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Abstract 11 

The geographic distribution of genetic variation within a species reveals information 12 

about its evolutionary history, including responses to historical climate change and dispersal 13 

ability across various habitat types. We combine genetic data from salamander species with 14 

geographic, climatic, and life history data collected from open-source online repositories to 15 

develop a machine learning model designed to identify the traits that are most predictive of 16 

unrecognized genetic lineages. We find evidence of hidden diversity distributed throughout the 17 

clade Caudata that is largely the result of variation in climatic variables. We highlight some of 18 

the difficulties in using machine-learning models on open-source data that are often messy and 19 

potentially taxonomically and geographically biased. 20 

 21 
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Introduction 22 

Documenting biodiversity is an important first step in understanding both ecological and 23 

evolutionary processes (Gadelha et al., 2021), particularly the functional roles that act to connect 24 

processes functioning at both shallow and deep time scales (Guralnick & Hill, 2009). Notably, 25 

any such documentation of biodiversity implicitly assumes that the units (e.g., species) are 26 

comparable across different geographic regions. Given that a Linnean shortfall (i.e., the ratio of 27 

recognized to unrecognized species (Whittaker et al., 2005)) exists in most clades and may be 28 

substantial across Eukaryota (Mora et al., 2011), it is not clear that this assumption is reasonable. 29 

An alternative approach is to utilize evolutionary significant units (Moritz, 1994), or genetic 30 

lineages, in place of species in broad analyses of biodiversity (e.g., (Mable, 2019)). This may be 31 

particularly useful in clades with relatively high degrees of morphological and ecological 32 

conservatism. One such clade is Caudata (i.e., salamanders and newts), which exhibits high 33 

frequencies of cryptic species (e.g., (Jockusch et al., 2012; Camp & Wooten, 2016; Bernardes et 34 

al., 2020)). 35 

Identifying genetic lineages in Caudata can have important conservation implications. 36 

For example, Mead et al. (2005) discovered a new species of western Plethodon salamander that 37 

was originally thought to be either P. elongatus or P. stormi (Mead et al., 2005). All three of 38 

these species are listed on the IUCN Red List as either near threatened (P. elongatus), vulnerable 39 

(P. asupak), or endangered (P. stormi). More recently, Parra Olea et al. (2020) discovered five 40 

cryptic lineages in Chiropterotriton from Mexico, several of which are threatened due to their 41 

restricted ranges (Parra Olea et al., 2020). Species with small ranges and/or limited dispersal 42 

capabilities can be harder to protect because their distributions often do not fall within protected 43 

areas (Nauman & Olson, 2008) and small ranges are often used as a factor in assigning 44 
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conservation priorities (Hortal et al., 2015). Therefore, it is important to identify these lineages, 45 

as they could easily go unnoticed and unprotected. Many other species of salamander that would 46 

have otherwise gone unnoticed and have been recognized using molecular data have small 47 

ranges and likely need protection (Steffen et al., 2014; Nishikawa & Matsui, 2014; Min et al., 48 

2016; Kuchta et al., 2018; Okamiya et al., 2018). The presence of cryptic diversity has been 49 

recently highlighted as a key component of undescribed biodiversity that requires greater 50 

attention (Bickford et al., 2007; Pfenninger & Schwenk, 2007).   51 

Efforts to conserve undescribed genetic diversity can be facilitated using computational 52 

methods that identify genetic lineages representing potentially hidden diversity in need of further 53 

investigation. The use of data science techniques has allowed biodiversity studies to expand their 54 

geographic and taxonomic focus to explore broader patterns of evolution, which can be difficult 55 

to assess using traditional meta-analysis methods (Lyman & Edwards, 2022). Macrogenetics, a 56 

relatively new field that merges biodiversity data with genetic data (Blanchet et al., 2017; Leigh 57 

et al., 2021), has been used to explore how human impacts influence levels of intraspecific 58 

genetic diversity (Miraldo et al., 2016; Millette et al., 2020), to study past and future climate 59 

refugia (Carstens et al., 2018; Baranzelli et al., 2022), and to quantify latitudinal biodiversity 60 

gradients (Gratton et al., 2017; Pelletier & Carstens, 2018; Barrow et al., 2021; Fonseca et al. 61 

2023). Macrogenetic methods, particularly in combination with predictive modeling, can be used 62 

to inform conservation policies by identifying species, taxonomic groups, or geographic areas in 63 

need of further investigation (Pelletier et al., 2018; Raposo et al., 2021).  Recently, such analyses 64 

have expanded to taxonomic work. 65 

Parsons et al. (2022) analyzed mitochondrial DNA sequences from over 4000 species of 66 

mammals, representing roughly 66% of currently described species, and found that mammal 67 
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diversity is largely under-described using molecular species delimitation methods on publicly 68 

available barcode data. This is useful for several reasons. A comprehensive list of genetic 69 

lineages that may represent species now exists that can help focus taxonomic efforts. Parsons et 70 

al. (2022) also found that taxa with small bodies, and large geographic distributions with 71 

variation in precipitation and isothermality, were more likely to contain cryptic diversity. While 72 

some of this might seem obvious (morphological differences are harder to observe in small-73 

bodied animals and these animals may be harder to find), it does allow researchers to document 74 

characteristics of species, higher taxonomic groups, or even geographic regions that contribute to 75 

diversification and therefore biodiversity patterns. When done in disparate taxonomic groups 76 

(e.g., vertebrates, invertebrates, plants, and fungi) and at different levels (e.g., Class, Order, 77 

Family) this furthers our understanding of core evolutionary processes.  78 

A similar approach was taken in birds. Using a tree-based molecular species delimitation 79 

method, Smith et al. (2018) found that latitude explained variation in phylogeographic breaks, 80 

while other traits pertaining to habitat and life history explained very little. In this case, 81 

phylogeographic structure was higher in the tropics. Conversely, in other organisms, isolation-82 

by-distance within species is often higher at higher latitudes (multiple taxonomic groups: 83 

Pelletier & Carstens, 2018; amphibians: Amador et al., 2023). Further, genetic variation within 84 

amphibians was best explained by range size and elevation, rather than latitude, in the neotropics 85 

(Amador et al., 2023), while latitude was an important predictor of genetic diversity in the 86 

nearctic (Barrow et al., 2021). This suggests that differences exist in how genetic variation is 87 

distributed within species depending on which taxonomic groups are being examined, and at 88 

what spatial scale. 89 
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In order to expand these approaches, we conducted a computational assessment of 90 

genetic lineages in roughly 100 salamander species using the phylogatR database (Pelletier et al., 91 

2022). PhylogatR aggregates DNA sequence data from both GenBank and BOLD into sequence 92 

alignments, providing associated GBIF occurrence records (i.e., GPS coordinates) for each 93 

sequence. There are over 700 described species of salamanders belonging to nine families 94 

(Bánki, O. et al., 2022), most located in the northern hemisphere. While salamanders contain a 95 

wide variety of life history strategies and habitats, they are likely to have high levels of cryptic 96 

diversity due to their moisture requirements and similar body forms. However, their eco-97 

evolutionary processes can vary from species to species and sometimes oppose our expectations 98 

(Pelletier et al., 2011, 2015; Pelletier & Carstens, 2016; Jones and Weisrock 2018; Pyron et al., 99 

2020; Dufresnes et al., 2021). We follow methods from Parsons et al. (2022) and use molecular 100 

species delimitation methods to estimate the number of genetic lineages present in previously 101 

collected data that is both openly available and easily tractable. We then use a predictive 102 

modeling approach to determine whether any variables pertaining to geography, the 103 

environment, or life history traits contribute to the presence of genetic lineages within species. 104 

We also discuss some of the difficulties in using open-source data that are often messy and 105 

potentially taxonomically and geographically biased.  106 

 107 

Materials and Methods 108 

Collection of genetic and geographic data 109 

We downloaded all available data from the phylogatR database (https://phylogatr.org/) 110 

using the search term ‘Caudata’ on 2/4/22. The uncleaned data represented four families, 93 111 

different species, and 14 loci with a total of 3768 DNA sequences. To begin cleaning the data, we 112 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.580580doi: bioRxiv preprint 

https://phylogatr.org/
https://doi.org/10.1101/2024.02.16.580580
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   

 

calculated nucleotide diversity (pi) values for each locus in every species and found outliers by 113 

setting lower and upper bounds of 2.5% (0) and 97.5% (0.2193634) respectively. For each of the 114 

four outliers and two species with missing pi values, we opened the DNA sequence file in 115 

Mesquite v3.7 (Maddison & Maddison, 2021) and removed any extremely short or non-116 

overlapping sequences (Data S1). Additionally, we discovered a typo for the species 117 

Batrachuperus karlschmidti causing there to be two different species folders for the same 118 

species. Both the sequence and occurrence files were merged for the species and the sequence 119 

files were realigned to correct the error. Two species complexes were present in the dataset, and 120 

these were kept named as downloaded: Triturus cristatus x dobrogicus macrosomus and 121 

Ambystoma laterale jeffersonianum complex. 122 

Species alignments from the download for both the mitochondrial genes Cytochrome 123 

oxidase I (COI) and Cytochrome b (cytb) were merged for all salamander species and aligned 124 

using MAFFT v7.5 (Katoh & Standley, 2013) with the default settings and including the –125 

adjustdirection command to account for reverse complement sequences. We visually inspected 126 

alignment files for both genes and removed all short sequences, which we classified as those 127 

missing 50% or more of the second half of the sequence. Twenty-one sequences were removed 128 

from the COI alignment and 99 were removed from the cytb alignment, leaving totals of 768 and 129 

908 sequences for COI and cytb, respectively. The sequences for seven species were completely 130 

removed from further analysis due to their short length (missing 50% or more of the second half 131 

of the sequences). In total, eighty-three species remained with an average of approximately 20 132 

sequences per nominal species (see Data S2 for a list of identifiers corresponding to the 133 

sequences used in this study). 134 

 135 
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Species delimitation 136 

We used three methods of species delimitation to determine the number of genetic 137 

lineages present in our samples. The GMYC is a tree-based method that takes a phylogenetic tree 138 

as input and finds a point in the tree where branching changes from within to between species 139 

(Pons et al., 2006). The ABGD (Puillandre et al., 2012) and ASAP (Puillandre et al., 2021) 140 

methods are distance-based delimitation methods that use pairwise genetic distances to establish 141 

the threshold between intra- and inter-species divergence. Because each method is based on a 142 

specific set of assumptions, it is best to use multiple methods and compare their results in order 143 

to achieve a more accurate delimitation (Carstens et al., 2013). By looking for concordance 144 

across methods, we can increase our confidence in the identified lineage boundaries and 145 

minimize the potential impact of bias introduced by any single method. While we report 146 

delimitation results from the genes COI and cytb for all methods, we used a consensus of 147 

delimitation results (among methods and loci) for assessing the role of geography, the 148 

environment, and life history traits in predicting salamander genetic diversity. 149 

To estimate a species tree for input into the GMYC, we used BEAST v2.5.1 (Bouckaert 150 

et al., 2019). We used the default parameters except for conducting 100,000,000 million 151 

generations, sampling every 5,000, and setting the model of sequence evolution to GTR+I+G 152 

(Abadi et al., 2019). The log files were checked by eye using Tracer v1.7.2 (Rambaut et al., 153 

2018). ESS values were all over 1000 for both cytb and COI. We removed 10% as burnin and 154 

retained the maximum clade credibility tree using TreeAnnotator. After checking that the tree 155 

was binary and ultrametric, we used the R package splits (Ezard et al., 2009) to conduct GMYC 156 

analyses. In each case we used the single threshold model and all other default settings. We 157 

conducted both ABGD and ASAP delimitation analyses via their web portals 158 
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(https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html and 159 

https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html, respectively) using the default parameter 160 

settings. 161 

 162 

Predictor variables 163 

A variety of predictor variables were collected, including geographic and environmental 164 

values derived from georeferenced locality data (see Data S3). In addition, three life history traits 165 

were available from AmphiBIO, a global database for amphibian ecological traits (Oliveira et al., 166 

2017), for most of the species in our study: reproductive strategy (direct developing, larval 167 

phase), habitat (terrestrial, fossorial, aquatic, or some combination of these), and body size (total 168 

length). To supplement this dataset and fill in any missing trait values, we used AmphibiaWeb 169 

(AmphibiaWeb, 2023) and other online sources (Data S4).  170 

To extract species specific data related to its environmental distribution, we utilized 42 171 

GIS data layers (see Data S4 for data layer details), including all 19 BIOCLIM layers from the 172 

CHELSA database (Karger et al., 2017; Karger, Dirk Nikolaus et al., 2021) at 1 km resolution, 173 

elevation (Aster global digital elevation model version 2, 2011), population density 174 

(Socioeconomic Data And Applications Center (SEDAC) Gridded Populations of the World 175 

(GPW), 2016), terrestrial habitat heterogeneity (Tuanmu & Jetz, 2015), gross domestic product 176 

(World Bank Development Economics Research Group (DECRG) Gross Domestic Product, 177 

2010), global land cover classification (European Space Agency, 2009), global river 178 

classification (Ouellet Dallaire et al., 2019), disaster risk (Peduzzi, 2019), anthropogenic biome 179 

(Ellis et al., 2010), and various indicators of seasonal growth (Karger et al., 2017; Karger, Dirk 180 

Nikolaus et al., 2021). We utilized the R packages 'raster' (, 2016), 'rgdal' (, 2017), 'geosphere' (, 181 
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2016), and 'plyr' (Wickham, 2011) to extract species specific information from each layer using 182 

geographic occurrence records obtained from phylogatR. To represent the environmental 183 

variation within the occupied range of each species, we extracted the value of each 184 

environmental layer for each GPS coordinate associated with each species. We then took the 185 

mean and standard deviation for each environmental variable. To obtain species specific data 186 

related to geographic distribution we extracted the minimum, maximum, mean, and length of 187 

latitude and longitude from the GPS points of each species.  188 

We used the R package ‘mice’ (Buuren & Groothuis-Oudshoorn, 2011) to impute trait 189 

values missing from our dataset (see Figure S1 for distribution of missing data and specific trait 190 

values imputed). The imputation method 'pmm' was used for all numeric variables and 'polyreg' 191 

was used for categorical variables (i.e., reproductive strategy and habitat). We ran the imputation 192 

15 times (Figure S2) and then pooled the iterations to generate the final imputed values. The final 193 

database containing all trait values (both imputed and original) is available in Data S4.  194 

 195 

Predictive modeling 196 

We used the R package 'caret' (Kuhn, 2008) to generate a random forest classification 197 

model (Breiman, 2001) based on our previously generated database of predictor variables and a 198 

consensus of our species delimitation results. Two separate sets of consensus models were 199 

generated to assess the role of geography, environment, and life history traits on the presence of 200 

hidden diversity (Figure 1A). The first model (all agree) represents a strict consensus of 201 

delimitation results from species in which results from all methods of species delimitation agree 202 

(Figure 1B). Any species with conflicting delimitation results were excluded from analysis. The 203 

second model (majority rules) represents a majority rule consensus in which species are assigned 204 
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to a response category based on relative support of delimitation results (Figure 1C). For each 205 

model, we used 70% of the data to train the model and the remaining 30% was set aside as a test 206 

set. Models were generated using 10-fold cross validation with five repeats to tune the parameter 207 

'mtry', the number of variables randomly sampled at each split, and optimize the area under the 208 

receiver operating characteristic curve, ROC. After training, we extracted the variable 209 

importance measures mean decrease accuracy (MDA) and Gini impurity (Gini) from the final 210 

models. We then used the final models on the test set data to evaluate model performance. Model 211 

performance was evaluated across a variety of metrics including model accuracy, which reflects 212 

how well the predicted classifications agree with the observed classifications, and both positive 213 

and negative predictive value, which indicate the how the model performs on observations from 214 

each class. Additionally, we calculated the no information rate (NIR), the proportion of 215 

observations that fall into the majority class, and the p-value [Accuracy>NIR], to test for model 216 

significance. The top important predictor variables from our best model were compared using a 217 

Kruskal-Wallis test to determine if these variables are significantly different between species that 218 

do or do not contain hidden diversity. 219 

 220 

Results 221 

Genetic and geographic dataset 222 

Our final dataset consisted of 1676 DNA barcoding sequences (Figure 2). Of these, 768 223 

sequences were from the Cytochrome oxidase I gene (COI), and 908 sequences were from the 224 

Cytochrome b gene (cytb). These sequences were derived from 83 nominal species of 225 

salamanders, which were distributed among 26 distinct genera occurring across the globe. The 226 

dataset contained 13 species with sequences from the gene cytb. Comparatively, COI exhibited 227 
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notably broader taxonomic coverage, with 77 nominal species represented. Out of the 83 species 228 

analyzed, only seven were shared between COI and cytb. Of the remaining 76 species, 70 were 229 

unique to COI and six were unique to cytb. To supplement the genetic data collected, a total of 230 

1765 georeferenced occurrence records from phylogatR were utilized to collect a combination of 231 

geographic, environmental, and life history trait values for each nominal species present in the 232 

dataset. 233 

 234 

Species delimitation and consensus assignment 235 

Species delimitation results were generated by analyzing COI and cytb sequences from 236 

each nominal species under three different delimitation methods, ABGD, ASAP, and GMYC. We 237 

classified each nominal species as either containing genetic lineages or not containing genetic 238 

lineages based on the number of genetic groups predicted by each delimitation analysis. While 239 

taxonomic overlap between COI and cytb was narrow, delimitation results for species shared by 240 

both loci were mostly congruent with respect to species classification. Of the seven species with 241 

sequences from both genes, only two species produced conflicting results regarding the presence 242 

of genetic lineages within a specific taxon based on loci. Delimitation results across different 243 

methods showed slightly less agreement. Classifications resulting from the GMYC and ASAP 244 

methods were similar across species. These methods, on average, resulted in slightly fewer 245 

predicted species per nominal species than the ABGD method (see Figure 3 for predicted species 246 

numbers).  247 

To account for this variation in our final predictive models, we generated two consensus 248 

classifications to evaluate concordance between delimitation results from different methods and 249 

loci. The results of our consensus models indicate that roughly 2/3rds of the nominal salamander 250 
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species used in this analysis are likely to contain genetic lineages that may be unexplored 251 

diversity. The strictest of these classifications produced a consensus model (all agree) consisting 252 

of 51 total species, 41 of which were classified as containing hidden diversity and 10 of which 253 

were classified as not containing hidden diversity. The remaining consensus model (majority 254 

rules) consisted of 83 total species, of which 51 were classified as containing genetic lineages 255 

and 32 were not (Figure 3).  256 

 257 

Predictive modeling 258 

For our majority rules and all agree consensus classifications, we developed random 259 

forest classification models using all available predictor data. To assess potential correlation 260 

between variables in our dataset we used the R package 'corrplot' (Taiyun Wei & Viliam Simko, 261 

2021) to generate a correlation matrix of our predictor variables (Figure S3). Due to the presence 262 

of strong correlations between several of the geographic and environmental variables in our 263 

dataset we performed multiple random forest models with progressive sets of correlated variables 264 

removed at different cutoff values (i.e., |correlation coefficient| > 0.75; 0.85; 0.9). The results of 265 

these random forest models are presented below (Table 1). 266 

All random forest models were found to have high predictive accuracy, with the majority 267 

rules and all agree models achieving accuracies of 75-85% and 87-93%, respectively, in 268 

identifying nominal species likely to contain hidden diversity. Although these results may 269 

initially seem to suggest that all our models are able to make meaningful predictions, further 270 

examination of additional model evaluation metrics reveals potential overfitting and inflation of 271 

predictive power. For example, despite the high accuracy of the models, the 95% confidence 272 

intervals for these values are broad with an average length of nearly 40% for most of the models 273 
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(Tables 1 and 2). Additionally, the no information rates (NIRs), a measure of prediction 274 

significance based on the underlying dataset that needs to be exceeded in order for model results 275 

to be significant, are particularly high for the all agree consensus models, where the class 276 

frequencies are more skewed towards species predicted to harbor hidden diversity. The high NIR 277 

values combined with wide confidence intervals result in a p-value [Accuracy > NIR] greater 278 

than 0.05 in all models, except for the majority rules consensus using a correlation cutoff of 0.90. 279 

While all our models show high accuracy, when the additional model evaluation metrics are 280 

considered only one has strong predictive power. Therefore, we only used the majority rules 281 

consensus using a correlation cutoff of 0.90 for interpreting variable importance of our data. 282 

 283 

Evaluation of variable importance 284 

We extracted variable importance measurements from each predictive model using the 285 

variable importance metrics MDA and Gini. While there was some overlap of top predictors 286 

between different models (Figure 4; Figure S4), no specific predictors were consistently 287 

predicted to be of significantly higher importance than other predictors in the model. Instead, 288 

importance was split across numerous predictors that were found to be unstable between models. 289 

This instability supports previous indications that many of the predictive models are likely prone 290 

to overfitting. Despite the lack of a strong set of standout predictors across models, one pattern 291 

does emerge that is applicable to the species in our dataset. Of the top ten most important 292 

predictors in each model, approximately 85% are measurements of standard deviation (vs. 293 

measurements of mean values or life history traits) (Data S5). This is supported by further 294 

examination of our one model that was able to predict significantly better than random, the 295 

majority rules consensus with a correlation coefficient cutoff of 0.90, in which the top five most 296 
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important predictors are measurements of standard deviation. Significance testing indicates that 297 

species identified as containing hidden genetic lineages often have ranges characterized by a 298 

larger variance in annual and seasonal precipitation, isothermality, and net primary productivity 299 

than species not identified as harboring hidden genetic lineages (Figure 5). 300 

 301 

Discussion 302 

When identifying genetic lineages or delimiting species, it is important to recognize that 303 

species concepts are complex and often differ based on various factors, such as geographic 304 

location, reproductive isolating mechanisms, genetic markers, and taxonomic practices. 305 

Therefore, it is essential to approach species delimitations with caution and to recognize that they 306 

represent a hypothesis or starting point rather than a definitive answer (Hillis, 2019). In addition, 307 

while mitochondrial data can be suitable for preliminary assessments of species diversity (Gostel 308 

& Kress, 2022), these assessments should be considered in tandem with other species 309 

information and relevant data when describing species boundaries. However, with recent 310 

advances in technology rapidly increasing the quantity of publicly accessible genetic and 311 

geographic datasets, these data offer a cost effective and efficient way to explore large-scale 312 

patterns and predictors of intraspecific genetic variation (e.g., Miraldo et al., 2016; Pelletier & 313 

Carstens, 2018; Yiming et al., 2021). 314 

Our results suggest that there are genetic lineages that may warrant further investigation 315 

distributed within Caudata. Adequately documenting biodiversity, both at the species and 316 

population level, is a first step in understanding the eco-evolutionary processes generating this 317 

diversity. However, in most clades, the Linnean shortfall is likely to influence broad scale 318 

patterns detected using macrogenetic approaches (Hortal et al., 2015), making it essential to 319 
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consider how the taxonomic designations used to inform these approaches influence the patterns 320 

detected. This is particularly important when dealing with clades suspected of harboring high 321 

levels of cryptic diversity. For example, Miraldo et al. (2016) generated the first global map of 322 

genetic diversity within species of mammals and amphibians. One of their main conclusions was 323 

that amphibians displayed lower levels of genetic variation in areas with higher human impact. 324 

Similarly, in amphibians, several recent studies have found within species genetic diversity to be 325 

lower in temperate regions in species with smaller ranges and at higher elevations (Barrow et al., 326 

2020; Amador 2023). The methods used to detect these patterns are based on current taxonomic 327 

knowledge, and as such, rely on the assumption that the species designations used are accurate.  328 

However, if species descriptions inaccurately reflect biological diversity, nominal species that 329 

contain cryptic species will display higher levels of genetic diversity, while not reflecting true 330 

within species variation, potentially skewing our interpretation of any patterns that result.  331 

 332 

Evaluating support for identified genetic lineages 333 

While our delimitation of genetic lineages are a starting point, or hypothesis generation 334 

step, for evaluating a species in nature where complex processes, such as hybrid zones, and 335 

adequate sampling must be considered (Hillis, 2019), we believe these computational approaches 336 

are useful for targeting species in further need of examination. We conducted a literature search 337 

to explore whether the nominal species in our dataset have been previously explored from a 338 

species delimitation approach. We used the online American Museum of Natural History 339 

taxonomic and nomenclatural database, Amphibian Species of the World (Darrel, 2024), to 340 

evaluate current taxonomic research in each nominal species of salamander predicted to contain 341 

hidden diversity in our consensus model. Species in which we were able to identify research-342 
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based support for the potential of undescribed diversity were recorded, along with the related 343 

articles in which the diversity was described as well as the type of data used (see Data S7). 344 

Nearly 70% of species the majority rules consensus suggests harbor hidden lineages contain 345 

results that also support the potential splitting of species into separate lineages. Out of these 346 

about 38% were explored using mt DNA only, 10% with nuclear DNA only, 35% using a 347 

combination of both nuclear and mt DNA and 17% using mt DNA, nuclear DNA and 348 

morphology. Just under 10% of the species display a complex history of hybridization, making 349 

delimitations difficult, a situation not uncommon in salamanders (Denton et al., 2018; Pyron et 350 

al., 2020). We were unable to find results for roughly 25% of our species data. We encountered 5 351 

species in which the results of previous delimitation work was either unclear or considered 352 

highly contested (e.g., Ichthyosaura alpestris, Batrachuperus karlschmidti, Batrachuperus 353 

taibaiensis, and Salamandrella schrenckii). Taxonomy is dynamic field (Raposo et al., 2020) and 354 

given our search, it can be difficult to use current open-source data relying solely on species 355 

names. However, the current literature largely supports the delimitation results found here and 356 

suggests a number of species in further need of investigation (see citations in Data S7, formal 357 

name changes, and an ability to update current open-source databases to reflect these changes). 358 

Additionally, even though there are limitations to using current open-source data that might not 359 

keep up to date with current taxonomy, we can still determine what factors might predict the 360 

presence of hard-to-find species. 361 

 362 

Significant Predictors of Diversity 363 

Significance testing of the most important predictors from our best model (majority rules 364 

consensus with a correlation coefficient cutoff of 0.90) indicates that the species which our 365 
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analysis identified as containing hidden genetic lineages often have ranges characterized by a 366 

larger variance in annual and seasonal precipitation, isothermality, and net primary productivity 367 

when compared to species that were not identified as containing hidden genetic lineages by our 368 

analysis (Figure 5B). And while the order of the most important traits is unstable across different 369 

models, across all models most of the traits found to be important were measurements of 370 

standard deviation (vs. measurements of mean values or life history traits) (Data S5). This 371 

suggests that the presence of variation in climate, rather than any species-specific trait or 372 

characteristic is the most identifiable driving force of within species genetic diversity for 373 

salamanders at this scale. Species traits were not a predictor of intraspecific genetic diversity in 374 

amphibians (Barrow et al., 2021; Amador et al., 2023) using a different measure of genetic 375 

variation within species (nucleotide diversity). Using similar methods, our results in salamanders 376 

differ from that found in mammals, where body size and range size were the most important 377 

predictors (Parsons et al., 2022). 378 

These findings are somewhat consistent with other studies of salamander diversification. 379 

Reproductive mode (larval stages, direct development) and habitat (combinations of terrestrial, 380 

aquatic, arboreal) vary across species and have evolved multiple times but have not been found 381 

to directly correlate with speciation, though being a direct developer might increase 382 

diversification rates (Liedtke et al., 2022). Alternatively, in one species which has intraspecific 383 

variation in habit, Salamandra salamandra, terrestrial-breeding individuals exhibited greater 384 

geographic genetic differentiation (Lourenço et al., 2019). Not surprisingly, this species showed 385 

conflicting results in our delimitation analyses. In vertebrate clades, terrestrial organisms tend to 386 

have higher diversification rates than aquatic organisms (Wiens, 2015), but we did not have a 387 

large number of fully terrestrial species in our dataset, which might have limited our ability to 388 
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detect this as an important predictor. Given that salamanders are relatively constrained in body 389 

form and ecological niches, variation in climatic variables seems like a reasonable explanation 390 

for species containing cryptic diversity. This follows the suggestion that change in climatic niche 391 

variables increases diversification rates in plethodontid salamanders (Kozak & Wiens, 2010). 392 

Diversification rates in frogs and salamanders have been shown to be higher near the tropics 393 

(Wiens 2007), so one might expect latitude to be an important predictor. However, latitude was 394 

not included in the list of predictor variables that were likely to be important (Figure 4). 395 

 396 

Predictive modeling as a tool to address the Linnean shortfall 397 

Recently, Parsons et al. (2022) used publicly available genetic barcoding data to develop 398 

a predictive framework to identify mammalian clades most likely to contain hidden species and 399 

determine specific trait complexes that indicate where hidden mammal diversity is likely to exist. 400 

We adopted a similar approach to evaluate genetic lineages in the clade Caudata, a group which 401 

differs from mammals in several key aspects, including species richness and sampling intensity. 402 

We focused on a lower taxonomic level so there are fewer recognized species of salamanders 403 

(<1000; ‘AmphibiaWeb’, 2023) compared to the mammal dataset, making the ability to produce 404 

robust predictive models more challenging. Additionally, there was a smaller proportion of 405 

available data for salamanders than mammals (~10% compared to 60% of described species). 406 

However, these smaller datasets might be more realistic in that they are more representative of 407 

the type of data most likely to be available for the taxonomic groups that are in greatest need of 408 

attention from taxonomists.  409 

While the predictive models generated in this study actually have a higher overall 410 

accuracy than those used in Parsons et al. (2022) (see Table 3), relying on this metric alone to 411 
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evaluate the performance of predictive models can be misleading (Provost et al., 1998). For 412 

classification models, model accuracy depends on how well the predicted classifications match 413 

the observed classifications. While seemingly straightforward, accuracy does not account for 414 

other model characteristics that may be influencing model behavior, such as the class frequencies 415 

of the underlying dataset (Kuhn & Johnson, 2013). In cases where one class occurs at a much 416 

higher frequency than the other, a predictive model can attain a high accuracy by simply always 417 

predicting the higher class. Therefore, an important benchmark to consider when interpreting 418 

overall model accuracy is the frequency at which the majority class occurs, the no information 419 

rate (NIR). If a model’s accuracy is not significantly higher than the NIR (i.e., p-value [Accuracy 420 

> NIR]), it can remain unclear whether the model is making meaningful decisions. In our 421 

models, the overall accuracy was found to be high, but the 95% confidence intervals for the 422 

accuracy values are very wide for most of the models. In addition, because the dataset is skewed 423 

towards species classified as containing hidden diversity, the p-value [Accuracy > NIR] was 424 

found to be significant in only one model. This is important to point out because even though 425 

there are large datasets available, choosing the right analytical tools can remain challenging 426 

depending on the use of the predictive models. Beyond analytical tools, it's also important to 427 

consider your dataset, and how the characteristics of your dataset are affecting the results you 428 

obtain. Considering the scale of not only the dataset, but also the analytical methods used and the 429 

pattern one is attempting to examine is especially important in meta-analyses, as different 430 

patterns emerge at different scales (Gurevitch et al., 2018). 431 

 432 

Conclusions 433 
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Here, we chose to utilize biodiversity data from phylogatR (i.e., genetic data for which 434 

directly associated specimen locality information is available) to avoid potential discrepancies 435 

between the distribution of the genetic and geographic data analyzed. By doing so we hoped to 436 

gain a more fine-grain understanding of how species genetic diversity is influenced by 437 

geographic and environmental factors (Leigh et al., 2021). However, making this choice 438 

significantly decreased the amount of data available and led to a greatly reduced dataset. Our 439 

study included 1676 DNA barcoding sequences from the genes COI and cytb (768 and 908 440 

sequences each, respectively). However, a 3/31/23 search of GenBank for salamander barcoding 441 

sequences from the genes COI and cytb returned a total of 17097 sequences (4468 and 12629 442 

sequences each, respectively; see Data S6). Similarly, while we were able to obtain 1765 443 

occurrence records tied to the genetic sequences used in this study, a GBIF search for geographic 444 

occurrences tied to salamander preserved specimens and material samples returned 675243 445 

records (see Data S6). This study highlights the lack of genetic data with easily-associated 446 

geographic information. 447 

The numerous benefits of making biological data more broadly available have been 448 

repeatedly demonstrated (Wüest et al., 2020). And recent years have seen a significant increase 449 

in the amount of available specimen and biodiversity data. The utility of these data to address 450 

large scale patterns of biodiversity, such as those examined in this study, is enhanced by our 451 

ability to integrate and synthesize data across different data sources, types, and taxonomic groups 452 

(Heberling et al., 2021). Our study highlights the importance of not just making these data 453 

available, but making them available in a way that is standardized and will facilitate integration 454 

and re-use for future generations to come (e.g., Colella et al., 2021; Hardisty et al., 2022).  455 

 456 
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Table 1. Results of majority rules consensus predictive models. Model metrics for each random forest predictive 733 

model generated using the majority rules consensus classifications are shown. 734 

 735 

Majority Rules 

Models 

Original 

|Correlation| > 0.75 |Correlation| > 0.85 |Correlation| > 0.90 

Accuracy 0.75 0.75 0.75 0.8333 

Accuracy (95% CI) (0.5329, 0.9023) (0.5329, 0.9023) (0.5329, 0.9023) (0.6262, 0.9526) 

No Information Rate 0.625 0.625 0.625 0.625 

Pos Pred Value   0.7368a 0.8 0.7647 0.7895 

Neg Pred Value 0.8 0.6667 0.7143 1 

P-Value [Acc > NIR] 0.1453 0.1453 0.1453 0.02435 

 736 

Table 2. Results of all agree consensus predictive models. Model metrics for each random forest predictive model 737 

generated using the all agree consensus classifications are shown. 738 

 739 

All Agree Models Original |Correlation| > 0.75 |Correlation| > 0.85 |Correlation| > 0.90 

Accuracy 0.8667 0.9333 0.8667 0.8667 

Accuracy (95% CI)  (0.5954, 0.9834) (0.6805, 0.9983) (0.5954, 0.9834) (0.5954, 0.9834) 

No Information Rate 0.8 0.8 0.8 0.8 

Pos Pred Value   0.8571 0.9231 0.8571 0.8571 

Neg Pred Value 1 1 1 1 

P-Value [Acc > NIR] 0.398 0.1671 0.398 0.398 

 740 
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Table 3. Summary of results of mammal predictive models presented in Parsons et al. (Parsons et al., 2022). Model 741 

metrics for each random forest predictive model generated using data from the class Mammalia are shown. 742 

 743 

Mammal Models ABGD COI ABGD cytb GMYC COI GMYC cytb consensus  

Accuracy 0.737 0.68 0.6429 0.6517 0.781 

Accuracy (95% CI) (0.6802, 0.7885) (0.6333, 0.7241) (0.5821, 0.7004) (0.6014, 0.6996) (0.7273, 0.8285) 

No Information 

Rate 0.7222 0.6235 0.6128 0.5488 0.6533 

Pos Pred Value   0.56667 0.6304 0.17271 0.6624 2.85E-06 

Neg Pred Value 0.75833 0.6937 0.5571 0.6345 0.807 

P-Value [Acc > 

NIR] 0.32 0.008792 0.6735 3.00E-05 2.85E-06 

 744 

 745 

 746 

 747 

 748 

 749 
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 750 

Figure 1. Consensus classification of species delimitation results. A, Flowchart describing the process of generating 751 

a consensus of delimitation results (among different methods and loci). B, C, Pipeline for classifying nominal species 752 

as either containing or not containing hidden diversity in each consensus analysis (all agree and majority rules, 753 

respectively). 754 
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 755 

Figure 2. Geographic spread of salamander data. Map shows geographic distribution of salamander occurrences 756 

pulled from phylogatR (Pelletier et al., 2022) and used in these analyses. Pie charts show the total number of cytb and 757 

COI sequences used (left) and the number of species represented by those cytb and COI sequences (right). Salamander 758 

figures in black were obtained from Phylopic (M. Keesey) and are licensed under public domain. 759 
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 767 

Figure 3. Species delimitation results. A, Graphs show the results of ABGD, ASAP, and GMYC species delimitation 768 

analyses of the genes cytb and COI for each nominal species. Numbers represent the predicted genetic lineages from 769 

each analysis. Results highlighted in red indicate no hidden genetic lineages were predicted (i.e., number of genetic 770 

lineages = 1). Results highlighted in green indicate hidden genetic lineages were predicted (i.e., number of genetic 771 

lineages > 1). Grey highlighting indicates that specific analysis was not performed due to a lack of data. B, Pie charts 772 
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display the number of nominal species classified as either containing or not containing hidden diversity in each 773 

consensus analysis (i.e., all agree and majority rules).  774 
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 800 

Figure 4. Variable importance for predictive models generated using the majority rules consensus. Variables ranked 801 

among the top ten most important variables (based on MDA and Gini) from the predictive model generated at different 802 

correlation cut-offs are included. 803 
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 804 

Figure 5. Difference in hidden vs not hidden trait values. A, Results of Kruskal-Wallis significance test on the top five 805 

most important predictors of the best model (majority rules – correlation cutoff 0.90). B, Corresponding boxplots for 806 

said predictors show a significant difference in the range of trait values between hidden and non-hidden genetic 807 

lineages. 808 
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