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Abstract 44 

 45 

Recording neural activity from the spinal cord is crucial for gaining insights into how it 46 

functions. However, the neural activity of the human spinal cord is notoriously difficult to 47 

measure. The bony and fascial enclosures combined with the relatively small anatomic 48 

size of the spinal cord make it an unfavorable target for traditional functional neuroimaging 49 

techniques. Functional ultrasound imaging (fUSI) is an emerging neuroimaging 50 

technology that represents a new platform for studying large-scale neural dynamics with 51 

high sensitivity, spatial coverage and spatiotemporal resolution. Although it was originally 52 

developed for studying brain function, fUSI was recently extended for imaging the spinal 53 

cord in animals and humans. While these studies are significant, their primary focus is on 54 

the neuroactivation of the spinal cord in response to external sensory stimulations. Here, 55 

we combined fUSI with urodynamically-controlled bladder filling and emptying to 56 

characterize the hemodynamic response of the human spinal cord during the micturition 57 

cycle. Our findings provide the first practical evidence of the existence of bladder 58 

pressure-responsive regions, whose hemodynamic signal is strongly correlated with the 59 

bladder pressure.  60 

  61 
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Introduction  67 

The spinal cord has been frequently neglected in the study of neural function. As a result, 68 

its anatomy and physiology are not as well understood as those of the brain. Yet, it 69 

represents the first evolutionary step in central nervous system development and houses 70 

the neural circuitry that controls and modulates some of the most important functions of 71 

life 1. Neural networks capable of producing autonomous central commands – usually 72 

stereotyped and rhythmic motor behaviors – are present throughout the rostral and the 73 

caudal parts of the spinal cord2. Actions such as chewing, swallowing and breathing are 74 

thought to be partially produced by these networks in the rostral cord 3. Similarly, 75 

autonomic functions such as urination and defecation are under control of neural 76 

networks located in the caudal spinal cord 4.  77 

 78 

Although evidence for the existence of neural network circuits that control and regulate 79 

certain body processes is strong, its demonstration in humans has been challenging to 80 

achieve. The bony, fascial enclosure and small cross-section dimensions (approximately 81 

12 mm in diameter) of the spinal cord combined with susceptibility artifacts due to local 82 

magnetic field inhomogeneities generated by interfaces between surrounding bones, 83 

ligaments, soft tissues and cerebrospinal fluid (CSF) make the spinal cord an unfavorable 84 

target for traditional neuroimaging techniques, such as functional magnetic resonance 85 

imaging (fMRI) 5–11. As a result, the bulk of our understanding of spinal cord function 86 

comes from animal and lesioning studies 12. There is little direct evidence for function-87 

specific spinal cord activity in humans, and fMRI – which has shed so much light on brain 88 

functions in humans – of the spinal cord is only minimally developed and generally 89 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.16.580736doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580736


restricted to the cervical cord8–10,13. Given this context, there is a clear and distinct need 90 

for developing neurotechnologies that make the functional study of the human spinal cord 91 

more accessible. 92 

 93 

Functional ultrasound imaging (fUSI) is an emerging neuroimaging technology that 94 

represents a new platform with high sensitivity, spatial coverage and spatiotemporal 95 

resolution, enabling a range of new pre-clinical and clinical applications14–23. It was 96 

originally developed for brain neuroimaging in small animals (i.e., rodents)16. Based on 97 

power Doppler imaging, fUSI measures changes in cerebral blood volume (CBV) by 98 

detecting backscattered echoes from red blood cells moving within its field of view24,25. 99 

While fUSI is a hemodynamic technique, its superior spatiotemporal performance (i.e., 100 

100 μm and up to 10 ms) and sensitivity (~ 1 mm/s velocity of blood flow) offer 101 

substantially closer connection to the underlying neuronal signal than achievable with 102 

other hemodynamic methods such as fMRI. It is minimally invasive and requires a 103 

trephination in large organisms to enable the penetration of the ultrasound waves, as the 104 

skull attenuates the acoustic wave. The fUSI scanner is like any clinical ultrasound 105 

machine, making the unit freely mobile between different settings and negates the need 106 

for extensive infrastructure inherent to fMRI.         107 

 108 

Recently, fUSI was extended to study the spinal cord responses to electrical and 109 

mechanical stimulations in small animals and human patients 26–30. Despite the significant 110 

contribution of these studies in understanding how the spinal cord reacts to external 111 

sensory stimulations, none of them have demonstrated spinal cord circuits associated 112 
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with physiological functions (i.e., body processes) in humans. In the current study, we 113 

utilize fUSI to study the hemodynamic response of the spinal cord during urinary bladder 114 

filling and emptying in patients, undergoing general anesthesia and epidural spinal 115 

stimulation surgery for chronic low back pain treatment. By combining fUSI recordings 116 

from the spinal cord with intravesical bladder pressure recordings, we identified spinal 117 

cord regions in which the hemodynamic signal is strongly correlated with bladder 118 

pressure. Overall, our study provides the first in-human application of fUSI to characterize 119 

the hemodynamic response of the spinal cord during urodynamically-controlled bladder 120 

filling and emptying, opening new avenues for better understanding the mechanisms of 121 

control that the spinal cord exerts over micturition.   122 

 123 

 124 

Results 125 

To investigate how human spinal cord hemodynamics respond to bladder filling and 126 

emptying process, we acquired fUSI images of the spinal cord from four (4) chronic low 127 

back pain patients, who underwent standard-of-care implantation of an epidural spinal 128 

cord stimulation (ESCS) device under general anesthesia (Fig. 1A). Note that the 129 

urodynamic experiment was performed before ESCS implantation. A miniaturized 15.6-130 

MHz, 128-channel, linear ultrasound transducer array was inserted through a partial 131 

laminar opening onto the dura at the level of the 10th thoracic vertebra (T10) with a 132 

transverse field of view (Fig. 1A). We utilized a protocol that consisted of about 26 min of 133 

continuous fUSI signal acquisition, including 5 min of baseline activity, followed by 2 134 

bladder filling cycles and 1 emptying cycle, interspersed by 2 hold periods (about 1 min 135 
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each) (Fig. 1B). The bladder was filled and emptied, accompanied by continuous 136 

intravesical bladder pressure recordings using a Laborie Goby™ (Vermont, USA) 137 

urodynamics system. The same protocol was employed for all patients. Fig. 1C depicts 138 

the changes of the bladder pressure during filling and emptying for all 4 patients. 139 

 140 

Figure 1 around here 141 

 142 

Hemodynamic response induced by bladder filling and emptying. 143 

Power Doppler (pD)-based functional ultrasound images were acquired from the spinal 144 

cord (Fig. 2). We used the mean spinal cord pD signal (1 min just before filling onset) to 145 

capture the anatomical vascularization of the human spinal cord in all patients, with the 146 

dorsal surface indicated by the white discontinuous lines (Fig. 2B). The pD images have 147 

spatial resolutions of 100 μm × 100 μm in-plane, plane thickness of about 400 μm, and a 148 

large field of view (FOV) 12.8 mm × 10 mm. The FOV captures the dorsal and portions 149 

of the ventral cross-section of the spinal cord – approximately indicated by the light-green 150 

rectangular overlay in Fig. 2A. 151 

 152 

Figure 2 around here 153 

 154 
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To characterize the spinal cord hemodynamic response during filling and emptying of the 155 

bladder, we computed the spinal cord blood volume changes (ΔSCBV) – i.e., % pD signal 156 

changes – relative to the baseline activity (i.e., average fUSI activity 1 min prior to start 157 

filling the bladder). The goal was to identify regions within the spinal cord that are 158 

correlated with bladder pressure. To do so, we computed the activation map for each 159 

patient by performing a Pearson’s correlation analysis between the bladder pressure 160 

changes and ΔSCBV for each pixel in the recorded area. The activation maps revealed 161 

spinal cord regions that are positively (reddish areas, r > 0.35, p < 0.01) and negatively 162 

(blueish areas, r <- 0.35, p < 0.01) correlated with bladder pressure during filling and 163 

emptying the bladder (Fig. 3A). Notably, we observed bladder pressure-related regions 164 

extending beyond the dorsal surface, indicating that neural signals associated with 165 

bladder function may modulate hemodynamic activity in regions adjacent to the gray 166 

matter of the spinal cord. It is also likely that the activation detected in vessels outside the 167 

dorsal column may be attributed to their role in supplying blood to the vasculature within 168 

the gray matter. 169 

  170 

To assess the temporal pattern of activation of the bladder pressure-related regions, we 171 

computed the average ΔSCBV over the pixels of the positive and negative correlates to 172 

the bladder pressure, across time and patients.  Since the magnitude of the hemodynamic 173 

response changes varies between patients (Fig. 3B), we normalized the ΔSCBV between 174 

[-1, 1]. Similarly, we normalized the bladder pressure between [0, 1] to account for the 175 

different magnitudes of the pressure curves across patients. The results presented in Fig. 176 

3C showed that bladder filling and emptying cause strong neuroactivation in the spinal 177 
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cord. The regions positively correlated with the bladder pressure signal (i.e., red regions) 178 

exhibited a gradual increase in ΔSCBV during bladder filling with a subsequent gradual 179 

decrease in ΔSCBV during bladder emptying. Conversely, the regions negatively 180 

correlated with bladder pressure (i.e., blue regions) exhibited the opposite behavior – i.e., 181 

gradual decrease followed by increase of ΔSCBV during filling and emptying of the 182 

bladder, respectively. The gray curve depicts the average normalized bladder pressure 183 

changes across patients. The shaded regions around the bladder pressure and the 184 

ΔSCBV curves represent the standard error of mean across patients. The correlation 185 

between the bladder pressure and ΔSCBV is 0.89 ± 0.02 (Mean ± SE) for the positively 186 

(reddish) and -0.78 ± 0.05 for the negatively (blueish) bladder pressure-related spinal 187 

cord regions across patients.   188 

 189 

Figure 3 around here 190 

 191 

A machine learning algorithm to identify bladder pressure-related regions 192 

We investigated whether we could detect spinal cord regions that encode the bladder 193 

pressure dynamics without directly monitoring the bladder pressure. To do so, we 194 

developed a machine learning technique to identify bladder pressure-related regions in 195 

the recorded images (Fig. 4). After collecting the fUSI data from the human spinal cord 196 

(Fig. 4A), we implemented a class-wise principal component analysis (cPCA) to reduce 197 

the dimensionality of the spinal cord imaging data (91×128 pixels per acquired image), 198 

and extracted effective discriminant features to differentiate between bladder filling 199 
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(class:0, c0) and emptying (class:1, c1) classes (Fig. 4B). The entire fUSI spinal cord time 200 

series data acquired during filling and emptying periods were utilized (the hold time 201 

periods were excluded). The analysis was performed separately for each patient in whom 202 

the bladder pressure was successfully recorded (N=4). cPCA has been used to reduce 203 

sparsity and dimensionality while maintaining enough components to retain over 95% 204 

variance in the data (see Materials and Methods section for more details). It is ideally 205 

suited for discrimination problems with large dimensions and small sample size including 206 

natural and biomedical images 31,32. We paired cPCA with a class-discriminant support 207 

vector machine (SVM) classifier to determine the best decision boundary that separate 208 

the two classes - i.e., filling vs. emptying (Fig. 4C). A subset from each class was then 209 

separated into training (80%) and testing (20%) sets for cross-validation analysis. This 210 

approach results in a 1D low-dimension subspace that represents a feature extraction 211 

mapping from the 2D spinal cord image space. The subspace identifies pixels in the spinal 212 

cord fUSI images that encode differences between the filling (c0) and emptying (c1) 213 

classes, when projected back to the image space. Each pixel was assigned a relative 214 

weight of relevance normalized between [-1 1] – pixels with values close to +1 or -1 imply 215 

important components, while pixels with values close to 0 are less important with their 216 

fluctuations likely due to noise with respect to each class (Fig. 4C). Physically, the 217 

weighted regions can be interpreted as spinal cord regions in where ΔSCBV encodes 218 

differences between the filling and emptying classes. The positive and negative weights 219 

indicate that ΔSCBV contributes positively and negatively to the variation captured by the 220 

principal component, respectively. Hence, ΔSCBV of pixels that have positive and 221 

negative relative weights are positively and negatively correlated with the bladder 222 
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pressure. The heat-map in Fig. 4D (left-top column) represents a typical example of the 223 

decoding analysis that identifies the most relevant spinal cord image pixels associated 224 

with filling and emptying the bladder for patient 1 – the most positive (reddish) and 225 

negative (bluish) relative weighted pixels overlaid on a grayscale mean fUSI spinal cord 226 

vascular map. Fig. 5A depicts the top 5% of the most heavily weighted pixels generated 227 

by the cPCA+SVM algorithm. The results showed that the average ΔSCBV of the 228 

activated regions was correlated with the bladder pressure with r = 0.65 ± 0.09, (mean ± 229 

SE) for the positive weights and r = -0.62 ± 0.08 for the negative weights across the 4 230 

patients (Fig. 5C). Notably, the cPCA+SVM algorithm identified bladder pressure-related 231 

regions with less variability on the magnitude of the hemodynamic changes (i.e., %pD 232 

signal changes) during filling/emptying the bladder (Fig. 5B) compared to the original 233 

Pearson’s correlation analysis and the activation maps (see Fig. 3B).    234 

 235 

Figure 4 around here 236 

 237 

 238 

Figure 5 around here 239 

 240 

Optimal amount of data for decoding bladder pressure dynamics 241 

So far, we have demonstrated that cPCA+SVM algorithm can accurately identify bladder 242 

pressure-related spinal cord regions. An interesting question is whether we can improve 243 

the cPCA+SVM performance using a subset of fUSI data – instead of entire data set – to 244 
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train the classifier. The goal is to determine the optimal amount of data needed to train 245 

the classifier to detect the spinal cord regions that produce the best performance – i.e., 246 

the highest correlation between ΔSCBV of the bladder pressure-related spinal cord 247 

regions (i.e., as extracted by the cPCA+SVM algorithm) and the bladder pressure 248 

dynamics. To do so, we started with the last 30 s of fUSI data acquired during bladder 249 

filling for class c1, and the first 30 s of fUSI data acquired during bladder emptying for 250 

class c0. We employed 10-s data increment for each class – i.e., positive increment for 251 

class c0, and negative increment for class c1 – to derive a cumulative set of fUSI images 252 

that was used to train and evaluate the performance of the algorithm. We utilized similar 253 

cPCA+SVM decoding steps as outlined above with increasing data amounts. Each subset 254 

of data produced weighted relevant pixels that best discriminate between the two classes. 255 

A characteristic example of the weighted relevant pixels with the corresponding average 256 

ΔSCBV time course curves is illustrated in Fig. 4D (right column), in which the red and 257 

blue curves represent the average ΔSCBVs in areas with positive and negative weights, 258 

respectively. We then determined the optimal amount of fUSI data for each patient, in 259 

which the ΔSCBV of the weighted pixels exhibit the highest correlation with the bladder 260 

pressure (Fig. 4D highlighted area). The results showed that the cPCA+SVM algorithm 261 

produced activation maps comparable to those generated by using all recorded fUSI data 262 

(Fig. 6A), yet with enhanced performance. Specifically, there was a greater correlation 263 

between ΔSCBV and bladder pressure when utilizing a subset of the recorded fUSI data, 264 

as opposed to the entire dataset – i.e., r = 0.81 ± 0.05, (mean ± SE) for the positive 265 

weights when using 4.89 ± 0.57 min of the recorded fUSI images, and r = -0.85 ± 0.03 for 266 

the negative weights when using 3.58 ± 1.28 min of the recorded fUSI images, across the 267 
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4 patients (Fig. 6C). Notably, the variability of the %pD signal change during 268 

filling/emptying the bladder across the 4 patients was comparable to those generated 269 

when utilizing all the amount of recorded fUSI data (Fig. 6B).  270 

 271 

 272 

Figure 6 around here 273 

 274 

 275 

Discussion 276 

 277 

General 278 

While functional neuroimaging in the human brain has led to some progress in 279 

understanding brain function in micturition 33–35, the neural mechanism in the human 280 

spinal cord that controls filling and emptying of the bladder is almost entirely unclear. To 281 

the best of our knowledge, there is no study that has attempted to characterize 282 

hemodynamic changes in the spinal cord during filling and emptying of the bladder. One 283 

of the main reasons seems to be the intricate structure of the spinal cord, including its 284 

small cross-sectional area, the cardiac-related motion of cerebrospinal fluid (CSF), and 285 

motion artifacts caused by the proximity of organs such as the lungs. These factors make 286 

the spinal cord an unfavorable area for conventional functional neuroimaging studies 5,8. 287 

On the other hand, electrophysiology suffers from the inherent trade-offs between 288 

sampling density, coverage and channel count, making it challenging to achieve a spatial 289 

sampling resolution of less than 100 μm over a large recorded volume (i.e., 1 cm3 would 290 
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require about 106 channels). Optical imaging is capable of monitoring single-neuron 291 

activity over large areas, but is typically limited by a penetration depth of < 1 mm 36,37.  292 

 293 

Within this context, fUSI represents an emerging neuroimaging technology that utilizes 294 

ultrasound to monitor blood flow changes as an indirect readout of neuronal activity with 295 

high spatiotemporal resolution, penetration depth and sensitivity to slow blood flow 296 

motion. Originally developed for brain neuroimaging, fUSI has been recently expanded to 297 

study spinal neurovascular responses in small animals 26–29 and human patients 30. 298 

Although these studies provide significant insights into better understanding the 299 

physiology of the spinal cord in sensory integrations, they are limited to artificial external 300 

stimulations, illustrating that fUSI is capable of detecting binary discrete spinal cord 301 

states– i.e., stimulation on vs. stimulation off. In the current study, we took the next major 302 

leap in fUSI spinal cord research by recording functional activity of the human spinal cord 303 

during urodynamically-controlled bladder filling and emptying. We showed that fUSI can 304 

detect spinal cord regions in which the hemodynamic signal is highly correlated with the 305 

bladder pressure. We also introduced a machine learning algorithm that can detect 306 

bladder pressure-related spinal cord regions, even when information about the bladder 307 

pressure is not available. Overall, our success in characterizing and correlating spinal 308 

cord hemodynamics to urodynamically-controlled micturition events holds promise for 309 

further understanding the functional and dysfunctional anatomy associated with lower 310 

urinary tract physiology. 311 

 312 
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Neuroscience and scientific applications 313 

The unique combination of fUSI technology with anatomically correlated and easily 314 

monitored physiological function of micturition – mimicked by urodynamically-controlled 315 

filling and emptying of the bladder – open new opportunities for better understanding of 316 

the spinal cord networks that promote urinary storage and induce urinary emptying. It also 317 

creates avenues for studying the neural circuitries that control and modulate other 318 

important bodily functions, such as sensation, ambulation (e.g., passive movements in 319 

anesthetized patients). Additionally, the existence of spinal cord regions, where the 320 

hemodynamic signals are strongly correlated with bladder pressure, provides the proof-321 

of-concept for developing ultrasound-based spinal cord machine interface technologies 322 

for bladder control in patients with neurogenic bladder. Surveys have repeatedly revealed 323 

that restoration of bladder function remains the top priority for spinal cord injury patients, 324 

far ahead of even restoring the ability to walk38. In addition to spinal cord injury, a far 325 

greater number of people worldwide suffer from urinary dysfunctions of neurological 326 

origin. Developing spinal cord machine interfaces for informing the patients about the 327 

state of the bladder would be a step closer to restoring bladder control.  328 

 329 

New avenues for improving neuromodulation treatments for neurogenic lower urinary 330 

tract dysfunction 331 

Urinary dysfunctions of neurological origin due to spinal cord or brain injury, degeneration, 332 

or stroke represent some of the biggest medical burdens in the world and lead to uniquely 333 
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dehumanizing consequences 39. Therapies that are currently available abate some 334 

symptoms of neurogenic lower urinary tract dysfunction, but none can restore normal 335 

function. On the other hand, novel neuromodulatory approaches such as  epidural spinal 336 

cord stimulation (ESCS) of the lumbosacral spinal cord have shown potential to activate 337 

neural networks associated with bladder function in rodents with SCI and thus lead to a 338 

degree of functional recovery40,41. Additionally, clinical studies have shown that 339 

transcutaneous electrical spinal cord stimulation (TSCS) – i.e., a non-invasive 340 

neuromodulation therapy that stimulates the spinal cord from the surface of the skin – can 341 

reengage the spinal circuits involved in bladder control and normalize bladder and 342 

urethral sphincter function in patients with SCI42,43. Although neuromodulation therapies 343 

offer a great promise for restoring normal lower tract function, their mechanism of action 344 

(MOA) remain elusive. This is mainly due to the lack of a monitoring modality that can 345 

characterize the effects of neuromodulation on spinal cord activity. Combining fUSI with 346 

neuromodulation of spinal networks has considerable potential in gaining a better 347 

understanding of the MOA of neuromodulation and augmenting its efficacy in improving 348 

bladder control in patients with neurogenic lower urinary tract dysfunction. Fine-tuning 349 

stimulation wave properties, such as amplitude, frequency, and shape, using fUSI has 350 

the potential to facilitate the objective identification of efficacious targets for 351 

neuromodulation.   352 

 353 

Limitations and Clinical challenges 354 
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While fUSI is a novel technology that enables the monitoring of brain and spinal cord 355 

activity, the skull and the lamina bone attenuate and result in aberrant acoustic waves at 356 

high frequencies, substantially reducing signal sensitivity. For this reason, most  fUSI 357 

applications are minimally invasive – with few exceptions such as in young mice (8-12 358 

weeks old with thin skull)44 and in pediatric transfontanelle-imaging17,45. Surgical 359 

procedures to produce a craniotomy21 or thinned-skull window46 in brain research and 360 

laminectomy26,30 in spinal cord research are required to harness the host of fUSI benefits. 361 

Hence, monitoring spinal cord neuroactivation with fUSI in awake adults is challenging 362 

and has yet to be proven. However, recent studies in brain research provide evidence 363 

that non-invasive fUSI is capable either through a permanent “acoustic window” installed 364 

as part of a skull replacement procedure following a decompressive hemicraniectomy 365 

(partial skull removal)47 or by intravenously injecting microbubbles-contrast agents for 366 

enhancing the fUSI signal48,49. Although these approaches have not yet been tested in 367 

spinal cord research, the promise of fully noninvasive fUSI in spinal cord is imminent.  368 

 369 

It is important to acknowledge that we recorded activity in the thoracic cord (T10 lamina), 370 

although the main control mechanism of the bladder is thought to be located in the sacral 371 

cord between S2-S4, with the major portion at S32,50. This is a typical limitation in clinical 372 

studies that often we are not able to record activity directly from the desirable locations. 373 

In our study, we image the spinal cord during urodynamically-controlled micturition in 374 

patients undergoing ESCS surgery for chronic low back pain treatment. The midline of 375 

the spinal cord at the T10 lamina is the preferred location for insertion of a more rostral 376 
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spinal cord stimulator and therefore the laminectomy allows us to perform functional 377 

neuroimaging only at the T10 region. However, this clinical limitation does not affect our 378 

main finding that the hemodynamic signal within the T10 area encodes bladder pressure. 379 

In fact, this finding supports the prevailing hypothesis that micturition is regulated by 380 

neural circuits that traverse the entire central nervous system from the sacral cord to the 381 

prefrontal cortex and vice versa. When the sacral cord receives the sensory information 382 

from the bladder, this signal travels up the spinal cord to higher centers in the pons and 383 

above12. Also, the signal from the brain in turn travels down to the spinal cord to make 384 

sure that we only urinate when and where is appropriate 51. Therefore, it is likely that the 385 

bladder pressure-related signal that we detect at the T10 vertebral body level is a 386 

combination of the signal initiated at the sacral cord that traveled towards higher brain 387 

centers, and the signal that is transferred from the brain to the bladder through the spinal 388 

cord.  389 

Furthermore, while it is common in animal spinal cord studies to perform large 390 

laminectomies, retract back muscles and remove connective tissues26–29,  it is not 391 

possible to modify the surgical protocol in order to improve the quality of the fUSI images 392 

in human experiments. Instead, we performed only partial and small laminectomies to 393 

avoid spine destabilization. In particular, the width of the laminar opening (about 11 mm) 394 

was smaller than the width of the ultrasound probe (12.8 mm) and consequently the probe 395 

did not perfectly abut the dura. Therefore, it is challenging to image the exactly same 2D 396 

plane across patients. Although the imaging planes vary slightly across the 4 patients, 397 

this does not affect the spatiotemporal pattern of the hemodynamic signal in the bladder 398 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.16.580736doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580736


pressure-related regions. In fact, this highlights the strength and robustness of fUSI to 399 

overcome the potential to image different 2D slices of the spinal cord across patients. 400 

 401 

Conclusions 402 

Taken together, we present the first in-human characterization of spinal cord 403 

hemodynamics during physiological activation of the bladder. By combining fUSI with 404 

urodynamically-controlled bladder filling and emptying in human patients with spinal cord 405 

laminectomy, we identified spinal cord regions where the hemodynamic signal is strongly 406 

correlated with the bladder pressure. These findings demonstrate the existence of a 407 

network that is involved in micturition, and open new doors for further investigation of 408 

neural network circuits that control and regulate other body processes in healthy and 409 

disease conditions.  410 

 411 

 412 

Materials and Methods 413 

Patient and surgical procedures  414 

A total of four participants were imaged continuously during bladder filling and emptying 415 

in this study. The participants were recruited from patients who underwent standard-of-416 

care implantation of a spinal cord stimulator paddle lead (PentaTM model 3228) at the 417 

Keck School of Medicine of the University of Southern California (USC). All patients were 418 

diagnosed with failed back surgery syndrome, which required a T10 partial laminectomy 419 

for insertion of stimulation paddle lead in the prone position under general anesthesia. 420 
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Spinal cord hemodynamic responses to bladder filling and emptying were acquired via 421 

insertion of a fUSI probe into the T10 partial lamina opening prior to placement of the 422 

paddle lead (Fig. 1A). Informed consent was obtained from all patients after the nature of 423 

the study and possible risks were clearly explained, in compliance with protocols and 424 

experimental procedures approved by the USC Institutional Review Board.   425 

 426 

Patient bladder pressure signal acquisition 427 

The urodynamic assessments in this study were conducted using the Laborie Goby (TM)   428 

urodynamics system to fill, empty and acquire continuous intravesical bladder pressure 429 

measurements of patients. A LaborieT-DOC (TM) catheter was inserted into the bladder, 430 

after patients were anesthetized. The position was confirmed by irrigation and aspiration. 431 

The infusion port of the catheter was connected to a drainage bag and the manometer 432 

port was connected to the Laborie UDS Roam Bluetooth transmitter. The patients were 433 

then positioned prone. To begin experiments, the infusion port of the catheter was 434 

connected to the infusion tubing and fUSI recordings were performed simultaneously with 435 

the urodynamics (See details of the experimental protocols below).   436 

 437 

Functional ultrasound imaging data acquisition 438 

The spinal cord hemodynamic signals were acquired with a fully featured commercial 439 

Iconeus One (Iconeus, Paris, France) fUSI system. A 128-element linear array transducer 440 

probe with a 15 MHz center frequency and 0.1 mm pitch was inserted through the laminar 441 

opening to generate fUSI images (Fig. 1A). This approach enables image acquisition with 442 
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spatial resolution of 100 μm × 100 μm in-plane, slice thickness of 400 μm, and FOV of 443 

12.8 mm (width) × 10 (depth) mm. The penetration depth was sufficient to image the 444 

dorsal portion and part of the ventral portion of the spinal cord on a transverse orientation. 445 

The probe was fixed steadily throughout experiments with the FOV transverse and 446 

intersecting the spinal cord central canal (Fig. 2). Each image was obtained from 200 447 

compounded frames using 11 tilted plane waves separated by 2° (i.e., from -10° to +10° 448 

increment by 2°), at a 500 Hz frame rate. Imaging sessions were performed using a real-449 

time continuous acquisition of successive blocks of 400 ms (with 600 ms pause between 450 

pulses) of compounded plane wave images, with a 5500 Hz pulse repetition frequency 451 

(PRF). The acoustic amplitudes and intensities of the fUSI sequence remained below the 452 

Food and Drug Administration limits for ultrasonic diagnostic imaging (FDA, 510k, Trace 453 

3). 454 

 455 

Experimental protocol 456 

A 26-min continuous fUSI signal acquisition protocol was employed for all patients. The 457 

protocol consisted of 5 min fUSI spinal cord baseline recording followed by simultaneous 458 

bladder intravesical pressure signal and fUSI signal acquisition, including 2 bladder filling 459 

cycles and 1 emptying cycle, interspersed by 2 hold periods and a wash-out period at the 460 

end (Fig. 1B). At the 5-min mark, we filled the patients’ bladder through a catheter with 461 

600 ml of saline at a rate of 90 ml/min for approximately 6 min and 40 s, while 462 

simultaneously recording the bladder pressure. The filling was paused for about 1 min 463 

and 30 s, followed by additional bladder filling with saline for about 1 min. We then 464 

stopped the pump for 1 min and 30 s and reversed the pump to continuously withdraw 465 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.16.580736doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580736


saline via the catheter for 7 min and 40 s at a rate of 90 ml/min, with continuous recording 466 

of the bladder pressure. The pump was turned off, then followed by approximately 2 min 467 

and 20 s of additional fUSI spinal cord and bladder pressure signal recordings. 468 

 469 

Data analysis  470 

Data preprocessing: 471 

A built-in phase-correlation based sub-pixel motion registration52 and singular-value-472 

decomposition (SVD) based clutter filtering algorithms53, in the Iconeus One acquisition 473 

system were used to separate tissue motion signal from blood signal to generate relative 474 

pD signal intensity images54.  We adopted rigid motion correction techniques55 that have 475 

successfully been used in fUSI21,23,30 and other neuroimaging studies56–58, to address 476 

potential physiological and motion artifacts unique to human spinal cord imaging.  This 477 

was combined with in-house high frequency smoothing filtering. We utilized a lowpass 478 

filter with normalized passband frequency of 0.04 Hz, with a stopband attenuation of 60 479 

dB that compensates for delay introduced by the filter, to remove high-frequency 480 

fluctuations in the pD signals. 481 

 482 

Spatiotemporal correlation of bladder pressure changes to ΔSCBV 483 

We assessed the spatiotemporal effects of bladder filling and emptying on spinal cord 484 

hemodynamics. We generated pixel-wise activation time course curves of ΔSCBV as a 485 

percentage change of the pD signal relative to baseline activity for the whole spinal cord 486 

FOV.  The mean pD signal activity acquired 1 min preceding the onset of the bladder 487 
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filling was utilized as the baseline for the analysis. We investigated whether there are 488 

spinal cord regions where ΔSCBV is correlated with the bladder pressure during filling 489 

and emptying. To test this hypothesis, we computed Pearson correlation coefficients for 490 

each pixel in the spinal cord fUSI image. To this end, the %pD signal intensity time series 491 

curve from each pixel is correlated with the bladder pressure signal across time to 492 

determine pixels with statistically significant correlation (p < 0.01, with FDR correction). 493 

We generated statistical correlation activation maps of the pixels that show significant 494 

positive and negative correlations above an r-coefficient threshold (r > 0.35 and r < -0.35). 495 

Finally, to visualize the temporal dynamics of the percentage ΔSCVB, we derived the 496 

mean % pD signal change curves from averaging the signal over the pixels with significant 497 

correlation to the bladder pressure signal. 498 

  499 

Decoding bladder pressure dynamics from SCBV signals 500 

Next, we attempted to identify spinal cord regions with ΔSCBV that captures the temporal 501 

changes of the bladder pressure, without direct knowledge of the bladder pressure signal. 502 

We utilized a machine learning algorithm cPCA+SVM that includes the following steps: 503 

1) align the preprocessed SCBV signals extracted from the bladder filling and emptying 504 

time epochs, 2) reduce data dimensionality and select features that optimally allow 505 

discrimination between filling and emptying states, 3) dissociate and identify relevant 506 

spinal cord areas that encode the bladder pressure dynamics and 4) cross validate and 507 

evaluate the decoder performance (Fig. 4). To do so, we determined the percentage 508 

change in pD signal in each pixel of the fUSI images extracted during the filling and 509 

emptying epochs for each patient, relative to reference signal activity. The signals 510 
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acquired 30 s just before the onset of filling and 30 s before onset of emptying (i.e., during 511 

the 2nd hold period) were used as reference to calculate the %pD signal change for each 512 

pixel during the filling and emptying periods, respectively. The entire fUSI spinal cord 2D 513 

image space was utilized in the machine learning algorithm (Fig. 4A). Each 2D time series 514 

data was vectorized to 1D vectors and aligned in rows to form 2D (pixels × time) matrix 515 

classes (filling – class:0 and emptying – class:1) (Fig. 4B). We employed classwise 516 

principal component analysis (cPCA) 31,32 and support vector machines discrimination 517 

(SVM) 59, to reduce data sparsity and dimensionality while maintaining enough 518 

components to retain over 95% variance in the data and to select the most relevant 519 

subspaces to separate the classes. SVMs provide a set of supervised learning tools for 520 

classification that are effective for high-dimensional spaces even when the feature 521 

dimensions are larger than the number of samples – such as the data employed in this 522 

study. We combined cPCA with SVM to classify the cPCA-transformed fUSI image into 523 

filling (class:0) and emptying (class:1) bladder pressure states. This analysis provides 524 

weights that reflect the most relevant pixels used for classifying between classes (Fig. 525 

4C). The relevant pixels represent a feature extraction mapping to the 2D spinal cord 526 

image space and are derived from the two 1D low-dimension subspaces that are 527 

optimized for each class. The subspaces identify pixels in the spinal cord fUSI images 528 

that encode the differences between the filling and emptying classes, when projected 529 

back to the image space. Each pixel is assigned a relative weight of relevance 530 

(normalized between [-1 1] – pixels with values close to +1 or -1 indicate high relevance 531 

components, while pixels with values close to 0 are less important and whose fluctuations 532 

are likely due to noise). ΔSCBV of pixels with positive and negative relative weights of 533 
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relevance are positively and negatively correlated with bladder pressure changes, 534 

respectively.  535 

 536 

Optimal data amount for training and cross-validating the classifier 537 

Next, to investigate the optimal amount of data needed to generate the best correlation 538 

between ΔSCBV and bladder pressure, we employed a similar cPCA+SVM analysis as 539 

outlined above with a sliding window of cumulative data amounts. We utilized 30 s of 540 

initial data followed by 10 s increments to derive the cumulative data used to train and 541 

cross-validate the classifier. We assumed that data acquired at the end of the filling period 542 

are more comparable to the data acquired at the onset of emptying and thus, we 543 

accumulated the filling data in reverse order (Fig. 4D). We followed comparable cPCA 544 

and SVM classification steps as outlined above with increasing data amounts. Each data 545 

amount produced a corresponding relevant weighted pixels-matrix and associated mean 546 

% pD signal change time course curves (Fig. 4D, highlighted panel), relative to the 547 

reference activity. To determine the optimal amount of data and pixel weights, we utilized 548 

the mean % pD signal changes derived from the weighted regions for each patient to 549 

determine the correlation between the pD signal curve resulting for each cumulative data 550 

amount and the bladder pressure signal (Fig. 4D, highlighted panel). The data amount 551 

corresponding to the highest correlation coefficient was utilized to select the optimal pixel 552 

weights and % pD signal change curve. To cross-validate the classification analysis, we 553 

allocated a subset from each data class for training (80%) and testing (20%). 554 

 555 
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Software analysis 556 

All data pre- and post-processing and statistical analysis were performed using Matlab 557 

Version 9.13.0.2193358 (R2022b).  558 

 559 

Data availability 560 

The datasets generated and analyzed during the current study are available from the 561 

corresponding authors on reasonable request. 562 
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Figure captions 582 

 583 

Figure 1. Experimental setup and fUSI acquisition protocol. A) A graphical 584 

representation of the human urodynamic model developed to study how the spinal cord 585 

activity is correlated with the bladder pressure. The spinal cord fUSI acquisition performed 586 

through a laminar window using a miniaturized 15.6-MHz, 128-channel, linear ultrasound 587 

transducer array. B) The experimental protocol for urodynamically-controlled filling and 588 

emptying the bladder. (C) Bladder pressure recordings across time during filling and 589 

emptying the bladder for the 4 patients.  590 

 591 

Figure 2. Functional ultrasound imaging of the spinal cord in a transverse plane. 592 

A) Cross section of spinal cord anatomy. The green area illustrates approximately the 593 

field of view of fUSI acquisition. (B) Power Doppler-based vascular maps showing the 594 

transverse section of the spinal cord of the four patients. 595 

 596 

Figure 3. Activation maps of the correlation between ΔSCBV and bladder pressure 597 

during filling and emptying the bladder. A) Activation maps of the 4 patients that 598 

illustrate spinal cord regions that are positively (reddish) and negatively (blueish) 599 

correlated with the bladder pressure during filling and emptying the bladder. B) Left panel: 600 

Average ΔSCBV (i.e., % pD signal changes) from the baseline activity of bladder 601 

pressure-related regions for each of the 4 patients. Positive correlations with bladder 602 

pressure are depicted in red, while negative correlations are shown in blue. Right panel: 603 

Same as the left panel but across all 4 patients. C) Average normalized ΔSCBV of the 604 

spinal cord regions that are positively (red curve) and negatively (blue curve) correlated 605 

with the bladder pressure across patients. The gray curve depicts the normalized changes 606 

of the bladder pressure during the urodynamic experiment. The shaded regions around 607 

the bladder pressure and the ΔSCBV curves represent the standard error derived from 608 

averaging across patients. 609 

 610 
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Figure 4. Flowchart of the cPCA+SVM algorithm developed to detect bladder 611 

pressure-related spinal cord regions. A) fUSI data during filling (class 0, c0) and 612 

emptying (class 1, c1) the bladder were recorded at the level of the T10 vertebral body 613 

and B) separated in training images and testing images based on the cross-validation 614 

technique used – 80% training data and 20% testing data. C) cPCA was paired with SVM 615 

to classify the state of the bladder (i.e., class 0 vs. class 1) using only the recorded pD 616 

signal from the spinal cord. D) This approach results in a 1-dimensional subspace the 617 

represents a feature extraction mapping from the 2D spinal cord image space. The 618 

subspace identifies pixels that are assigned with a relative weight between [-1, 1] and 619 

encodes the differences between the two classes – the higher the weight, the more 620 

significant the contribution of this pixel to the class separation. Highlighted panel shows 621 

the process for identifying the optimal amount of fUSI data that generate the best correlate 622 

between ΔSCBV and bladder pressure.  623 

 624 

Figure 5. Bladder pressure-related spinal cord regions identified using cPCA+SVM. 625 

A) Weighted map of patients P1 to P4 extracted by the cPCA+SVM algorithm using all 626 

fUSI recorded data. The top 5% most heavily weighted voxels are shown. B) Left panel: 627 

Average ΔSCBV from the baseline activity of bladder pressure-related regions for each 628 

of the 4 patients. Positive correlations with bladder pressure are depicted in red, while 629 

negative correlations are shown in blue. Right panel: Same as the left panel but across 630 

all 4 patients. C)  Average normalized ΔSCBV of spinal cord regions with positive weights 631 

(red curve) and negative weights (blue curve) as extracted by the cPCA+SVM algorithm 632 

using all fUSI data across the 4 patients. The shaded regions around the bladder pressure 633 

and the ΔSCBV curves represent the standard error derived from averaging across 634 

patients. Note that positive and negative weights correspond to positive and negative 635 

correlations of ΔSCBV with the bladder pressure.  636 

 637 

Figure 6. Bladder pressure-related spinal cord regions identified using cPCA+SVM 638 

with an optimal subset of fUSI recorded data. A) Weighted map of patients P1 to P4 639 

extracted by the cPCA+SVM algorithm using an optimal subset of fUSI recorded data. 640 
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The top 5% most heavily weighted voxels are shown. B) Left panel: Average ΔSCBV from 641 

the baseline activity of bladder pressure-related regions for each of the 4 patients. 642 

Positive correlations with bladder pressure are depicted in red, while negative correlations 643 

are shown in blue. Right panel: Same as the left panel but across all 4 patients. C)  644 

Average normalized ΔSCBV of spinal cord regions with positive weights (red curve) and 645 

negative weights (blue curve) as extracted by the cPCA+SVM algorithm using an optimal 646 

subset fUSI data across the 4 patients. The shaded regions around the bladder pressure 647 

and the ΔSCBV curves represent the standard error derived from averaging across 648 

patients. Note that positive and negative weights correspond to positive and negative 649 

correlations of ΔSCBV with the bladder pressure.  650 

 651 

  652 
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