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Abstract1

With the availability of high quality full genome polymorphism2

(SNPs) data, it becomes feasible to study the past demographic and3

selective history of populations in exquisite detail. However, such4

inferences still suffer from a lack of statistical resolution for recent,5

e.g. bottlenecks, events, and/or for populations with small nucleotide6

diversity. Additional heritable (epi)genetic markers, such as indels,7

transposable elements, microsatellites or cytosine methylation, may8

provide further, yet untapped, information on the recent past popula-9

tion history. We extend the Sequential Markovian Coalescent (SMC)10

framework to jointly use SNPs and other hyper-mutable markers. We11

are able to 1) improve the accuracy of demographic inference in recent12

times, 2) uncover past demographic events hidden to SNP-based infer-13

ence methods, and 3) infer the hyper-mutable marker mutation rates14

under a finite site model. As a proof of principle, we focus on demo-15

graphic inference in A. thaliana using DNA methylation diversity data16

from 10 European natural accessions. We demonstrate that segregat-17

ing Single Methylated Polymorphisms (SMPs) satisfy the modelling18

assumptions of the SMC framework, while Differentially Methylated19

Regions (DMRs) are not suitable as their length exceeds that of the20

genomic distance between two recombination events. Combining SNPs21

and SMPs while accounting for site- and region-level epimutation pro-22

cesses, we provide new estimates of the glacial age bottleneck and post23

glacial population expansion of the European A. thaliana population.24

Our SMC framework readily accounts for a wide range of heritable25

genomic markers, thus paving the way for next generation inference26

of evolutionary history by combining information from several genetic27

and epigenetic markers.28

Keywords— Kingman coalescent, Sequentially Markovian Coalescent, ances-29

tral recombination graph, epigenetics, hidden markov model30
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Introduction31

A central goal in population genetics is to reconstruct the evolutionary history32

of populations from patterns of genetic variation observed in the present. Rele-33

vant aspects of these histories include past demographic changes as well as sig-34

natures of selection. Inference methods based on Deep Learning (DL, [38]), Ap-35

proximate Bayesian Computation (ABC, [9]) or Sequential Markovian Coalescent36

(SMC, [40, 58]) aim to infer this information directly from full genome sequencing37

data, which is becoming rapidly available for many (non-model) species due to38

decreasing costs. The SMC, in particular, offers an elegant theoretical framework39

that builds on the classical Wright-Fisher and the backward-in-time Kingman coa-40

lescent stochastic models (e.g. [36, 13, 75]). Both models conceptualize Mendelian41

inheritance as generating the genealogy of a population (or a sample), that is, the42

unique history of a fragment of DNA passing from parents to offspring. When this43

genealogy includes the effect of recombination, it is called the Ancestral Recombi-44

nation Graph (ARG, [27, 79]).45

46

Under the Kingmann coalescent model, the true genealogy of a population (or47

sample) is defined by its topology and branch length, and contains the information48

on past demographic changes and life history traits [50, 63, 68, 70] as well as selec-49

tive events [13, 75]. The genealogical and the mutational processes of any heritable50

marker can therefore be disentangled, and the frequency of any given marker state51

is given by the shape of the genealogy in time (see Figure 1A). A central assumption52

about heritable genomic markers is that they are generated by two homogeneous53

Poisson mutation processes along the genome as well as through time. This entails54

that mutations in different genealogies are independent due to the effect of recom-55

bination [79, 47], and that there are no time periods with a large excess, or a severe56

lack, of mutations along a genealogy (mutations are independently distributed in57

time within a DNA fragment). In other words, the frequency of polymorphisms58

at DNA markers observed across a sample of sequences are constrained by, as well59

as inform on, the underlying genealogy at this locus (Figure 1A). To clarify these60

assumptions, we present a schematic representation of a marker 1 (yellow in Figure61

1) which fulfills both homogeneous Poisson processes in time and along the genome.62

We also present cases applicable to a second genomic marker 2 that violates the63

model assumptions, namely by not being heritable (Figure 1B) or not following a64

non-homogeneous Poisson process in the genome (Figure 1C) or in time (Figure65

1D).66

67
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A) Neutral model with two markers B) Marker 2 is not heritable

C) Marker 2 inhomogeneity along the genome D) Marker 2 inhomogeneity in time

Fig. 1. Schematic distribution of two markers along the genealogy
and four genomes. A) Schematic distribution of marker 1 (yellow star)
and marker 2 (green star) along the genealogies in a sample of four genomes
both following a homogeneous Poisson process. B) The green marker 2 is
not heritable, so that its distribution is independent from the genealogy. C)
The green marker 2 is spatially structured along the genome, violating the
distribution of the Poisson process along the genome and conflicting with the
genealogy. D) The green marker 2 does not follows Poisson process through
time, e.g. burst of mutations at a specific time point represented by given
branches of the genealogies in green. The yellow marker 1 has an identical
Poisson process along the genome and the genealogy in all four panels, and
for readability, marker 2 exhibits light and dark green states.

Despite the power of the SMC, well-known model violations such as variation68

in recombination and mutation rates along the genome [5, 4] or pervasive selection69

[61, 31, 30] can compromise the accuracy of demographic and selective inference70

[24, 64]. There are two other important issues that have received less attention in71

the literature. The first issue occurs when the population recombination rate (ρ)72

is higher than the population mutation rate (θ). In such cases, inferences can be73

biased if not erroneous [71, 64, 63], because several recombination events cannot74

be inferred due to the lack of Single Nucleotide Polymorphisms (SNPs for point75

mutations). This problem affects many species, though interestingly not humans76

which have a ratio ρ/θ ≈ 1. A second issue occurs when the mutational process77

along the genealogy is too slow be informative about sudden and strong variation78

in population size (i.e. population bottlenecks), such as during colonization events79

of novel habitats. The typical low mutation rate of 10−9 up to 10−8 (per base, per80
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generation) found in most species therefore places strong limitations on SMC anal-81

ysis of recent bottleneck events (up to ca. 10−4 generations ago) when inference is82

based solely on SNP data. Indeed, bottlenecks are often either not found, or when83

inferred, their timing and magnitude are not well estimated (inferred smoother84

than in reality, [31, 64]), even when a large number of samples is used. A typical85

example is the large uncertainty of the timing and magnitude of the population86

size bottleneck during the Last Glacial Maximum (LGM) and post-LGM expan-87

sion in A. thaliana European populations based on several studies using different88

accessions and SMC inference methods [2, 19].89

90

Nonetheless, current SMC, DL or ABC inference methods making use of full91

genome sequence data rely almost exclusively on SNPs for inference [58, 71, 63,92

9, 37]. There are both practical and theoretical reasons for using SNPs: They are93

easily detectable from short-read re-sequencing data and their mutational process94

is well approximated by the infinite site model [13, 75], simplifying the inference of95

the underlying genealogy. However, other heritable genomic markers exists whose96

mutation rates can be several orders of magnitude higher than that of SNPs, and97

could thus be more informative about recent demographic events. These include98

microsatellites, insertions, deletions and transposable elements (TEs). Although99

those heritable markers are not necessarily neutral (such as TEs which are likely100

to be under weak purifying selection) they contain information on the evolutionary101

history of the population. Current technological limitations still impede the easy102

detection and estimation of allele frequencies for many of these markers [81, 53, 76].103

For example, identifying insertion/excision variation of transposable elements or104

copy number variation of microsatellites requires a high quality reference genome105

and ideally long-read sequencing approaches [53]. In addition to these genomic106

markers, DNA cytosine methylation is emerging as a potentially useful epigenetic107

marker for phylogenetic inference in plants [83, 84]. Stochastic gains and losses of108

DNA methylation at CG dinucleotides, in particular, arise at a rate of ca. 10−4 up109

to 10−5 per site per generation (that is 4 to 5 orders of magnitude faster than DNA110

point mutations, [73]), and can be inherited across generations [54, 78]. These111

so-called spontaneous epimutations are likely neutral at the genome-wide scale112

([74, 29], but see [49, 54]), and can be easily detected from bisulphite converted113

short read sequencing data [41, 60]. Recent work suggests that CG methylation114

data can be used as a molecular clock for timing divergence between pairs of lin-115

eages over timescales ranging from years to decades [84].116

117

However, theoretical integration of the above-mentioned (epi)genomic markers118

into a population genomics and SMC inference framework is not trivial. Because of119

the high mutation rate, the mutational process at these (hyper-mutable) markers120

is reversible and more consistent with a finite site, rather than infinite site, model,121

which can result in extensive homoplasy (as known for microsatellite markers, [20]).122

Indeed, classic expectations of population genetics diversity statistics, mostly build123

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2023.04.02.535252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535252
http://creativecommons.org/licenses/by-nc-nd/4.0/


for SNPs, need to be revised for these hyper-mutable markers [14, 77]. Here we124

develop the theoretical and methodological inference framework named SMCtheo125

for the inclusion of additional (potentially hyper-mutable) markers into the SMC.126

We showcase our model using extensive simulations as well as application to pub-127

lished DNA cytosine methylation data (in genic regions) from local populations of128

A. thaliana [60, 74]. We demonstrate that integration of hyper-mutable genomic129

markers into SMC models significantly improves the inference accuracy of past130

variation of population size, or can even uncover demographic events not uncov-131

ered using SNPs alone. Our proof-of-principle approach opens up novel avenues132

for studying population genetic processes over time-scales that have been largely133

inaccessible using traditional SNP-based approaches. This may prove particularly134

useful when exploring recent demographic changes of endangered species as a way135

to assess their potential for extinction in the context of biodiversity loss and global136

change.137

Results138

Theoretical results with two markers underlying the SMC139

computations140

We study polymorphic sites across genomes of several sampled individuals which141

exhibit several possible markers (DNA nucleotides, methylation, TEs, indels, mi-142

crosatellites,...). We define any marker by 1) its maximum number of possible143

states (nbs), for example nucleotide sites have four states (A, T, C and G) while a144

methylation site has two states (methylated or unmethylated), and 2) its mutation145

rate µ, i.e. the rate at which the state of a marker changes into another state per146

position and per generation [3] (for simplicity we assume an equal mutation rates147

between all bases, known as the Jukes-Cantor model). More specifically, we are148

interested in two rates: the DNA mutation rate for changes in DNA nucleotides,149

and epimutation rate for change in methylation state. Furthermore, we assume150

that at each position on the genome only one type of marker can occur and be151

observed. We obtain as a first theoretical result the probability for a given site in152

the genome to be identical (P (id)) or segregating (P (seg)) (i.e. polymorphic) in a153

sample of size two (n = 2, two sampled chromosomes are compared):154

P (id, n = 2) =
1

nbs
+

(nbs − 1)

nbs
e
−2µtM

(nbs)
(nbs−1)

P (seg, n = 2) =
(nbs − 1)

nbs
− (nbs − 1)

nbs
e
−2µtM

(nbs)
(nbs−1)

(1)

This probability is a function of the time to the most recent common ances-155

tor (TMRCA in text and tM in equation 1, details in Supplementary Text). The156

probability for a mutation to occur for a given marker increases with an increased157
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TMRCA [13, 75], but under high mutation rates (and high effective population158

size) the marker may not be polymorphic in the sample as mutations may be re-159

versed (so-called homoplasy, [20, 14]). In Supplementary Figure S1 we illustrate160

these properties by computing the probability 1 for different mutation rates. The161

inference of recent demographic events and bottlenecks relies on the presence of162

polymorphic sites to detect recent coalescent events (TMRCA), and should be im-163

proved by using markers with high (or fast) mutation rate (e.g. hyper mutable).164

165

In the following, we simulate data under different demographic scenarios using166

the sequence simulator program msprime [6, 33], which generates the ARG of n167

sampled diploid individuals (set to n = 5 throughout this study, leading to 10168

haploid genomes). This ARG contains the genealogy of a given sample at each169

position of the simulated chromosomes. We then process the ARG to create DNA170

sequences according to the model parameters and the type of marker considered.171

We first assume a set of genomic markers obtained for a sample size n, and mu-172

tating according an homogeneous Poisson process along the genome and in time173

(along the genealogy) as in Figure 1A. To simulate the sequence data, we define174

the number of marker types (any number between 1 and the sequence length) and175

the proportion of sites of each marker type in the sequence. Each marker is char-176

acterized by both parameters nbs and µ. For simplicity, we simulate sequences177

with two markers, but note that the method can be easily extent to additional178

markers. Marker 1 represents 98% of the sequence, and has a per site mutation179

rate µ1 = 10−8 mimicking nucleotide SNP markers under an infinite site model180

(thus considered as bi-allelic at a given DNA site, [82]). By contrast, marker 2181

composes the complementary 2% of the sequence length, with a per site mutation182

rate of µ2 = 10−4 per generation between two possible states. Marker 2 is thus183

hyper-mutable compared to marker 1 and mimics methylation/epimutation sites.184

Note, that mutation events in Marker 1 and 2 are simulated under a finite site185

model.186

187

We use different SMC-based methods throughout this study. These methods188

include: 1) MSMC2 used as a reference method [45], 2) SMCtheo is an extension189

of the PSMC’ [40, 58] accounting for any number of heritable theoretical mark-190

ers, and 3) eSMC2 which is equivalent to SMCtheo but accounting only for SNPs191

markers [64] (to avoid any bias in implementation differences between SMCtheo192

and MSMC2). All methods are Hidden Markov Models (HMM) derived from the193

Pairwise Sequentially Markovian Coalescent (PSMC’) [58] and assume neutral evo-194

lution and a panmictic population. The hidden states of these methods are the195

coalescence time of a sample of size two at a position on the sequence. From the196

distribution of the hidden states along the genome, all methods can infer population197

size variation through time as well as the recombination rate [58, 45, 64].198
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The inclusions of hyper-mutable genomic markers im-199

proves demographic inference200

We assume that the mutation rate of marker 1 is µ1 = 10−8 per generation per201

bp. We use this information to estimate the mutation rate of marker 2, which202

we vary from µ2 = 10−8 to µ2 = 10−2 per generation per bp. The estimation203

results based on simulated data under a constant population size of N = 10, 000204

are displayed in Table 1. We find that our approach is capable of inferring µ2 with205

high accuracy for rates up to µ2 = 10−4. However, when the mutation rate µ2 is206

10−2, our approach underestimates it by a factor three, suggesting the existence of207

an accuracy limit. To demonstrate that information can be gained by integrating208

marker 2 (with µ2 = 10−4), we compared the ability of several inference methods to209

recover a recent bottleneck (Figure 2A). All methods correctly infer the amplitude210

of population size variation. When accounting only for marker 1 (with µ1 = 10−8,211

MSMC2 and eSMC2 fail to infer accurately the sudden variation of population size.212

However, with the inclusion of hyper-mutable marker 2, our SMCtheo approach213

correctly infers the rapid change of population size of the bottleneck (Figure 2A,214

green). It is encouraging that an accurate estimation of the demography is ob-215

tained, even when the mutation rate of marker 2 is unknown (Figure 2A, blue).216

217

True µ2 value Estimated value of µ2

10−8 9.9× 10−9 (0.02)
10−6 1.0× 10−6 (0.008)
10−4 1.4× 10−4 (0.01)
10−2 3.05× 10−3 (0.41)

Table 1: Average estimated values of the mutation rate of marker 2 (µ2),
knowing that of marker 1. We use 10 sequences (5 diploid individuals) of
100 Mb (r = µ1 = 10−8 per generation per bp) under a constant population
size fixed at N = 10, 000. The coefficient of variation over 10 repetitions is
indicated in parentheses.

Furthermore, some species or populations might feature small effective popu-218

lation sizes (ca. N = 1, 000), potentially resulting in reduced genomic diversity.219

In such cases the inclusion of hyper-mutable markers should also improve demo-220

graphic inference. We present the results of such a scenario in Figure 2B, where221

the population size was divided by a factor 10 compared to the previous scenario in222

Figure 2A. We find that in the absence of the hyper-mutable marker 2, no approach223

can correctly infer the variation of population size. From the shape of the inferred224

demography, methods using only marker 1 do not suggest the existence of a bottle-225

neck followed by recovery (the "U-shaped" demographic scenario is not apparent226

with the orange and red lines, Figure 2 B). Yet, when integrating both markers,227

the population size can be recovered, even if the mutation rate of marker 2 is not228

a priori known. In both Figure 2A and B, we assume that the marker 2 occurs229
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at a frequency of 2% in the genome. This percentage may be unrealistically high230

depending on the marker and the species. To test the impact of reducing marker 2231

frequency, we repeat the simulations shown in Figure 2A, but set its frequency to as232

low as 0.1% (a 20-fold reduction). We find that the inclusion of the hyper-mutable233

marker 2 continues to improve inference accuracy in very recent times, albeit less234

pronounced than in Figure 2A (see Supplementary Figure 2). This suggests that a235

very small proportion of hyper-mutable genomic sites is sufficient to significantly236

improve the accuracy of inferences.237

238

All full genome inference methods, especially SMC approaches, display lower239

accuracy when the population recombination rate (ρ = 4Nr) is larger than the240

population mutation rate of marker 1 (θ1 = 4Nµ1). We simulate sequence data241

under a bottleneck scenario slightly more ancient than in Figure 2 A and assume242

that ρ/θ1 = r/µ1 = 10 and ρ/θ2 = r/µ2 = 10−3. Our results show that by inte-243

grating the genomic marker 2 which mutation rate is larger than the recombination244

rate, estimates of the recombination rate as well as past population size variation245

are substantially improved (Table 2, Figure 2C). Indeed, analyzing only marker 1,246

eSMC2 and MSMC2 identify the bottleneck (albeit smoothed) and only slightly247

overestimate recent population size (Figure 2D). By integrating the hyper-mutable248

marker 2, our SMCtheo approach correctly infers the strength and time of the249

bottleneck when µ1 and µ2 are known (Figure 2D, green line), while the timing of250

the bottleneck is slightly shifted in the past when µ2 is unknown and estimated by251

our method (Figure 2D, blue line). When µ2 is unknown, SMCtheo additionally252

infers a spurious sudden variation of population size between 10,000 and 100,000253

generations ago. Using only marker 1, the estimates of the recombination rate are254

inaccurate (Table 2). To complete the visual representation and provide a quan-255

titative assessment of inference accuracy, we compute the root mean square error256

(RMSE) values for demographic inference (Supplementary Table 1). We further im-257

prove the accuracy of estimation by optimizing the likelihood (LH) to estimate the258

recombination rate and demography compared to the classically used Baum-Welch259

(BW) algorithm (Table 2 and Supplementary Figure S3). Our results demonstrate260

that SNPs are limiting and insufficient for accurate inferences in recent times and261

that the inclusion of an additional marker with mutation rate higher than the262

recombination rate generates significant improvements in demographic inference.263

However, by directly optimizing the likelihood the true recombination rate can be264

well recovered even with marker 1 only.265
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Fig. 2. Performance of SMC approaches using different markers. Esti-
mated demographic history of a bottleneck (black line) by SMC approaches using
two genomic markers. In orange and red, are the estimates by MSMC2 and eSMC2
based on only marker 1. Estimates from SMCtheo integrating both markers are in
green (with known µ2), and in blue with unknown µ2. The demographic scenarios
are A) 10-fold recent bottleneck with an ancestral population size N = 10, 000, B)
10-fold recent bottleneck with an ancestral population size N = 1, 000, C) 10-fold
bottleneck with an ancestral population size N = 10, 000, and D) a very severe
(1,000 fold) and very recent bottleneck with incomplete size recovery. In A, B and
D, we assume r/µ1 = 1 (with r = µ1 = 10−8, µ2 = 10−4 per generation per bp)
and in C, r/µ1 = 10 (with r = 10−7, µ1 = 10−8, and µ2 = 10−4 per generation per
bp). In all cases (A, B, C and D) 10 sequences (5 diploid indivudals) of 100 Mb
were used as input.
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Method True recombination rate Average estimated recombination rate
MSMC2 (BW) 10−7 0.23× 10−7 (0.017)
1 Marker : BW 10−7 0.25× 10−7 (0.012)
2 Marker : BW 10−7 0.90× 10−7 (0.004)
1 Marker : LH 10−7 0.84× 10−7 (0.036)
2 Marker : LH 10−7 0.94× 10−7 (0.01)

Table 2: Estimates of recombination rates with one or both markers. For
SMCtheo, BW stands for the use of the Baum-Welch algorithm to infer
parameters, and LH to the use of the likelihood. We use 10 sequences of 100
Mb with r = 10−7, µ1 = 10−8 and µ2 = 10−4 per generation per bp in a
population with a past bottleneck event. The coefficient of variation over 10
repetitions is indicated in brackets.

Integrating DNA methylation improves the accuracy of266

inference267

Definition of the theoretical model for DNA methylation268

Following the previously encouraging results of demographic inference with SNPs269

and an hyper-mutable marker under the specific assumptions of Figure 1A, we270

develop a specific SMCm method to jointly analyse SNPs and CG methylation271

as an epigenetic hyper-mutable marker. Since our SMCm stems from the eSMC272

[63, 68] it corrects for the effect of self-fertilization when appliying to A. thaliana.273

We focus here on methylation located in CG contexts within genic regions as these274

have been found to evolve neutrally [74, 83, 84]. The methylation of individual275

CG dinucleotides produces a biallelic heritable marker with a finite number of276

(epi)mutable sites (Figure 3). In a sample of several sequences from a population,277

variation in the methylation status of individual CGs is known as single methyla-278

tion polymorphism (SMP, Figure 3A) which could be used for demographic and279

divergence inference [73, 74]. However, CG methylation sites can also be orga-280

nized in spatial clusters (of similar state) due to region level epimutation (Figure281

3B, [78, 18, 49]). Region level epimutations can have different epimutation rates282

than individual CG sites. Population-level variation in the methylation status of283

these clusters is known as differentially methylated regions (DMRs). Furthermore,284

when integrating SMP and DMR epimutational processes (i.e. what we here call285

region level epimutation), the methylation status of CG sites is therefore affected286

by the superposition of both processes. Therefore the simulation and modeling287

of epimutational processes of SMPs is more complex than in our previous model288

as we need to account for the effect of region methylation as well as for methyla-289

tion and demethylation epimutation rates to be different and asymmetrical [73, 18].290

291
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Fig. 3. Schematic representation of site and region epimutations
Schematic representation of a sequence undergoing epimutation at A) the cyto-
sine site level, and B) at the region level. A methylated cytosine in CG context is
indicated in black and an unmethylated cytosine in white.

To make our simulations realistic, we use the A. thaliana genome sequence as292

a starting point, and focus on CG dinucleotides within genic regions. To that end,293

we selected random 1kb regions within genes and choose only those CG sites that294

are clearly methylated or unmethylated in A. thaliana natural populations based295

on whole genome bisulphite sequencing (WGBS) mesaurements from the 1001G296

project (SI text). Our simulator for CG methylation is built in a similar way as297

the one described above but the epimutation rates are allowed to be asymmetric298

with the per-site methylation rate (µSM ) and demythylation (µSU ). Region-level299

epimutations are also implemented, setting the region length to either 1kb [49] or300

150 bp [18]. The region level methylation and demethylation rates are defined as301

µRM and µRU , respectively. We assume that site-level and region-level epimuta-302

tion processes are independent. Making this assumption explicit later allow us to303

test if it is violated in comparisons with actual data. Our simulator also assumes304

that DNA mutations and epimutations are independent of one another. That is,305

for simplicity we ignore the fact that methylated cytosines are more likely to tran-306

sition to thyamines as a result of spontaneous deamination [28]. We also ignore307

the possibility that new DNA mutations could act as CG methylation quantitative308

trait loci and affect CG methylation patterns in both cis and trans. Such events309

are extremely rare so that the above assumptions should hold reasonably well over310

short evolutionary time-scales. As the goal is to apply our approach to A. thaliana,311

we simulate sequence data for a sample size n = 10 (but considering A. thaliana312

haploid) from a population displaying 90% selfing [63? ] under a recent severe313

population bottleneck demographic scenario. We simulate data assuming previ-314

ously estimates of the rates of recombination [56], DNA mutation [52], and site-315

and region-level methylation [73, 18].316

317

As guidance for future analyses of demographic inference using SNPs and DNA318

methylation data, the theoretical and empirical analysis of A. thaliana methylomes319
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consist of the following five steps: 1) assessing the relevance of region-level methy-320

lation (DMRs) for inference, 2) inference of site and region epimutation rates, 3)321

comparing statistics for the SNPs, SMPs and DMRs distributions, 4) demographic322

inference using SNPs with SMPs or DMRS, and 5) demographic inference using323

SNPs with SMPs and DMRs.324

325

Step 1: assessing the relevance of region-level methylation (DMRs)326

for inference327

We determine our ability to detect the existence of spatial correlations between328

epimutations. That is, we asked if site-specific epimutations can lead to region-329

level methylation status changes across a range of epimutation rates (assuming330

two sequences of 100 Mb, r = µ1 = 10−8 per generation per bp and a constant331

population size N = 10, 000, results in Supplementary Table 2). If site-specific332

epimutations are independently distributed, the probability of a given site to be in333

a given (methylated or unmethylated) state should be independent from the state of334

nearby sites (knowing the epimutation rate per site). Conversely, if there is a region335

effect on epimutation (DMRs), two consecutive sites along the genome would ex-336

hibit a positive correlation in their methylated states. We therefore calculate from337

the per-site (de)methylation rates µSM and µSD the probability that two successive338

cytosine positions are identical in their methylation assuming they are independent.339

This probability can be compared to the one observed from methylation data (here340

simulated) so that we obtain a statistical test for the existence of a positive cor-341

relation in the methylation status of nearby sites, interpreted as a regional-level342

epimutation process (p-value = 0.05) according to Figure 1A. A small p-value of the343

test (<0.05) suggests the existence of a region effect for methylation/demethylation344

affecting neighbouring cytosines, contrary to a high p-value indicating no spatial345

structure of methylation distribution. We find that when region epimutation rates346

are higher than (or similar to) site-level epimutation rates, namely µRM ' µSM347

and µRU ' µSU ), the existence of regions of consecutive cytosines is detected with348

high accuracy. However, when site-level epimutation rates are higher (µSU > µRU349

and µSM > µRM ) than region-level epimutation rates, region-level changes cannot350

be readily detected (Supplementary Table 2). When methylated regions are de-351

tected, we can further determine their length using a specifically developed Hidden352

Markov Model (HMM) using all pairs of genomes (similarly to [65, 18, 69]). While353

the length of the methylated region is pre-determined in our simulations (1kb or354

150bp), site-level epimutation occur which can change the distribution of methy-355

lation states in that region and across individuals, thus DMR regions can vary in356

length along the genome and between pairs of chromosomes.357

358
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Step 2: inference of site- and region-level epimutation rates359

As the epimutation rates of most plant species remain unknown, we assess the360

accuracy of SMCm to infer epimutation rates at the site- and region-level directly361

from simulated data. We first assume that either only site- or only region epimu-362

tations can occur, and infer their respective rates (see Supplementary Table 3 and363

4). Our SMCm approach can accurately recover these rates except when these364

are higher than 10−4. Next, we assess the accuracy of our approach to simultane-365

ously infer site- and region-level epimutation rates assuming that region and site366

epimutation rates are equal (Supplementary Table 5 and Supplementary Figure 4).367

Similar to our previous observation, we find that when the epimutation rates are368

very high (e.g. close to 10−2), accuracy is lost compared to slower epimutation369

rates. Nonetheless, our average estimated rates are off from the true value by less370

than an factor 10. Hence, under our model assumptions, we are able to recover the371

correct order of magnitude for site- and region-level methylation and demethyla-372

tion rates.373

374

Step 3: distribution of statistics for SNPs, SMPs and DMRs375

To gain insights on the distribution of epimutations under the described assump-376

tions, we look at key statistics from our simulations: the distribution of distance377

between two recombination events versus the distribution of the length of estimated378

DMR regions (Figure 4A), and the LD decay for SMPs (in genic regions) and SNPs379

(in all contexts) (Figure 4C, D). In our simulations DMRs regions have a maximum380

fixed size, but their length depends on the interaction between the region- and site-381

level epimutation rates. As mentioned in step 1, the methylated/demethylated re-382

gions are detected using the binomial test and their length estimated by the HMM.383

Therefore, while variation exists for the length of these regions (Figure 4A), regions384

are on average shorter than the span of genealogies along the genome, which are385

defined by the frequency of recombination events along the genome (r = 3.5×10−8
386

as in A. thaliana). There is is virtually no linkage disequilibrium (LD) between387

epimutations due to the high epimutation rate (Figure 4C), while the LD between388

SNPs can range over few kbp (Figure 4D, as observed in A. thaliana [12, 60]).389

Note however, that the region methylation process in itself does not generate LD390

because this measure can only be computed if SMPs are present in frequency391

higher than 2/n in the sample, i.e. there is no LD measure defined for monomor-392

phic methylated/unmethylated regions. In other words, our simulator generates393

SNPs, SMPs and DMRs which fulfill the three key assumptions of Figure 1A. We394

note that by using a constant population size N = 10, 000, the LD decay for SNPs395

is higher than in the A. thaliana data which exhibit an effective population size of396

ca. N = 250, 000 [12] and past changes in size.397

398
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B) Distribution of genealogy and DMR size in A.thaliana
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Fig. 4. Key statistics for epimutations and mutations. A) Histogram
of the length between two recombination events (genomic span of a genealogy)
and DMRs size in bp of the simulated data. B) Histogram of genealogy span
and DMRs size in bp from the A. thaliana data (10 German accessions). C)
Linkage desequilibrium decay of epimutations in our samples of A. thaliana (red)
and simulated data (blue). D) Linkage desequilibrium decay of mutations in our
A. thaliana samples (red) and simulated data (blue). The simulations reproduce
the outcome of a recent bottleneck with sample size n = 5 diploid of 100 Mb, the
rates per generation per bp are r = 3.5× 10−8, µ1 = 7× 10−9, µSM = 3.5× 10−4,
µSU = 1.5× 10−3, and per 1kb region µRM = 2× 10−4 and µRU = 1× 10−3.

Step 4: demographic inference based on SNPs with SMPs or DMRs399

We test the usefulness of either SMPs or DMRs for demographic inference. Simula-400

tions under the demographic model from steps 1-3 assume DNA mutations (SNPs)401

and only site epimutations (SMPs), i.e. no region-level methylation (µRM = µRU =402

0). We perform inference of past demographic history under different amount of403

potentially methylated sites with and without a priori knowledge of the methy-404

lation/demythylation rates (Figure 5A, B). When the site epimutation rates are405

a priori known, the sharp decrease of population size can be accurately detected.406

When epimutation rates are unknown, the shape of the past demographic history is407

also well inferred except for a scaling issue (a shift along the x- and y-axes similar to408

that in Figure 5D). When we vary the amount of potentially methylated sites (2%,409

10% and 20%) our inference results remain largely unchanged. This suggests that410

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2023.04.02.535252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535252
http://creativecommons.org/licenses/by-nc-nd/4.0/


having methylation measurements for as low as 2% of all CG sites being epimutable411

in the genome is entirely sufficient to improved SNP-based demographic inference412

(eSMC2 in Figure 5A). The RMSE values for demographic inference are computed413

for all cases in Figure 5 to provide an additional quantitative understanding of our414

results (Supplementary Table 6).415

416

The amount of sequence data used in Figure 5A and B is fairly large com-417

pared to real datasets (10 haploid genomes of length 100 Mb). We therefore ran418

the SMCm and eSMC2 on sequence data simulated under the same scenario but419

with a reduced sequence length of 10 Mb (n = 5 diploid, Figure 5C and D, only420

3 repetitions are presented for visibility). In this case, we found that inference421

is significantly affected when using only SNPs (eSMC2 in blue), as we are un-422

able to correctly recover the demographic scenario. However, incorporating SMPs423

with known site-level epimutations into the model leads to substantial inference424

improvements (Figure 5C and D, Supplementary Table 6).425

426

We additionally quantify the accuracy gain in ARG inference by inferring the427

expected coalescent time (TMRCA) at each position in the genome by the three ap-428

proaches (eSMC2, SMCm with unknown epimutation rates and SMCm with known429

epimutation rates) under the same scenario from Figure 5. The RMSE values of430

the TMRCA inference are presented in Supplementary Table 7. We confirm our431

intuition that integrating epimutations slightly improves the accuracy of TMRCA432

when the epimutation rates are known, but does not when the rates are unknown.433

434

To quantify the effect of DMRs on inference, we simulate data under the435

same demographic scenario, but assume only region level epimutations (DMRs,436

µSM = µSU = 0). The results for DMR region sizes 1kb and 150bp are displayed437

in Supplementary Figure S5 and S6, respectively. As in Figure 5, we observed a gain438

of accuracy in inference when region-level epimutation rates are known, while the439

length of the region (1kb or 150bp) does not seem to affect the result. However,440

no significant gain of information is observed when integrating DMR data with441

unknown epimutation rates (Supplementary Figure 5 and 6). In summary, CG442

methylation SMPs and to a lesser extend DMRs, can be used jointly with SNPs to443

improve demographic inference (Supplementary Table 8 presents the corresponding444

RMSE values for demographic inference shown in Supplementary Figure 5 and 6),445

especially in recent times (Supplementary Table 6 and 8).446

447
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Fig. 5. Performance of SMC approaches using site epimutations
(SMPs) and mutations (SNPs) under a bottleneck scenario. Estimated
demographic history by eSMC2 (blue) and SMCm assuming the epimutation rate
is known (B and D) or not (A and C) where the percentage of CG sites with
methylated information varies between 20% (red), 10% (orange) and 2% (green)
using 10 sequences of 100 Mb in A and B (with 10 repetitions) and 10 sequences
of 10 Mb in C and D (three repetitions displayed) under a recent severe bottleneck
(black). The parameters are: r = 3.5× 10−8 per generation per bp, mutation rate
µ1 = 7 × 10−9, methylation rate to µSM = 3.5 × 10−4 and demethylation rate to
µSU = 1.5× 10−3 per generation per bp.

Step 5: demographic inference based on SNPs with SMPs and448

DMRs449

Since site- and region-level methylation processes can occur in real data, we run450

SMCm on simulated data under the same demographic scenario, but now using451

both site (SMPs) and region (DMRs) epimutations and accounting for both mu-452
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tation processes (with rates similar to the one found in Arabidopsis thaliana).453

Inference results are displayed in Supplementary Figure 7 (RMSE values in Sup-454

plementary Table 9). When the epimutations rates are unknown, we observe a gain455

of accuracy when integrating epimutations, especially in the recent times. However456

when epimutation rates are a priori known we observe a loss of accuracy when ac-457

counting for epimutations. This loss of accuracy is due to the mislabeling of the458

methylation region status (in step 1) when site and region-level epimutations occur459

jointly at similar rates (as there will be methylated sites in unmethylated regions460

and unmethylated sites in methylated regions).461

462

Finally, we assess the inference accuracy when using SNPs and SMPs but ignor-463

ing in SMCm the region methylation effect (DMRs), even though this latter process464

takes place (Supplementary Figure 8, RMSE values in Supplementary Table 10).465

The inference accuracy decreases compared to the previous results (Supplementary466

Figure 5-7), and while the sudden variation of population is somehow recovered,467

the estimates of the time and magnitude of size change are not well recovered in468

recent time. Hence those results demonstrate the importance of accounting for site469

and region level epimutations processes in steps 1 to 5.470

471

We demonstrate that our SMCm can exhibit, to some extend, an improved sta-472

tistical power for demographic inference using SNPs and SMPs while accounting473

for site and region-level methylation processes under the assumptions of Figure 1A.474

We show that 1) using SMPs we can unveil past demographic events hidden by475

limitations in SNPs, 2) the correct demography can be uncovered irrespective of476

knowing a priori the epimutation rates, 3) ignoring site or region-level processes477

can decrease the accuracy of inference, and 4) knowing the epimutation rates may478

improve the estimate of demography compared to simultaneously estimating them479

with SMCm.480

481

Joint use of SNPs and SMPs improves the inference of482

recent demographic history in A. thaliana483

Step 1: assessing the strength of region-level methylation process484

in A. thaliana485

We apply our inference model to genome and methylome data from 10 A. thaliana486

plants from a German local population [12]. We start by assessing the strength of487

a region effect on the distribution of methylated CG sites along the genome. As488

expected from [18], for all 10 individual full methylomes we reject the hypothesis of489

a binomial distribution of methylated and unmethylated sites along the genomes,490

suggesting the existence of region effect methylation (yielding DMRs) meaning491

that CG are more likely to be methylated if in a highly methylated region, and492

17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2023.04.02.535252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535252
http://creativecommons.org/licenses/by-nc-nd/4.0/


conversely for unmethylated CG. This is consistent with the autocorrelations in493

mCG found in [18, 11, 43]. As a first measure of methylated region length, we test494

the independence between two annotated CG methylation given a minimum ge-495

nomic distance between them (within one genome). We observe an average p-value496

smaller than 0.05 for distances up to 2,000bp but then the p-value rapidly increases497

(>0.4) (Supplementary Figure 9). As a second measure, our HMM (based on pairs498

of genomes) yields a DMR average length of 222 bp (distribution in Figure 4B).499

500

We conclude that the minimum distance for epimutations to be independent501

along a genome is over 2kb and spans larger distance than the typically proposed502

DMR size (ca. 150 bp in [18] and 222bp in our analysis) and can therefore cover the503

size of a gene (see [49, 11]). The simulations and data from A. thaliana indicate that504

the epimutation processes that produces DMRs at the population level in plants505

cannot simply results from the cumulative action of single-site epimutations. This506

insights is consistent with recent analyses of epimutational processes in gene bodies,507

which seems to indicate that the autocorrelation in CG methylation is a function of508

cooperative methylation maintenance and the distribution of histone modifications509

[11, 43].510

Step 2: site- and region-level epimutation rates511

We use the rates empirically estimated in A thaliana and taken in the above sim-512

ulations (µSM = 3.5 × 10−4 and µSU = 1.5 × 10−3 per bp per generation and513

µRM = 2× 10−4 and µRU = 1× 10−3 per region per generation, [73, 18]).514

515

Step 3: distribution statistics for SNPs, SMPs and DMRs in A.516

thaliana517

Since our SMC model assumes that DNA, SMP and DMR polymorphisms are de-518

termined by the underlying population/sample genealogy, DMR which span long519

genomic regions may spread across multiple genealogies and thus violates our mod-520

elling assumptions. We thus further investigate the potential discrepancies between521

the data and our model (Figure 4). We infer the DMR sizes from all 10 A. thaliana522

accessions using our ad hoc HMM, and measure the bp distance between a change523

in the expected hidden state (i.e. coalescent time) along the genome, which we524

interpret as recombination events (called the genomic span of a genealogy). The525

resulting distributions are found in Figure 4B. We observe that both distributions526

have a similar shape but DMRs are on average twice as large as the inferred ge-527

nomic genealogy span: average length of 222 bp (DMR) vs 137 bp (genealogy) and528

median length of 134 bp (DMR) vs 62 bp (genealogy). This means that on average529

DMRs are larger than the average distance between two recombination events, thus530

violating the homogeneous distribution of epimutations along the genome (Figure531
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1C).532

533

To further unveil potential non-homogeneity of the distribution of epimuta-534

tions, we assess the decay of LD of mutations (SNPs) and epimutations (SMPs)535

(Figure 4C and D) confirming the results in [60]. We find the LD between SMPs in536

the data to be high (and higher than LD between SNPs) for distance smaller than537

100 bp (red line in Figure 4C and D). The LD decay of SMPs is much faster than538

for SNPs (no linkage disequilibrium between epimutations for distances > 100bp),539

likely stemming from 1) epimutation rates being much higher than the DNA mu-540

tation rate, and 2) the high per site recombination rate in A. thaliana. Moreover,541

the LD between SMPs at distance smaller than 100bp in A. thaliana being much542

higher compared to our simulations (Figure 4C), we suggest that additional local543

mechanisms of epimutation processes may not be accounted for in our model of544

the region-level methylation process.545

546

Step 4: demographic inference for A. thaliana based only on SNPs547

and SMPs548

Finally, we apply the SMCm approach to data from the German accessions of A.549

thaliana. When using SNP data only, the demographic results are similar to those550

previously found [63, 68] (Figure 6 purple lines), with no strong evidence for an551

expansion post-Last Glacial Maximum (LGM) [12]. We then sub-sample and ana-552

lyze segregating SMPs, which exhibit both methylated and unmethylated states in553

our sample (as in [73]). Here we ignore DMRs and account only for SMPs. When554

we use as input the methylation and demethylation rates that have been inferred555

experimentally [73], a mild bottleneck post-LGM is followed by recent expansion556

(Figure 6 blue lines). By contrast, letting our SMCm estimate the epimutations557

rates, we find in recent times a somehow similar but stronger demographic change558

post-LGM. We find a strong bottleneck event occurring between ca. 5,000 and559

10,000 generations ago followed by an expansion until today (Figure 6 green lines).560

The inferred site epimutation rates are 10,000 faster than the DNA mutation rate561

(Supplementary Table 11) which is close to the expected order of magnitude from562

experimental measures with and without DMR effects [73, 18]. Both estimates563

thus yield a post-LGM bottleneck followed by a recent population expansion.564

565

These results indicate that the inclusion of DNA methylation data can aid in566

the accurate reconstruction of the evolutionary history of populations, particularly567

in the recent past where SNPs reach their resolution limit. This is made possible by568

the fact that the DNA methylation status at CG dinucleotide undergoes stochastic569

changes at rates that are several orders of magnitude higher than the DNA muta-570

tion rate, and can be inherited across generations similar to DNA mutations.571

572
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Fig. 6. Integrating epimutations and mutations on German accessions
of A. thaliana. Estimated demographic history of the German population by
eSMC2 (only SNPs, purple) and SMCm when keeping polymorphic methylation
sites (SMPs) only: green with epimutation rates estimated by SMCm, blue with
epimutation rates fixed to empirical values. The region epimutation effect is ig-
nored. The parameters are r = 3.6 × 10−8, µ1 = 6.95 × 10−9, and when assumed
known, the site methylation rate is µSM = 3.5 × 10−4 and demethylation rate is
µSU = 1.5× 10−3.

Step 5: demographic inference correcting for DMRs in A. thaliana573

To assess the robustness of our inference results, we run SMCm using all cytosines574

(CG) sites with an annotated methylation status (segregating or not) while ac-575

counting or not for DMRs (Supplementary Figure 10). We fix epimutation rates to576

the empirically estimated values, and confirm the estimates from Figure 6. When577

the region-level methylation process is ignored the inferred demography (blue lines578

in Supplementary Figure 10) is similar to the estimates from SMPs with fixed579

rates in Figure 6 (blue lines). When the region-level methylation process is taken580

into account (orange lines in Supplementary Figure 10), the inferred demography581

is similar to that of the Figure 6 (green lines). In the case where we infer the582

epimutation rates (sites and region) the demographic history inference is not im-583

proved compared to that estimated using SNPs only (Supplementary Figure 10,584

green and red lines) while the inferred epimutation rates are smaller than expected585

(Supplementary Table 11 and 12), but the ratio of site to region epimutation rates586
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is consistent with empirical estimates [18].587

588

Discussion589

Current approaches analyzing whole genome sequences rely on statistics derived590

from the distribution of ancestral recombination graphs [23, 64, 37, 68, 10, 80, 66,591

34]. In this study we present a new SMC method that combines SNP data with592

other types of genomic (TEs, microsatallites) and epigenomic (DNA methylation)593

markers. We focus mainly on the inclusion of genomic markers whose mutation594

rates exceed the DNA point mutation rate, as such (hyper-mutable) markers can595

provide increased temporal resolution in the recent evolutionary past of popula-596

tions, and aid in the identification of demographic changes (e.g. population bottle-597

necks). We demonstrate that by integrating multiple heritable genomic markers,598

the population size variation in very recent time can be more accurately recov-599

ered (outperforming any other methods given the amount of data used in this600

study [71, 66]). Our results indicate that correctly integrating multiple genomic601

marker can improve TRMCA inference, which is becoming a field of high interest602

[37, 26, 44]. Our simulations demonstrate that if the SNP mutation rate is known,603

the mutation rate of other markers can be recovered (under the condition that604

the marker follow all hypotheses described in Figure 1). Moreover, our method605

accounts for the finite site problem that arises at reversible (hyper-mutable) mark-606

ers and/or where effective population size is high [70, 72]. Overall, the simulator607

and SMC methods presented here therefore pave the way for a rigorous statistical608

framework to test if a common ARG can explain the observed diversity patterns609

under the model hypotheses laid out in Figure 1. We find that comparisons of LD610

for different markers along the genome is a useful way to assess violations of our611

model assumptions.612

As proof of principle, we apply our approach on data originating from whole613

genome and methylome data of A. thaliana natural accessions (focusing on CG614

context in genic regions, as in [74, 83, 84]). Indeed, A. thaliana presents the615

largest genetic and epigenetic data-set of high quality. Additionally the methyla-616

tion states in CG context has been proven mainly heritable and is well documented617

[18, 25, 73]. We first investigate the distribution of epimuations along the genomes.618

Our model-based approach provides strong evidence that DMRs cannot simply619

emerge from spontaneous site-level epimutations that arise according to a Poisson620

processes along genome. Instead, stochastic changes in region-level methylation621

states must be the outcome of spontaneous methylation and demethylation events622

that operate at both the site- and region-level (as corroborated by [54, 11, 43]).623

Our epimutation model cannot fully describe the observed diversity of epimuta-624

tions along the genome [18], meaning that the epimutation processes may indeed625

be more complex than expected [18, 25, 11, 43]. We observe non-independence be-626
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tween annotated methylation sites spanning genomic regions larger than the span627

of the underlying genealogy (determined by recombination events) which no model628

can currently describe. Additionally, we find high LD between SMPs over short629

distances which does not appear in our simulations (simulation performed under630

the current measures of epimutation rates). Thus, methylation probably violate631

the assumptions of a Poisson process distribution along the genome and in time632

(i.e. Figure 1), in line with recent functional studies [54, 25, 42, 43]. We thus633

further caution against conclusions on the role of natural (purifying) selection [49]634

or its absence [74] based on population epigenomic data due to the violation of635

the above mentioned assumptions. Additionally we suspect those model violations636

to explain the discrepancy between epimutation rates we inferred and the ones637

measured experimentally [73, 18]. To solve this discrepancy, one would need to de-638

velop a theoretical epimutation model capable of describing the observed diversity639

at the evolutionary time scale and then use this model to reanalyse the sequence640

data from the biological experiment to re-estimate the epimutation rates. We thus641

suggest a possible way forward for modeling epimutations through an Ising model642

[86] to account for the heterogeneous methylation process. However, our prelim-643

inary work and the simulation results in [11], indicate that such model generates644

non-homogeneous mutation process in space (i.e along the genome) and time, vi-645

olating our current SMC assumptions (Figure 1C and D). Hence, there is a need646

to develop a more realistic methylation model for epimutations. A model account-647

ing for heterogeneous rates would probably need to rely on a more sophisticated648

HMM (e.g. continuous time Markov chains [35] for SMC approaches) than what is649

presented here or to use other full genome inference methods (see [37]) which are650

not constrained by the SMC assumptions (Figure 1) but depends on simulations.651

652

Interestingly, the distance of LD decay for SMPs matches quite well the es-653

timated distance between recombination events (Figure 4). In addition to our654

theoretical results in Table 2, this observation reinforces the usefulness of using655

SMPs (or any hyper-mutable marker) to improve estimates of the recombination656

rate along the genome in species where the per site DNA mutation rate (µ) is657

smaller than the per site recombination rate (r) as in A. thaliana.658

659

Nonetheless, we find that a restricted focus on segregating SMPs in genic re-660

gions could meet our model assumptions reasonably well, and thus provides a661

promising way forward. Using these segregating SMPs, we recover a past demo-662

graphic bottleneck followed by an expansion which could fit the post- Last Glacial663

Maximum (LGM) colonization of Europe (although caution must be taken con-664

cerning the reliability of those results as pointed above), a hypothesized scenario665

[21] which could not be clearly identified using SNPs only from European (relic666

and non-relic) accessions [12]. Currently strong evidence from inference methods667

are lacking ([12], Figure 4 in [19]). Indeed, beyond the limits of using SNPs only,668

current results are limited by theoretical frameworks unable to simultaneously ac-669
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count (and disentangle) for extensive background selection (reinforced by very high670

selfing), population structure and variation in molecular rates (e.g. mutation rates,671

[48]), which are all known to be present in A. thaliana. Those various forces are672

known to bias inference results when non-accounted for [15, 55], and may explain673

the variance in our demographic estimates. We note also that using CG methylated674

sites in genic regions may be problematic as the typical genealogies at these loci675

could be shorter than the genome average due to the presence of background se-676

lection, thus making the inference of such short TMRCA more difficult (even with677

SMPs) than in non-coding regions (which do not harbour desirable CG methyla-678

tion sites, [73, 74, 83]).679

680

We suggest that simultaneously accounting for multiple heritable markers can681

help disentangle between different evolutionary forces, such as between selection682

and variation in mutation rate: selection has a local effect on the population geneal-683

ogy, while the mutation rate variation would only locally affect that given marker684

but not the genealogy [15]. The absence of conflicting demography inferred from685

SNPs and from methylation confirms at the time scale of thousands of generations,686

CG methylation sites are mainly heritable and can be modeled using population687

genetics theory [14, 74] (but see [54]) and used to estimate divergence between688

lineages [84, 83]. In other words fast ecological local adaptation [59] and response689

to stresses [67] may likely not be prominent forces endlessly reshaping CG methy-690

lation patterns (non-heritability in Figure 1B).691

692

Overall, our results demonstrate that our approach can be used in different693

cases. If the epimutations/genomic markers evolutionary mechanisms are not well694

understood [54, 11, 43], our approach provides inference tools to study the mark-695

ers’ rates and distribution process along the genome, without requiring additional696

experimental data. If the evolution of epimutations/genomic markers are well697

understood (including a measure of the mutation rates) and can be modeled to698

described the observed intra-population diversity, these can be integrated to im-699

prove the SMC performance. Hence when applying our approach to genome-wide700

genetic and epigenetic data, it is advisable to use accurately annotated markers701

with, if possible, information regarding their inheritance and mutational proper-702

ties. Regarding methylation specifically, while the set of gene body methylated703

genes previously used [74, 84] are likely the optimal choice [83], these are too few704

and too scattered across the genome to maximize the statistical power of SMC705

methods. We therefore use methylation sites at all genic regions. Yet, despite the706

wealth of functional studies and data on methylation in A. thaliana, the distri-707

bution of epimutations is not fully understood [25, 54], but independent rates for708

sites and region-level have been estimated [73, 18, 84]. We note here the promising709

methylation modelling framework by [11, 43], albeit it does not yet consider evo-710

lutionary processes at the population level. Our results shed light on the inference711

accuracy in presence of site and region-level epimutations when occurring at similar712
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rates (Supplementary Figure 7). When accounting for region-level epimutations,713

our algorithm requires to first infer via an HMM the methylation status of a region714

in order to later-on compute the epimutation probabilities (i.e the emission matrix715

of the SMC HMM). Hence, in presence of site and region-level epimutations occur-716

ring at similar rates, recovering the region methylation status becomes harder as717

methylated sites are observed in the unmethylated regions (and unmethylated sites718

observed in the methylated regions). The mislabelling of the region methylation719

status lead to accuracy loss due to the use of the wrong emission probability at720

the later steps of the SMC inference (Forward-Backward algorithm). In the case721

where epimutation rates are freely inferred, their values are based on the estimated722

methylation region status. Therefore, even if the inferred rates are incorrect, these723

are sufficiently consistent with the inferred region methylation status to contain724

information and slightly improve inference accuracy. Additionally, extra care must725

be taken when dealing with epigenomic data in other species as the SMP calling726

might not be as simple as for Arabidopsis thaliana due to potential difference of727

methylation between different tissues or pool of cells. Similarly, we ignore here the728

potential dependence between SNPs and SMPs, as more empirical evidence (and729

modelling) is required to quantify the potential interaction between both muta-730

tional processes.731

732

On a brighter note, with the release of new sequencing technology [39], long and733

accurate reads are becoming accessible, leading to the availability of high quality734

reference genomes for model and non-model species alike [51, 7]. Additionally, the735

quality of re-sequencing (population sample) genome data and their annotations736

is enhanced so that additional markers such as transposable elements, insertion,737

deletion or microsatellites can be called with increasing confidence. These accurate738

genomes will provide access to new classes of genomic markers that span the entire739

mutational spectrum. We therefore suspect in the near future an improvement in740

our understanding of the heritability of many markers besides SNPs. Adding other741

genomic markers besides SNPs will improve full genome approaches, which are cur-742

rently limited by the observed nucleotide diversity [34, 66, 62]. Additionally, the743

potential complexity resulting by integrating multiple independent markers could744

be tackled by the use of continuous time Markov chains for the emission matrix.745

We predict that our results pave the way to improve the inference of 1) biological746

traits or recombination rate through time [17, 68], 2) multiple merger events [37],747

and 3) recombination and mutation rate maps [5, 4]. Our method also should help748

to dissect the effect of evolutionary forces on genomic diversity [32, 31], and to749

improve the simultaneous detection, quantification and dating of selection events750

[1, 8, 30].751

752

Hence, there is no doubt that extending our work, by simultaneously integrat-753

ing diverse types of genomic markers into other theoretical framework (e.g. ABC754

approaches), likely represents the future of population genomics, especially to study755

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2023.04.02.535252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535252
http://creativecommons.org/licenses/by-nc-nd/4.0/


species for which many thousands of samples cannot be obtained. We believe our756

approach helps to develop more general classes of models capable of leveraging757

information from any type and amount of diversity observed in sequencing data,758

and thus to challenge our current understanding of genome evolution.759

760

Materials and Methods761

Simulating two genomic markers762

The sequence is written as a sequence of markers with a given state. Each site is763

annotated as MXSY , where X indicates the marker type and Y the current state764

of that marker: for example M1S1 indicate at this position a marker of type 1 in the765

state 1. To simulate sequence of theoretical marker we start by simulating an ARG766

which is then split in a series of genealogies (i.e. a sequence of coalescent trees)767

along the chromosome and create an ancestral sequence (based on equilibrium768

probability of marker states). Mutation events (nucleotides or epimutations for769

methylable cytosine) are then added when going along the sequence, i.e. along the770

series of genealogies. The ancestral sequence is thus modified by mutation event771

assuming a finite site model [82] conditioned to the branch length and topology of772

the genealogies. Each leaf of the genealogy is one of the n samples. Our model has773

thus two important features: 1) markers are independent from one another, and774

2) a given marker has a polymorphism distribution between samples (frequencies775

of alleles) determined by one given genealogy. The simulator can be found in the776

latest version of eSMC2 R package (https://github.com/TPPSellinger/eSMC2).777

Simulating methylome data778

We now focus on methylation data located at cytosine in CG context within genic779

regions. Only, CG sites in those regions are considered "methylable", and CG780

sites outside those defined genic regions do not have a methylation status and781

are considered "unmethylable". We vary the percentage of CG site with methyla-782

tion state annotated from 2 to 20% of the sequence length. The simulator can in783

principle simulate epimutations in different methylation context and different rates784

[41, 16, 87, 85]. We simulate epimutations as described above but with asymmetric785

rates: the methylation rate per site is µSM = 3.5 × 10−4, and the demethyla-786

tion rate per site is µSM = 1.5 × 10−3 [73, 18]. For simplicity and computational787

tractability, we assume that when an epimutation occurs, it occurs on both DNA788

strands which then present the same information. In other words, for a haploid789

individual, a cytosine site can only be methylated or unmethylated (as in [69]).790

For region level epimutations, the region length is either 1kbp [49] or 150 bp [18].791

The region level methylation and demethylation rates are set to µRM = 2 × 10−4
792

and µRU = 10−3 respectively (similar to rates measured in A. thaliana, [18]). In793
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addition to this, unlike for theoretical marker described above, mutations, site and794

region epimutations can occur at the same position of the sequence.795

796

To simulate methylation data, we start with an ancestral sequence of random797

nucleotide and then randomly select regions in which CG sites have their methy-798

lation state annotated (representing the genic regions). Cytosine in CG context799

in those regions are either methylated or unmethylated (noted as M or U). Cy-800

tosine in other context or regions are considered as unmethylabe (and noted as801

C). The ancestral methylation state is then randomly attributed according to the802

equilibrium probabilities. Our simulator then introduces DNA mutations, site- and803

region-epimutations in a similar way as described above.804

SMC Methods805

All three methods (eSMC2, SMCtheo and SMCm) are based on the same mathe-806

matical foundations and implemented in a similar way within the eSMC2 R package807

( https://github.com/TPPSellinger) [68, 37, 64]. This allows to specifically quan-808

tify the accuracy gained by accounting for multiple genomic markers.809

SMC optimization function810

All current SMC approach rely on the Baum-Welch (BW) algorithm for parameter811

estimation in order to reduce computational load (as described in [71]). Yet, the812

Baum-Welch algorithm is an Expectation-Maximization algorithm, and can hence813

fall in local extrema when optimizing the likelihood. We alternatively extend SM-814

Ctheo to estimate parameters by directly optimizing the likelihood (LH) at the815

greater cost of computation time (even when using the speeding techniques de-816

scribed in [57]). We run this approach on a sub-sample of size six haploid genomes817

to limit the required computational time.818

eSMC2 and MSMC2819

SMC methods based on the PSMC’ [58], such as eSMC2 and MSMC2, focus on the820

coalescent events between two individuals (i.e. two haploid genomes or one diploid821

genome). The algorithm moves along the sequence and estimates the coalescence822

time at each position by assessing whether the two sequences are similar or different823

at each position. If the two sequences are different, this indicates a mutation took824

place in the genealogy of the sample. The intuition being that the absence of825

mutations (i.e. the two sequences are identical) is likely due to a recent common826

ancestor between the sequences, and the presence of several mutations likely reflects827

that the most recent common ancestor of the two sequences is distant in the past.828

In the event of recombination, there is a break in the current genealogy and the829

coalescence time consequently takes a new value according to the model parameters830

[46, 58]. A detailed description of the algorithm can be found in [45, 63].831
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SMCtheo based on several genomic markers832

Our SMCtheo approach is equivalent to PSMC’ but take as input a sequence of833

several genomic markers. The algorithm goes along a pair of haploid genomes and834

checks at each position which marker is observed and then if both states of the835

marker are identical or not. The approach is identical to the one described above,836

except that the probability of both sequences to be identical at one site depends on837

the mutation rate of the marker at this site (equation 1). While the mutation rates838

for many heritable genomic markers are unknown, there is an increasing amount839

of measures of the DNA (SNP) mutation rate for many species. Our SMCtheo840

approach is able to leverage the information from the distribution of one theoretical841

marker (e.g. mutations for SNPs) to infer the mutation rate of the other marker842

2 (assuming both mutation rates to be symmetrical). If more than 1% of sites are843

polymorphic in a sequence we use the finite site assumption. If not, then from844

the diversity observed, the different mutation rates can be recovered by simply845

comparing Waterson’s theta (θW ) between the reference marker (i.e. with known846

rate) and the marker with the unknown rates. For example, if the diversity (θW )847

at marker 2 is smaller by a factor ten than the reference marker 1 (and no marker848

violates the infinite site hypothesis), the mutation rate of marker 2 is inferred to849

be ten times smaller (corrected by the number of possible states). However, if the850

marker 2 violates the infinite site hypothesis, a Baum-Welch algorithm is run to851

infer the most likely mutation rates under the SMC to overcome this issue (the852

Baum-Welch algorithm description can be found in [63]).853

SMCm854

When integrating epimutations, the number of possible observations increases com-855

pare to eSMC2. As in eSMC2, if the two nucleotides (DNA mutation) at one856

position are identical at a non methylable site, we indicate this as 0. If the two nu-857

cleotides are different, it is indicated as 1 (i.e. a DNA mutation occurred). When858

assuming site-level epimutation only, three possible observations are possible at a859

given methylable posisiton: 1) if the two cytosines from the two chromosomes are860

unmethylated, it is indicated as a 2, 2) if the two cytosines are methylated, it is861

indicated as a 3, and 3) if at a position a cytosine is methylated and the other862

one unmethylated, it is indicated as a 4. Depending on the mutation, methyla-863

tion and, demethylation rates, different frequencies of these states are possible in864

the sample of sequences, which provide information on the emission rate in the865

SMC method. When both site- and region-level methylation processes occur, the866

methylation state is conditioned by the region level methylation state (increasing867

the number of possible observation to 9)868

To choose the appropriate settings for SMCm (i.e. if there are region level869

epimutations), we test if the methylation state are distributed independently from870

one another along one genome. In absence of region methylation effect, the prob-871
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ability at each site (position) to be methylated or unmethylated should be inde-872

pendent from the previous position (or any other position). Conversely, if there873

is a region effect on epimutation, two consecutive sites along one genome would874

exhibit a positive correlation in their methylated states (and across pairs of se-875

quences). We therefore calculate the probability that two successive positions with876

an annotated methylation state would be identical under a binomial distribution of877

methylation along a given genome. We then compare theoretical expectations to878

the observed data and build the statistical test based on a binomial distribution of879

probabilities. If existence of region level epimutation is detected, the regions level880

methylation states are recovered through a hidden markov model (HMM) similarly881

to [65, 18, 69]. Note that this HMM model does not include information from882

epimutation rates known from empirical studies. The complete description of the883

mathematical models and probabilities are in the supplementary material Text S1.884

885

We postulate that the epimutation rates remain unknown in most species, while886

the DNA mutation rate may be known (or approximated based on a closely related887

species). Hence, we develop an approach based on the SMC capable of leverag-888

ing information from the distribution of DNA mutations to infer the epimutation889

rates (similar to what is described above). Our approach first tests if epimutations890

violates or not the infinite site assumptions. If less than 1% of sites with their891

methymation state annotated are polymorphic in a sequence we use the infinite site892

assumption: the site and region level epimutation rates can be recovered straight-893

forwardly from the observed diversity (θW , see above) . Otherwise, a Baum-Welch894

algorithm is run to infer the most likely epimutation rates (site rate for SMP, and895

region rates for DMRs) [73, 74, 69].896

Calculation of the root mean square error (RMSE)897

To quantify the accuracy of each demographic inference we evaluate the root mean898

square error (RMSE). To do so we choose a hundred points uniformly spread across899

the time window (in log10 scale), and compare the actual population size and the900

one estimated by a given method at each of these points. We thus have the following901

formula:902

RMSE =

√∑102

i=1(yi − y∗i )
2

102
, (2)

where yi is the true population size at the time point i, and y∗i is the estimated903

population size at the time point i.904
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Inference of the Time to the Most Recent Common Ancestor (TM-905

RCA)906

To infer the TMRCA at each position of the genome we use an approach similar907

to the PSMC’ described in [58]. We first run a forward and backward algorithm908

on our sequence data (see appendix of [63, 71] for computation details). From909

the output results we calculate the probability to be in each hidden state at each910

position of the genome (note that the output product of the forward backward911

algorithm is rescaled so that the sum of probability is one), which we use to compute912

the expected coalescent time at each position on the genome using the following913

formula:914

TMRCAi =

n∑
j=1

foi,j × bai,j × Tcj , (3)

with i is the position on the genome, j is the hidden state index, n is the number915

of hidden state, fo is the output from the forward algorithm, ba is the output from916

the backward algorithm,
∑n

j=1 foi,j × bai,j = 1, and Tc is a vector containing all917

the hidden states (i.e. coalescent times).918

Sequence data of Arabidopsis thaliana919

We download genome and methylome data of A. thaliana from the 1001 genome920

project [12]. We select 10 individuals from the German accessions respectively921

corresponding to the accession numbers: 9783, 9794, 9808, 9809, 9810, 9811, 9812,922

9816, 9813, 9814. We only keep methylome data in CG context and in genic regions923

[74, 18]. The genic regions are based on the current reference genome TAIR 10.1.924

The SNPs and epimutations are called according to previously published pipeline925

[69, 18]. As in previous studies [63, 22, 19], we assume A. thaliana data to be926

haploid due to high homozygosity (caused by high selfing rate). The resulting927

files are available on GitHub at https://github.com/TPPSellinger. To perform928

analysis we chose µ = 6.95 × 10−9 per generation per bp as the DNA mutation929

rate [52] and r = 3.6× 10−8 as the recombination rate [56] per generation per bp.930

In order to have the most realistic model, we assume that the methylome of A.931

thaliana undergoes both region (RMM) and site (SMM) level epimutations [18].932

When fixed, we respectively set the site methylation and demethylation rate to933

µSM = 3.48 × 10−4 and µSU = 1.47 × 10−3 per generation per bp according to934

[73]. We additionally set the region level methylation and demethylation rate to935

µRM = 1.6× 10−4 and µRU = 9.5× 10−4 per generation per bp according to [18].936

Because we do not account for the effect of variable mutation or recombination rate937

along the genome, we cut the five chromosome of A. thaliana into eight smaller938

scaffolds [4, 5]. By doing this we remove centromeric regions and limit the effect939

the variation of mutation and recombination rate along the genome. The selected940
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regions and the SNP density (from the German accessions) are represented in941

Supplementary Figures 11 to 15.942

Data Availability943

eSMC2 R package can be found at : https://github.com/TPPSellinger/eSMC2 .944

The input files created from Arabidopsis thaliana sequence data are available on945

GitHub at : https://github.com/TPPSellinger/Arabidopsis_thaliana_methylation946
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