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Abstract 

Rationale: Congenital diaphragmatic hernia (CDH) results in lung hypoplasia. In severe cases, 

tracheal occlusion (TO) can be offered to promote lung growth. However the benefit is limited, and 

novel treatments are required to supplement TO. Vascular endothelial growth factor (VEGF) is 

downregulated in animal models of CDH and could be a therapeutic target, but its role in human CDH 

is not known.  

 

Objectives: To investigate whether VEGF supplementation could be a suitable treatment for CDH-

associated lung pathology. 

 

Methods: Fetal lungs from CDH patients were used to determine pulmonary morphology and VEGF 

expression. A novel human ex vivo model of fetal lung compression recapitulating CDH features was 

developed and used to determine the effect of exogenous VEGF supplementation (Figure 1A). A 

nanoparticle-based approach for intra-pulmonary delivery of VEGF was developed by conjugating it 

on functionalized nanodiamonds (ND-VEGF) and was tested in experimental CDH in vivo.  

 

Measurements and Main Results: VEGF expression was downregulated in distal pulmonary 

epithelium of human CDH fetuses in conjunction with attenuated cell proliferation. The compression 

model resulted in impaired branching morphogenesis similar to CDH and downregulation of VEGF 

expression in conjunction with reduced proliferation of terminal bud epithelial progenitors; these could 

be reversed by exogenous supplementation of VEGF. Prenatal delivery of VEGF with the ND-VEGF 

platform in CDH fetal rats resulted in lung growth and pulmonary arterial remodelling that was 

complementary to that achieved by TO alone with appearances comparable to healthy controls.  

 

Conclusions: This innovative approach could have a significant impact on the treatment of CDH. 

Keywords: Congenital Diaphragmatic Hernia; VEGF; Nanoparticles; Mechanical Compression; 
Alveolar Epithelium 
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Introduction 

Pulmonary hypoplasia is a major cause of neonatal mortality (rates of 70-95% perinatally). Congenital 

diaphragmatic hernia (CDH) is one of the major causes; it is characterised by herniation of abdominal 

viscera into the thorax resulting in impaired lung development, reduced airway branching/alveolar 

surface area, and pulmonary hypertension1,2. Severe/extreme CDH is associated with mortality in 

excess of 75%3, and can be diagnosed antenatally enabling prenatal therapy. Currently, tracheal 

occlusion (TO), involving percutaneous balloon insertion into the fetal trachea4,5, is the only in utero 

intervention available to fetuses with compromised lung development6. Even with TO, mortality 

remains around 50%7, necessitating novel therapies complementary to TO8. 

 

CDH animal models have shown impairment of the VEGF pathway. VEGF levels are reduced in 

hypoplastic lungs from rats with nitrofen-induced CDH9,10,11,12, whilst prenatal pharmacological 

disruption of VEGF signalling resulted in hypoplasia and pulmonary hypertension in rodents and 

sheep13,14,15. Moreover, VEGF administration in vitro accelerated growth in nitrofen-induced 

hypoplastic rat lung explants16 and normalised function of pulmonary artery endothelial cells derived 

from fetal lambs with CDH17. However, the role of the VEGF pathway in human CDH pathogenesis 

has not been investigated. A significant contribution to the CDH pulmonary phenotype arises from the 

mechanical compression of the herniated organs into the chest cavity. However, in the Nitrofen 

model, lung development defects occur earlier than herniation8 so teratogenic versus mechanical 

effects are difficult to distinguish, whereas surgical models of CDH are limited to late stages of 

development therefore not accurately recapitulating the pathogenesis18.  

 

Although the therapeutic effects of prenatal VEGF administration have been demonstrated in animal 

models of prematurity-associated respiratory distress syndrome19,20, there is currently no in vivo 

evidence that VEGF administration has an effect on CDH. Successful use of exogenous VEGF in this 

context would necessitate a delivery method that allows VEGF release in a sustained and targeted 

manner. The latter is particularly important due to the rapid plasma clearance of VEGF, as well as its 

key role in tumour growth21. Nanoparticle-based delivery platforms are currently being investigated in 

various fields of medicine22,23,24, and may also have significant translational potential in the setting of 

CDH-associated pulmonary pathology. Nanodiamonds (ND; 2-8nm carbon nanoparticles) are one 

such platform, integrating several properties that are prerequisites for clinical translation allowing 

conjugation and sustained release of a broad range of therapeutic agents24,25.  
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Methods 

Mouse and human fetal lung tissue 

Whole lungs from E12.5 mouse embryos were obtained as previously reported26. Whole fetal lung 

samples aged 7 – 8 pcw were obtained under permission from NHS Research Ethical Committee 

(REC reference 18/LO/0822 and 18/NE/0290) and the Joint MRC/Wellcome Trust Human 

Developmental Biology Resource (www.hdbr.org).  

 

3D printing 

For three-dimensional (3D) printing, 10µL of 20% PEG-HCC in PBS were added on Matrigel-

embedded lung samples. 3D-printing was performed as previously reported27. Confocal microscope 

settings for crosslinking: pixel resolution 1640×1640, pixel dwell time 0.98μs, zoom 0.9x, laser 

wavelength 800nm, stack depth 2μm, laser power 80%, 4x immersion objective. Control samples 

were incubated with the same amount of PEG-HCC gel but without cross linking. 

 

Production of Nanodiamond-VEGF Conjugates 

VEGF conjugation on nanodiamonds (ND) was carried out using a sequential process summarised in 

Supplementary Methods, Supplementary Results and Supplementary Figure 11A. 

 

Animals for in vivo study 

All experimental protocols were approved by the Ethics committee for Animal Experimentation of the 

Faculty of Medicine, KU Leuven, Leuven, Belgium (P102/2015) and follow the ARRIVE 2.0 reporting 

guidelines. Gestational day (E) 19-21 fetuses from time-dated pregnant Wistar rats were used in 

experiments.  

 

Generation of CDH 

In order to generate fetuses with CDH and hypoplasia, pregnant rats received 100mg of nitrofen (by 

gavage in 1mL olive oil) on gestational day 9 (E9) as previously described10,11,28.  

 

Sample Size Calculation and Statistical analysis 

Results are expressed as mean ± SDEV of biological replicates as indicated in figures. Continuous 

variables were compared by Mann-Whitney test or One-way ANOVA with Bonferroni post-hoc tests 

(GraphPad Prism 7.0; San Diego, California, USA). For in vivo experiments, sample size calculation 

was done based on previous studies where TO improved several outcomes by 40% in CDH 

fetuses29,30. We expected an additional effect of 60% over the effect of TO, and thus outcome within 

the range of healthy fetuses. Using as variables 8 groups, alpha 0.05 and beta 0.05, we calculated a 

minimum of 8 animals per group. 
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Results 

Lung hypoplasia in human CDH fetal lungs is associated with reduced VEGF expression and 

epithelial proliferation. 

We found noticeable hypoplasia as early as 18 pcw in post-mortem human CDH tissue compared to 

healthy lung tissue at matching developmental stages (Figure 1B-C)31. We also found significant 

downregulation of VEGF and its receptor 2 (KDR) in the distal epithelium compared to healthy 

controls with associated reduction in proliferation (Figure 1D-G). Overall, these data are similar to 

previous findings using the CDH nitrofen model9. We therefore hypothesised that the exogenous 

supplementation of VEGF to the developing lung could promote distal epithelial proliferation and 

attenuate lung hypoplasia in CDH fetuses.  

 

Development of a human model of fetal lung mechanical compression relevant to CDH. 

To test this hypothesis, we sought to develop an ex vivo model that recapitulates the mechanically 

constricted environment of the human fetal lung at the earliest stages of CDH. We first exposed 

embryonic mouse lungs to physical constraints created through hydrogels (PEG-HCC) with well-

defined elastic modulus, by leveraging an intravital bioprinting approach32, that enables an accurate 

control over the PEG-HCC crosslinking around the lung with predetermined mechanical properties 

(Figure 2A). Atomic Force Microscopy (AFM) analysis confirmed the increase in stiffness of the 

crosslinked PEG-HCC gel compared to Matrigel (Figure 2B). No cytotoxic effects as a direct 

consequence of the crosslinking have been observed32,27. The formation of a mechanically printed 

barrier successfully confined the expansion of mouse lung tissue compared to non-compressed 

controls (Figure 2C; Supplementary Video 1). The area occupied by the left lobe was significantly 

reduced and branching morphogenesis was impaired in the confined lungs compared to control. In 

addition, H&E staining revealed morphological alterations of the compressed lungs with noticeable 

reduced airway space (Figure 2D-E). We then analysed cell proliferation within the pulmonary 

epithelial compartment and found that the fraction of ECAD/EdU double positive cells in compressed 

lungs was reduced (Figure 2F). In addition, bulk RNA-sequencing analysis demonstrated altered 

transcriptional activity in the compressed lungs compared to controls, including VEGF-A 

downregulation (Figure 2G; Supplementary Figure 1). DEGs network analysis showed enrichment of 

GO-BP categories related to inflammatory and immune responses33,34 (Figure 2H; Supplementary 

Spreadsheet 1). To better understand how the compressed lung is subjected to the mechanical load 

as a consequence of the confinement, we developed an in-silico analysis based on the finite element 

method (FEM). We assumed a distinct proliferation rate between distal and proximal areas of the 

tissue, that was validated by the experimental observations of surface growth (Supplementary Figure 

2A-C). Hydrostatic stress maps showed an overall increase of the mechanical load in the compressed 

lung with a noticeable difference between proximal and distal areas, suggesting bud tips are the most 

subjected to compression (Supplementary Figure 2D). 
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We then translated the developed ex vivo CDH model for human tissue investigation, by using early 

pseudoglandular stage human fetal lung fragments (Figure 2I; Supplementary Methods). We first 

verified tissue growth and viability and observed branching morphogenesis and spontaneous 

peristalsis up to 2 weeks in culture (Supplementary Video 2). To mimic mechanical compression, we 

used PEG-HCC as before to 3D-print a mechanical barrier surrounding the lung (Figure 2I). At day 7 

we observed a significant reduction in the surface area of compressed lung fragments, as well as 

reduced branching morphogenesis (Figure 2J,K). FEM analysis adapted to the human model 

(Supplementary Figure 2E,F) showed a good representation of experimental data assuming a 

Young’s modulus comprised between 1 and 1.5 kPa (Figure 2L). Hydrostatic stress maps confirmed 

an approximate 3-fold increase of the mechanical load in the compressed tissue compared to control 

(Figure 2M). Overall, these data suggest that the mechanical confinement at an early stage is 

sufficient to mimic some key features of CDH pathogenesis, mainly affecting distal epithelial 

proliferation.  

 

VEGF expression and cell proliferation are impaired in compressed bud tip progenitor cells 

and can be rescued by exogenous supplementation of VEGF in the human fetal lung 

compression model. 

To further investigate the effects of mechanical compression on the human fetal lung tissue, and on 

the bud tip cells in particular, we conducted a single-cell RNA-sequencing (scRNA-seq) analysis of 

compressed and control lung fragments from 3 donors. We captured and identified over 30,000 cells 

across 3 biological replicates, including all expected cell types with no significant differences in both 

compressed and control lungs35 (Figure 3A; Supplementary Figure 3A-D). Within the epithelial 

compartment, we identified expected distal epithelial cells (comprised of tip, stalk, and airway 

progenitors), as well as neuroendocrine, and very few peripheral nervous system (PNS) cells. We 

also found a sizeable cluster of undifferentiated cells adjacent to the distal epithelial fraction which 

have not been described in previous single-cell studies using fresh tissue; these strongly expressed 

stretch-associated genes36,37 in addition to distal epithelial markers, and were not associated with the 

presence of the mechanical constraint. We therefore identified these as ‘stretched epithelial’ cells and 

hypothesise that their presence is due to an artifact of ex vivo culture, as swelling of distal tips in 

culture was occasionally observed (Supplementary Figure 4). We focused our investigation on the 

SOX9/TESC double-positive tip cells35. GO-BP analysis revealed several pathways significantly 

upregulated in compressed tips (Figure 3B-C); many of these signals are lost when looking at the 

epithelial compartment as a whole (Supplementary Figure 3E,F), indicating a heightened effect of 

compression on tip cells as predicted. Furthermore, we saw a reduction in known proliferation 

signatures38 and VEGF-family genes in the presence of mechanical stimuli (Figure 3D). 

 

We leveraged the human model to test whether the noted reduction in proliferative markers in the 

distal tips resulted in actual mitotic impairment, and if supplementation of exogenous VEGF, 

administered at optimal concentrations based on previous studies using murine lungs16 

(Supplementary Figure 5A-C), could mitigate this effect (Figure 3E). While mechanical confinement 
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significantly impairs distal epithelial proliferation, VEGF supplementation significantly rescued 

epithelial proliferation to levels comparable to control (uncompressed) lungs; the same effect was not 

obtained in the presence of SU5416, confirming the specificity of the proposed treatment (Figure 

3F,G). Overall these data suggest VEGF could be a target for restoring epithelial proliferation in the 

distal lung when this is exposed to mechanical confinement. 

 

Exogenous VEGF supplementation promotes lung growth and ameliorates airway 

abnormalities in the nitrofen rat model of CDH.  

To validate our hypothesis and test the therapeutic value of VEGF in vivo, we then sought to 

determine whether exogenous VEGF supplementation would be salutary (over and above TO) 

against pulmonary hypoplasia in the nitrofen rat model of CDH. We developed a nanoparticle 

(nanodiamond; ND) VEGF delivery platform (ND-VEGF) to allow spatially- and temporally-targeted, 

gradual release of VEGF in fetal lungs in vivo. The effect of ND-VEGF in this setting was compared to 

that of TO alone, as well as VEGF administered to the fetal lung of TO animals as a solution (free 

VEGF). Finally, we investigated the possible mechanism of action of VEGF in this setting, by co-

administering the KDR/Flk1 inhibitor SU541639,40. Experimental groups are summarised in Figure 4A 

and Supplementary Methods.  Ultrasound assessment at E19 was 100% accurate in detecting 

fetuses with CDH as confirmed at harvesting (E21; Figure 4B). Excluding animals in the healthy 

control group, only fetuses with ultrasound-detected CDH at E19 were included in the study (CDH 

incidence: 40%). There was no difference in fetal survival between experimental groups 

(Supplementary Figure 6). Fetal body weight at E21 was significantly reduced in sham-treated CDH 

animals compared to healthy controls and was not affected by any of the interventions (data not 

shown). Biodistribution studies identified ND-VEGF only within the distal airways of CDH rats at E21, 

with evidence of retention of VEGF by E-Cadherin-positive epithelial cells (Figure 4C). 

Histopathological analysis of fetal and maternal tissues demonstrated no toxic effects of empty ND, 

free VEGF, and ND-conjugated VEGF. In addition to lack of bronchial oedema and other pulmonary 

side-effects, in utero intratracheal administration of free and ND-conjugated VEGF did not result in 

microscopic abnormalities or neovascular growth in the placenta, as well as fetal or maternal organs 

(Supplementary Figure 7,8).   

 

There were obvious macroscopic differences in lungs harvested from animals in different 

experimental groups. Lungs in the sham group were the smallest, those in the ND-VEGF+TO group 

were the biggest, while the size of lungs in other groups was in-between that observed in sham and 

ND-VEGF+TO animals (Figure 5A). Lung-to-body weight ratio (ratio of fetal lung to total body weight; 

LBWR) and total lung protein measurements content in untreated CDH fetuses were markedly 

reduced compared to healthy controls. TO resulted in a significant increase in both LBWR and protein 

content compared to sham (Figure 5B,C). In utero intra-tracheal administration of ND-VEGF followed 

by TO had effects that were complementary to those of TO alone, and led to a lung size comparable 

to that observed in healthy controls (Figure 5B,C). This therapeutic effect of ND-VEGF was not 

observed when free VEGF or empty ND were administered, and was abrogated by co-administration 
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of the KDR/Flk1 inhibitor SU5416. In agreement with previously published data, nitrofen-induced CDH 

resulted in marked abnormalities in airway morphology that were partly improved by TO (Figure 5D,E; 

Supplementary Figure 9). TO resulted in partial improvement in these parameters (Figure 5E; 

Supplementary Figure 9). ND-VEGF had salutary effects on lung morphology over and above to those 

achieved by TO alone and normalised distal airway maturation in CDH animals (Figure 5E), but there 

was no concomitant normalisation of the number of alveolar saccules (Supplementary Figure 9). 

Similar to what we observed in terms of lung growth, the therapeutic benefit of ND-VEGF was not 

observed when free VEGF or empty ND were administered and was abrogated by co-administration 

of SU5416 (Figure 5E).  SPC expression in ND-VEGF+TO animals was similar to healthy controls 

and significantly higher than in sham-treated animals (Figure 5G). SU5416 co-administration inhibited 

ND-VEGF-induced alveolar epithelial cell maturation and TO alone (or in conjunction with free VEGF 

or empty ND) did not affect SPC expression, which was found to be similar to that observed in the 

sham group (Figure 5G). 

 

Exogenous VEGF supplementation ameliorates pulmonary vascular abnormalities in the 

nitrofen rat model of CDH.  

Nitrofen-induced CDH was associated with increased muscularization of peripheral pulmonary 

arterioles (diameter: 30-50µm), as well as reduced overall alveolar vascularization (Figure 5H,J). 

Medial thickness (MT) in the sham group was higher (Figure 5H,I) and thrombomodulin expression in 

alveolar tissue was lower (Figure 5J,K) compared to healthy controls (Figure 5I,K). TO alone 

attenuated pulmonary arteriolar muscularization to levels that were still significantly higher than in 

healthy controls (Figure 5I), but had no effect on alveolar vascularization (Figure 5K). Similar to what 

we observed for lung growth and morphology, ND-VEGF in conjunction with TO was the only 

intervention that resulted in near-normalisation of both arterial muscularization (Figure 5H,I) and 

overall alveolar vascularization (Figure 5J,K), but these effects were reversed when SU5416 was co-

administered (Figure 5K,I). Pulmonary arteriolar adventitial thickness was similar in all experimental 

groups (Supplementary Figure 10).  
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Discussion 

Herein we demonstrate that exogenous VEGF supplementation, coupled with TO has the potential to 

rescue lung hypoplasia and pulmonary vascular abnormalities in CDH. As failure of diaphragm 

closure likely starts manifesting around 6 post-conception weeks8, we collected post-mortem CDH 

tissue at the earliest available fetal stages and confirmed impaired VEGF expression in the distal 

epithelium of CDH lungs. We also found altered lung morphometry reflecting impaired branching 

morphogenesis, along with reduced epithelial proliferation. We developed an ex vivo model using 

human fetal lung tissue and confirmed that mechanical compression alone is sufficient to induce 

morphological and transcriptional signs of lung hypoplasia in the absence of chemical or genetic 

manipulation. In contrast to previous studies using lung organoids to model CDH loads41, here we 

propose a whole fetal lung tissue compression model including all cell types present at a stage at 

which CDH likely starts manifesting in vivo. A preliminary characterization of the model using 

embryonic mouse lung evidenced impaired branching morphogenesis and reduced epithelial 

proliferation, confirming results in human CDH tissue. In addition, we found an overall transcriptional 

upregulation of inflammatory and immune response genes, along with downregulation of Vegf. 

Interestingly, an inflammatory response has been detected both in the Nitrofen model33 and in human 

cord blood from CDH fetuses42. We developed an FEM-based analysis and quantified mechanical 

stress, to confirm that distal areas are stiffened compared to control. We then leveraged the model to 

investigate compression of human tissue, using distal fragments isolated from fetal lungs and showing 

for the first time that mechanical compression alone decreases proliferation in bud tip progenitors. 

Single-cell RNA-sequencing revealed a reduced expression of VEGF in compressed epithelial bud tip 

progenitors, possibly reflecting the significant VEGF impairment found later in CDH lungs. Although 

the mechanism through which mechanical alterations lead to VEGF impairment is unknown, we 

speculate that an autocrine/paracrine VEGF signalling, previously described in epithelial development 

and in different types of cancer43,44,45 could be involved. 

 

Although the therapeutic effects of prenatal VEGF administration have been demonstrated in 

prematurity-associated respiratory distress syndrome models19,20, there is currently no in vivo 

evidence for an effect of VEGF administration in CDH. Such administration would require tight 

temporal and spatial control to emulate normal development. Nanodiamonds integrate several 

properties that make them suitable in this setting, including innate biocompatibility, scalability, precise 

particle distribution, a high surface-area-to-volume ratio, a near-spherical aspect ratio and an easily 

adaptable carbon surface for bio-agent attachment46. Their use as a biocompatible drug delivery 

platform is effective in pre-clinical treatment of chemo-resistant tumours thanks to prolonged and 

sustained drug delivery in situ25. In our innovative system, VEGF covalently bound to a nanodiamond 
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carrier allowed sustained release within the fetal lung. As expected, fluorescently labelled 

nanoparticles  showed a non-uniform distribution with a granular aspect in the cytoplasm of 

pulmonary epithelial cells suggesting cellular uptake by endocytosis, in contrast to small molecules 

that often diffuse through the cell membrane47. The containment of the nanoparticles within 

endosomes prevents ejection by the cells’ efflux pump mechanism, but also inhibits penetration deep 

into the cytosol; this is likely an advantage as VEGF functions primarily extracellularly in fetal airway 

development48. Importantly, even epithelial cells exposed to increasing concentrations of ND for 

prolonged periods showed no changes in metabolic activity, proliferation, or apoptosis. Moreover, 

there were no visible changes to cell adhesion or cytoskeletal structure assessed using fluorescence 

imaging, and we could not detect any cytotoxicity induced by ND.  

 

We tested a therapeutic formulation where VEGF was coupled to ND structures. Chemical 

modification of the VEGF protein into a sulfhydryl form did affect biological activity in the well-

established CAM assay49. We also investigated the biological effects of VEGF in the Nitrofen rat 

model50. Pulmonary VEGF expression is reduced in CDH10 but upregulated after TO, corresponding 

to substantial lung growth29. We confirmed this, and further demonstrated that the addition of injected 

substances did not increase embryonic rat mortality. Injection of unmodified VEGF did not further 

supplement the effect of TO, but injection of VEFG-ND markedly improved LBWR and protein/lung 

weight ratio to control levels. This effect is completely abolished when a specific VEGF inhibitor39,40 is 

injected alongside the VEGF-ND complex, as also confirmed by lung morphometry. As hypothesized, 

gradual release of VEGF by ND-VEGF affected lung vasculature with normalization of overall 

pulmonary parenchymal vascularisation (assessed by expression of the endothelial marker 

thrombomodulin)51, as well as medial thickness of peripheral pulmonary arteries. TO alone only 

partially induces these changes, and the effect disappears when a VEGF inhibitor is added, 

suggesting that the beneficial effects of supplemental VEGF in reversing lung hypoplasia require 

sustained release. We believe that this finding goes beyond CDH treatment and could be also 

adopted in other perinatal lung diseases in which VEGF plays a key role20,52. 

 

There are limitations of the study. Firstly, the mechanism of action is unclear and while specific, it is 

uncertain whether VEGF acts on pulmonary epithelial, endothelial cells or both. Furthermore, we did 

not measure ND-VEGF nanoparticle leakage to other organs, although we did not see any leakage in 

non-pulmonary tissues in our biodistribution study. Pulmonary tropism could be enhanced by 

modifying the carrier to bind to cell membranes of organ-specific cells53. Finally, local lung toxicity 

remains unclear in vivo, however it seems not to be significant in higher species54. This should not be 

underestimated because nanoparticles are taken up by local immune cells which may play critical 

roles in the induction and regulation of pulmonary immunity or inflammation47. 

  

In conclusion, we have demonstrated the role of VEGF in maturation of human lung epithelium and its 

impairment in CDH. Both in vitro and in vivo data show that sustained VEGF rescued the affected 

lungs. Delivery of growth factors by nanocarriers could have a place in perinatal lung therapy with 
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potential scalability for clinical use, but this will need to be tested in a larger animal model for CDH 

and TO.  
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Figure Legends 

 

Figure 1 

(A) Schematic of the study design based on the analysis of the early-stage CDH fetal lung sections to 

assess early hypoplasia and VEGF impairment. In parallel, a human compression-based CDH model 

will be developed to validate the CDH phenotype and test a therapeutical approach to rescue lung 

hypoplasia. (B) H&E analysis of 18 and 22 pcw post-mortem CDH human lung tissue reveals 

impaired epithelial development compared to control healthy tissue at matching developmental 

stages. Scale bar 100μm. (C) Morphometric analysis of CDH and healthy lung tissue at 18-22 pcw 

reveals decreased values of volume densities of air space (Vair%) and corresponding higher values 

of volume densities of alveolar septa (Vsep%) in CDH tissues compared to healthy tissue at the same 

developmental stages. A similar trend can be observed for the mean linear intercept of air space 

(Lma%) and its corresponding mean linear intercept of septal thickness (Lmw%). (D) Histologic 

analysis of VEGFA, KDR, Ki67 and NKX2-1 markers in normal and CDH fetal lung tissue at 18 and 22 

pcw. Scale bar 100μm.  (E) Quantification of epithelial VEGFA and KDR expression reported in D 

shows a significant decrease for both markers in CDH compared to healthy samples. 

Correspondingly, the percentage of Ki67-positive epithelial cells is significantly lower in CDH 

compared to healthy samples, with no significant differences in the number of NKX2-1-positive cells. 

***<p=0.001. (F) Immunofluorescence analysis of ECAD in normal and CDH fetal lung tissue at 18 

and 22 pcw. Scale bar 100μm. (G) Quantification of epithelial nuclear density based on results in 

Figure F shows no significant differences between CDH and healthy tissue. 

 

Figure 2 

(A) Experimental setup of the ex vivo model of mouse fetal lung compression during pseudoglandular 

stage. Freshly-isolated mouse fetal lungs (E12.5) were embedded in Matrigel drops and cultured in 

Air-liquid Interphase (ALI). The next day (Day 0), a 20% Cumarin HCC-conjugated 8-arm-

polyethylene glycol gel (PEG-HCC) solution was dispersed into the Matrigel drop and selectively 

crosslinked under a two-photon microscope to surround the lungs and inhibit their growth over a total 

of 2 days. Control lungs had the same amount of PEG-HCC solution added to the Matrigel, but this 
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was not crosslinked with the two-photon laser. (B) Atomic force microscopy analysis confirms the 

stiffness of the gel in culture conditions after two weeks from printing is approximately 20-fold higher 

compared to Matrigel. (C) Time-lapse imaging of lung growth under physical confinement 

(Compression) compared to control. Scale bar 100μm. (D) Quantification of left lobe surface area 

(left) and terminal buds (right) in control and compressed lungs after two days of mechanical 

confinement shows significant impairment of lung growth and branching in compressed lungs. N=6 

embryos. *<p=0.05; **<p=0.01; ***<p=0.001. (E) H&E staining reveals qualitatively noticeable 

alterations of the fetal tissue morphology in control and compressed lungs after two days of 

mechanical confinement. N=2 embryos. Scale bar 100μm. (F) EdU incorporation assay reveals a 

decreased proliferation of distal epithelial cells in the compressed lungs compared to control. N=3 

embryos *<p=0.05. (G) Volcano plot of bulk RNA-sequencing analysis of compressed vs control lungs 

after two days of mechanical confinement. Differentially expressed genes (DEGs) have been 

identified with FC>1.2 and FDR<0.05. DEGs analysis shows downregulation of Vegfa in compressed 

lungs. (H) Gene network analysis of overexpressed genes in the compressed lungs reveals 

upregulation of categories related to inflammatory and immune response. (I) Experimental setup of 

the ex vivo model of human fetal lung compression during pseudoglandular stage. The compression 

is achieved by the physical confinement of fetal lung distal tissue through the 3D-printing of the PEG-

HCC gel after 24 hours of culture in Matrigel. The tissue is then cultured ex vivo for seven days in the 

presence or absence of physical confinement. (J) Representative time-lapse imaging of human lung 

tissue growth under physical confinement (Compression) compared to control. N=4 donors. Scale bar 

100μm. (K) Quantification of human lung tissue surface area (left) and terminal buds (right) in control 

and compressed lungs after six days of mechanical confinement. N=4 donors. *<p=0.05; **<p=0.01; 

***<p=0.001. (L) FEM analysis validation based on the time-course experiment in Supplementary 

Figure 2E. Comparison of normalized area of the lung sample over time for experimental data and 

numerical values from FEM analysis. The area is normalized to the geometric configuration at Day 0. 

FEM analysis was developed adopting two values of the Young’s modulus to account for the 

uncertainty about the stiffness of the human lung tissue. (M) Pressure field prediction. Representative 

pressure field (kPa) for control and compressed lung fragments at Day 6, assuming a Young’s 

modulus of 1.5 kPa for the human lung tissue. 

 

Figure 3 

(A) UMAP visualization of 32630 fetal lung cells, n=3 biological samples. Leiden clustering revealed 

18 distinct cell types within mesenchymal, epithelial, endothelial, and hematopoietic fractions. (B) 

Magnified UMAP of the epithelial compartment cells. Distal tip cells, “tips+”, were identified by co-

expression of known tip markers (SOX9+, TESC+); the remaining cells comprise non-tip epithelium, 

“tips-”. (C) Gene Ontology enrichment analysis reveals differential expression of several gene profiles 

in tips+ cells of the CDH model. (D) Relative expression of 11 proliferation-associated genes and 3 

VEGF-family genes between control and CDH model tips. (E) Experimental set up of the human ex 

vivo model to test exogenous VEGF supplementation. After 7 days of culture in basal medium, 

compressed human lung fragments were treated with recombinant VEGF for an additional 7 days, 
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using the specific KDR/Flk1 (VEGF receptor 2) inhibitor SU5416 as negative control. (F) 

Representative pictures of EdU proliferation assay after 7 days of VEGF treatment (Compression 

+VEGF) compared to Control, Compression only and compressed samples treated with the VEGF-

specific inhibitor SU5416. Immunostaining for E-CADHERIN (E-CAD) was used to identify epithelial 

cells. Scale bar 100μm. (G) Quantification of the number of ECAD/EdU double-positive cells after 7 

days of VEGF treatment shows a significant increase in proliferation in VEGF-treated samples 

(Compression +VEGF) compared to not treated samples (Compression). Proliferation in samples 

after VEGF treatment is also significantly higher than proliferation in samples treated with the VEGF 

inhibitor SU5416. N=2 donors. *<p=0.05; **<p=0.01; ***<p=0.001. 

 

Figure 4  

(A) Experimental design of in vivo intervention studies in fetal rats using VEGF-loaded nanodiamonds 

(ND-VEGF). There were eight experimental groups: healthy control (non-congenital diaphragmatic 

hernia/CDH; olive oil gavage-fed mothers), sham intervention (surgery but no injection or tracheal 

occlusion/TO in CDH fetuses from nitrofen-fed mothers), PBS+TO (intra-tracheal vehicle injection at 

E19 followed by TO in CDH fetuses), free VEGF+TO (free VEGF injection followed by TO), ND+TO 

(unconjugated ND-NH2 injection followed by TO), ND-VEGF+TO (ND-VEGF injection followed by 

TO), SU5416+TO (KDR/Flk1 inhibitor SU5416 injection followed by TO) and ND-VEGF+SU5416+TO 

(ND-VEGF and SU5416 co-injection followed by TO). Animals in the groups with ND-VEGF 

administration received 13.4±1.9μg ND and 100ng VEGF, while animals in ND+TO and VEGF+TO 

received the same amounts of ND-NH2 and free thiolated-VEGF in 50μL of PBS. The concentration 

of the KDR/Flk1 inhibitor SU5416 in the injection solution used in SU5416+TO and ND-

VEGF+SU5416+TO groups was 120μg/mL. (B) Confirmation of the presence of diaphragmatic defect 

in E18 fetal rats using micro ultrasound (Lu/pink outline: lung; H/purple outline: heart; Li/white outline: 

liver). (C) Representative confocal microscopy image demonstrating localisation of ND-VEGF in 

airways at E21, following E19 intra-tracheal administration with TO, with evidence of uptake/retention 

of VEGF by E-Cadherin expressing alveolar epithelial cells (E-Cadherin: green; VEGF: red; DAPI: 

blue; magnification columns 1-3: x20; magnification column 4: x63).    

 

Figure 5  

(A) Representative images of E21 lungs from rats in the intervention study (left to right: sham, 

PBD+TO, VEGF+TO, ND-VEGF+TO). (B) Summary of lung-to-body weight ratio data (expressed as a 

percentage; p<0.0001 vs Sham, PBS+TO, ND+TO, VEGF+TO, SU5416+TO and ND-

VEGF+SU5416+TO; † p<0.0001 vs. PBS+TO & ND-VEGF+TO; ‡ p<0.001 vs. ND+TO & VEGF+TO; 

§ p<0.01 vs. ND-VEGF+SU5416+TO;  p<0.05 vs SU5426+TO; p<0.0001 vs. PBS+TO, ND+TO, 

VEGF+TO, SU5426+TO & ND-VEGF+SU5416+TO). (C) Summary of total protein content data 

(expressed as µg/mg of lung tissue; p<0.0001 vs Sham, PBS+TO, ND+TO, VEGF+TO, 

SU5416+TO and ND-VEGF+SU5416+TO; † p<0.0001 vs. PBS+TO & ND-VEGF+TO; ‡ p<0.001 vs. 

ND+TO & VEGF+TO; § p<0.01 vs. ND-VEGF+SU5416+TO; p<0.05 vs SU5426+TO;  p<0.0001 vs. 

PBS+TO, ND+TO, VEGF+TO, SU5426+TO & ND-VEGF+SU5416+TO). (D) Representative images 
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of sections of E21 rat lungs from animals included in the in vivo intervention studies. Tissues were 

stained with hematoxylin and eosin (H&E) and were used for subsequent airway morphometry 

analyses. (E) Summary of mean linear intercept of wall transection length (Lmw) data ( p<0.0001 vs. 

Sham; † p<0.01 vs. VEGF+TO, ND+TO, SU5426+TO and ND-VEGF+SU5426+TO; ‡ p<0.05 vs. 

PBS+TO; § p<0.0001 vs. ND-VEGF+TO;  p<0.001 vs. PBS+TO;  p<0.01 vs. VEGF+TO, ND+TO, 

SU5416+TO and ND-VEGF+SU5416+TO;    p<0.001 vs. ND+TO, SU5416+TO and ND-

VEGF+SU5416+TO;   p<0.01 vs. VEGF+TO;  p<0.05 vs. PBS+TO), and mean linear intercept of 

parenchymal airspace (Lma) data ( p<0.0001 vs. Sham; † p<0.01 vs. VEGF+TO, ND+TO, 

SU5426+TO and ND-VEGF+SU5426+TO; ‡ p<0.05 vs. PBS+TO; § p<0.0001 vs. ND-VEGF+TO;  

p<0.001 vs. PBS+TO;  p<0.01 vs. VEGF+TO, ND+TO, SU5416+TO and ND-VEGF+SU5416+TO; 

p<0.001 vs. ND+TO, SU5416+TO and ND-VEGF+SU5416+TO;   p<0.01 vs. VEGF+TO;  p<0.05 

vs. PBS+TO). (F) Representative images of lung sections from in vivo intervention studies stained for 

surfactant protein C (SPC; brown) using immunohistochemistry (IHC). (G) Summary of SPC+ IHC 

index (ratio of the number of SPC+ cells over total cell number in pre-determined areas of lung 

parenchyma; expressed as percentage) data ( p<0.0001 vs. Sham, PBS+TO, ND+TO, SU5416+TO 

and ND-VEGF+SU5416+TO; † p<0.01 vs. VEGF+TO; ‡ p<0.0001 vs. Sham, PBS+TO, VEGF+TO, 

ND+TO, SU5416+TO and ND-VEGF+SU5416+TO). (H) Representative images of sections of E21 rat 

lungs from animals included in the in vivo intervention studies. Miller’s elastic staining was performed, 

and stained sections were used for subsequent vascular morphometry analyses (peripheral arterioles 

30-50µm diameter). (I) Summary of medial thickness data (expressed as a percentage of the external 

diameter of the blood vessel) ( p<0.0001 vs. Sham; † p<0.01 vs. VEGF+TO, ND+TO, SU5426+TO 

and PBS+TO; ‡ p<0.05 vs. ND-VEGF+SU5426+TO; § p<0.0001 vs. ND-VEGF+TO;  p<0.001 vs. 

PBS+TO, VEGF+TO, ND+TO, SU5416+TO and ND-VEGF+SU5416+TO;  p<0.01 vs. ND+TO;  

p<0.001 vs. PBS+TO and ND-VEGF+SU5416+TO;   p<0.01 vs. ND-VEGF+SU5426+TO), and  

summary of adventitial thickness data (expressed as a percentage of the external diameter of the 

blood vessel). (J) Representative images of lung sections from in vivo intervention studies stained for 

thrombomodulin (brown) using immunohistochemistry (IHC). (K) Summary of thrombomodulin+ IHC 

index (ratio of the number of thrombomodulin+ cells over total cell number in pre-determined areas of 

lung parenchyma; expressed as percentage) data ( p<0.0001 vs. Sham, PBS+TO, ND+TO, 

SU5416+TO and ND-VEGF+SU5416+TO; † p<0.01 vs. VEGF+TO; ‡ p<0.001 vs. Sham, PBS+TO, 

ND+TO, SU5416+TO and ND-VEGF+SU5416+TO). 
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Figure 4
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