural network is employed to update node features via message passing and
subsequently an attentive readout module is applied to provide interpretable PRS predictions. d
The PRS-Net can be applied for disease prediction and disease-related gene/GGI identification.

In this section, we present our proposed framework for PRS estimation (Fig. 1), covering the79

establishment of the GGI network, the derivation of gene-level PRS, and the architecture of PRS-80

Net.81
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PRS-Net 3

2.1 GGI network82

It is widely recognized that the disease phenotype is not solely determined by individual genes83

but rather involves the intricate interactions among multiple genes, which can exhibit additive or84

non-additive genetic relationships35–37. Additive genetic interactions manifest when the cumulative85

effects of genes jointly contribute to a specific phenotype. Furthermore, there are increasing stud-86

ies highlighting the significance of non-additive genetic interactions38–40. Epistasis is a prominent87

example of non-additive genetic interaction, which occurs when the impact of a gene mutation88

depends on the presence or absence of mutations in one or more other genes41–43. We estab-89

lish a GGI network that empowers PRS-Net to capture the intricate genetic relationships that are90

potentially associated with the target phenotypes (Fig. 1b).91

We construct our GGI network based on the protein-protein interactions derived from the92

STRING database44, as protein-protein interactions represent potent indicators of functional rela-93

tionships between genes. Formally, we construct a GGI network, denoted as G = (V ,E), where94

V stands for the set of nodes and E stands for the set of edges. Each node vi ∈ V stands for a95

coding gene and each edge (vi, vj) ∈ E stands for an interaction between nodes vi and vj derived96

from the STRING database44. Note that, we add a self-loop (vi, vi) for each node vi ∈ V . This97

network construction results in a GGI network encompassing 19,836 coding genes and 250,23698

interactions.99

Upon deriving the GGI network, we proceed to compute gene-level PRSs for the genes within100

the network using a C+T approach11,21. More precisely, for each gene in the network, we focus101

on the SNPs falling within a designated range, spanning from its transcription start site - L to102

its transcription end site + L. In our tests, we set L to 10 kilobases (KB), thereby encompassing103

the SNPs situated in non-coding regions, such as the promoters of the genes. Subsequently, for104

each gene, we perform LD clumping on the associated SNPs from the GWAS data, utilizing the105

LD information estimated in the target data. Following this, we filter the SNPs based on a specific106

P-value threshold. The gene-level PRSs are then derived by multiplying the genotype matrix by107

the effect sizes obtained from the GWAS data, and then dividing this by the number of allele108

observations for each gene. For the LD clumping process, we set the LD threshold R2 to 0.5 and109

the physical distance threshold to 250 KB. As for the thresholding step, we set the P-values to110

1e−5, 1e−4, 1e−3, 1e−2, 5e−2, 0.1, 0.2, 0.3, 0.5, and 1, respectively. This process results in the111

computation of eleven PRSs for each gene, which serves as their initial features. We denote the112

initial feature of vi ∈ V as hi ∈ H , where H ∈ R|V|×11 and |V | stands for the number of genes in113

G.114

2.2 PRS-Net115

Graph neural network116

We harness the power of a graph neural network to capture the complex interactions among genes117

within our established GGI network (Fig. 1c). In our tests, we specifically opt for a graph isomor-118

phism network (GIN)45 due to its proven theoretical and experimental expressiveness. Formally,119

we first encode the initial feature of nodes, denoted as H, by employing an MLP in the following120

manner:121

H0 = MLP0(H), (1)

where H0 ∈ R|V|×D and D is the dimension of hidden states. Subsequently, we apply multiple GIN122

layers to iteratively update the representation of each node by aggregating the representations of123
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4 H. Li et al.

its neighbors, as depicted below:124

hk
i = MLPk((1 + ϵk) · hk−1

i +
∑

vj∈N (vi)

hk−1
j ), (2)

where hk−1
i is the hidden states of vi at the (k− 1)-th layer, N (vi) stands for the neighbors of vi in125

the GGI network, hk
i stands for the updated hidden states of vi at the k-th layer, MLPk is the MLP126

at the k-th layer, and ϵ stands for a learnable variable. Following k iterations of aggregation, each127

gene effectively encapsulates the interaction information within its k-hop neighborhood.128

Attentive readout module129

To make predictions for each data sample, we derive the global-level representation for each130

sample through an attentive readout module, illustrated as follows:131

hG = Attentive readout(Q,K,V ),

hG = A · V ,

A = Sigmoid(Q ·K),

K = Hk ·WK ,V = Hk ·WV ,

(3)

where WK ∈ RD×D and WV ∈ RD×D stand for trainable projection matrices to derive the key132

(i.e., K) and value (i.e., V ) matrices, respectively. Q ∈ R1×D stands for a trainable query vector.133

Sigmoid stands for the sigmoid function. A ∈ R1×|V| stands for the attention scores, with elevated134

scores signifying a greater significance of the associated genes. hG ∈ R1×D stands for the global-135

level representation.136

After deriving the global-level representation, we employ an MLP to derive the final prediction,137

denoted as ˆPRS, as follows:138

ˆPRS = MLP(hG). (4)

Additionally, we implement a mixture-of-expert module33 to effectively handle datasets that139

encompass data samples from multiple ancestries. More specifically, we introduce a specialized140

attentive readout module for each distinct ancestry. These dedicated attentive readout modules141

are activated when processing data from individuals with specific ancestral origins. To illustrate,142

when dealing with input samples of Western European ancestry, we derive the ancestry-specific143

global-level representation as follows:144

hEUR
G = Attentive readout(QEUR,KEUR,V EUR). (5)

The ancestry-specific readout module is designed to capture the unique knowledge pertaining to145

each ancestry in relation to the disease. In addition, we introduce another shared readout module146

to capture disease-related knowledge that holds general applicability across all ancestries:147

hPH
G = Attentive readout(QPH,KPH,V PH). (6)

Then, we derive the final global-level representation by combining the aforementioned two repre-148

sentations:149

hG = hEUR
G + hPH

G . (7)

The process for deriving global-level representations of individuals from other ancestries follows a150

similar approach. The final PRS prediction can be computed with equation 4, utilizing the derived151

global-level representation. We refer to the single-ancestry variation as PRS-Net and the multiple-152

ancestry variation as PRS-NetMA.153
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3 Results154

3.1 PRS-Net outperforms baseline methods in PRS prediction155

Alzheimer’s disease Atrial fibrillation Ulcerative colitis

Asthma Rheumatoid arthritis Multiple sclerosis

Fig. 2: The PRS prediction performance of PRS-Net compared to baseline methods across a range
of complex diseases, including Alzheimer’s disease, atrial fibrillation, ulcerative colitis, asthma,
rheumatoid arthritis, and multiple sclerosis, measured in terms of the area under the receiver
operating characteristic curve (AUROC). The bars are the estimated standard errors.

We extracted genotype-phenotype data from the UK Biobank database34 for six different com-156

plex diseases, which encompassed Alzheimer’s disease, atrial fibrillation, rheumatoid arthritis,157

multiple sclerosis, ulcerative colitis, and asthma. ICD-10 codes46 were employed to define the dis-158

ease phenotypes (Supplementary Table 1). For our primary experiments, we focused exclusively159

on individuals of Western European ancestry due to the insufficient size of the non-European160

ancestry population, which did not provide an adequate amount of training data (Supplementary161

Table 2). Following a quality control process, each disease dataset consisted of roughly 411,000 in-162

dividuals (Supplementary Note 1.1). To prevent data leakage, we ensured that none of the GWAS163

were conducted on samples from the UK Biobank database (see Data availability). For each dis-164

ease dataset, we randomly partitioned it into training, validation, and test sets with a ratio of 8:1:1.165

To evaluate the performance of PRS-Net, we compared it against several previously proposed166

methods, such as C+T-based methods (PLINK21 and PRSice214), lassosum217, and three vari-167

ations of LDpred216 (LDpred2-auto, LDpred2-grid, and LDpred2-inf), utilizing the area under the168

receiver operating characteristic curve (AUROC) as the metric. To ensure a rigorous and equi-169

table comparison, we utilized LD matrices estimated from European populations within the 1000170
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6 H. Li et al.

Genomes Project47 across all methods in our study. Our results were based on three indepen-171

dent runs with different random seeds to ensure robustness and reliability. The results revealed172

that PRS-Net consistently outperformed all baseline methods on all disease datasets, resulting in173

relative improvements ranging from 0.5% to 3.7%. Interestingly, the largest improvements were174

obtained for two autoimmune diseases, i.e., ulcerative colitis (with a relative improvement of 3.0%)175

and multiple sclerosis (with a relative improvement of 3.7%), reinforcing the observed nonadditiv-176

ity of genomic factors underlying these diseases38,48–50. Altogether, our data demonstrates that177

PRS-Net possesses the capacity to capture more intricate associations between genotypes and178

phenotypes that are beyond the reach of previously proposed linear models.179

We utilized the Aalen-Johansen estimator51 to estimate the disease occurrence over a life-180

time for individuals categorized into high-risk and low-risk groups, as determined by the PRSs181

estimated by PRS-Net and baseline methods. High-risk individuals were defined as those with182

the highest 5% of PRSs, while low-risk individuals were identified as those with the lowest 5%183

of PRSs. The cumulative incidence plots revealed that individuals classified as high-risk by PRS-184

Net generally exhibited a heightened risk of disease throughout their lifetime compared to base-185

line methods, especially for ulcerative colitis, asthma, rheumatoid arthritis, and multiple sclerosis186

(Fig. 3a). Conversely, those categorized as low-risk by PRS-Net tended to maintain a lower risk of187

all diseases over their lifetime in comparison to baseline methods (Supplementary Fig. 1). These188

findings underscore the potential of PRS-Net as a powerful tool for individual risk stratification.189

Next, we assessed the performance of PRS-Net and our multiple-ancestry model, PRS-NetMA,190

on a dataset comprising individuals from diverse ancestral backgrounds. Specifically, we curated a191

mixed-ancestry dataset encompassing Western European, South Asian, and African for asthma,192

which provides a reasonable number of asthma cases (over 1,000) for each ancestry (Supplemen-193

tary Table 2). The results revealed that PRS-Net outperformed baseline methods on the mixed194

ancestry and South Asian ancestry test sets, indicating that the PRS-Net trained solely on the195

Western European ancestry dataset captured the underlying disease biology independent of dif-196

ferent ancestries (Fig. 3b). Additionally, PRS-NetMA demonstrated superior performance when197

compared to PRS-Net on the mixed ancestry, Western European ancestry, and African ancestry198

test sets (Fig. 3b). These findings underscored the ability of PRS-NetMA to leverage the multi-199

ancestry dataset effectively, enhancing its portability in estimating PRS for individuals from diverse200

ancestral backgrounds.201

3.2 PRS-Net identifies disease-related genes and GGIs for Alzheimer’s disease and202

multiple sclerosis203

Following the demonstration of the superior performance of PRS-Net in predicting PRS, we sought204

to explore its capability to identify risk genes and GGIs underlying complex diseases. Alzheimer’s205

disease, a progressively degenerative condition, has been the subject of extensive research for206

many years, leading to the identification of numerous genes associated with the disease52–56. We207

employed PRS-Net to identify disease-related genes and GGIs, with the expectation that our find-208

ings would align with prior research outcomes. Specifically, we first applied the Mann–Whitney U209

test57 to each gene within our constructed GGI network, assessing whether the attention scores210

associated with the gene for individuals with Alzheimer’s disease were notably higher than those211

of the control group. This analysis yielded a gene set comprising 309 genes with compelling sta-212

tistical significance (P-value <0.001). Please refer to Supplementary Data 1 for the complete list213

of the genes. Subsequently, we conducted gene set enrichment analyses (GSEA)58 utilizing the214

gene ontology (GO)59 and Kyoto Encyclopedia of Genes and Genomes (KEGG)60 datasets on215

the identified gene set. Notably, the GO terms related to lipoprotein particles emerged as sig-216
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Fig. 3: a The cumulative incidence plots of high-risk individuals (with the highest 5% PRSs) identi-
fied by PRS-Net and baseline methods. Each plot illustrates the estimated percentage of individ-
uals diagnosed with a specific disease at different ages. We provide cumulative incidence plots
for the original datasets as a reference. b The PRS prediction performance of PRS-Net compared
to baseline methods on an asthma dataset encompassing multiple ancestries, including Western
European (EUR), South Asian (SAS), and African (AFR) ancestry, measured in terms of the area
under the receiver operating characteristic curve (AUROC). The results on the mixed ancestry test
set are also reported. The bars are the estimated standard errors.

nificantly enriched within the gene set (Supplementary Fig. 2a). This observation is in line with217

prior studies that have implicated lipoprotein particles as significantly potential risk factors for218

Alzheimer’s diseasee61–63 and have highlighted the role of metabolic dysregulation in the pro-219

gression of Alzheimer’s disease64,65. Notably, the exploration of high-density lipoprotein-inspired220
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Fig. 4: PRS-Net identifies disease-related genes and GGIs for Alzheimer’s disease and multiple
sclerosis. a Top 20 genes with the highest statistical significance in the Mann-Whitney U test for
Alzheimer’s disease. The Mann–Whitney U test was utilized to assess whether the attention scores
for a particular gene among the cases were significantly higher than those observed in the control
group. An asterisk preceding the gene name signifies that the gene has been reported to be as-
sociated with Alzheimer’s disease in previous studies. b Examples of interactions within the gene
set with statistical significance (P-value <0.001) from the Mann-Whitney U test for Alzheimer’s
disease. c Top 20 genes with the highest statistical significance in the Mann-Whitney U test for
multiple sclerosis. d Examples of interactions within the gene set with statistical significance (P-
value <0.001) from the Mann-Whitney U test for multiple sclerosis.

treatments for Alzheimer’s disease has been a well-documented area of study62,63. Fig. 4a il-221
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lustrates the top 20 genes with the utmost statistical significance in the Mann-Whitney U test.222

Remarkably, 15 out of these 20 genes have been identified as potential risk factors for Alzheimer’s223

disease in previous studies. One notable example is APOE, which is the most prevalent high-224

density lipoprotein in the central nervous system and has been consistently linked to Alzheimer’s225

disease in numerous studies66–71. Fig. 4b illustrates examples of the interactions from the GGI226

network between genes within the identified gene set. Please refer to Supplementary Data 2 for227

the complete list of the GGIs. Interestingly, aside from APOE, other genes within the APOE gene228

cluster, including APOC1, APOC2, and APOC4, were also identified as disease-related genes.229

This finding aligns with previous studies that have shown interdependent or independent associ-230

ations of genes within the APOE gene cluster with Alzheimer’s disease72–76. For instance, it has231

been shown that the variant APOE and APOC2 exhibit interactive effects on metabolic pathways,232

potentially contributing to the risk of Alzheimer’s disease72. APOC1 also has been reported to233

serve as a risk factor for Alzheimer’s disease in combination with APOE74. Furthermore, the com-234

bined effect of APOE and CLU on Alzheimer’s disease has been observed77. SORL1 is an APOE235

receptor gene, which has been recognized as a genetic risk factor in Alzheimer’s disease. Recent236

research has elucidated the mechanistic connection between these two significant genetic factors237

in Alzheimer’s disease78. A neuron-specific interaction between Alzheimer’s disease risk factors238

SORL1, APOE, and CLU have also been shown in a recent study79. These observations highlight239

the proficiency of PRS-Net in not only identifying disease-related genes but also uncovering gene240

clusters that exhibit interactions contributing to the risk of Alzheimer’s disease.241

We also utilized PRS-Net to uncover genes and GGIs associated with multiple sclerosis. The242

Mann-Whitney U test identified a gene set with 456 potential risk genes (P-value <0.001). Please243

refer to Supplementary Data 3 for the complete list of the genes. The GSEA58 using the KEGG60
244

dataset on this gene set highlighted numerous immune-related pathways of statistical significance,245

such as antigen processing and presentation, allograft rejection, and graft-versus-host disease246

(Supplementary Fig. 4b). This finding aligns with the well-established understanding of multiple247

sclerosis as an autoimmune inflammatory disorder. The GSEA using the GO59 dataset, unveiled248

significant enrichment of GO terms related to the major histocompatibility complex (MHC) protein249

complex within the identified gene set (Supplementary Fig. 4a), which can be supported by pre-250

vious studies that underscore the substantial genetic impact of MHCs on multiple sclerosis80–84.251

HLA-DRA, a subunit of HLA-DR which is a human MHC, was identified as the most significant252

gene in our analysis (Fig. 4c). Moreover, substantial HLA genes were identified as risk genes in253

our analysis (Fig. 4d). Please refer to Supplementary Data 4 for the complete list of the GGIs.254

This finding is in line with a previous study indicating that HLA interactions modulate genetic risk255

for multiple sclerosis85. Additionally, non-additive interactions between HLAs have been widely256

reported to significantly affect the risk of autoimmune diseases38,48–50. These discoveries col-257

lectively provide compelling evidence of the potential of PRS-Net to offer valuable insights that258

advance our understanding of diseases.259

3.3 Ablation studies260

To assess the effectiveness of specific design choices in PRS-Net, we conducted comprehensive261

ablation studies. We introduced various modified frameworks derived from PRS-Net, each with262

distinct constraints: PRS-Net-GGI (omitting the GGI network), PRS-Net-Att+Sum (replacing the263

attentive readout module with a sum readout module, which summarized the node feature to de-264

rive the global-level representations), PRS-Net-Att+Mean (replacing the attentive readout module265

with a mean readout module, which computes the average of node features to derive global-level266

representations), and PRS-Net-Att+Max (replacing the attentive readout module with a max read-267
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b

AD MS UC

a

PRS-Net PRS-Net-GGI PRS-Net-Att+Max
PRS-Net-Att+Sum PRS-Net-Att+Mean

Fig. 5: The results of ablation studies on PRS-Net. a The comparison results of PRS-Net and its
variations, including PRS-Net-GGI (omitting the GGI network), PRS-Net-Att+Sum (replacing the
attentive readout module with a sum readout module, which summarized the node feature to de-
rive the global-level representations), PRS-Net-Att+Mean (replacing the attentive readout module
with a mean readout module, which computes the average of node features to derive global-
level representations), and PRS-Net-Att+Max (replacing the attentive readout module with a max
readout module, which extracts maximum values across node features to derive the global-level
representations), conducted on the datasets of Alzheimer’s disease (AD), multiple sclerosis (MS),
and ulcerative colitis (UC). The bars are the estimated standard errors. b The PRS prediction per-
formance of PRS-Net versus the extension lengths upstream and downstream of the transcription
start and end sites.

out module, which extracts maximum values across node features to derive the global-level rep-268

resentations). We compared the performance of PRS-Net against these variants using datasets269

related to Alzheimer’s disease, multiple sclerosis, and ulcerative colitis. The results showcased270

that PRS-Net surpassed PRS-Net-GGI by an average relative improvement of 11.6%, underscor-271

ing the significance of incorporating the GGI network to capture the intricate genetic interactions272

associated with diseases (Fig. 5a). Furthermore, PRS-Net outperformed PRS-Net-Att+Sum, PRS-273

Net-Att+Mean, and PRS-Net-Att+Max with average relative improvements of 33.0%, 2.2%, and274

8.4%, respectively, highlighting the effectiveness of the attentive readout module in summarizing275

node features (Fig. 5a).276

Additionally, we explored the impact of varying extension lengths both upstream and down-277

stream of the transcription start and end sites when calculating gene-level PRSs. We assessed278

different length values, including 0, 5, 10, 20, and 50 KB, and subsequently evaluated their predic-279

tion performance. The results demonstrated that PRS-Net is generally robust to different extension280

lengths (Fig. 5b). However, it is noteworthy that the performance of PRS-Net on the multiple scle-281

rosis dataset significantly declined when the extension length was set to 0 KB (Fig. 5b). This282

observation suggested that including SNPs from non-coding regions can indeed enhance the ac-283

curacy of PRS prediction.284

Discussion285

In this study, we develop PRS-Net, a deep-learning framework that offers interpretable and im-286

proved PRS predictions. By constructing a GGI network and incorporating a graph neural net-287

work, PRS-Net fully takes advantage of the power of non-linear associations between genetic288
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factors and phenotypes. Additionally, the integration of an attentive readout module empowers289

PRS-Net to deliver interpretable predictions. Through comprehensive testing across six complex290

diseases, PRS-Net consistently achieved superior performance in comparison with baseline meth-291

ods in PRS prediction. Furthermore, we demonstrated the interpretability of PRS-Net by using it292

to identify specific genes and GGIs that significantly impact the risk of Alzheimer’s disease and293

multiple sclerosis. In summary, PRS-Net provides a potent tool for accurate PRS prediction and294

biological discovery for complex diseases.295

Data availability296

The GWAS data for Alzheimer’s disease can be accessed at https://ctg.cncr.nl/software/summary s297

tatistics/. The GWAS data for atrial fibrillation can be accessed at https://cvd.hugeamp.org/download298

s.html#summary/. The GWAS data for ulcerative colitis can be accessed at ftp://ftp.sanger.ac.uk/pub299

/project/humgen/summary statistics/human/2016-11-07/. The GWAS data for asthma can be ac-300

cessed at https://www.globalbiobankmeta.org/resources/. The GWAS data for rheumatoid arthritis301

can be accessed at https://data.cyverse.org/dav-anon/iplant/home/kazuyoshiishigaki/ra gwas/ra g302

was-10-28-2021.tar/. The GWAS data for multiple sclerosis can be accessed at https://imsgc.net/?303

page id=31/. The UKBB dataset is available at https://www.ukbiobank.ac.uk.304

Code availability305

The source code of PRS-Net can be downloaded from the Github repository at https://github.com/li306

han97/PRS-Net.307
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31. Pau Bellot, Gustavo de Los Campos, and Miguel Pérez-Enciso. Can deep learning improve genomic prediction of389

complex human traits? Genetics, 210(3):809–819, 2018.390

32. Yu Xu, Dragana Vuckovic, Scott C Ritchie, Parsa Akbari, Tao Jiang, Jason Grealey, Adam S Butterworth, Willem H391

Ouwehand, David J Roberts, Emanuele Di Angelantonio, et al. Machine learning optimized polygenic scores for392

blood cell traits identify sex-specific trajectories and genetic correlations with disease. Cell Genomics, 2(1), 2022.393

33. Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelligence Review,394

42:275–293, 2014.395

34. Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey, Paul Elliott,396

Jane Green, Martin Landray, et al. Uk biobank: an open access resource for identifying the causes of a wide range397

of complex diseases of middle and old age. PLoS medicine, 12(3):e1001779, 2015.398

35. Heather J Cordell. Detecting gene–gene interactions that underlie human diseases. Nature Reviews Genetics,399

10(6):392–404, 2009.400

36. Or Zuk, Eliana Hechter, Shamil R Sunyaev, and Eric S Lander. The mystery of missing heritability: Genetic inter-401

actions create phantom heritability. Proceedings of the National Academy of Sciences, 109(4):1193–1198, 2012.402

37. Matthew B Taylor and Ian M Ehrenreich. Higher-order genetic interactions and their contribution to complex traits.403

Trends in genetics, 31(1):34–40, 2015.404

38. Tobias L Lenz, Aaron J Deutsch, Buhm Han, Xinli Hu, Yukinori Okada, Stephen Eyre, Michael Knapp, Alexandra405

Zhernakova, Tom WJ Huizinga, Goncalo Abecasis, et al. Widespread non-additive and interaction effects within406

hla loci modulate the risk of autoimmune diseases. Nature genetics, 47(9):1085–1090, 2015.407

39. Luis Varona, Andres Legarra, Miguel A Toro, and Zulma G Vitezica. Non-additive effects in genomic selection.408

Frontiers in genetics, 9:78, 2018.409
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